
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

5-2016

Parallel Computing in Java
Muqeet Mohammed Ali
St. Cloud State University, mdmuqeetali@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Ali, Muqeet Mohammed, "Parallel Computing in Java" (2016). Culminating Projects in Computer Science and Information Technology. 9.
https://repository.stcloudstate.edu/csit_etds/9

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/9?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu


 

 

Parallel Computing in Java 

 

 

 

by 

 

 

Muqeet Mohammed Ali 

 

 

 

 

 

Starred Paper 

 

Submitted to the Graduate Faculty 

 

of 

 

St. Cloud State University 

 

in Partial Fulfillment of the Requirements 

 

for the Degree 

 

Master of Science  

 

in Computer Science 

 

 

 

May, 2016 

 

 

 

Starred Paper Committee: 

Donald O. Hamnes, Chairperson 

Jie Hu Meichsner 

Dennis C. Guster



2 

 

Abstract 

 

The Java programming language and environment is inspiring new research activities in 

many areas of computing, of which parallel computing is one of the major interests. Parallel 

techniques are themselves finding new uses in cluster computing systems. Although there are 

excellent software tools for scheduling, monitoring and message-based programming on parallel 

clusters, these systems are not yet well integrated and do not provide very high-level parallel 

programming support.   

 

This research presents a number of issues which are considered to be key to the 

suitability of Java for HPC (High Performance Computing) applications and then explore the 

support for concurrency in the current Java 1.8 specification.  We further present various 

relatively recent parallel Java models which support HPC for both shared and distributed 

memory programming paradigms. Finally, we attempt to evaluate the performance of discussed 

Java HPC models by comparing the same with the relative traditional native C implementations, 

where appropriate. The analysis of the results suggest that Java can achieve near similar 

performance to natively compiled languages, both for sequential and parallel applications, thus 

making it a viable alternative for HPC programming. 
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Chapter I 

 

INTRODUCTION 

 

Parallel computing is a form of computation in which many calculations are carried out 

simultaneously. It operates on the principle that large problems can often be divided into smaller 

ones, which are then solved concurrently [1]. In recent years, parallel computing has been widely 

adopted in domains that need massive computational power, such as graphics, animation, data 

mining and informatics. Traditionally, software has been written for serial computation that 

involves [1]:  

 Running on a single computer having a single Central Processing Unit (CPU);  

 Splitting a problem into a discrete series of instructions.  

 Sequentially executing instructions.  

 Executing only one instruction at any moment in time.  

There are limits to serial computing. Significant constraints for building ever faster serial 

computers include both physical and practical reasons [1]:  

 Size limitations: New processor technology is allowing an increasing number of 

transistors to be placed on a chip. However, even with molecular or atomic-level 

components, a limit will be reached on how small components can be.  

 Transmission speeds: The speed of a serial computer is directly dependent upon how 

fast data can move through hardware. Absolute limits are the speed of light (30 

cm/nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). 

Increasing speeds require increasing nearness of processing elements. 
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 Economic limitations:  It is increasingly expensive to make a single processor faster. 

Using a larger number of moderately fast commodity processors to achieve the same 

performance is less expensive.  

On the other hand, parallel computing uses multiple computer resources simultaneously 

to solve complex computational problems that involve [2]:  

 Utilizing multiple CPUs. 

 Splitting a problem into discrete parts that can be solved concurrently. 

 Further breaking down of each part to a series of instructions. 

 Each part executing instructions simultaneously on different CPUs. 

Why use parallel computing? The main reasons include: 

 Speed-up computations: If a problem is split into parts and each part is computed 

simultaneously on different processors then significant speed ups can be achieved. 

 Solve larger problems: Many problems are so large and/or complex that it is 

impractical or impossible to solve them on a single computer, especially given limited 

computer memory. 

 Provide concurrency: A single compute resource can only do one thing at a time. 

Multiple computing resources can be doing many things simultaneously. 

 Use of non-local resources: Using computing resources on a wide area network when 

local compute resources are scarce. 

Historically, parallel computing has been considered to be “the high end of computing,” 

and has been used to model difficult scientific and engineering problems found in the real world. 

Some fields include [2]:  
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 Atmosphere, Earth, Environment  

 Physics—applied, nuclear, particle, condensed matter, high pressure, fusion, 

photonics  

 Bioscience, Biotechnology, Genetics  

 Chemistry, Molecular Sciences  

 Geology, Seismology  

 Mechanical Engineering—from prosthetics to spacecraft  

 Electrical Engineering, Circuit Design, Microelectronics  

 Computer Science, Mathematics  

Motivation of the Study 

 

Most of the parallel applications are generally written in C or FORTRAN but as Java has 

become one of the most popular languages in the IT industry with its “write once, run anywhere” 

feature and powerful support from open source organizations, a Java based parallel computing 

framework has become essential [3]. The out of the box networking and multithreading support, 

continuous Java Virtual Machine (JVM) performance improvements and support for 

programming multi-core clusters also contribute for the increasing interest in Java for High 

Performance Computing (HPC).  

We begin this paper by discussing the potential of Java as a HPC language, present 

various parallel programming issues that hinder its adoption for HPC and explore the support for 

concurrency in the current Java 1.8 specification. We then proceed by presenting various 

relatively recent parallel Java models which support HPC for both shared and distributed 

memory programming paradigms. Finally, we attempt to evaluate the performance of discussed 



15 

 

 

Java HPC models by comparing the same with the relative traditional native C implementations, 

where appropriate. 

Objectives of the Study 

 

The objectives of this research are to: 

 Present the issues that limit the possibilities for compiler optimization for parallel 

programming support in Java. 

 Survey and investigate relatively recent models and environments proposed for HPC 

parallel programming in Java. The models include support for both shared and 

distributed memory architectures. These are listed below: 

a. Java Threads [4] 

b. Java Sockets [5] 

c. RMI [6] 

d. mpiJava [7] 

e. MPJ Express [8] 

f. FastMPJ [9] 

 Compare the performances of C and an appropriate subset of the above listed parallel 

programming models in Java by implementing a computational problem. The 

performance metrics that can be used are elapsed time and speed up. The 

implementation details are explained below: 

1. Implement a basic sequential algorithm for the matrix multiplication problem in C 

and Java and capture results. Implement the described parallel algorithm using 

threads in Java on a single processor and capture the results. 
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2. Gain understanding of how all/most of the models provide parallelism in Java by 

implementing the described matrix multiplication parallel algorithm on a multi-

processor system (cluster or multicore SMP or both) and capture the results. 

3. If time permits, implement the algorithm in C using MPI and capture the results. 

4. Deduce conclusions from as many of the following comparisons as possible: 

a. Sequential implementation in C vs. Sequential implementation in Java 

(Elapsed time). 

b. Parallel implementation in Java using threads vs. Sequential implementation 

in Java (Speed up). 

c. Parallel implementation in C using MPI vs. Sequential implementation in C 

(Speed up). 

d. Compare the performance of the various programming models in Java on a 

multi-processor system (Elapsed time/Speed up for SMP and cluster). 

e. Parallel implementation in C using MPI vs. best performing Java model on a 

multi-processor system (Elapsed time/Speed up for SMP and cluster). 
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Chapter II 

 

JAVA AS A PARALLEL PROGRAMMING LANGUAGE 

 

Introduction 

 

M. Ashworth [10] states that the Java language has attracted considerable interest in the 

popular and technical literature and there are now propositions that Java may be able to meet the 

needs of the HPC (High Performance Computing) community where other languages have 

failed. Java clearly has many advantages. Apart from being simple, object-oriented, portable, 

robust and extensible, a thread based execution model makes it certainly suitable for parallel 

platforms. Java source is compiled to class files containing machine-independent byte-code, 

which is like machine code in form but is not specific to any particular hardware. In this byte-

code form, the Java class file can be easily transmitted across a network from the server to a 

Java-enabled client where it is interpreted by the Java Virtual Machine (JVM). This indicates 

that a Java program can run unchanged on any machine on which a JVM has been written.  

Also, recent deployments of HPC infrastructures are significantly increasing the number 

of installed cores in order to meet the ever increasing computational power demand. The 

importance of multithreading and parallelism competences is reinforced by this current trend to 

multi-core clusters [11]. With multithreading support, out of the box networking capabilities, 

features to take advantage of shared, distributed and hybrid memory models, Java becomes a 

natural choice for the development of parallel applications. Java can be used to achieve both intra 

node (shared memory) and inter node (distributed memory in clusters) by simply utilizing 

threads, Sockets, RMI and other networking support features. However, as Ashworth states [10], 

even though the performance gap between Java and native languages is usually small for 
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sequential applications, it can be particularly high for parallel applications when depending on 

inefficient communication libraries, which has hindered Java adoption for HPC. Specific 

improvements have been proposed to try to improve the performance of Java. On most platforms 

it is possible to compile Java class files with a Just-in-Time (JIT) compiler. The byte codes are 

no longer directly interpreted, but firstly compiled on-the fly into machine code just before 

execution. Native Java compilers which compile directly to machine code perform exceedingly 

well where strict platform independence is not required. However, even native compilers 

struggle matching the performance of traditional languages like C, C++ and Fortran, because 

there are certain features of Java which limit compiler optimization  possibilities, which in turn, 

limits the parallel programming support in Java, these are discussed below. 

Parallel Programming Issues in Java 

Because of its thread based implementation model, the Java programming language can 

be easily extended to parallel platforms. It also has the abilities needed for supporting high-

performance computations. However, since Java is relatively new, it lacks the extensive 

scientific support of other languages like C, C++ and FORTRAN. A number of issues which 

limited the support of Java for HPC applications, were identified by the Java Grande Forum 

Panel (JGFP) in [12], the most important of which were categorized into numerical issues and 

concurrency issues. 

Numerical Issues 

 

The JGFP in [12] has concentrated on five critical areas where improvements to the Java 

language are needed: floating-point arithmetic, complex arithmetic, multidimensional arrays, 

lightweight classes and operator overloading. 
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 Floating-point Arithmetic:  The strict floating point semantics of the Java language, 

which is used to ensure accuracy and precise reproducibility across a wide range of 

platforms, results in poor performance. For example, to make use of the processor’s 

fused multiply-add operation, it is forbidden to rearrange operations using 

associativity.  The HPC requirements for floating point computations varies from one 

application to another, but in most cases developers require a stable developing 

environment and the ability to utilize the peak performance of the floating point 

hardware by selecting the most appropriate optimizations. Hence to improve 

performance optimization, the JGFP proposals allow for a strict floating point 

declaration along with some alternative options that may facilitate rearranging of 

certain operations. 

 Complex Arithmetic: There is no support for complex arithmetic in Java. To 

implement complex arithmetic we need to create a complex class whose object’s 

behavior is different from other primitive type numbers. This difference in behavior is 

against the readability of scientific codes that states that the complex numbers should 

be used in exactly the same way as any other primitive type. It also states that there 

should be no compromise in the speed of computation as well. To achieve this, 

complex number classes can be implemented in Java on top of the existing primitive 

types, but the object overhead of complex methods makes them unacceptably 

inefficient. Furthermore, readability and ease of code maintenance is much more 

difficult to attain, if the syntax and semantics of complex number implementation is 

significantly different from that of the primitive types. 
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 Multidimensional Arrays:  Most of the computations in the HPC problems are 

represented using multidimensional arrays. To improve the performance it is 

necessary for the compiler to easily optimize the operations on multidimensional 

arrays. The developer often exploits the knowledge of how multidimensional arrays 

are stored and organized in the memory by writing efficient code to assist compiler 

optimization. Multi-dimensional arrays in Java are implemented as arrays of arrays. 

There is no requirement in Java for the elements of a row of a multi-dimensional 

array to be stored contiguously in memory, making the efficient use of cache locality 

dependent on the particular JVM. At first it may seem an effective solution but 

unfortunately, this way of storing arrays leads to jagged arrays, in which all rows are 

not of the same length, aliasing between rows and changes in shape. Since the 

compiler has no information about possible shape changes and aliasing, it reduces 

performance by generating additional loads and stores. 

 Lightweight Classes: Lightweight classes facilitate creation of new Java objects. 

Using this feature many significant features, including complex numbers, can be 

implemented as classes. As discussed above this would suffer from poor performance 

when normal Java classes are used. The issue here is how to implement lightweight 

classes without making many changes to the JVM and at the same time reducing the 

possibility of acceptance.  

 Operator Overloading: Operator overloading is essential to enable additional numeric 

types to be used in a way which is easy to develop, understand and maintain. 

Different operators have different implementations depending on their arguments. It 
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also allows user-defined types. The addition of two complex numbers may be 

expressed as ‘x + y’ just as with any primitive type. Addition of two operands with 

user-defined type would usually have to be expressed using an explicit method such 

as ‘Complex.sum(x,y)’, but this would make scientific codes virtually unreadable. 

Some technique should be designed to allow overloading of the arithmetic, 

comparison, assignment and subscripting operators. 

Concurrency Issues 

 

The JGFP in [12] further states that the Java language has several built-in mechanisms 

which allow the parallelism in scientific programs to be exploited. Threads and concurrency 

constructs are well-suited to shared memory computers, but not to large-scale distributed 

memory machines. Although sockets and the Remote Methods Invocation (RMI) interface allow 

network programming, they are too client/server oriented to be suitable for scientific 

programming. Codes based on RMI would potentially underperform compared to platform-

specific implementations of standard communication libraries like the Message Passing Interface 

(MPI).  

The performance and capabilities of RMI are regarded as being key to exploiting Java for 

high performance parallel and distributed computing by JGFP. Currently RMI is based on the 

client/server model and communicates over TCP/IP networks, which places limitations on 

performance especially for closely coupled systems, such as distributed memory multi-

processors and workstation clusters, commonly used for HPC applications. Many scientific 

applications have fine-grained parallelism making fast remote method invocations with low 

latency and high bandwidth essential.  
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Chapter III 

 

SHARED MEMORY PROGRAMMING IN JAVA 

 

Introduction 

 

A typical shared memory multi core architecture is shown below in Figure 3.1, where 

multiple cores share the same memory space. Each core is essentially a processor (shown as CPU 

in the figure). Applications designed for shared memory environments may make use of Java 

threads or Open Message Passing Implementations (MPI) for achieving parallelism. The use of 

Java threads for parallel programming is quite extended due to its high performance, although it 

is a rather low-level option for HPC. In terms of complexity and programming effort, the use of 

threads especially for large applications, requires a significant and careful programming effort. 

Issues like thread contention, deadlocks, shared data access and race conditions are common 

fallacies. Finally, in order to relieve programmers from the low-level details of threads 

programming, many concurrency utilities such as thread pools, tasks, blocking queues, and low-

level high-performance primitives for advanced concurrent programming were introduced in the 

Java 1.5 specification. This support has been continuously enhanced in following specifications, 

ever since. Below, we discuss the current concurrency support in the latest Java 1.8 specification. 

 

Figure 3.1: A typical shared memory multi core architecture. 
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Java Threads 

Java threads are a natural choice for parallel programming as the thread class is part of 

the standard Java libraries since the Java 1.0 specification. As stated in [4] and [13], threads are 

lightweight processes that exist within a process and share its resources like memory, files etc. 

This results in using fewer resources for its creation compared to a typical process creation, 

hence enabling efficient communication. Traditionally, concurrent execution was achieved by a 

multi-threaded process, on a single processor, by switching the processor execution resources 

between threads. With recent JVMs, in a shared memory multi-threaded process, each thread can 

run on a separate processor at the same time resulting in parallel execution [13]. This is due to 

the fact that current JVMs implement threads on top of native OS threads, which allows them to 

be scheduled on different processors to achieve parallel execution. However, creation and 

termination of threads is expensive, so, instead of creating a new thread for each parallel task, 

maintaining a fixed pool of threads for the entire duration of the program and queuing up parallel 

tasks often results in more efficiency. To further optimize performance, it is also essential to 

avoid thread context switch overhead by ensuring that the number of threads are either less or 

ideally match the number of available processors [4].  

Java threads are created either by extending the ‘java.lang.Thread’ class or by 

implementing the ‘java.lang.Runnable’ interface. The code to be processed by the thread, 

frequently referred to as task, is usually defined before the actual thread creation. A sample 

thread creation and execution is illustrated in Figure 3.2 below, based on example in [14]. 

Lambda expressions, introduced as part of Java 1.8 specification, are used to print out the current 

thread’s name below. The code executes the runnable task directly on main thread first before 
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starting a new thread. The result of the below code snippet cannot be predicted due to 

concurrency, the runnable can be called before or after printing “done.” This unpredictability is 

illustrated below in the Figures 3.3 and 3.4 where multiple executions of the snippet results in 

different output to the console. 

 

Figure 3.2: Thread Spawning Code Snippet 

 

 
 

Figure 3.3: Console Output When Runnable Is Invoked Before Printing “Done” 
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Figure 3.4: Console Output When Runnable Is Invoked After Printing “Done”  

 

This non-deterministic ordering quickly becomes error prone with complex 

implementations that involve synchronization of multiple threads. To account for mutual 

exclusion and synchronization over complex pieces of codes are common issues for plain old 

threads. While this methodology results in thread safe code, it usually limits parallelism that is 

induced by the exclusion and synchronization schemes built into the code, causing long periods 

of exclusion for parallel execution [15]. As with any computing cases, such complex coding 

schemes with low level OS primitives opens up doors to manual errors as developers tend to 

spend more time focusing on thread synchronization rather than the parallel computation 

problem at hand. Ideally, developers should be able to make use of efficient high level libraries 

that handle thread scheduling issues and facilitate a simple framework to support parallelism. 

Java 1.5 specification, introduced this ability by adding the package ‘java.util.concurrent’ which 

contains many useful classes for concurrent programming. Since then the concurrent package has 

been enhanced gradually with every new release, even the recent Java 1.8 specification release 

facilitates concurrency by providing new classes and improvements. Next, we discuss some 

highlights of the Java 1.8 specification concurrency package below. 
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Executors 

[16] [17] describes executors as a high level service that are capable of running 

asynchronous tasks and typically manage a pool of threads, so we do not have to create new 

threads explicitly. They enable encapsulated access to thread pools, thus decoupling thread 

management and creation from the rest of the application. This greatly reduces the developer 

effort to manage thread pools, synchronization and scheduling problems allowing more focus on 

the actual parallel computation problem. An illustration of task delegation to an Executor Service 

is shown in Figure 3.5 below.  

 

Figure 3.5: Thread Delegating Task to an Executor Service 

 

Since an executor service manages a pool of threads which are reused under the hood, we 

can get away with as many concurrent tasks as needed for the application execution with a single 

execution service. Executors class provides various factory methods for creating different 
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executor services [17]. The previous thread example (shown in Figure 1) implemented using 

executor service with an executor of single thread pool size and the corresponding console output 

is illustrated in Figure 3.6 and 3.7 below, based on example in [18].  

 Although the output looks similar to the previous example, there is a significant 

difference. The Java process for executors never exits unless explicitly stopped, until then it 

keeps listening for new tasks. shutdownNow() and shutdown() methods are provided by the 

ExecutorService to interrupt all executing tasks and shut down the executor either immediately 

or by waiting for currently running tasks to finish, respectively. 

 

 

Figure 3.6: Executor Service Example   

 

Figure 3.7: Console Output for Executor Service Example   
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Callables and Futures 

Callables [19] is a functional interface that was introduced in the Java 1.5 specification to 

complement the existing Runnable interface. Unlike Runnable, it is usually utilized to submit a 

task to a thread or a thread pool for asynchronous execution to either return a result or throw an 

exception. Callable represents an asynchronous computation, whose value can be accessed via 

Future [20] object. All the code which needs to be executed asynchronously goes into call() 

method. Callable can be used along with lambda expression in Java 1.8 specification, since it is 

also a single abstract method type.  

When a Callable is passed to the thread pool, it chooses one thread and executes the 

Callable to return a Future object in order to hold the result of computation once complete. The 

get() method of Future can be then used to return the result of the computation or block if the 

computation is not complete. An overloaded get() method with timeout is also available to avoid 

indefinite blocking. Future also allows to cancel the task if it’s not started, or interrupt if it’s 

already started. Classes like Integer, String etc. can be wrapped using both Callable and Future.  

Figure 3.8 below, based on example in [20], illustrates a code extract that depicts the 

submission of Callable that returns a string, to an Executor and retrieval of the result via a Future 

object. In the code snippet below, after submitting the Callable to the executor we check if the 

Future has finished execution via isDone() method which is least likely since the above callable 

sleeps for one second before returning the string value. Invoking the get() method blocks the 

current thread and waits until the Callable completes before returning the actual result ”done.” 

Now the Future is finally done and the following result, shown in Figure 3.9 below, is displayed 

on the console. 

http://javarevisited.blogspot.sg/2014/02/10-example-of-lambda-expressions-in-java8.html
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Figure 3.8: Code Snippet for Callable and Future   

 

 

Figure 3.9: Console Output for Callable and Future Code Snippet   
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Locks 

Java is a multi-threaded language where multiple threads run in parallel to complete 

program execution, hence synchronization plays a vital role. Advanced design and coding is 

required when accessing shared mutable objects concurrently from multiple threads to avoid 

inconsistent behavior. Fortunately, Java supports thread level synchronization using the keyword 

‘synchronized.’ This feature can be used to avoid race conditions when accessing critical 

sections of the code. Java internally manages synchronization through monitors. Each object in 

Java is associated with a monitor, which can be locked or unlocked by a thread [21]. Only one 

thread at a time can obtain a lock on a monitor, all the other threads attempting that monitor are 

blocked until they obtain the lock. The lock obtained by the synchronized keyword is re-entrant 

meaning a thread can obtain the same lock multiple times without running into deadlocks. The 

synchronized keyword, however, does not allow separate read and write locks, thereby limiting 

concurrent reads and potentially limiting scalability. Also, it does not provide any means in the 

API to timeout or interrupt a thread waiting for a lock, which could lead to starvation or 

deadlocks if synchronization was implemented incorrectly. To allow more fine grained control of 

the critical section and flexible structuring of the application, explicit locks were introduced in 

the Java 1.5 specification and then improved upon in the following releases. Apart from having 

the general capabilities of timeouts and interrupts, multiple variations of lock implementation are 

available, these are presented below [22]: 

Reentrant Lock 

Reentrant Lock [23] is a mutual exclusion lock with the same basic behavior as the 

implicit monitors accessed via the synchronized keyword but with extended capabilities. It is 
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owned by the last thread that acquired the lock and has not yet unlocked it. If the current thread 

owns the lock then the method returns immediately else the lock is acquired if it is not acquired 

by any other thread.  

Apart from the ability to be interrupted and timeouts, this lock provides a couple of 

enhancements over the traditional synchronized keyword. First, the constructor accepts a fairness 

boolean parameter, which if set to true will yield the lock to the threads that are long waiting and 

guarantees less starvation. However, this setting may result in slower execution times than the 

default settings. Second, the tryLock() method avoids thread wait by only granting the lock only 

if available at the invocation time. If the previous fairness setting is enabled on the lock then 

tryLock() method can be used to immediately acquire the lock, if available, disregarding the 

other fairness parameter for other waiting threads. 

ReadWrite Lock 

ReadWrite Lock [24] specifies another lock provided since the Java 1.5 specification, 

which is able to acquire locks for both read and write access. The main motivation for read-write 

locks is based on the fact that mutable variables can be read concurrently and safely as long as no 

other process is writing to this variable. This implies that the read lock can be held 

simultaneously by multiple threads as long as no other threads hold the write lock. This often 

results in greater concurrency for accessing shared data when compared to mutual exclusion 

lock, which can only be fully realized on a multi-processor in cases where reads are more 

frequent than writes. 
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Stamped Lock 

Stamped Lock [25] is a new capability based lock introduced in Java 1.8 specification. It 

has three modes for controlling read/write access. Stamped locks return a long value, often 

referred to as a stamp, which can be used to check the lock validity or to release a lock. Stamped 

locks do not implement reentrant characteristics. A new stamp is returned for each invocation of 

the stamped lock API. Sometimes, the response is blocked if no lock is available, even if the 

same thread already holds a lock. This calls for close attention while coding to avoid running 

into deadlocks. Apart from read and write, a new lock mode called optimistic locking is also 

supported by stamped lock. An optimistic read lock is acquired by calling tryOptimisticRead() 

which always returns a stamp without blocking the current thread, irrespective of the lock being 

actually available. If there's already a write lock active then the returned stamp equals zero. 

validate(long) method returns true if the lock has not been acquired in write mode since 

obtaining a given stamp. It is stated in [25] that stamped lock can be thought of as an extremely 

weak version of a read lock that can be broken by a writer thread at any time. Using optimistic 

mode for short read only code segments often reduces contention and improves throughput. 

However, values read using optimistic mode may be inconsistent so it is used only when the data 

representation is clearly understood to repeatedly invoke validate() method, if needed, to check 

consistency. 

 Another important feature supported by Stamped lock class is the lock mode upgrade 

feature. Sometimes it's desirable to convert a read lock into a write lock, if possible, without 

unlocking and locking again. Stamped Lock provides methods like tryConvertToReadLock(), 

tryConvertToWriteLock() and tryOptimisticRead() to achieve the same. 

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html#validate-long-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html#tryConvertToReadLock-long-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html#tryConvertToWriteLock-long-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html#tryOptimisticRead--
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Atomic Variables 

 The package ‘java.concurrent.atomic’ [26], added in Java 1.5 specification, provides 

many useful classes to carry out atomic operations. An operation is atomic when we can safely 

perform the operation in parallel on multiple threads without using the synchronized keyword or 

locks. Internally, the atomic classes make heavy use of compare-and-swap (CAS), an atomic 

instruction directly supported by most modern CPUs [27]. Those instructions usually are much 

faster than synchronization via locks. So it’s generally advisable to prefer atomic classes over 

locks in cases where we just have to change a single mutable variable concurrently. Figure 3.10, 

below illustrates an example of an Integer Atomic variable derived from [28] [29]. It is evident 

from the example that by using an AtomicInteger instead of an Integer, the number can be 

incremented concurrently in a thread-safe manner without synchronizing the access to the 

variable. The incrementAndGet() method atomically increments the current value by one [30], so 

it can be safely called from multiple threads concurrently. Finally, the shutdown method is 

invoked to attempt a controlled shutdown of the executor service. The console output of the code 

snippet is shown below in Figure 3.11. 

ConcurrentMap 

The interface ConcurrentMap [31] defined in ‘java.util.concurrent.ConcurrentMap’ 

extends the map interface and defines one of the most useful concurrent collection types which is 

capable of handling concurrent access to it. TheConcurrentHashMap is an implementation 

available in the concurrency package that is very similar to the ‘java.util.HashTable’ class, 

except that the former offers better concurrency. For instance, ConcurrentHashMap does not lock 

http://en.wikipedia.org/wiki/Compare-and-swap
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the map for reading. Additionally, ConcurrentHashMap does not lock the entire Map when 

writing, it only internally locks the part of the map that is being written to.  

 

Figure 3.10: Atomic Integer Code Snippet 

 

 

Figure 3.11: Console Output for Atomic Integer Code Snippet 

With Java 1.8 specification, ConcurrentHashMap [32] has been further enhanced with 

new methods to perform parallel operations upon the map. Like parallel streams, these methods 

use a special ForkJoinPool available via ForkJoinPool.commonPool(). This pool uses a preset 
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parallelism which depends on the number of available cores. Three kinds of parallel operations 

were added in latest Java 1.8 specification, these are listed below [32]: 

 forEach—Used to perform a given operation on each element of the map. 

 Search—Used to return the first not null result of applying the given function on each 

element. 

 Reduce—Used to accumulate the result of applying the given reduction function on 

each element. 

All of the above operations are defined in the API as functions with the following four 

variations for the input arguments - keys, values, entries and key-value pair arguments. These 

operations also accept an argument called parallelismThreshold that indicates the minimum 

collection size for the operation to be executed in parallel [32]. For instance, if we pass a 

threshold of 100 and the actual size of the map is 99 then the operation will be executed 

sequentially on a single thread. 



36 

 

Chapter IV 

 

DISTRIBUTED MEMORY PROGRAMMING IN JAVA 

 

Introduction 

 

With the recent availability of high-performance low-cost networking components, it is 

now becoming practical and cost-effective to assemble a network of workstations and/or PCs 

into a single distributed-memory computing resource. Applications running on workstation 

clusters built-up over local area networks can make use of the high percentage of idle time on 

under-utilized desktop machines. Such systems are increasingly available because of the 

decrease in prices of processors and the high-bandwidth links to connect them. Figure 4.1, below 

shows a typical multi core distributed memory architecture. The communication network in the 

figure could be a local area network such as an Ethernet, or a wide area network such as the 

Internet. Programming parallel and distributed systems requires a different set of tools and 

techniques than that required by the traditional sequential applications. Some of the prevalent 

Java based distributed memory programming models are discussed below. 

Java Sockets 

Sockets are a low-level programming interface for network communication, which allows 

exchanging streams of data between applications [5]. Due to the socket implementations on 

almost every network protocol and the extended API, the socket API can be considered as the 

standard low level communication layer. Therefore, sockets are used frequently for 

implementing the lowest level of network communication in Java.  
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Figure 4.1: A Distributed Multicore Memory Architecture 

Java has two main socket implementations, the widely extended Java IO sockets, and 

Java NIO (New I/O) sockets which provide scalable non-blocking communication support. 

However, both implementations do not provide high speed network support nor HPC tailoring. 

Their implementation on top of the JVM sockets library limits their performance benefits.  

Taboada demonstrated in [33], Java sockets usually lack efficient high speed network 

support and has to resort to inefficient TCP/IP emulations for full networking support. 

Furthermore, he also introduced a new high performing socket implementation, known as Java 

Fast Sockets (JFS) in [33] that attempts to provide an efficient Java communication middleware 

for high performance clusters to support parallel and distributed Java applications. He proved 

experimentally that the JFS reduced socket processing CPU load up to 60% compared to 

traditional sockets, which was a significant improvement. This implementation can also be used 

by the middleware developers to implement JFS based high level communication APIs like 
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message passing and RMI implementations to further enhance the overall performance of the 

distributed application. 

Java RMI 

Java Remote Method Invocation (RMI) [6] [34] is an API which supports seamless 

remote method invocation on objects in different JVMs across networks. RMI provides a simple 

and direct model for distributed computation with Java objects. These objects can be new Java 

objects, or can be simple Java wrappers around an existing API. Simply stated, RMI attempts to 

make the designing of a distributed application as simple and straightforward as designing a non-

distributed application. Sending data across networks or translation of data into objects is 

abstracted by the RMI API providing a simple interface to the programmer. This abstraction 

helps in avoiding writing low level protocols to handle data reads from the network. Also, since 

RMI is Java based, it brings the strengths of Java safety and portability to distributed computing. 

Using the standard Java native interface (JNI), RMI can connect to existing and legacy systems 

in non-Java languages as well. 

RMI has evolved and now includes several enhancements for security and transport 

mechanisms [35]. However, both RMI and Java object serialization as currently implemented are 

significantly computationally expensive. The optimization of the RMI protocol has been the goal 

of several projects, such as KaRMI [36], RMIX [37], Ibis RMI [38] and Manta [39]. Each of 

them attempted to improve RMI performance by using different protocols but still fell short by 

either not providing a standard API or inferior performance over large data sets.  

Another research was conducted in 2007 by Toboada, who demonstrated in [40] an 

efficient implementation of the RMI protocol using direct high performance sockets library (JFS) 
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[33] on a cluster. This implementation was fully transparent to the user and is interoperable with 

other systems, hence negating the need for source code modifications. Other optimizations like 

performing native array serialization, reducing class annotations also helped in significantly 

reducing the overhead associated with RMI calls, especially in high speed networks. Another 

Java based GRID middleware, named ProActive [41] was introduced in 2009 by Amedro and 

Taboada. Its communication layer was built on top of the RMI protocol. The research 

demonstrated that by substituting the default socket based RMI implementation with an efficient 

high performing sockets implementation, the performance of ProActive could be improved 

significantly. 

Even though research like [36] [37] [38] and [39] improve the performance of the native 

Java RMI implementation, due to inherent remote machine involvement, RMI is subjected to 

increased latency even if the nodes in the cluster are connected via a high speed network. Also, 

since RMI requires creation of additional threads to manage remote requests for data, context 

switching and synchronization incurs additional overhead to exchange data between multiple 

JVMs. Moreover, issues like network failures and security are left with the programmers to be 

dealt with. At its core, RMI applications are based on a client and server model which is not 

suitable for high performance scientific applications, particularly, in applications that use parallel 

decomposition techniques. Instead of invoking methods on remote data, these parallel 

applications require passing of data between processes to be processed locally [40].  

The use of non-standard APIs for alternate better implementations and the insufficient 

overhead reductions, still significantly larger than socket latencies, have restricted RMI 

applicability. Therefore, although Java communication middleware used to be based on RMI, 
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current Java communication libraries use sockets due to their lower overhead [33]. The use of 

low level API for sockets requires higher programming effort, but allows for higher throughput, 

which is the key in HPC. 

Message Passing 

Message passing Interface (MPI) [42] [43] is a well-known established standard for 

parallel programming for languages compiled to native code. Due to its origins as a C/Fortran 

library, the design of MPI is distinctly non-object-oriented and unfamiliar to the Java 

environment. With the popularity of Java, there have been several research efforts to provide 

MPI for Java. A message passing like interface for Java has the advantage of being easily 

recognizable to the HPC community, with the least learning overhead. Furthermore, MPI has 

various benefits, for instance, its backing for collective communication and its ability to run on 

both shared and distributed memory systems. Because of this distributed support, message 

passing for Java offers the potential to develop a parallel application to run within both a single 

and multiple JVM environments. 

The Message Passing standard implementations in Java (MPJ) have been realized by 

either: (a) using Java RMI (all Java implementation); or (b) wrapping an underlying native 

messaging library like MPI through Java Native Interface (JNI); or (c) using Java sockets. Each 

implementation type caters to specific situations and setups, but does exhibit associated trade-

offs. Taboada demonstrates in [40], the use of Java RMI (for an only Java approach) as the 

foundation for MPJ libraries, ensures portability. However, it might not be the most efficient 

solution in the presence of high speed communication hardware, as RMI is unable to take 

advantage of such infrastructure. The use of JNI, on the other hand, allows for efficient use of 
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high performance communication networks using native libraries, but has portability problems. 

The use of Java sockets requires a substantial programming effort, especially in order to provide 

scalable solutions, but it significantly outperforms RMI-based communication libraries. 

Although most of the Java communication middleware is based on RMI, MPJ libraries looking 

for efficient communication seemed to have followed the latter two approaches. 

There are two main specifications of MPJ: the mpiJava API [44] and the MPJ API [45]. 

Both specifications are largely defined by the same group of researchers and are quite similar, 

differing mainly in the naming conventions. The mpiJava specification is followed by the 

majority of the current available MPJ implementations and is effectively the standard MPJ 

specification. There have been many projects that have implemented some MPJ specification. 

Many of these projects were short lived and are no longer being actively worked on or supported. 

After the modular component approach was introduced by Baker in 1999 [46], several message 

passing libraries were developed around it. With this approach, the entire communication system 

is composed of layers. At each layer there might be several alternative components available for 

use, these components are generally knows as devices. This design allowed users to select 

specific devices at particular layers to meet some specific requirements. For instance, there might 

be an all Java device offering portability and another JNI based device that offers better 

performance, available at a particular layer. Based on the requirements, the user can then make a 

selection from the available devices for that layer.  

Apart from MPJ implementations, native MPI implementations such as MPICH [47] and 

OpenMPI [48] also contain a low level communication device layer that allows new devices to 

be plugged in as support for new networks is added or removed. In this research, we discuss two 
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of the most recently proposed MPJ implementations based on modular component approach 

[46]—MPJ Express [8] and Fast MPJ [9]. These are currently both being actively developed and 

supported. They both implement the same MPJ specification of mpiJava API and provide good 

performance and portability. 

MPJ Express 

The mpiJava library [7] implements the mpiJava specification. It was introduced by the 

same group who worked on the specification itself. For several years this was the most widely 

used MPJ implementation. It was a thin wrapper implementation on top of an underlying native 

MPI library, with reduced JNI overhead. Although it offered high performance, its dependency 

on JNI introduced portability issues. Additionally, it was not thread-safe, thus unable to take 

advantage of multi-core systems through multithreading. As a result of these drawbacks, the 

mpiJava project was superseded by the development of MPJ Express.  

MPJ Express [8] is a thread-safe, message-passing implementation of the mpiJava 

specification, completely written in Java. Since, its thread safe it supports the highest level of 

multithreading support defined in the MPI specification. It is based on a modular design that 

includes a pluggable architecture of communication devices. The topmost layer provides the full 

API of the library. The next two layers contain the collective and point-to-point communication 

primitives. The point-to-point primitives are implemented on top of the MPJ device layer, 

namely mpjdev. The mpjdev layer in turn supports two implementations, one of which is a 100% 

Java implementation, namely xdev and the other is a native implementation built on top of a 

native MPI implementation designed to elevate features of native MPI libraries, when needed. 

The pure Java implementation of mpjdev currently relies on three implementations for the xdex 
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device, present at the lowest level of its stack: niodev over Java NIO sockets, mxdev using JNI 

allowing support for Myrinet network and smpdev to be used in shared memory environments. A 

combination of smpdev and niodev can be used to support execution of parallel Java programs in 

the hybrid configuration using multicore and cluster configurations respectively. This 

combination is available to use out of the box, using hybdev cluster configuration. This design of 

xdev device layer allows MPJ Express to implement support for new communication libraries 

with relative ease, when needed. Furthermore, these implementations allow MPJ Express to be 

used in both shared and distributed memory programming models. Also, this project is the most 

active in terms of adoption by the HPC community, presence in academic and production 

environments, and available documentation. In this paper, we capture results for the following 

four configurations by using out of the box communication device drivers from MPJ Express: 

multicore (smpdev), niodev, hybdev and native. 

FastMPJ 

FastMPJ [9] is a high performance and scalable message passing implementation of the 

mpiJava specification completely written in Java, with a modular design. FastMPJ supports 

several high speed networks and makes a number of devices available at different levels. Most 

significantly it includes the xxdev device layer. xxdev is an extension of the xdev API present in 

MPJ Express. Unlike xdev, xxdev API supports the direct transmission of any serializable object 

without using buffers. Also, apart from being simple and concise, it supports both blocking and 

non-blocking point to point communication. Higher level functions such as collective 

communication functions are implemented at higher levels in the FastMPJ stack. This allows the 
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new xxdev devices to be implemented with relatively little effort and negates the need to make 

other changes within the application.  

FastMPJ provides scalable collective functions with alternative algorithms for each 

collective primitive. Based on the message size and the characteristics of the HPC environment, 

it can automatically select the best algorithm to get the best possible performance at runtime. 

Due to this feature, its primitives are identified as topology aware. As stated in [9], more stable 

runtime framework, higher performance and scalability help make FastMPJ rival the 

performance of other MPI libraries, including MPJ Express. Unfortunately FastMPJ is a 

commercial offering and could not be implemented in this research for comparative study. 

However, Taboada demonstrated in [9] that by using an efficient implementation of the 

communication middleware, FastMPJ was able to rival native MPI performance and scalability, 

even outperforming it in some scenarios. This is a significant improvement over other traditional 

MPJ implementations and greatly reduces the gap between Java and native languages in HPC 

applications. Implementation details, test results and research can be found in [9]. 
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Chapter V 

 

PROBLEM DESCRIPTION: MATRIX MULTIPLICATION 

 

Introduction 

 

Matrix multiplication is one of the most central operations performed in scientific 

computing and pattern recognition [49] [50] [51]. Simply stated, multiplication of large matrices 

requires a significant amount of computation time as its complexity is O (n3), where n denotes 

the matrix dimension. It can be scaled for a wide range of performance, because the computation 

grows with the order of n3 for matrices of order n. More efficient sequential matrix multiplication 

algorithms have been implemented. Strassen’s algorithm, devised by Volker Strassen in 1969 

[52], reduces complexity to O (n2.807). Even with these improvements performance is limited. 

Formal Definition 

Given a matrix A (n x n) n rows and n columns, where each of its elements is denoted by 

Aij with 0 ≤ i < n and 0 ≤ j < n, and a matrix B(n × n) of n rows and n columns, where each of its 

elements is denoted by Bij with 0 ≤ i < n, and 0 ≤ j < n, the matrix C resulting from the operation 

of multiplication of matrices A and B, C = A × B, is such that each of its elements is denoted as 

Cij with 0 ≤ i < n and 0 ≤ j < n, and is calculated by the formula shown in Figure 5.1 below. 

 

Equation 5.1: Matrix Multiplication for Each Element of Resultant Matrix C 

https://en.wikipedia.org/wiki/Pattern_recognition
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Sequential Algorithm 

 

In this paper we used a basic sequential implementation shown in Figure 5.1 for both C 

and Java with a time complexity of O (n3). 

 

Figure 5.1: Sequential Matrix Multiplication Algorithm 

Simple Parallel Algorithm 

 

A parallel implementation of matrix multiplication offers another alternative to increase 

performance [53] [54] [55]. Matrix multiplication is composed of basic computations which 

makes it simple and appropriate means for evaluating the performance of the Java support for 

parallelism vs. the native C implementation. Generally stated, parallel processing is based on 

numerous processors working collectively to accomplish a task. The basic idea is to partition the 

computation into smaller tasks and distribute them among the processors. This approach reduces 

computation time by a maximum factor of the number of processors available [53]. In this paper, 

we implement matrix multiplication across both shared memory and distributed memory 

systems. 

Shared Memory Algorithm 

In shared memory systems, processors share a common memory and data is easily 

accessible to all processors. Consider two square matrices A and B with dimensions n×n, that are 
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to be multiplied in parallel using p processors. All the processors will have access to all the rows 

and columns of matrices A and B. For simplicity, let us assume that the rows of matrix A can be 

equally divided across all processors. To achieve parallelism, we then simply allocate an equal 

set of rows of matrix A across each processor and then multiply it with the entire matrix B to 

compute row vectors of resultant product matrix C [54]. This is illustrated in the Figure 5.2 

below, for n=4 and p=2. In the figure below, processor P0 multiplies the first two rows of matrix 

A with entire matrix B to yield first two rows of matrix C. Similarly, processor P1 computes the 

remaining rows of matrix C in parallel by multiplying remaining two rows of matrix A with 

matrix B. 

 

Figure 5.2: Shared Memory Implementation of Matrix Multiplication 

Distributed Memory Algorithm 

 

In distributed memory systems, each processor has only local memory, and the data is 

exchanged as messages between processors. Implementing a matrix multiplication algorithm 

across multiple processors, typically involves two types of processes namely, manager process 

and worker process [55]. Generally speaking, the manager process issues commands to be 

performed by the worker processes. The manager process is also responsible for the issuing of 

matrix multiplication requests, partitioning of the input matrices, transmission of the sub-
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matrices, reception of the results, and time keeping duties. The worker process accepts matrix 

multiplication commands from the manager process, performs all of the actual matrix 

calculations, and returns the results in the form of sub-matrices, to the manager process. 

Consider two square matrices A and B with dimensions n×n, that are to be multiplied in 

parallel using p processors. In this implementation, it is assumed that only one process, typically 

the manager process, has access to both matrices A and B. In the first step, the manager process 

splits matrix A into ‘p-1’ partitions and scatters them across all the available worker processes 

along with the entire matrix B.  Once the worker process receives row partition of matrix A and 

the entire matrix B from the manager process, it then performs matrix multiplication to compute 

an output sub-matrix. Finally, each worker process returns its output sub-matrix to the manager 

process, which then gathers the partial results to form the resulting product matrix C. This 

algorithm [54] is illustrated in the below steps, for n=8 and p=4.  

Step 1:  The manager process (P0) scatters matrix A into ‘p-1’ (=3) partitions. The size 

of the row partition is equal to n/(p-1) among all workers, in cases where n%(p-

1) = 0. In other cases, where n%(p-1) <> 0, the extra rows are balanced out by 

passing an additional row among worker processes whose ranks are less than or 

equal to n%(p-1). Rank is the unique id assigned to a process in the MPI 

implementation. In this particular case, n/(p-1) = 2 and n%(p-1) = 2, which 

results in worker processes with ranks 1 (P1) and 2 (P2) being assigned an extra 

row of matrix A along with the usual set of n/(p-1) rows. This is illustrated in 

Figure 5.3 below.  
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Figure 5.3: Distributed Memory Implementation—Asynchronous Data Broadcasting 

Step 2:  Each worker process then performs distributed matrix multiplication of the 

received row partition of matrix A and entire matrix B. Figure 5.4 below, 

illustrates distributed matrix multiplication for Processor P2 which multiples 

rows 3, 4, and 5 of matrix A with entire matrix B to yield partial result of rows 

3, 4, and 5 for resultant matrix AxB. 
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Figure 5.4: Distributed Memory Implementation–Distributed Matrix Multiplication for P2 

Step3:  Each worker process asynchronously sends the partial result computed in step 2 

to the manager process. The manager process then gathers them to complete the 

final resultant matrix AxB. This is illustrated in Figure 5.5 below 

 

Figure 5.5: Distributed Memory Implementation–Manager Process Gathering Partial Results 
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In the next chapter, we present the captured results for performance measures like elapsed 

time and speed up, evaluate results and draw conclusions by comparing appropriate models for 

both serial and parallel realizations of the above described algorithms. 
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Chapter VI 

 

COMPARISON AND TEST RESULTS 

 

Performance Metrics 

 

In this paper we use metrics like Elapsed time and Speed up to capture the performance 

of the various matrix multiplication implementations. 

Elapsed Time 

 

Elapsed time is the amount of time that passes from the start of an event to its finish. A 

sequential algorithm is usually evaluated in terms of its execution time, expressed as a function 

of the size of its input [56]. In this paper we calculate elapsed time by using clock() and 

System.currentTimeMillis() methods, for C and Java respectively. The elapsed time is captured 

as follows:  

 For serial implementations, elapsed time is captured around the outermost for loop, 

shown in Figure 5.1 of Chapter V. 

 For parallel implementation, the elapsed time includes the following steps of the 

simple parallel algorithm described in Chapter V. 

a) Time taken for the master process to split matrix A into (p-1) partitions in a p 

processor/core system. 

b) Time taken for the master process to send above row partitions of A and complete 

matrix B to all the (p-1) worker processes asynchronously. 

c) Time taken by each worker process to receive the relevant row partitions of 

matrix A and entire matrix B asynchronously. 
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d) Time taken by each worker process to perform its computation and send back its 

partial result to the master process asynchronously. 

e) Time taken by the master process to gather all partial results from the worker 

processes and merge them into the resultant matrix. 

Speed Up 

 

Speed up is a measure that captures the relative benefit of solving a problem in parallel 

[56]. Speed up of a parallel algorithm is defined as Sp = Ts/Tp, where Ts is the algorithm 

execution time when executed serially, and Tp is the algorithm execution time using p 

processors. Theoretically, the maximum speed up that can be achieved by a parallel computer 

with p identical processors working concurrently on a single problem is p.  

Experiment Strategy 

 

Matrix Population 

 

Since the input variations may vary the results across multiple runs or other programming 

languages, we kept the matrix population strategy simple and consistent in order to be able to 

reproduce it exactly each time. This was achieved by initializing both matrices A and B with the 

sum of its indices, that is A[i][j] = B[i][j] = i+j. This strategy allowed us to obtain more 

computation focused results. 

Matrix Memory Optimization 

Communicating two dimensional arrays using MPJ Express is severely hampered by the 

performance of Java serialization [8]. To get better comparisons we decided to flatten the two 

dimensional arrays onto a one dimensional array and communicate using native data types. For 
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uniformity, this is done across the board for both C and Java implementations. This means the 

element at location ij of matrix A with size N, will be accessed as A[(i*N)+j] instead of A[i][j]. 

Result Capture Strategy 

All the results for elapsed times are recorded as average of five consecutive runs to 

minimize any unrelated interferences. Also, in an attempt to ensure best run times for Java 

programs, the methods System.gc() and System.runFinalization() are exclusively invoked to run 

the garbage collector and  finalize methods of discarded objects before entering compute 

intensive section of the code. Also all the derived speed ups were rounded off to three decimal 

places. 

Overall Experimental Configuration 

Hardware Setup 

We used a Virtual Private Cluster (VPC) of three identical amazon EC2 c4.2xlarge [57] 

instances/virtual machines, specification are as follows: 

 64 bit Amazon Linux AMI 2016.03.0 with amazon virtualization layer, named HVM. 

 Each node consisted of 8 vCPUs. Each vCPU was a hyperthread of an Intel Xeon E5-

2666 v3 (Haswell) 2.9 GHz processor core.  

 15 GB memory 

 Secondary storage of 16 GB was configured with a dedicated throughput of 1000 

Mbps. 

 Also, the instances were placed in the same placement group which enabled low 

latency, full bisection 10 Gbps bandwidth between instances.  

More details on Amazon EC2 configurations can be found in [57] and [58]. 
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Compiler Versions 

 C compiler – 64 bit GCC version 4.8.3 20140911 (Red Hat 4.8.3-9) 

 Java compiler – 64 bit Oracle javac 1.8.0_45 

 MPJ Express v0_44 

 Open MPI 1.6.4 

Communication Directives 

 

In this paper, the following communication directives were used to achieve inter process 

communication in parallel implementations, where applicable. 

C—Open MPI implementation 

 

 MPI_Send [59] - blocking send operation. 

 MPI_Recv [59] - blocking receive operation. 

Java—MPJ Express implementations 

 

The equivalent of above directives were used in MPJ Express Java implementations 

 MPI.COMM_WORLD.Send [60] – blocking send operation. 

 MPI.COMM_WORLD.Recv [60] – blocking receive operation. 

Serial Implementations 

Experimental Configuration 

Hardware: A single EC2 instance (c4 2xlarge) with 8 vCPUs and 15 GB RAM was used 

to carry out below serial implementations. 

Compiler Version: 

 

 GCC version 4.8.3 20140911 (Red Hat 4.8.3-9)  

 javac 1.8.0_45 
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Execution details: Both C and Java variants implement the sequential algorithm 

described in Chapter V on page 46. Figures 6.1 and 6.2 below, illustrate the code snippets for the 

realizations of the sequential algorithm for C and Java respectively. 

 

Figure 6.1: Code Snippet for Serial Matrix Multiplication Implementation in C 

 

Figure 6.2: Code Snippet for Serial Matrix Multiplication Implementation in Java 
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Result capture: All the elapsed times below are in seconds and were taken over an 

average of five consecutive runs. Also, the standard deviation was rounded off to three decimal 

places. 

TABLE 6.1 

C vs. JAVA SERIAL IMPLEMENTATION COMPARISON 

 

Matrix Size 

 (N) 

C serial implementation Java serial implementation 

Mean Elapsed Time (in 

secs) 

Standard 

Deviation 

Mean Elapsed Time (in 

secs) 

Standard 

Deviation 

500 0.45200 0.004 0.1972 0.002 

1000 3.776000 0.005 1.5296 0.004 

1500 37.248000 0.064 40.0986 0.074 

2000 92.280000 0.071 97.3964 0.062 

2500 202.710000 0.078 192.0288 0.082 

3000 375.216000 0.078 367.1946 0.091 
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Graph 6.1: C vs. Java Serial Implementation Comparison 

Observation: It appears from the graph above, there are no significant differences 

between the elapsed times of C and Java serial implementations for matrix multiplication. 

Parallel Implementations 

In this section we implement parallel algorithms described in Chapter V for both shared 

and distributed memory architectures. The source code for MPI based implementations in C and 

Java, can be found in the Appendix A and B respectively. Since, MPI supports both multicore 

and cluster configurations the same source code was re-used for running both shared and 

distributed memory use cases. The target execution configuration (multicore or cluster) is passed 

on to the compiled object at runtime, which then employs appropriate communication to achieve 



59 

 

 

the result. The configuration used and implementation specifics for each use case is described in 

the relevant sections below. 

Shared Memory Parallel (SMP) Implementations 

 

In this section, we implement the shared memory algorithm described in Chapter V on 

pages 46 through 47. We first present results of the MPI based C implementation using Open 

MPI, followed by two Java implementations: a) Java Threads and b) MPI based Java 

implementation using multicore configuration of MPJ Express described in Message Passing 

section of Chapter IV, and then finally compare all the implementations. The final comparison 

will help us in summarizing the performance of C vs. Java for the presented parallel 

implementations in shared memory systems.  

C SMP Implementation–Open MPI 

 

Experimental Configuration 

 

Hardware: A single EC2 instance (c4 2xlarge) with 8 vCPUs and 15 GB RAM was used 

to carry out below MPI based implementation in C using Open MPI. 

Compiler Version: 

 

 GCC version 4.8.3 20140911 (Red Hat 4.8.3-9)  

 Open MPI 1.6.4 

Execution details: The source code can be found in the Appendix A. Below steps 

describe the sample steps needed to capture the results for a 3000x3000 matrix multiplication 

with 8 processes using the source code. 

 Modify the macro value N (matrix dimension) to 3000 in source code, if not already. 

 Compile the source code, say named as ‘mm_mpi.c’, by using mpicc as follows 
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mpicc –std=gnu99 –o mm mm_mpi.c 

 Execute the above compiled object in shared memory configuration as follows with 8 

processes: mpirun –np 8 mm 

mpicc [59] – Open MPI C wrapper compiler. 

mpirun [59] – Used to execute serial and parallel jobs in Open MPI. 

Result capture: All the elapsed times below are in seconds and were taken over an 

average of five consecutive runs. Also the speed ups and standard deviations are rounded off to 

three decimal places. 

TABLE 6.2 

C SMP IMPLEMENTATION—OPEN MPI: MEAN ELAPSED TIME  

AND STANDARD DEVIATION 

 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.418 0.010 0.174 0.053 0.12 0.000 

1000 3.618 0.063 3.618 2.966 3.146 0.037 

1500 37.424 0.215 12.588 0.091 11.898 0.062 

2000 90.32 0.361 30.472 0.174 32.238 0.937 

2500 185.148 1.664 70.264 9.535 70.052 0.490 

3000 349.104 2.703 117.928 2.279 130.006 0.925 
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TABLE 6.3 

 

C SMP IMPLEMENTATION—OPEN MPI: SPEED UP 

 

Matrix Size 

(N) 

Serial Implementation Mean 

Elapsed Time (Ts) 

Speed up  (Ts/Tp) 

2 cores 4 cores 8 cores 

500 0.45200 1.081 2.598 3.767 

1000 3.776000 1.044 1.044 1.200 

1500 37.248000 0.995 2.959 3.131 

2000 92.280000 1.022 3.028 2.862 

2500 202.710000 1.095 2.885 2.894 

3000 375.216000 1.075 3.182 2.886 

 

 

  

Graph 6.2: C SMP Implementation-Open MPI: Speed up vs. Matrix Size 
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Observation: From the graph above it appears that the speed up is gradually increasing 

as more cores are added, except for the case of matrix size 1000 with 4 and 8 cores. It might be 

due to the fact that the communication overhead among the processes was far greater than the 

time taken for actual multiplication itself, resulting in the above pattern. 

Java SMP Implementation 1–Java Threads 

 

Experimental Configuration 

 

Hardware: A single EC2 instance (c4 2xlarge) with 8 vCPUs, 15 GB RAM was used to 

carry out below Java Threads implementation. 

Compiler version:    javac 1.8.0_45 

Execution details:  In this implementation, we use ExecutorService [18] to create a fixed 

thread pool for the specified number of threads. This executor service is then passed on to the 

ExecutorCompletionService [61] to execute partial matrix multiplication tasks. The relevant 

code snippet is illustrated in Figure 6.3 below. Each row of the resultant matrix is computed by 

performing partial matrix multiplication of the related row of matrix ‘a’ and entire matrix ‘b’, 

this is done by using the computeRow() method shown in the code snippet. On a high level, this 

is achieved by creating one task per row of the resultant matrix and submitting it to the executor 

service. The executor service then executes these tasks using the fixed thread pool, created 

earlier. We then wait until all the tasks complete execution using task() method. On completion 

of all tasks the resultant matrix will be completely filled with partial results. For instance, to 

multiply two 4x4 matrices using two threads, the below code creates 4 tasks, one for each row of 

resultant matrix, and then submits each of them to the executor service which in turn distributes 
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the submitted tasks among its pool of two threads. Both threads, on completion of each task, fill 

in the related partial results for the resultant matrix. 

 

Figure 6.3: Code Snippet for SMP Matrix Multiplication Using Java Threads 

Result capture: All the times below are in seconds and were taken over an average of 

five consecutive runs. Also the speed ups and standard deviations are rounded off to three 

decimal places. 
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TABLE 6.4 

 

JAVA SMP IMPLEMENTATION—JAVA THREADS: MEAN ELAPSED TIME 

AND STANDARD DEVIATION 

 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.1068 0.003 0.075 0.253 0.0572 0.060 

1000 1.0674 0.063 1.3664 2.766 2.4732 0.035 

1500 21.4136 0.215 11.491 0.157 10.4494 0.532 

2000 48.1028 0.361 28.155 0.474 26.2938 0.967 

2500 96.2288 1.362 55.1692 8.323 54.6918 0.890 

3000 183.8028 2.112 104.0308 2.288 101.5042 1.623 
 

 

TABLE 6.5 

JAVA SMP IMPLEMENTATION–JAVA THREADS: SPEED UP 

Matrix Size 

(N) 

Serial Implementation Mean 

Elapsed Time (Ts) 

Speed up  (Ts/Tp) 

2 cores 4 cores 8 cores 

500 0.1972 1.846 2.629 3.448 

1000 1.5296 1.433 1.119 0.618 

1500 40.0986 1.873 3.490 3.837 

2000 97.3964 2.025 3.459 3.704 

2500 192.0288 1.996 3.481 3.511 

3000 367.1946 1.998 3.530 3.618 
 



65 

 

 

 

Graph 6.3: Java SMP Implementation—Java Threads 

 

Observation: From the graph above it appears that the speed up is gradually increasing 

as more cores are added, except for the case of matrix size 1000 with 4 and 8 cores. It might be 

due to the fact that the communication overhead among the cores was far greater than the time 

taken for actual multiplication itself, resulting in the above pattern. 

Java SMP Implementation 2–MPJ Express Multicore Configuration 

 

Experimental Configuration 

 

Hardware: A single EC2 instance (c4 2xlarge) with 8 vCPUs, 15 GB RAM was used to 

carry out below Java implementation using MPJ Express multicore configuration. 

Compiler version: 

 javac 1.8.0_45 
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Execution details: The source code can be found in the Appendix B. Below commands 

are executed in order to compile and run the source code, say named as MM_MPI.java, in 

multicore configuration and capture the results for a 3000x3000 matrix multiplication with 8 

processes. 

Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar MM_MPI.java 

Run: mpjrun.sh –np 8 MM_MPI 3000 

‘mpjrun.sh’ is a wrapper script that is used to execute the compiled objects in MPJ 

Express. 

Result capture: All the times below are in seconds and were taken over an average of 

five consecutive runs. Also the speed ups and standard deviations are rounded off to three 

decimal places. 

TABLE 6.6 

JAVA SMP-MPJ EXPRESS MULTICORE CONFIGURATION: MEAN ELAPSED TIME 

AND STANDARD DEVIATION 
 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.2136 0.004 0.2882 0.342 0.147 0.007 

1000 1.6886 0.024 6.0412 2.697 3.1962 0.016 

1500 39.1774 
0.105 

 
18.8722 6.851 12.0134 

0.140 

 

2000 95.1776 0.412 51.6572 15.962 30.295 1.660 

2500 194.1812 0.618 83.4154 23.848 65.279 2.954 

3000 359.717 3.986 158.9412 57.002 118.444 5.456 
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TABLE 6.7 

JAVA SMP-MPJ EXPRESS MULTICORE CONFIGURATION: SPEED UP 

Matrix Size 

(N) 

Serial Implementation Mean 

Elapsed Time (Ts) 

Speed up  (Ts/Tp) 

2 cores 4 cores 8 cores 

500 0.1972 0.923 0.684 1.341 

1000 1.5296 0.906 0.253 0.479 

1500 40.0986 1.024 2.125 3.338 

2000 97.3964 1.023 1.885 3.215 

2500 192.0288 0.989 2.302 2.942 

3000 367.1946 1.021 2.310 3.100 
 

 

 

Graph 6.4: Java SMP Implementation–MPJ Express Multicore Configuration 
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Observation: From the graph above it appears that the speed up is gradually increasing 

as more cores are added, except for one case of matrix size 1000 with 4 and 8 cores. It might be 

due to the fact that the communication overhead among the cores was far greater than the time 

taken for actual multiplication itself, resulting in the above pattern. 

Comparison of C and Java Shared Memory Implementations 

 

This comparison summarizes all the above SMP implemenations of both C and Java. The 

below graph is obtained by plotting the speed ups of a 3000x3000 matrix multiplication of each 

SMP implementation across number of cores. 

TABLE 6.8 

C vs. JAVA SMP IMPLEMENTATION COMPARISON 

SMP Implementation 

Speed Up 

2 cores 4 cores 8 cores 

Open MPI–C 1.087 3.215 7.323 

MPJ Express Multicore Configuration—Java 1.01 2.965 6.532 

Java Threads 1.008 2.999 6.074 
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Graph 6.5: C vs. Java SMP Implementation Comparison 

 

Observation: Java Threads seem to have a better speed up followed by Open MPI - C 

implementation and then MPJ Express multicore Java implementation. 

Distributed Memory Parallel (DMP) Implementations 

 

In this section, we implement the distributed memory algorithm described in Chapter V 

on pages 47 through 51. We first present results of the MPI based C implementation using Open 

MPI in cluster configuration, followed by three Java implementations using the following cluster 

configurations of MPJ Express, described in Message Passing section of Chapter IV: a) niodev 

b) hybdev and c) native, and then finally compare all the implementations. The final comparison 

will help us in summarizing the performance of C vs Java for the presented parallel 

implementations in distributed memory systems.  

Pre-Requisites for Cluster Configuration 

 

 All the nodes in the cluster should be reachable via ssh from each other. 
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 A file with all the hostnames of the cluster should exist. This file will be used by MPI 

based implementations to invoke processes on the listed nodes in the cluster. We 

assume this file is named as ‘machines’ for all the below implementations. 

C DMP Implementation–Open MPI 

 

Experimental Configuration 

 

Hardware: A Virtual Private Cluster (VPC) of three EC2 instance (c4 2xlarge) with 8 

vCPUs, 15 GB RAM was used to carry out below distributed C implementation using Open 

MPI. 

Compiler version: 

 

 GCC version 4.8.3 20140911 (Red Hat 4.8.3-9)  

 Open MPI 1.6.4 

Execution detail: The source code can be found in the Appendix A. Below steps 

describe the sample steps needed to capture the results for a 3000x3000 matrix multiplication 

with 8 processes using the source code in Appendix. 

 Modify the macro value N (matrix dimension) to 3000 in source code, if not already. 

 Compile the source code, say named as ‘mm_mpi.c’, by using mpicc as follows 

mpicc –std=gnu99 –o mm mm_mpi.c 

 Execute the above compiled object in cluster configuration with 8 processes, using 

mpirun as follows 

mpirun –machinefile machines –np 8 mm 

mpicc [59]–Open MPI C wrapper compiler. 

mpirun [59]–Used to execute serial and parallel jobs in Open MPI. 
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Note: When running code in cluster configuration using above command, MPI decides the best 

configuration to run the program. It may or may not use all the required cores of the same 

machine in cases when number of processes is less than number of cores. 

Result capture: All the elapsed times below are in seconds and were taken over an 

average of five consecutive runs. Also the speed ups and standard deviations are rounded off to 

three decimal places. 

TABLE 6.9a 

C DMP IMPLEMENTATION—OPEN MPI: MEAN ELAPSED TIME 

AND STANDARD DEVIATION 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.42 0.000 0.15 0.000 0.082 0.015 

1000 3.618 0.027 1.4 0.365 0.578 0.010 

1500 37.29 0.561 12.864 0.703 5.642 0.160 

2000 88.98 0.308 30.592 0.975 20.572 7.972 

2500 180.734 0.964 62.288 0.731 27.372 0.968 

3000 345.324 3.917 116.69 0.759 51.24 1.662 
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TABLE 6.9b 

C DMP IMPLEMENTATION—OPEN MPI: MEAN ELAPSED TIME 

AND STANDARD DEVIATION 

Matrix Size 

(N) 

16 cores 24 cores 

Mean Elapsed Time 

(Tp) 
Standard Deviation Mean Elapsed Time (Tp) 

Standard 

Deviation 

500 0.082 0.004 0.084 0.005 

1000 1.458 0.031 1.126 0.037 

1500 5.66 0.083 4.27 0.131 

2000 15.336 0.197 11.202 0.152 

2500 31.812 0.713 23.868 0.432 

3000 57.406 5.372 42.608 0.364 
 

 

 

TABLE 6.10 

C DMP IMPLEMENTATION—OPEN MPI: SPEED UP 

Matrix Size 

(N) 

Speed Up 

2 cores 4 cores 8 cores 16 cores 24 cores 

500 1.076 3.013 5.512 5.512 5.381 

1000 1.044 2.697 6.533 2.590 3.353 

1500 0.999 2.896 6.602 6.581 8.723 

2000 1.037 3.016 4.486 6.017 8.238 

2500 1.122 3.254 7.406 6.372 8.493 

3000 1.087 3.215 7.323 6.536 8.806 
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Graph 6.6: C DMP Implementation–Open MPI 

 

Observation: For 3000x3000 matrix size, we were able to achieve 3x speed up (around 

9) when compared to the speed up (around 3) of C SMP Open MPI implementation by using all 

24 cores available in the cluster.  

Java DMP Implementation 1—MPJ Express niodev Cluster Configuration 

 

Experimental Configuration 

 

Hardware: A Virtual Private Cluster (VPC) of three EC2 instance (c4 2xlarge) with 8 

vCPUs, 15 GB RAM was used to carry out below distributed Java implementation using MPJ 

Express niodev cluster configuration. 

Compiler version: 

 MPJ Express v0_44 
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Result capture: All the elapsed times below are in seconds and were taken over an 

average of five consecutive runs. Also the speed ups and standard deviations are rounded off to 

three decimal places. 

Execution details: In this particular implementation we use the Java New I/O (NIO) 

device driver provided by MPJ Express, known as niodev [8]. This was described in Message 

Passing section of Chapter IV. This device uses Ethernet based interconnect for message passing. 

The source code can be found in the Appendix B. Below commands are executed in order to 

compile and run the source code, say named as MM_MPI.java, in niodev cluster configuration 

and capture the results for a 3000x3000 matrix multiplication with 8 processes. 

a) Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar MM_MPI.java 

b) If not done already, then start daemons used by MPJ Express to figure out nodes in 

the cluster by using: mpjboot machines 

c) Run: mpjrun.sh –dev niodev –np 8 MM_MPI 3000 

‘mpjrun.sh’ is a wrapper script that is used to execute the compiled objects in MPJ 

Express. 

Note: When running code in cluster configuration using above commands, MPI decides the best 

configuration to run the program. It may or may not use all the required cores of the same 

machine in cases when number of processes is less than number of cores. 
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TABLE 6.11a 

 

JAVA DMP - MPJ EXPRESS niodev IMPLEMENTATION: MEAN ELAPSED TIME AND 

STANDARD DEVIATION 

 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.2152 0.002 0.1144 0.023 0.093 0.008 

1000 1.5066 0.367 0.6328 0.008 1.1398 1.073 

1500 39.4348 0.091 13.634 0.305 6.601 1.066 

2000 95.405 0.536 32.1186 0.173 14.1892 0.271 

2500 193.7314 1.232 66.5742 0.815 31.895 2.490 

3000 363.4274 2.258 123.8556 1.018 56.2118 3.443 

 

 

TABLE 6.11b 

 

JAVA DMP—MPJ EXPRESS niodev IMPLEMENTATION: MEAN ELAPSED TIME  

AND STANDARD DEVIATION 

 

Matrix Size 

(N) 

16 cores 24 cores 

Mean Elapsed Time 

(Tp) 
Standard Deviation Mean Elapsed Time (Tp) 

Standard 

Deviation 

500 0.1528 0.009 0.2196 0.011 

1000 1.398 0.209 1.2588 0.109 

1500 5.3502 0.388 4.6634 0.072 

2000 14.1396 1.447 11.3306 0.162 

2500 26.7378 3.048 23.8426 0.409 

3000 43.381 2.618 43.6262 0.312 
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TABLE 6.12 

JAVA DMP—MPJ EXPRESS niodev IMPLEMENTATION: SPEED UP 

Matrix Size 

(N) 

Speed Up 

2 cores 4 cores 8 cores 16 cores 24 cores 

500 0.916 1.724 2.120 1.291 0.898 

1000 1.015 2.417 1.342 1.094 1.215 

1500 1.017 2.941 6.075 7.495 8.599 

2000 1.021 3.032 6.864 6.888 8.596 

2500 0.991 2.884 6.021 7.182 8.054 

3000 1.010 2.965 6.532 8.464 8.417 
 

 

 

Graph 6.7: Java DMP Implementation 1—MPJ Express niodev Cluster Configuration 

Observation: We were able to achieve 3x speed up (around 9) when compared to the 

speed up (around 3) of Java SMP MPJ Express multicore implementation by using all 24 cores 

available in the cluster.  
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Java DMP Implementation 2—MPJ Express hybdev Cluster Configuration 

 

Experimental Configuration 

 

Hardware: A Virtual Private Cluster (VPC) of three EC2 instance (c4 2xlarge) with 8 

vCPUs, 15 GB RAM was used to carry out below distributed Java implementation using MPJ 

Express hybdev cluster configuration. 

Compiler version: 

 

 MPJ Express v0_44 

Result capture: All the elapsed times below are in seconds and were taken over an 

average of five consecutive runs. Also the speed ups and standard deviations are rounded off to 

three decimal places. 

Execution details: In this implementation we use the hybdev device driver, which is used 

to execute parallel java applications on clusters of multi-core machines [8]. This was described 

in Message Passing section of Chapter IV. This device uses both multicore configuration (SMP) 

and niodev cluster configuration of MPJ Express for intra node communications and only niodev 

cluster configuration for inter-node communication. The source code can be found in the 

Appendix B. Below commands are executed in order to compile and run the source code, say 

named as MM_MPI.java, in hybdev cluster configuration and capture the results for a 3000x3000 

matrix multiplication with 8 processes. 

a) Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar MM_MPI.java 

b) If not done already, then start daemons used by MPJ Express to figure out nodes in 

the cluster by using: mpjboot machines 

c) Run: mpjrun.sh –dev hybdev –np 8 MM_MPI 3000 
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‘mpjrun.sh’ is a wrapper script that is used to execute the compiled objects in MPJ 

Express. 

Note: When running code in cluster configuration using above commands, MPI decides the best 

configuration to run the program. It may or may not use all the required cores of the same 

machine in cases when number of processes is less than number of cores. 

TABLE 6.13a 

 

JAVA DMP—MPJ EXPRESS hybdev IMPLEMENTATION: MEAN ELAPSED TIME AND 

STANDARD DEVIATION 

 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.2184 0.002 0.0976 0.002 0.0878 0.010 

1000 1.6954 0.025 0.6192 0.013 2.0714 1.393 

1500 39.4574 0.045 13.6918 0.021 8.439 3.075 

2000 95.6644 0.226 32.4606 0.240 21.8438 8.144 

2500 191.9478 1.152 67.4758 0.786 
35.8412 

 
4.454 

3000 364.1952 3.398 122.428 1.708 60.449 11.454 
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TABLE 6.13b 

 

 JAVA DMP—MPJ EXPRESS hybdev IMPLEMENTATION: MEAN ELAPSED TIME AND 

STANDARD DEVIATION 

 

Matrix Size 

(N) 

16 cores 24 cores 

Mean Elapsed Time 

(Tp) 

Standard 

Deviation 

Mean Elapsed Time 

(Tp) 

Standard 

Deviation 

500 0.155 0.018 0.2372 0.005 

1000 1.3834 0.314 1.3142 0.080 

1500 5.6426 0.049 4.5804 0.070 

2000 13.277 1.879 11.2816 0.217 

2500 27.5876 3.789 23.6964 0.210 

3000 48.9448 6.691 43.5074 0.269 

 

 

TABLE 6.14 

JAVA DMP—MPJ EXPRESS hybdev IMPLEMENTATION: SPEED UP 

 

Matrix Size 

(N) 

Speed Up 

2 cores 4 cores 8 cores 16 cores 24 cores 

500 0.903 2.020 2.246 1.272 0.831 

1000 0.902 2.470 0.738 1.106 1.164 

1500 1.016 2.929 4.752 7.106 8.754 

2000 1.018 3.000 4.459 7.336 8.633 

2500 1.000 2.846 5.358 6.961 8.104 

3000 1.008 2.999 6.074 7.502 8.440 
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Graph 6.8: Java DMP Implementation 2—MPJ Express hybdev Cluster Configuration 

Observation: We were able to achieve 3x speed up (around 9) when compared to the 

speed up (around 3) of Java SMP MPJ Express multicore implementation by using all 24 cores 

available in the cluster. 

Java DMP Implementation 3—MPJ Express native Cluster Configuration 

 

Experimental Configuration 

 

Hardware: A Virtual Private Cluster (VPC) of three EC2 instance (c4 2xlarge) with 8 

vCPUs, 15 GB RAM was used to carry out below distributed Java implementation using MPJ 

Express native cluster configuration. 



81 

 

 

Compiler version: 

 

 MPJ Express v0_44 

 Open MPI 1.6.4 

Result capture: All the elapsed times below are in seconds and were taken over an 

average of five consecutive runs. Also the speed ups and standard deviations are rounded off to 

three decimal places. 

Execution details: In this implementation we use the native device driver of MPJ 

Express, which is used to execute parallel java applications using a native MPI implementation 

for communication [8]. This was described in Message Passing section of Chapter IV. This is 

achieved by using a JNI wrapper library. This device also helps in elevating messaging logic, 

efficient collection algorithms and new interconnects of underlying MPI native library, whenever 

they are released. The source code can be found in the Appendix B. Below commands are 

executed in order to compile and run the source code, say named as MM_MPI.java, in native 

cluster configuration and capture the results for a 3000x3000 matrix multiplication with 8 

processes. 

a) Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar MM_MPI.java 

b) If not done already, then start daemons used by MPJ Express to figure out nodes in 

the cluster by using: mpjboot machines 

c) Run: mpjrun.sh –dev native –np 8 MM_MPI 3000 

‘mpjrun.sh’ is a wrapper script that is used to execute the compiled objects in MPJ 

Express. 
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Note: When running code in cluster configuration using above commands, MPI decides the best 

configuration to run the program. It may or may not use all the required cores of the same 

machine in cases when number of processes are less than number of cores. 

TABLE 6.15a 

 

JAVA DMP—MPJ EXPRESS native IMPLEMENTATION: MEAN ELAPSED TIME  

AND STANDARD DEVIATION 

 

Matrix 

Size 

(N) 

2 cores 4 cores 8 cores 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

Mean Elapsed 

Time (Tp) 

Standard 

Deviation 

500 0.2224 0.002 0.0996 0.003 0.0914 0.011 

1000 1.7082 0.035 0.6802 0.074 0.55 0.379 

1500 39.485 0.087 13.675 0.184 6.5218 0.742 

2000 95.59 0.262 32.736 0.363 15.3872 2.431 

2500 192.812 2.016 66.8442 0.942 38.4086 14.820 

3000 364.9928 3.385 124.6632 3.212 65.4312 15.593 

 

 

TABLE 6.15b 

 

JAVA DMP—MPJ EXPRESS native IMPLEMENTATION: MEAN ELAPSED TIME  

AND STANDARD DEVIATION 

 

Matrix Size 

(N) 

16 cores 24 cores 

Mean Elapsed Time 

(Tp) 

Standard 

Deviation 

Mean Elapsed Time 

(Tp) 

Standard 

Deviation 

500 0.1304 0.006 0.2162 0.026 

1000 1.0906 0.248 1.1668 0.043 

1500 5.802 0.124 4.5146 0.102 

2000 13.9896 1.435 11.1792 0.298 

2500 28.1658 2.778 23.413 0.588 

3000 45.859 4.243 42.2744 0.543 
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TABLE 6.16 

JAVA DMP—MPJ EXPRESS native IMPLEMENTATION: SPEED UP 

Matrix Size 

(N) 

Speed Up 

2 cores 4 cores 8 cores 16 cores 24 cores 

500 0.887 1.980 2.158 1.512 0.912 

1000 0.895 2.249 2.781 1.403 1.311 

1500 1.016 2.932 6.148 6.911 8.882 

2000 1.019 2.975 6.330 6.962 8.712 

2500 0.996 2.873 5.000 6.818 8.202 

3000 1.006 2.945 5.612 8.007 8.686 
 

 

 

 

Graph 6.9: Java DMP Implementation 3—MPJ Express native Cluster Configuration 
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 Observation: We were able to achieve 3x speed up (around 9) when compared to the 

speed up (around 3) of Java SMP MPJ Express multicore implementation by using all 24 cores 

available in the cluster.  

Comparison of C and Java Distributed Memory Implementations 

 

This comparison summarizes all the above DMP implemenations of both C and Java. The 

below graph is obtained by plotting the speed ups of a 3000x3000 matrix multiplication of each 

DMP implementation across number of cores. 

TABLE 6.17 

C vs. JAVA DMP IMPLEMENTATION COMPARISON 

Cluster Implementation 

Speed Up 

2 cores 4 cores 8 cores 16 cores 24 cores 

Open MPI – C 1.087 3.215 7.323 6.536 8.806 

MPJ Express niodev - Java 1.01 2.965 6.532 8.464 8.417 

MPJ Express hybdev - Java 1.008 2.999 6.074 7.502 8.44 

MPJ Express native – Java 1.006 2.945 5.612 8.007 8.686 
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Graph 6.10: C vs. Java DMP Implementation Comparison 

 

Observation: From the above graph, it appears that all the implementations are really 

close to each other in terms of speed ups achieved from cluster configuration. Open MPI – C 

implementation appears to be, almost always, slightly better than rest. Following Open MPI – C 

implementation very closely, niodev implementation of MPJ Express seems to be next with 

native and hybdev implementations of the same being slowest.  
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Chapter VII 

CONCLUSION 

In this paper, we discussed the current state of Java for HPC, both for shared and 

distributed memory programming models, focusing mostly on current projects. These projects 

are the result of the continuous interest in the use of Java for HPC, from when it was put forth by 

the Java Grande Forum in 1998 [12]. This paper also presented the performance evaluation of 

current Java HPC solutions and research developments on shared memory environments and 

distributed multi-core hybrid clusters. The analysis of the results suggest that Java can achieve 

near similar performance to natively compiled languages, both for sequential and parallel 

applications, thus making it a viable alternative for HPC programming. In fact, the performance 

overhead that Java may impose is a reasonable trade-off for the appealing features that this 

language provides for parallel programming multi-core architectures. Furthermore, the recent 

advances in the efficient support of Java communications on shared memory and low-latency 

networks are bridging the performance gap between Java and more traditional HPC languages. 

Finally, the active research efforts in this area are expected to bring in new developments that 

will continue increasing the benefits of the adoption of Java for HPC. 

Future Work 

The current IT technologies have a strong need for scaling up the high-performance 

analysis to large-scale datasets. In the past few years, with continuous improvements in JVM 

performance, Java gained popularity in processing “big data” mostly with Apache big data stack 

[62][63][64]–a collection of open source frameworks dealing with enormous volumes of data, 

which includes several popular systems such as Hadoop, Hadoop Distributed File System 
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(HDFS), and Apache Spark [65]. This increasing interest in Java for big data, is also 

demonstrated by the recent efforts of Open MPI, one of the main open source MPI projects, that 

has announced its Java interface motivated by a request from the Hadoop community. This Java 

support could benefit from a large community of users and developers, and from the highly 

optimized MPI support of Open MPI. Cheptsov in [62], has explored the feasibility of executing 

big data applications with the traditional HPC infrastructure. For potential future work, this 

research can possibly be extended to analyze performance of Java based Grid frameworks like 

Apache Spark [65], Apache Storm [66] or Akka [67] etc. to expose the bottlenecks and identify 

potential improvements in JVM to further improve efficiency and support for big data and HPC 

through these platforms.  

Also, due to the unavailability of actual physical servers, this research was conducted on 

virtual machines. An extension of this research may be to conduct the same research on physical 

hardware and confirm the results. Another possibility might be to extend this research to include 

the UC Berkeley parallel implementation of Java, named Titanium [68] which was developed to 

support HPC computing needs on large scale multiprocessors and distributed memory clusters. 
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Appendices 

Appendix A 

Open MPI-C Implementation of Parallel Matrix Multiplication Algorithm 

/* Open MPI – C implementation of matrix multiplication */ 
 
#include “mpi.h” 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
 
#define MASTER 0                       /* taskid of first task */ 
#define FROM_MASTER 1          /* setting a message type */ 
#define FROM_WORKER 2          /* setting a message type */ 
 
#define N 3000               /* matrix dimension, this is changed to capture result from 500 to 3000 */ 
 
#include <time.h> 
 
void print_matrix(int *A) 
{ 
   for (int i=0; i<N; i++) { 
    printf(“\n\t| “); 
    for (int j=0; j<N; j++) 
      printf(“%2d ,” *((A+i*N) + j)); 
    printf(“|”); 
 } 
  } 
   
static int a[N*N],      /* matrix A to be multiplied */ 
  b[N*N],           /* matrix B to be multiplied */ 
  c[N*N];           /* result matrix C */  
 
int main (int argc, char *argv[]) 
{ 
 char hostname[1024]; 
 gethostname(hostname, 1024); /* get the hostname */ 
 
 int numtasks,              /* number of tasks in partition */ 
  taskid,                /* a task identifier */ 
  numworkers,            /* number of worker tasks */ 
  source,                /* task id of message source */ 
  dest,                  /* task id of message destination */ 
  mtype,                 /* message type */ 
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  rows,                  /* rows of matrix A sent to each worker */ 
  averow, extra,offset,  /* used to determine rows sent to each worker */ 
  i, j, k;           /* loop variables */ 
 

 MPI_Status status; 
 

 clock_t t; 
 MPI_Init(&argc,&argv); 
 MPI_Comm_rank(MPI_COMM_WORLD,&taskid); 
 MPI_Comm_size(MPI_COMM_WORLD,&numtasks); 
 numworkers = numtasks-1; 
  
 //printf(“debug: Hello world from process %d of %d on %s\n,” taskid, numtasks, hostname); 
 if (taskid == MASTER) 
 { 
  /* populate matrices A and B */ 
  for (i=0; i<N; i++){ 
    for (j=0; j<N; j++){ 
    a[(i*N)+j]= i+j; 
    b[(i*N)+j]= i+j; 
   } 
  } 
         

    /* Calculate row partitions of matrix A */ 
    averow = N/numworkers; 
    extra = N%numworkers; 
    offset = 0;     
    mtype = FROM_MASTER;   
   
    /* start the clock */ 
    t = clock(); 
 

/* Send row partitions of A and entire matrix B to the worker processes */ 
    for (dest=1; dest<=numworkers; dest++){ 
    rows = (dest <= extra) ? averow+1 : averow;    
    //printf(“debug: Sending %d rows to task %d offset=%d\n,”rows,dest,offset);  
    MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD); 
    MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD); 
    MPI_Send(&a[offset*N], rows*N, MPI_INT, dest, mtype, 
        MPI_COMM_WORLD); 
    MPI_Send(&b, N*N, MPI_INT, dest, mtype, MPI_COMM_WORLD); 
    offset = offset + rows; 
    } 
     

    /* Receive results from worker processes into resultant matrix C */    
    mtype = FROM_WORKER; 
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    for (i=1; i<=numworkers; i++) 
    { 

    source = i; 
    MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status); 
    MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status); 
    MPI_Recv(&c[offset*N], rows*N, MPI_INT, source, mtype,  
       MPI_COMM_WORLD, &status); 
    //printf(“debug: Received results from task %d\n,”source); 
    } 
 

  /* all workers returned results - calculate elapsed time */ 
    t = clock() - t; 
     printf(“master %d, with %d processes cluster - time in seconds for %dx%d = %f\n,” 
     taskid,numtasks,N,N,((double)t)/CLOCKS_PER_SEC); 
      
     printf(“\n****************************************\n”); 

   

  /* debug: validate resultant matrix */ 
 //print_matrix((int*)c,N); 

             

  } 

 /**************************** worker task ************************************/ 
    if (taskid > MASTER) 
    { 
    /* Receive relevant row partitions of matrix A and entire matrix B */ 
    mtype = FROM_MASTER; 
    MPI_Recv(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); 
    MPI_Recv(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); 
    MPI_Recv(&a, rows*N, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); 
    MPI_Recv(&b, N*N, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status); 
 

    /* perform partial multiplication */ 
    for (k=0; k<N; k++) 
    for (i=0; i<rows; i++) 
    { 

    c[(i*N)+k] = 0.0; 
    for (j=0; j<N; j++) 
       c[(i*N)+k] = c[(i*N)+k] + a[(i*N)+j] * b[(j*N)+k]; 
    } 
   

    /* Send the partial result to master process */ 
    mtype = FROM_WORKER; 
    MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD); 
    MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD); 
    MPI_Send(&c, rows*N, MPI_INT, MASTER, mtype, MPI_COMM_WORLD); 
    } 
    MPI_Finalize();    
} 
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Appendix B 

 

MPJ Express Implementation of Parallel Matrix Multiplication Algorithm 

 
/* MPJ Express implementation of parallel matrix multiplication algorithm */ 
 
import mpi.*; 
public class MM_MPI { 
 public static void main(String[] args) { 
   
  // for multicore and niodev 
  int N = Integer.parseInt(args[3]); 
 
  // for native  
  //int N = Integer.parseInt(args[0]); 
   
  // for hybdev 
  //int N = Integer.parseInt(args[8]); 
   
  //debug: to get the argument location of main. 
  // for(String s : args) System.out.println(“>>>“+s); 
 
  int MASTER = 0; 
  int FROM_MASTER = 1; 
  int FROM_WORKER = 2; 
  int numtasks, /* number of tasks in partition */ 
      taskid,  /* A task identifier */ 
   numworkers, /* number of worker tasks */ 
      source,  /* task id of message source */ 
      dest,  /* task id of message destination */ 
      nbytes,  /* number of bytes in message */ 
      mtype,  /* message type */ 
      intsize, /* size of an integer in bytes */ 
      dbsize,  /* size of A double float in bytes */ 
      i, j, k, /* loop variables */ 
   averow, extra, 
      count; 
 
  int[] A = new int[N*N];  /* matrix A to be multiplied */ 
         int[] B = new int[N*N];    /* matrix B to be multiplied */ 
        int[] C = new int[N*N];  /* result matrix C */ 
    
  int[] offset = new int[1]; 
      int[] rows  = new int[1];    /* rows of matrix A sent to each worker */ 
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  MPI.Init(args); 
   
  taskid = MPI.COMM_WORLD.Rank(); 
  numtasks = MPI.COMM_WORLD.Size(); 
  numworkers = numtasks - 1; 
   
   
  /* *************** Master Task ****************** */ 
  if(taskid == MASTER) { 
   /* attempt garbage collection */ 
   runGC(); 
    
   /* populate matrices A and B */ 
   for(i = 0; i < N; i++) { 
    for(j = 0; j < N; j++) { 
     A[(i*N)+j] = i+j; 
     B[(i*N)+j] = i+j; 
    } 
   } 
    
   /* Calculate row partitions of matrix A */   
   averow = N/numworkers; 
   extra = N%numworkers; 
   offset[0] = 0;    
   mtype = FROM_MASTER; 
    
   /* start the clock */ 
   long start = System.currentTimeMillis();    
    
   /* Send row partitions of A and entire matrix B to the worker processes */ 
   for(dest = 1; dest <= numworkers; dest++) { 
    rows[0] = (dest <= extra) ? averow+1 : averow; 

//System.out.printf(“debug: Sending %d rows to task %d 
offset=%d\n,”rows[0],dest,offset[0]); 

    MPI.COMM_WORLD.Send(offset, 0, 1, MPI.INT, dest, mtype); 
    MPI.COMM_WORLD.Send(rows, 0, 1, MPI.INT, dest, mtype); 
    count = rows[0] * N; 

MPI.COMM_WORLD.Send(A, (offset[0]*N), count, MPI.INT, dest, 
mtype); 

    count = N*N; 
    MPI.COMM_WORLD.Send(B, 0, count, MPI.INT, dest, mtype); 
    offset[0] = offset[0] + rows[0]; 
   } 
    
   /* Receive results from worker processes into resultant matrix C */  
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   mtype = FROM_WORKER; 
   for(i = 1; i <= numworkers; i++) { 
    source = i; 
    MPI.COMM_WORLD.Recv(offset, 0, 1, MPI.INT, source, mtype); 
    MPI.COMM_WORLD.Recv(rows, 0, 1, MPI.INT, source, mtype); 
    count = rows[0] * N; 

MPI.COMM_WORLD.Recv(C, offset[0]*N, count, MPI.INT, source, 
mtype); 

    //System.out.printf(“debug: Received results from task %d\n,”source); 
   } 
    
   /* all workers returned results - calculate elapsed time */ 

long stop = System.currentTimeMillis();   
System.out.printf(“\nmaster %d with %d processes for %dx%d - time in seconds 
= %f\n,”taskid,numtasks,N,N,(stop - start)/1000.0); 

   System.out.println(“\n********************************”); 
    
   /* debug: validate resultant matrix */ 
   //print_matrix(taskid,C,N); 
  } 
 
  /* ***************** worker task ******************** */ 
  if(taskid > MASTER) { 
   /* Receive relevant row partitions of matrix A and entire matrix B */ 
   mtype = FROM_MASTER; 
   source = MASTER; 
   MPI.COMM_WORLD.Recv(offset, 0, 1, MPI.INT, source, mtype); 
   MPI.COMM_WORLD.Recv(rows, 0, 1, MPI.INT, source, mtype); 
   count = rows[0] * N; 
   MPI.COMM_WORLD.Recv(A, 0, count, MPI.INT, source, mtype); 
   count = N * N; 
   MPI.COMM_WORLD.Recv(B, 0, count, MPI.INT, source, mtype); 
 
   /* perform partial multiplication */ 
   for(i = 0; i < rows[0]; i++) { 
    for(k = 0; k < N; k++) { 
     C[(i*N)+k] = 0; 
     for(j = 0; j < N; j++) { 
      C[(i*N)+k] = C[(i*N)+k] + A[(i*N)+j] * B[(j*N)+k]; 
     } 
    } 
   } 
    
   /* Send the partial result to master process */ 
   mtype = FROM_WORKER; 



100 

 
   MPI.COMM_WORLD.Send(offset, 0, 1, MPI.INT, MASTER, mtype); 
   MPI.COMM_WORLD.Send(rows, 0, 1, MPI.INT, MASTER, mtype); 
   MPI.COMM_WORLD.Send(C, 0, rows[0]*N, MPI.INT, MASTER, mtype); 
  } 
   
  MPI.Finalize(); 
 } 
  
 static void print_matrix(int rank, int[] A, int N) { 
    int i, j = 0; 
    System.out.println(“rank = “+rank); 
    for (i=0; i<N; i++) { 
    System.out.printf(“\n\t| “); 
     for (j=0; j<N; j++) 
      System.out.printf(“%2d ,”A[(i*N)+j]); 
     System.out.printf(“|”); 
    } 
 } 
  
 static void runGC(){   
  System.runFinalization(); 
  System.gc(); 
  System.gc(); 
  System.out.println(“gc complete”); 
 } 
   
} 
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