
St. Cloud State University
theRepository at St. Cloud State

Physics and Astronomy Faculty Presentations Department of Physics and Astronomy

7-25-2015

Open Source Electronics for Laboratory Physics
Zengqiang John Liu
St. Cloud State University, zliu@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/phys_present

Part of the Physics Commons

This Presentation is brought to you for free and open access by the Department of Physics and Astronomy at theRepository at St. Cloud State. It has
been accepted for inclusion in Physics and Astronomy Faculty Presentations by an authorized administrator of theRepository at St. Cloud State. For
more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Liu, Zengqiang John, "Open Source Electronics for Laboratory Physics" (2015). Physics and Astronomy Faculty Presentations. 2.
https://repository.stcloudstate.edu/phys_present/2

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fphys_present%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/phys_present?utm_source=repository.stcloudstate.edu%2Fphys_present%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/phys?utm_source=repository.stcloudstate.edu%2Fphys_present%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/phys_present?utm_source=repository.stcloudstate.edu%2Fphys_present%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.stcloudstate.edu%2Fphys_present%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/phys_present/2?utm_source=repository.stcloudstate.edu%2Fphys_present%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

AAPT workshop W12 July 25, 2015

Saint Cloud State University, MN, USA

zliu@stcloudstate.edu

Acknowledgement
 Saint Cloud State University, MN

 Vernier Software and Technology

 My family (for putting up with my weekend, holiday
and summer work and all electronic components at
home)

 Students: Cheng Xu, John Olson, Frank Leo, Anthony
Walz, Akan Essien

Agenda
 CH1: Introduction to open source electronics

 CH2: Sensors

 CH3: Basics of programming

 CH4: Open source physics lab device discussion

 CH5: Additional OSPL features

 10 minutes at the end of each hour for breaks and
soldering practice

Challenge!

Learn laboratory physics skills in 40 hours!

Restrictions:

• You can’t use your current knowledge level. Start at level 1.

• You can only practice your skills at 2 hours a week.

• Your hours are fixed, you show up whether you like it or not.

• If you get stuck, or you come unprepared, you can’t pause.

• If you made a mistake, fix it within the 2 hour limit, hurry!

• There is only one instructor, your clock ticks while you wait for an answer.

• You can try to ask other students but they are just as busy.

• Next week you spend 2 hours on a different topic.

• Good luck! You will need it sometimes.

CH1: Open source electronics
 Electronics here represents circuit board designs

 Designers release design files under public licenses

 Global online forums support new and experienced users

 Dramatically reduces cost on lab data acquisition systems

 Users may modify designs to meet their needs

 Dramatically expands sensor selection

3-axis accelerometer, 3-axis magnetic

sensor, 3-axis gyroscope, barometer

Paid $13, requires 4 wires.

Example open source electronics
 Arduino: microcontroller development platform

 Beagle board, Raspberry pi: open source single-board
GNU/Linux computer

 Open source physics laboratory platform: lab data
acquisition system based on Arduino

 RepRap: open source 3D printer

 Openmoko: open source mobile phone

Arduino Uno $30+
 16MHz 8-bit microcontroller

 2KB SRAM

 1KB EEPROM

 32KB FLASH

 20 total input/output

 6 10-bit Analog inputs

 Serial port via USB

 SPI interface (SD card, Wi-Fi, Ethernet etc.)

 I2C (real time clock, accelerometer, gyroscope etc.)

Google arduino project:

Arduino shields
 Sits on top of an arduino

 Adds functionality to arduino, such as Ethernet, Wi-Fi,
SD card, xbee, real time clock, motor control, display,
GPS, GSM, Bluetooth, RFID, MIDI, VGA, TV etc.

 Many shields are designed by 3rd party

Open source physics lab
 Based on Arduino ecosystem with huge improvements

 Runs Arduino code and compatible with many
Arduino hardware and sensors

 Rugged design to survive student lab environment

 Micro-SD card and real-time clock for data logging

 LCD and rotary encoder for easy user interface

 No loose wires or exposed circuits on breadboards

 Compatible with Vernier and other sensors

 Compatible with more modern sensors

 Twice award winner at AAPT apparatus competition

OSPL 1.0 (2012)
AAPT 2012

OSPL 2.0 (2013)

1-2 hr

DIN-5 connectors, power barrel, on/off,

USB port, Bluetooth (internal)

Enclose

AAPT 2013

Apparatus competition

award and low cost winner

DIN-5 plugs won’t fall off like jumper

wires on an Arduino!

OSPL 2.4 (2015)
 Improved integration with ATMEGA1284 processor
 Xbee wireless module socket for Wi-Fi, Bluetooth etc.
 SD card Real-time clock make data logging accurate
 2 AA batteries and option to sleep to conserve power
 Optional 4-channel 16-bit analog-to-digital converter

Micro-SD card, ON/OFF switch mini-USB

(Not shown)

Screw terminal blocks or DIN-5 sockets

Arduino UNO vs. OSPL V 2.4

Arduino UNO

OSPL 2.4

Arduino UNO OSPL 2.4

Summary OSPL V 2.4 Arduino UNO
Microcontroller ATmega1284P ATmega328
Input Voltage (DC) 2 AA batteries Power barrel
Digital I/O Pins 24 14
Analog Input Pins 8 6
Flash Memory 128 KB 32 KB
SRAM 16 KB 2 KB
EEPROM 4 KB 1 KB
Serial ports 2 1

Firmware:
 Standard firmware is compatible with many sensors

 Log data to SD card by turning the knob to the right

 Pause reading by turning the knob to the left

 Many Vernier sensors can be selected from a list.

 Sensors not on the list requires a simple conversion.

 Read and voltages and resistance values

 I2C sensors include 16-bit analog-to-digital converter,
3-axis accelerometer, 3-axis magnetic sensor, 3-axis
gyroscope, barometer, ambient temperature sensor

 Adjust logging interval, date and time for data logging

Firmware menu
Analog Sensor

Vernier

• Direct Temp

• Temperature

• Force +-10N

• Force +-50N

• Pressure PS-DIN

• Gas Pressure

• Voltage

• AUTO_ID

• Cond. 200uS/cm

• Cond. 2KuS/cm

• Cond. 20KuS/cm

• Accelerometer

• Low-g Acce.

• Hand Dynamom.

• Light (6K lux)

• Magnetic (10X)

OSPL

• Voltage (Even)

• Resistance

• 10KΩ Thermistor

• Voltage (Odd)

• TMP36 temp.

No sensor

Digital Sensor

Vernier Ranger

OSPL Ranger

Photogate

DS18B20 Temp

I2C

ADXL345 Accele

BMP083 Baromet

HMC5883L maget

ADS1115 ADC

Settings

UI delay

Ser./SD delay

Set clock

LCD back light

Melody

Show credits

While in menu:

Cycle through menu Select Pause|Live|Log to SD

While reading data:

Return

CH2: Sensors
 Resistive sensors (thermistors, photo resistors etc.)

 Analog sensors (Vernier and other analog sensors
output voltage representing measurement)

 Digital on-off sensors (photo-gates, Hall-effect
switches, drop counters etc.)

 Digital pulse width sensors (sonic rangers)

 Digital sensors with serial output (some sonic rangers)

 Digital sensors with I2C bus (accelerometers, magnetic
sensors, gyroscopes etc.)

 Digital sensors with SPI, One-Wire, SDI-12 interfaces

Resistive sensors
 Resistance represents physical quantities

 Thermistor: doped semiconductor that decreases
resistance with increasing temperature.

 Light dependent resistor (LDR): doped semiconductor
that decreases resistance with increasing light
intensity. Also called photo resistors.

Wikipedia.org

Thermistors and photo resistors:

Dev. edition:

Use any pin with 10KΩ pull-up

Wiring:

one end – GND

Other end – A1, A3, A5, or A7

Analog Sensor

Channel 0 OSPL 10KΩThermistor

Channel 1 OSPL 10KΩThermistor

Channel 2 OSPL Resistance

Channel 3 OSPL Resistance

Firmware menu:

Connection diagram:

Tip:

Try “Voltage (Odd)” or

“Resistance” for thermistor.

Try “Voltage (Odd)” for the

photo resistor.

Analog sensors
 The sensor usually requires power (5V and GND)

 Some analog sensor reading is ratiometric, meaning
the output voltage is proportional to supply voltage.

 The sensor has a pin that outputs a voltage

 The voltage is linear to the measurement

 Measurement = Slope * Voltage + Intercept

 Vernier direct temperature probe (DCT-DIN)

 Slope 55.55°C/V or 100°F/V

 Intercept -17.7°C or 0°F

TMP36 temperature sensor:

Dev. edition:

Use any pin W/O10KΩ pull-up

Wiring:

Face marking forward

Left pin – 5V

Middle pin – A0, A2, A4, or A6

Right pin – GND

Analog Sensor Channel 0 OSPL TMP36 temp.

Firmware menu:

Connection diagram:

Tip:

Try “Voltage (Even)” and find

out the voltage-temperature

relation.

Breadboard
 Columns are marked with letters A-J.

 Rows are marked with numbers 1-30 or more.

 All 5 holes in a row are connected and they act as
junctions you see on a schematic.

 All holes along a red bus are connected but different red
buses are separate. Same goes with blue buses.

Wiring a Vernier analog sensor

Dev. edition: Use any analog pin without

10Kohm pull-up resistor (A0, A2, A4, A6)

Wiring: socket facing away, first pin in D11

Pin1: A0 (or any of A0, A2, A4, A6)

Pin2: 5V

Pin4: GND

Optional pin5: A1(or any of A1, A3, A5, A7)

Connection diagram:

Analog Sensor Channel 0 Vernier

Firmware menu:
Tip:

Try “Analog->Vernier->Voltage”

Does the voltage make sense?

Read slide #42 for slopes and

intercepts for your sensor.

Digital ON-OFF sensor
 They output ON or OFF states

 ON/OFF state or transition represents measurement

 A transmission photogate is ON until blocked (OFF)

 A reflective photogate is OFF until object reflects light
into its sensor (ON)

 To sense rotation, divide pulse/sec by # of spoke

 To sense speed, use two blockers at fixed distance

 To sense a photogate to 1cm/s speed using 1cm
blockers, we need millisecond timing accuracy.

Photo-interrupter:

Dev. edition:

Use any analog pin

Wiring:

Face pins towards data logger

Left pin (PWR) – 5V

Middle pin (GND) – GND

Right pin (SIG) – A0 (or 1~7)

Digital Sensor Photogate

Firmware menu:

Connection diagram:

Tip:

How many sheets of paper is

needed to block the IR beam?

Try “Analog->OSPL->Voltage

(Even)”.

What voltage is HIGH(LOW)?

Pulse-width sensor
 They output a pulse OFF-ON-OFF

 The length of the ON portion represents measurement

 Start ranging by pulling the trigger pin to HIGH for
10us or longer then return it to LOW

 Ranger will emit ultrasonic pulses and detect its echo

 Ranger pulls the echo pin HIGH for the amount of
time it takes sound to travel the distance round trip

 Detect this pulse width with pulseIn() and calculate
distance with speed of sound.

 Accuracy depends on timing accuracy of the receiver.

Sonic ranger

Connect a male-female wire

(brown) between “Trig” and A2

and just insert the ranger facing

away from the unit into GND,

A3, and 5V as pictured. Tighten

the pins with screw driver.

Digital Sensor OSPL Ranger

Connection diagram: Firmware menu:

Tip:

Use the ruler to test the

accuracy of the ranger.

What is its max(min) range?

I2C sensors
 Inter-Integrated Circuit bus connects to many sensors.

 Two wires for a large number (127) of different sensors

 Each sensor module has a different address

 Measurements are done on board and suffers NO loss
of accuracy during transmission.

 Requires the Wire library to communicate with and
some understanding of the commands on data sheets.

10DOF board wiring
 Solder the board upside down to the data logger

10DOF board Activities
 All menu options are in I2C (don’t select ADS1115)

 Hold the device at different orientations and observe
accelerometer reading

 Hold the device at different headings and observe
magnetometer reading

 Hold the device at different height and observe
pressure sensor readings (Tip: you can tell 0.5m height
change)

One-wire sensor: DS18B20

Digital Sensor DS18B20 temp

Connection diagram: Firmware menu:

Tip:

This sensor is waterproof.

Do you know how much such

a sensor might cost?

A: $3

One-wire protocol was designed by Dallas

Semiconductor and can literally run on

one wire (parasitic) if needed: the sensor

and logger are both connected to the

ground and have one wire, the data wire

in between. The logger pulls the data wire

HIGH for long enough in order for the

sensor to receive just enough power to

make a measurement and report back.

CH3: Programming
 Only very basic programming skill is needed, which

you will learn during the workshop.

 C/C++ is used in Arduino. It is versatile and powerful.
Arduino IDE made it easy by hiding some details.

 You type your program in an editor (IDE),compile then
upload to Arduino or OSPL that runs the program.

 New upload erase previous upload.

 Some math expressions need transcription and explicit
multiplication signs.

 You make no errors only if you don’t program!

Basic syntax
 Names and keywords are case sensitive (camelCase).

 Remember to define variables before use.

 Variables have data types: byte, char, int, long, float…

 A line terminates with a semicolon (;).

 An object can be used by calling its methods such as:
Object.Method(parameter) Eg: Serial.print(“Hello”);

 Enclose a block of code or function with curly braces {}

 Call a function with name(parameters) Eg: delay(1000);

 Indent your code for better clarity.

Arduino IDE
 Type your code in the window and press upload

 Includes many libraries to drive hardware

 Many 3rd party open source libraries to choose from

1 2 3

4

5

7 8

1. Compile (check for error)

2. Compile and upload

3. Open serial port monitor

4. Code (sketch) area

5. Error report and information

6. Line number

7. Board (see below)

8. Serial port (see below)

Tools->Board-> “Open source

physics lab V 2.4.x”

Tools->Port choose the correct port.

6

Simple Arduino code
 All keywords and names are CASE SENSITIVE!

 setup() runs once right after the board restarts so put
initialization code in it.

 loop() runs repeatedly once setup() finishes.
1. File name (§ means not yet saved)

2. setup() is a function that takes no arguments (empty

parentheses) and returns nothing (void)

3. Code in a function is enclosed by curly braces ({})

and each line ends with a semicolon (;).

4. loop() is another function with no arguments or return

values. Your main routine should reside here.

5. Serial.println() sends texts to PC serial monitor

6. All library functions and keywords are in orange color.

1

2

3

4

5
6

Reading voltage

0 1023

1024 integer values

0.000V 4.995V

1024 floating point voltage values

Reading Arduino analog input:

Serial.println(analogRead(A0));

Converting into voltage in volts

Serial.println(analogRead(A0)*5.0/1024);

You MUST use at least one floating point number such as 5.0

otherwise Arduino WILL use integer math!

5/1024=0 in integer math

OSPL Developer’s Edition

A0~A3

10KΩ Pull-up resistors

A4~A7, I2C
USB, SD card

4-9 LCD

31 BL

30

Power
O

p
tio

n
a
l:

1
6
-b

it A
D

C

2,3 Xbee Optional:

10DOF board

O
N

/O
F

F

25 Speaker Rotary encoder:

24, 26, 27

OSPL Developer’s Edition
 Analog pins are A0, A1, … A7

 Left screw terminal block has A0-A3, 5V, and GND

 Right screw terminal block has A4-A7, 5V, and GND

 Any of the A0-A7 can have 10Kohm pull-up via jumper

 A6 and A7 can be connected to I2C via solder jumpers

Pins Function Pins Function Pins Function

0, 1 Serial port 14-21 Same as A0-A7 28-29 Unused

2, 3 Second serial port 22,23 I2C bus 30 Power control

4-9 LCD 24, 26, 27 Rotary encoder 31 LCD back light

10-13 micro SD card 25 Speaker

Analog sensors
 Outputs a voltage linear to the measurement

 Measurement = Slope * Voltage + Intercept

 Vernier direct temperature probe (DCT-DIN)

 Slope 55.55DegC/V or 100DegF/V

 Intercept -17.7DegC or 0DegF

 Analog Device ADXL335 accelerometer

 Slope 32.67m/s2/V or 300mV/g at 3V supply voltage

 Reading is ratiometric, meaning output proportional
to supply voltage so with 3.3V supply it is 330mV/g.

Wiring a Vernier analog sensor
 Plug a DIN-5 sensor into a DIN-5 socket on an OSPL

standard edition

 Use a BTA to DIN-5 adapter for newer Vernier sensors
with BTA connectors

 For developer’s edition, use the following diagram:

Dev. edition: Use any analog pin without

10Kohm pull-up resistor (A0, A2, A4, A6)

Wiring: socket facing right first pin in D11

Pin1: A0 (or any of A0, A2, A4, A6)

Pin2: 5V

Pin4: GND

Optional pin5: A1(or any of A1, A3, A5, A7)

Vernier Direct Temperature

1. Acquire analog reading at channel A0.

The return value is between 0 and

1023, representing 0V-5V range.

2. Output useful information for reading.

3. Convert the raw voltage into

temperature in Celsius.

4. Maintain a 2 points/sec data rate.

Notice the 5.0 instead of 5 forces

Analog_in from integer to floating point

number to maintain accuracy.

1
2

3
4

A simple program usually involves initializing the hardware, and then sensing

raw data and converting raw data into suitable format for display or logging.

This sensor is nothing more than an LM34CH sensor packaged in a probe with

a DIN-5 connector for convenience.

Some slopes and intercepts
Name Slope Intercept

Vernier direct temperature 55.55 °C/V -17.7 °C

Vernier force gauge (±10N scale) -4.9 N/V 12.25 N

Vernier low-g accelerometer 22.924 m/s2/V -51.751 m/s2

Vernier pressure sensor 2.203 ATM/V 0.000 ATM

Vernier hand dynamometer 175.416 N/V -19.295 N

Vernier light sensor (6000 lux scale) 1692 lux/V 0 lux

Vernier magnetic sensor (10x scale) 32.35 mT/V -80.625 mT

TMP36 temperature sensor 100 °C/V -50 °C

Sensing resistance

We form a voltage divider using a fixed

(10Kohm) resistor and the variable resistor.

Analog input

GND

Vsen

Rfix

R

𝑉𝑠𝑒𝑛 =
𝑅

𝑅 + 𝑅𝑓𝑖𝑥
∗ 5𝑉 𝑅 = 𝑅𝑓𝑖𝑥

𝑉𝑠𝑒𝑛
5𝑉 − 𝑉𝑠𝑒𝑛

For best accuracy, the value of the fixed

resistor should be equal to that of the

variable resistor when it is in the middle of

its range.

OSPL developer’s edition has options for

pull-ups on all analog channels A0-A7. This

makes prototyping and cabling very easy.

OSPL standard edition has on-board

10Kohm pull-up resistors on channels A1,

A3, and A5 so there is no need to add a

resistor to the circuit.

Pull-up resistors

OSPL V2.4 with 10KΩ pull-up resistors

(enabled with jumpers)

Resistive sensors are connected

(2 thermistors, 2 photo resistors)

Photo resistor
Integers calculation will truncate accuracy of the

result. Make sure to use floating point numbers

when necessary to maintain accuracy.

Standard edition: Use

channel 0 (leftmost)

Wiring:

One end – White

Other end – Black

𝑅 = 𝑅𝑓𝑖𝑥
𝑉𝑠𝑒𝑛

5𝑉 − 𝑉𝑠𝑒𝑛

Dev. edition: Use any analog pin with 10Kohm pull-up

Wiring: one end – GND, other end – A1, A3, A5, or A7

Thermistor:
Integers calculation will truncate accuracy of the

result. Make sure to use floating point numbers.

𝑅 = 𝑅𝑓𝑖𝑥
𝑉𝑠𝑒𝑛

5𝑉 − 𝑉𝑠𝑒𝑛
𝑇 =

𝐵

ln
𝑅

𝑅0𝑒
−
𝐵
𝑇0

Standard edition: Use

channel 0 (leftmost)

Wiring:

One end – White

Other end – Black

Dev. edition: Use any analog pin with 10Kohm pull-up

Wiring: one end – GND, other end – A1, A3, A5, or A7

1

𝑇
=

1

𝑇0
+
1

𝐵
ln

𝑅

𝑅0

Sonic ranger code and wiring

1

2

3

4

5

6

1. Initialize pins A2 as output and A3

as input.

2. Initialize the serial port to 9600

baud rate.

3. Define a variable to store result.

4. Toggle the INIT pin to start ranging.

5. Get result with a function pulseIn().

6. Convert the result into distance in

mm and print it to serial monitor.

Connection diagram:
Connect a male-female wire

(brown) between “Trig” and A2.

More complex code
 #include <xyz.h> uses library xyz in the code

 #define abc 123 makes it easy to use a meaningful
symbol in place of number or enable certain features

 Variables are defined as type name=value;

 Variables defined outside (inside) functions is global
(local) and can be used anywhere (in the function)

1. Includes the SdFat library for SD card

2. Define LOG_INTERVAL as 1000. Use

LOG_INTERVAL instead of 1000 in code.

3. Comments are after double slash (//).

4. Global variables. sd is SdFat type, logfile is

SdFile type, buf is char array type.

5. name is a local variable only in setup.

1

2
3

4

5

SD logging

1

2

3

4

5

1. Wait for user input before start logging.

2. Initialize the SD card. Pin 10 is the Chip-

select pin on the OSPL and some SD shields.

3. Use logfile to open LOGGER00.CSV to write

to, create it if it doesn’t exist, append if it

does.

4. Wait for user input again before stop logging.

5. The open file must be closed to prevent data

loss. One shouldn’t just turn off OSPL when it

is logging to SD card.

SD logging is made extremely easy with the SdFat

library written by William Greiman. You can print to a

file just like you can to the serial port. The only

difference is that it has a lot more functions than a

serial port, such as creating/renaming/deleting files

and folders, testing the existence of files and adding

date/time call-back functions so the file has

meaningful date/time instead of 2000/1/1 12:00am.

CH4: OSPL discussion
 Device features

 A few applications

 Device cost

 Building devices

 Discussion and opportunities

OSPL Dev. Edition features
 Firmware supports lots of sensors and data logging

 Screw terminal blocks with 8 analog/digital pins

 10Kohm pull-up resistors via solder jumpers, making
wiring resistive and open-drain sensors very easy

 Micro-SD card and real-time clock for data logging

 LCD and rotary encoder for easy user interface

 Xbee socket for wireless control or data transfer

 Ability to turn off all peripherals to conserve battery

A few applications
 Digital self-calibrating hydrometer using force gauge

and servo motor

 Center of mass visualizer using 3 force gauges, a web
camera and a laptop

 Sample lab for finding relation between altitude and
pressure using the 10 DOF board

 Smart track using 3 force gauges that displays location
of a cart on a track and simulates sonic ranger to run
on Vernier interface.

Application: digital hydrometer
 Applies introductory physics in liquid density sensing

 Automatically recalibrates at startup

 Continuously reports density of liquid

 Sending data wirelessly via Bluetooth

 Potential to add Text-to-speech for visually impaired
student

 Accuracy is 0.01g/cm3

Digital hydrometer (2014)

Vernier force gauge

Density reading

Servo motor

200g weight on

string with loop

OSPL V2.0

Motor

Weight

Force

gauge

Wire loop for weighing and

auto calibration

Hook

motion

path

Liquid in beaker

Application: COM visualizer
 Applies introductory physics in finding center of mass

 Automatically finds the center of mass by weighing

 Continuously reports COM location to PC

 PC uses webcam and video calibration to show COM
in LIVE video

 Very nice demo for intro physics!

COM visualizer (2013)
Webcam

Local reading

Computer with

live video of

COM

Weighing plate

with 3 Vernier

force gauges

OSPL V2.0

Object

COM in LIVE video

(red cross)

Calibration

markers

Application: altitude vs. pressure
 Assumption: altitude is linearly related to pressure at

low altitude and when altitude change is small

 Students can measure the height of a building from
the number of stairs and height of each stair

 Students can also measure pressure at each floor with
OSSL and a pressure gauge (included in the $13 board)

 They calculate height from pressure

 They confirm their assumption

Altitude vs. pressure

Obtained at Wick Science Building between the basement and the 4th floor.

From wikipedia.org

Application: smart track
 Automatically reports location of a cart on a track

 Emulates a sonic ranger when connected to Vernier
LabQuest to log position velocity and acceleration

 Running averages of positions

 Tare function

 See how sonic rangers work with Vernier LabQuest

 See how physics applies to real life situations

Smart track (2012)
Vernier cart

Vernier track

Vernier force

gauges

Vernier force

gauge

Vernier

LabQuest

(Optional)

OSPL V1

OSPL Cost:
 $65 for parts (1 unit) for dev. edition

 $55 for parts (25 unit) for dev. edition

 Standalone and needs no PC or mobile device

 Sensors can be constructed from parts for a few dollars

 Each unit build and troubleshooting takes 1 hour

 Akan and Dr. Liu spent weeks to plan and execute the
build, including building tools for assembly and tests

 We also went over the budget ($80/person) a bit

This build
1120 solder junctions

720 surface mount components

240 screws

Future builds
 Will go through assembly and testing service

 Will be able to build batches of 20 to 100 units within
reasonable time frames

 Need time to research potential assembly service
providers and pricing (domestic vs. overseas, quantity)

 Need some seed money to kick start the process

 Writing grant proposal, willing to join effort

 Reach out to the data logger world and possibly start a
kickstarter.com project

Discussions/Opportunities:
 Apply for grants

 Pilot the OSPL in your institution

 Build course materials and/or apparatus with OSPL

 Bring OSPL to high schools and middle schools

 More learning and working needed for instructors

 Many sensors don’t have proper mounting options

 Need enough users to sustain a community of support

 Low profit margin for many for-profit apparatus
vendors to get involved

CH5: Additional OSPL features
 How to use the LCD

 How to use the rotary encoder

 Simple user interface

 How to use the micro-SD card

 How to use the real-time clock

 How to use the Xbee socket

LCD
1

2

3

1. Include library

2. LCD size and pins

used to drive it.

3. Create lcd object

4. Initialize lcd

5. Clear lcd

6. Set cursor before

every print.

7. There is only print

and no println.

4
5

6
7

Printing on lcd takes

tens of milliseconds so

don’t print to it when

sensing photo gates.

Rotary encoder
1

2

3

4

5
6

Messages and lists
 Display a long scrollable message on the LCD, use

rotary encoder to read it and dismiss with shaft click

 simple_text_area(message_to_display);

response=simple_select_list("Day of

week:\nSUN\nMON\nTUE\nWED\nTHU\nFRI\nSAT\n");

 Display a select list with title on the LCD, use rotary
encoder to highlight an item and shaft click to select

 int choice=simple_select_list(list_with_title);

simple_text_area("Developed by:\nDr.Liu 11/25/12\nhttp://liudr.

wordpress.com\nThis is an example.\nPress Confirm to continue");

Simple user interface setup
1. Include the libraries

2. Define the relevant parameters for the hardware, such as pins etc.

3. Define what button output represents what function, such as ‘B’ button

means enter ‘U’ button means up.

4. Instantiate objects for different keypad types, including serial port keypad

5. Include all keypad types in an array

6. Initialize the library for use

7. Set up some simple parameters

8. Call library functions to interact with the user.

9. You can also call wait_on_escape(time_ms) to get button pushes from all

input devices.

10.You may substitute or simulate button presses with serial port monitor.

Initial setup (don’t change)

Your code
1

2
3

4

5

5
1. Define some messages and lists

2. Begin the lcd

3. Initialize the phi_prompt library

4. Display a scrollable simple text area

5. Prepare and display a simple select list

6. Respond to user’s choice

Micro-SD card

1

2

3

4

5

1. Wait for user input before start logging.

2. Initialize the SD card. Pin 10 is the Chip-

select pin on the OSPL and some SD shields.

3. Use logfile to open LOGGER00.CSV to write

to, create it if it doesn’t exist, append if it

does.

4. Wait for user input again before stop logging.

5. The open file must be closed to prevent data

loss. One shouldn’t just turn off OSPL when it

is logging to SD card.

SD logging is made extremely easy with the SdFat

library written by William Greiman. You can print to a

file just like you can to the serial port. The only

difference is that it has a lot more functions than a

serial port, such as creating/renaming/deleting files

and folders, testing the existence of files and adding

date/time call-back functions so the file has

meaningful date/time instead of 2000/1/1 12:00am.

Real-time clock
 Log data with date and time

 Save files with correct “create” and “modify” time

 Clock-driven data logging cycles

 Authenticate student data against cheating

 A good coin battery can keep time for years

 Alternative is 2000/1/1 12:00AM for everything!

 Sample code is provided

Xbee socket
 Use Serial1 to communicate with the Xbee module

 Bluetooth bees connect to phones and tablets

 Wifi xbees connect to home wireless routers

 Zigbees connect to one another to form a local mesh
network

 Other xbee footprint devices include GPS and other RF
modules

 Easily make internet of things (IoT)

PLEASE RETURN
 Evaluation form

 Vernier sensors

 Screw drivers

 Rulers

 Pulleys

 Magnets

 Soldering station and supplies

 Coin battery if you are concerned with airport security

Legal terms
 Circuit board design is released under Creative Commons

Attribution Share-alike

 Arduino libraries are released under GNU Lesser General
Public License

 OSPL firmware is released under GNU General Public
License

 Contributed libraries have their own licenses

Thank you!

	St. Cloud State University
	theRepository at St. Cloud State
	7-25-2015

	Open Source Electronics for Laboratory Physics
	Zengqiang John Liu
	Recommended Citation

	DIY Photogates Made Easy

