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FORECASTING EMERGENCY DEPARTMENT VOLUMES USING TIME  
SERIES AND OTHER TECHNIQUES 

 
 

Uchechukwu A. Nwoke 

 
 

 The aim of this research is to forecast patient volumes in the Emergency 
Department of a regional hospital in Minnesota, which eventually will aid in addressing 
the issue of registered nurse staffing fluctuation, more specifically, productivity and 
capacity planning in the ED. Several methods are applied to forecast arrival patient 
volume, and cumulative patient volume to evaluate each model’s performance.  The 
methods considered are linear regression, time series models and dynamic latent factor 
method. Long term forecast for as long as six months ahead is the goal here due  union 
regulations that only allows for significant changes in registered nurse staffing schedule 
be put in place six months in advance. This long term forecast will enable administrators 
implement effective and timely changes to enhance productivity. 
 
 The patient arrival count, where each patient is counted once in the system, is 
analyzed to see how many patients the department encounters hourly. Also, cumulative 
patient count which gives us an idea of how many patients are in the department at any 
given time was also considered, here patients are counted for every hour they are in the 
emergency department (ED). Patient who come to the ED are categorized by their acuity 
level. Of all the patients that came to the ED, 52% need urgent care; this group is also 
analyzed to predict their arrival volume. 
 
 Lastly data was simulated with different patterns and the forecasting results from 
the different methods were compared and estimated. The forecast accuracy and 
performance for these models is then evaluated using out-of-sample forecasts for up to 
six months ahead. Mean square error (MSE), Root mean square error (RMSE) and mean 
absolute error (MAE) were utilized tosee which method is most reliable and also 
consistent. 
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Chapter 1 
 
 

INTRODUCTION 
 
 

The health care system has experienced an increased interest in and recognized 

appreciation of the essential role nurses play in patient care.4, 46 During a time in which 

health care resources are becoming limited, overwhelmed, and financially taxing, the key 

focus has become productivity and capacity planning. This problem is multi-dimensional, 

due to the fact that administrators must carefully consider their operations. Some of 

which include; adequately staffing registered nurses and allocating resources. The 

objective is to ensure quality patient care, while avoiding overstaffing and thus avoiding 

unnecessary expenditure.10, 29, 32 

 Operational studies have been successfully implemented in several areas to 
improve patient experience: reduced wait time, more accurate patient record 
keeping, patient satisfaction “surveys,” open and frequent communication, and 
forecasting.25  HealthCare has seen a lot of improvement over the years but there 
is still room for more. Planning and staffing is of the utmost importance because 

of its direct impact on patient and employee safety.2    

Understanding staffing fluctuation and patient volume could help improve the 

health care delivery system across every level but it appears to be more difficult for the 

Emergency Department (ED).  In a clinic or surgery setting staffing is fairly predictable 

because patients make appointments and so the departments know what to expect and 

can plan ahead, but this is not so for the ED.  Due to The Emergency Medical Treatment 

and Labor Act (EMTALA)  1, non-profit emergency departments must provide medical 
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screening for every patient.  Many people that do not have insurance utilize the ED as a 

place to receive primary care.41  On the other hand, there are times when the ED 

experiences a low volume of patients, having more than required staff increases health 

care expenditure and cost, also reduces the overall efficiency of the department.2 

 When staffing and planning is effective and efficient, employees will have 

necessary resources to do their job well and productivity can be maximized. This in turn 

improves positive patient outcomes and experiences, patient and optimum throughput, 

employee satisfaction, and reduces unnecessary spending (see figure below).   

  

 

Figure 1: Capacity Planning Chart 

         

 First, Forecasting can be defined as, “the process of making statements about 

events whose actual outcomes (typically) has not yet been observed. A commonplace 

example might be estimation of some variable of interest at some specified future date.”3 



3 
 

 

In other words it is trying to estimate a variable before it is observed, or to “foresee the 

future”. A very common example of forecasting is weather forecast. Forecasting is widely 

used in marketing, securities analysis and, it has evolved into a multidisciplinary science.5, 

20, 26 It is an essential instrument in most industries requiring scientific planning. There are 

several cases where forecasting can be applied; it might be whether to forecast when the 

sun will rise tomorrow or what a house bought today will be worth in five years, whatever 

the case may be, forecasting is a vital tool that facilitates proficient and effective planning 

and productivity.26 the predictability of an event or a variable relies on various factors 

including.26 

i. How much data is collected 

ii. How accurately is the data collected 

iii. If the contributing factors can be adequately explained or understood. 

iv. Will the event or variable be affected by forecast values? 

An example is , if a patient family medical history is known and the patient lifestyle is 

closely monitored the possibility of having a heart attack might be highly accurate 

compared to that patient being involved in an accident. In the latter case the data most 

likely isn’t collected and all the contributing factors are not understood. Sometimes the 

forecast can in itself affect the outcome, and this is one of the dangers of forecasting.4 For 

example say there is a forecast for increase in the price of a commodity, this will in most 

cases drive consumers to increase their demand. When demand surpasses supply, this in 

turn will lead to price increase. One really has to keep in mind the limitations and choose  

rather to err on the side of caution, when applicable. 
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  Next, forecasting method is “a procedure for computing forecasts from present 

and past values”.4 A good forecast is based on the assumption that the factors involved 

are changing and aims to capture the way the things are changing. Forecasts method can 

be simple like linear regression or complex like artificial neural networks. Various 

forecasting methods have been utilized in the quest for proper planning: linear 

regression, artificial neural network, time series, etc. In this paper even though other 

methods are considered, the main focus will be on time series methods. 

 Then, time series is defined by Chatfield as “a collection of observations made 

sequentially through time”.2 Examples are daily temperature of a city, number of babies 

born every hour in a hospital, etc. Time series forecast involves using data collected 

sequentially to make predictions. The aim of using time series methods is to predict 

future values based on data collected in the past and present.22 Time series forecasting 

amongst other methods is a tool that has been be applied in predicting patient volumes 

and other variables (example length of stay) that are peculiar to the ED. Various studies 

have been carried out using both univariate and multivariate methods. Univariate 

methods depend solely on previous values of the series being forecasted while a 

multivariate series relies on additional explanatory variables.4 Examples of these methods 

include; historical average, linear regression, time series models which includes; auto 

regressive integrated moving average (ARIMA) models and multivariable time series.22, 24, 

30, 33, 36-38   The ARIMA model has most widely being used in predicting patient volumes, 

length of stay, etc. One limitation of ARIMA models is that it does not accommodate 

series with multiple seasonal patterns as our data suggests. In this paper the aim to is to 

apply ARIMA models that have been modified to include multiple seasonality, some 
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innovative exponential smoothing methods proposed by Taylor,39, 40 Gould et al.14 and De 

Livera,9 and also a factor latent model based on Poisson process proposed by Matteson 

.These methods are being are considered because the series for Patient volume in ED is 

characterized by multiple seasonal patterns. We will compare these to the previously 

used methods to see if there is increased accuracy. 
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Chapter 2 
 
 

A REVIEW OF LITERATURE 
 
 

 In recent years, many research studies have been done in forecasting daily 

patient volumes in acute care hospitals. The legislation passed in California in 1999 has 

led to a series of questions and close monitoring of registered nurse staffing.4, 10, 21 

Emergency departments are one of the most used providers of acute care in the health 

sector; the study of which can play a vital role in the development of the subdivision and 

the entire industry in general. 16 

 The number of emergency departments in the US declined by 425 departments in 

the years 1993 to 2003.  Despite this decrease, the patient volume has increased by 26% 

in visits.21  Also between 1997 and 2007 there was an increase in patient volume of 12.5% 

and a decrease of 189 departments. This development has made the planning and 

effective allocation of resources crucial.32, 38, 46 One way to tackle this problem is the use 

of models to produce accurate forecasts to help ensure that supply meets demand.  

Several authors have used statistical techniques to build models to forecast different ED 

behaviors like patient volume, length of stay or patient acuity with or without 

covariates.22, 24, 30, 33, 36-38  

 There have been a lot of publications on Emergency departments in recent years, 

and we would be looking at some of them to answer these questions. This review 

attempts to answer some of the following questions: 
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a) What forecasting methods have been studied? 

b) What factors were considered and why? 

c) How effective were these models? 

d) Are there other factors that should have been considered? 

e) Is there any need for new forecasting methodology? 

f) How suitable are these methods especially for long term forecasts? 

 
Emergency Medicine Papers 
 

 Jones et al. (2007)22 used multiple linear regressions as a benchmark model while 

comparing several other models; for instance, time series models such as SARIMA 

(Seasonal Autoregressive Integrated Moving Average), exponential smoothing, time series 

regression, and Artificial neural network to predict daily patient volumes in the ED. The 

variables considered in the linear regression model were calendar variables (weekday, 

month and holiday). This was done using dummy variables and a “near holiday” variable 

was also considered, Climatic variables were put in the model as well, but only the time 

series regression used these variables. Twenty-seven months’ worth of data was collected 

for the analysis. The goal was to predict 1- 30 days in advance and compare the 

benchmark model to the others to see if the any of the new models achieved better 

forecast accuracy. 

 The time series regression model showed some improvement from the linear 

regression model but offered only little improvement in post forecast accuracy. All others 

(SARIMA, exponential smoothing and artificial neural network) failed to provide 

consistently accurate forecasts for ED volumes. This study also confirmed the widely held 
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belief that there are weekly and seasonal patterns found in patient volume  but did not 

take this property into account when modeling the time series data.  Jones et al. 

concluded that even though time series regression provided slightly more accurate 

forecasts of ED, they violated a major assumption in linear regression. The regression 

based model that incorporated calendar variables and accounted for site-specific, special 

day effects and also allow for residual auto-correlation, provided the most informative 

and consistently accurate predictions of daily ED volumes. In other words the regression 

model was preferred to the time series model but long term forecasts were not 

considered in this study. 

Schweigler et al. (2009)33 also applied statistical models to predict overcrowding 

of the ED. Historical averages were considered reliable for long term forecast, but short 

term forecasts were also desired. In developing a model, two main factors were 

considered: the ability for wide usage, and simple models yet accurate forecast in making 

predictions. Three different locations were used in the analysis data was collected hourly. 

Two methods, namely; a 24-hour SARIMA model and a sinusoidal model with an AR 

structured error term, were compared with the historical average method as the 

benchmark. The historical average (HA) method was basically the mean occupancy for 

each site each hour of the day. The  two AR (seasonal and sinusoidal) models were chosen 

because they were the accounted most conservatively for the 24-hour cycle and  had a 

strong correlation between the previous and the next hour’s occupancy.  The HA showed 

the best goodness of fit but using the AIC (Akaike’s Information Criterion), which is 

basically a measure of relative goodness of fit, SARIMA performed best because the HA 

requires more parameters than the AR models. On the other hand, forecast accuracy 
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measured using RMSE (root mean square error), which is calculated by summing the 

difference between the observed and predicted values, showed that the AR models 

performed better. 

 While AR models are an improvement from the historical average method, it does 

not account for other cycles such as seasonal cycles, weekly cycles etc. and other complex 

season’s patterns that characterize the patient volume in an ED. In simpler terms: times 

series models provide a better statistical fit than other models such as linear regression or 

historical experience, but performance against future behavior has not typically been 

dealt with. Also time series methods have not yet been used to directly investigate 

overcrowding but have been used to model related behaviors such as patient arrival per 

minute.            

Sun, Heng, and Seow, (2009)36  carried out a study in Singapore intended to 

identify local factors associated with daily patient volume and develop coordinating 

prediction models. Patient acuity levels were taken into consideration. Variable selection 

was based on literature, local weather factors and availability of data. 

 ARIMA models were applied to the three categories of acuity and overall data. 

The three categories: P1 (resuscitation and those in imminent danger), P2 (major 

emergency, with severe symptoms) and P3 (minor emergency with moderate symptoms). 

Mean absolute percentage error (MAPE) and Ljung test was used to choose the best-fit 

model. The best-fit model for P1 was ARIMA (0, 1, 1) and it did not show any weekly or 

yearly periodicity and was only predicted by ambient air quality, while for P2 was ARIMA 

(1, 1, 1) (1, 0, 1) showed weekly cycles and was significantly correlated with public 

holidays.  For P3 was ARIMA (0, 1, 1) (1,0,1) showed strong correlation with day of the 
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week, month, public holiday and ambient air quality of PSI(pollution  standard index)>50. 

The MAPE for P1, P2, P3 and total attendances were 16.9%, 6.7%, 8.6% and 4.8%, 

respectively. 

 The authors concluded that even though there was a high variability in the data, 

the predictions had a good accuracy; despite P1 having the highest MAPE, it still 

demonstrated acceptable forecasting abilities. It was observed that weather did not have 

a significant impact on the models unlike previous studies, and this might be due to the 

fact that Singapore is in the tropics. P3 factors predicted higher attendances.  This model 

was effective for both short-term forecasts (weekly) and long term (three months). 

 The limitations of this study include, other lurking variables not identified and 

studied, and the use of average daily temperature, also other forms of explanatory 

variables were not studied( quadratic, log, etc.). It would have proven more beneficial to 

predict hourly rather than daily patient volume.  Another limitation is that only one year 

of information was used of this study and so annual trends cannot be captured, also long 

term forecasts were not considered. 

Kam, H. J. (2010)24  investigated the possibility of building a model to predict the 

number of patient visits to a regional ED per day. Analyses were done using moving 

average; univariate and multivariate seasonal auto regressive integrated moving average 

(SARIMA) models. These results were later compared and evaluated. For the movi ng 

average method, past time series data was used to calculate the arithmetic mean; its 

main advantage is its capability to remove non-conforming changes or periodic factors. 

 The seasonal ARIMA is an extended ARIMA model that allows for seasonal 

factors. When utilizing this method, the trend and seasonality are removed to “stabilize” 
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the series before forecasting. This was seen to be effective in short term forecasting while 

the multivariate SARIMA model incorporates explanatory variables. Weather and 

calendric information were used as explanatory variables in building the model. The 

results suggest that the moving average method was flat as it returned the value of the 

mean rendering it inadequate. The SARIMA models were more accurate than the MA. The 

multivariate ARIMA was most accurate in predicting the daily volume. The authors 

suggested incorporating weather information (temperature and rain) to predict daily 

volumes, and further recommended that local, geographical and cultural factors be 

considered, and long term forecasts was not the focus here. 

  Rathlev (2011)30 focused on analyzing length of stay and using staffing as a 

covariate. The authors analyzed the relationship between several covariates and length of 

stay per 8- shift. The covariates include: ED nurses on duty, ED discharged (defined as 

patients who went home, were transferred or admitted), ED discharge on previous shift, 

resuscitation cases, admissions and ICU admissions. This study was carried out in 8-hour 

shifts, 7.00 am -3.00pm, 3.00pm-11.00 pm, and 11.00 pm-7.00am. Patients were assigned 

based on their time of departure rather than initial presentation. Hospital occupancy was 

measured based on a 24 hour period. Due to the correlation of length of stay (LOS) (since 

the outcomes are not independent) ARIMA model was used to analyze the data. AIC was 

use select the best model and other relevant diagnostics were carried out. A full model 

was used and later all insignificant terms were dropped but there was no significant 

difference in the results.  ARIMA (2, 2) was the best fit for the model, however, most of 

the covariates were found to be insignificant except for the number of ED admissions 

which was significant for all three shifts. ICU admissions on shift 1 were also significant 
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and this can be explained by the fact that these patients require more nurses. Fewer than 

three ICU admissions were also seen as insignificant.  

 
Statistical  Papers  

 There have been recent innovations in time series modeling that are 

groundbreaking and stimulating. 

Taylor, J. W. (2003)40 first proposed that double seasonality can be applied to a 

time series to capture both seasonalities.  Here the data was seen to possess intraday and 

intraweek patterns. Multiplicative Seasonal ARIMA and the Holt-Winters exponential 

smoothing formulation were applied with the latter adjusted to accommodate both 

seasonalities. The multiplicative seasonal ARIMA had earlier been proposed by Box et al .3 

and can be easily extended to accommodate three or more seasonalities. 

 Prior to this time no literature had considered extending the Holt-Winters 

method which was quite suitable for one seasonal pattern to accommodate double 

seasonality. In Taylor’s paper, empirical analysis were carried out to compare the newly 

proposed double seasonal Holt-Winters method with the standard Holt-winters and also 

to compare it with the double multiplicative double seasonal ARIMA model.  It was 

observed that the new model outperformed the traditional method. It was also improved 

by the inclusion of an AR (1) model for residuals and this was optimal when the 

parameters were estimated in the same process as the exponential smoothing technique. 

It also outperformed the well-specified double seasonal ARIMA model and so the author 

concluded that this new formulation has great potential. 
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Gould et al. (2007)14 in their paper focused on modeling time series with multiple 

seasonal patterns and different lengths. This study introduced a new method applying the 

innovation space models which forms the basis for all exponential smoothing methods. 

Holt Winters (HW) exponential smoothing method and ARIMA methods of Box et al. 2 are 

most frequently used but they do not have the capability to account or detect day to day 

patterns and also it treats all days as same and does not pick up the varying patterns of 

different days. The double seasonal exponential smoothing method (DS) proposed by 

Taylor is a major improvement as it allows us to nest a cycle within a cycle but its major 

drawback is it assumes the same intraday cycle for all days of the week.  

Thus a major objective of this new model called multiple seasonal (MS) processes 

is to allow for the seasonal terms that represent a seasonal cycle to be restructured more 

than once within a cycle if the need arises. For example in an hourly data there are 24 

potential sub cycles, however if all the hours from 1am to 7am have a similar structure, it 

might be simpler to use the same sub-cycle for these 7 hours and the models be updated 

more frequently to improve accuracy also different smoothing parameters may be 

applied to different sub-cycles. This also helps reduce the number of sub-cycles. This 

model was developed for both additive and multiplicative seasonal patterns and was 

applied to a utility dataset obtained from a company in Midwestern United states and 

also to traffic data (hourly vehicle counts) for the Monash freeway in Victoria, Australia; 

both of them were recorded hourly. 

 In general the MS models provided more accurate forecasts than the HW method 

and DS methods and were also better suited to capture the changes in seasonality in the 

data. Several of the MS models were used with different restrictions and varying 
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parameters and a model selection criterion was applied to select the best one using a 

combination of the mean square forecast error (MSFE), number of parameters and seed 

values in each model. In conclusion the MS model is an improvement to from the HW and 

DS because of its flexibility. It also allows for reducing the number of parameters and 

seeds required by the full MS model and missing values were adequately handled in both 

cases.  

  Taylor, J. W. (2010)39 proposed to extend three of the more successful models 

than accommodated double seasonality to include triple seasonality. The three models 

are double seasonal ARMA model, Holt- Winters exponential smoothing (HWT) and the 

multiple seasonal (MS) method earlier proposed by Gould et al. Three cycles were 

considered; intraday, intraweek and annual cycles, and was used to forecast short term 

electricity demand on a British and French load series which consists of half hourly data 

collected for five years. Artificial Neural Network Model was also included in this study as 

the benchmark model. 

 In the ARMA and Holt-Winters methods, a single model was first considered using 

the intraweek cycle and this was further expanded to include the intraday and another 

the annual cycles thus for the double seasonal ARMA and exponential smoothing two 

series are proposed; one is the intraday and intraweek cycle the other is the intraweek 

and annual cycle. Finally, the intraday-intraweek model was extended to include the 

annual cycle, forming the triple seasonal models. 

 The MS model renamed the “intra cycle exponential smoothing method” (IC) here 

due to its emphasis on the intraday cycle also, only models that include the intraday cycle 

are considered. A common model is proposed for days that exhibit comparable patterns. 
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When certain restrictions are made this model becomes very similar to the double 

seasonal HW method for intraday and intraweek cycle.  

 The worth of extending the various models was estimated and it was observed 

that there was evident improvement in forecast accuracy when using double instead of 

single and a further substantial improvement when using the triple seasonal model. This 

was also seen in the Holt-Winters method. In the ARMA approach there was little 

difference in the double seasonal models but in the HWT method was a significant 

difference, with the intraday-intraweek model having an increased accuracy over the 

intraweek-intrayear cycles. An autocorrelation adjustment term was also included in the 

HWT and IC methods; and compared to models without the adjustment. Results show 

that it leads to significant improvement in the IC method, and even though the results 

were similar for the HWT methods this adjustment is needed. 

 On comparing the various methods it was seen that the HWT and the IC methods 

show strong similarities and also the triple seasonal versions. Double seasonal ARMA 

model did better than the double seasonal HWT method for the intraweek and intrayear 

but for the intraday and intra week double seasonal HWT was a little more precise. Both 

triple seasonal methods performed alike. When compared with the benchmark method, 

all models were seen to outperform the benchmark model.  

 Although forecast accuracy is of great significance, it is not the only benchmark to 

use when selecting a forecasting method. In comparison, HWT is superior to the ARMA 

model because the latter requires extensive specification and a more demanding 

optimization due to far larger number of parameters. It is also the same problem with the 

IC method and also there is no clear way to decide upon the number of unique cycles to 
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be used. In other words since the HWT method is as good and less complex; the triple 

seasonal HWT model carries the day. 

De Livera et al. (2011)9 introduced a state space modeling framework for 

modeling complex seasonal periods which incorporates Box-Cox transformations, Fourier 

representations and time varying coefficients and ARMA error correction. A major 

attribute of this framework is that it is expedient to a wide range of applications and this 

is shown in three empirical studies. This is important because most time series models are 

designed to accommodate simple seasonal patterns with a small integer-valued period 

but are sufficiently developed to deal with time series with multiple patterns and non-

linear patterns. The new method proposed here is stipulated to be a more versatile 

approach than previous existing models; it allows for multiple nested and non-nested 

patterns, handles potential nonlinearities and is able to produce better forecasts than 

previously existing models. It is also more suitable to handle complex seasonal patterns 

like non-integer seasonality, calendar effects and non-nested seasonal patterns. 

 The models proposed are the BATS (Box-Cox transform, ARMA errors, Trend and 

Seasonal components) and TBATS (Trigonometric Box-Cox transform, ARMA errors, Trend 

and Seasonal components) models are acronyms for the key features of the model. BATS 

model includes a Box-Cox transform parameter, ARMA (auto regressive moving average) 

errors parameters and seasonal periods. It is the most obvious generalization of 

traditional seasonal innovations model to accommodate multiple seasonal periods, 

however, it cannot be adapted for non-integral seasonality amongst other drawbacks. 

 The TBATS model is obtained by replacing the seasonal component in the BATS 

model with a trigonometric seasonal function, because of this it can be used to model 
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non-integer seasonal frequencies. There are some advantages to ascribe to using this 

model which includes it can accommodate typical non-linear features that are often 

encountered in real time series and it involves a much simpler yet efficient procedure.  

 The model selection is based on the  following: 

 AIC (Aiake Information Criterion) is used to choose between models and 

provide the best basis for automated model selection. Other methods can 

also be used. 

 The forecast for the TBATS model depend on the number of harmonics used 

for the seasonal component. This is needed because it and it is impracticable 

to consider all the possible combinations possible. A method was proposed to 

select the best model and it was based on a regression model using an 

approach based on multiple linear regressions. 

 Suitable values for the ARMA orders are selected using a two-step approach 

and subsequent study40 indicated that this approach provided the best out of 

sample prediction for the ARMA models compared to several alternatives.  

 The proposed models were applied to three complex time series; weekly gasoline 

data which is an example of non-integer seasonal periods, 5-minute interval retail banking 

calls data; an example of multiple nested seasonal periods and daily electricity demand in 

turkey an example of multiple non-nested and non-integer seasonal periods. The results 

from these models were compared by out-of-sample performance using the root mean 

squared error (RMSE). In all three, the TBATS models had a lower RMSE and so it was 

concluded that it outperformed the BATS model. 
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 The authors suggested that other explanatory variables may be applied to the 

BATS and TBATS models, thus allowing more information to be included in the models. 

This approach was also seen to be general and can be used for any innovations in the 

state space model. It was also seen that the adaptability of the TBATS model is an 

improvement from previously existing models. 

Matteson, David S (2011),27 used a method which involves combining integer-

valued time series model with a dynamic  factor structure. Here, an integer valued time 

series model is introduced with a dynamic latent factor structure with day of the week 

and week of the year effects, accounted for as simple constraints on factor loadings. This 

factor structure allows for a substantial reduction in the number of parameters in the 

model. This model is claimed to lead to better short term forecast accuracy because it 

models unambiguously the remaining serial dependence. This is done by introducing the 

covariates (Day of the week and week of the year effects) using simple constraints on the 

factor loadings. Smoothing splines are used to estimate the model by imposing smooth 

evolution the factor levels of loading. Factor levels account for the non-stationary pattern 

in the intraday call arrivals while the time series model depicts the remaining relationship 

in the process. The data used in this study is call arrival data received by Toronto EMS 

between January 1, 2007 and December 31, 2008 for which ambulances were dispatched. 

This analysis was carried out using 2007 data as training data and 2008 as validation data 

and vice versa. 

 To estimate the intraday arrival rate model, a thin plate regression splines with a 

ten dimensional basis, the Poisson family and the log-link functions are used through the 

GAM function. Thin plate regression splines are low rank isotropic smoothers possessing 
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some beneficial properties like, not needing to decide on the placement of knots and can 

be applied efficiently for large datasets.44. The amount of smoothness for the factors and 

the loading function are allowed to be automatically estimated by generalized cross 

validation (GVC). The time series plot of the multiplicative residuals from this factor 

model, appear to be stationary but reveal some sequential dependence. Time series 

models for the latent conditional intensity inflation rate (CIIR) process to account for this 

dependence. A GAM45 model is considered here with some restrictions and also an 

integer-GARCH (1, 1) model is applied. If this models sufficiently explains the dependence 

then and autocorrelation plot of the multiplicative residuals is expected to be statistically 

independent for all lags. Three nonlinear generalizations are also considered as they may 

better characterize the sequential dependence; namely; Exponential autoregressive 

model, piecewise linear threshold model and a model with regime switching at 

deterministic times. 

 Out-of-sample comparison was done carried out by fitting models to the 2007 

training data and using 2008 as validation and vice versa. A series of models were 

considered; simple prediction, factor models (FM) without constraints with K= 1... 6, FM 

with constraints and FM with constraints and smoothing splines and the latter FM with 

k=4 and the inclusion of the CIIR process with the various time series models. The RMSE 

and other residual types were considered. 

 The FM models did slightly worse than the SP models, the FM with constraints 

was a substantial improvement, while the FM with constraints and smoothing splines also 

presented extra improvement. Also with the addition of the intGARCH model for the CIIR  
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process to FM=4, the RSME improved slightly again. This model has the best performance 

for both sets. 

 In conclusion, it is observed that the factor model estimation with smoothing 

splines significantly increases forecast performance. This model was able to capture the 

nonstationary behavior exhibited in call arrivals. Also the introduction of the CIIR process 

allowed adaptive forecasts of deviations from this diurnal pattern. There are also some 

limitations to this model; there is no prediction interval for the predictions and also it 

assumes that the there is no change in pattern between the observed and predicted time 

frame. 
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Chapter 3 

 
 

DATA DESCRIPTION 
 
 

 The data used in this study was provided by a non-profit regional medical center 

in Wright County, Minnesota that provides care to about 70,000 patients every year.2 The 

data consists of daily observations from 2009 January 1st-December 31st 2012, inclusive. 

The data contains 84,329 patients but only 65,535 observations was be used for analysis 

and 18,794 observations will be used for validation. Our empirical analysis used the first 

three years of data to estimate forecasting methods parameters and 2012 data was used 

to evaluate post-sample forecast accuracy. We will deal with only the test data set for 

now and include the validation dataset post-analysis. 

 The variables in our data include: 

 Arrival Datetime: time of patient’s arrival 

 ED Depart Datetime: time of patient’s departure from ED 

 We use the difference between ED departure and arrival times to compute 

length of stay in ED 

 Hospital Discharge Datetime: time of patient’s discharge from hospital (same 

as ED depart time if patient was not admitted. 
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 Acuity Level: this can be defined as “The measurement of the intensity of care 

required for a patient accomplished by a registered nurse”15.This plays a major role in 

determining how much nursing care a patient needs. The levels are:13 

1. Resuscitation: This group of patients requires immediate lifesaving 

intervention or are in an unresponsive state.  

2. Emergent: The patients in this category are in a high risk condition and might 

be confused, lethargic, disorientated in distress or in severe pain 

3. Urgent: Patients in a high risk situation but with stable vitals. This group 

requires several resources like , I.V, lab tests , X-rays etc  

4. Semi-Urgent: Patients in a stable condition requiring one or two resources 

5. Non Urgent: Patients not requiring any resources. 

First Assigned Nurse Start Datetime: this is the time when the nurse started attending to 

the patient (the difference with arrival time gives us the wait time). 

 Age at Admit: Age of patient at time of admits. 

 Gender: Sex of patient. 

 Inpatient Admit Datetime: time the patient was admitted. 

 Ready for Discharge Datetime: time the patient was ready to be discharged. 

 Ready for Inpatient Admit Datetime: time the patient was ready to be admitted.  

 Roomed Datetime: time the patient was put in a room 

 Transfer Datetime: time of patient transfer to another facility. 
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Descriptive Statistics  

 On average, there were about 58 daily ED visits from January 2009 to December 

2012. 

 In 2009 the mean was 64, 61 in 2010, 56 in 2011 and 52 in 2012; we observe that 

there is a decline in patient count, from 64 to 52 within four years.  

 
Table 1: Average Daily ED Daily Attendances 

 

YEAR 2009 2010 2011 

 

2012 

Overall 

Mean 

January 62 57 60.4 49.3 57.2 

Feburary 70.7 59.5 73.9 49.3 63.3 

March 62.5 54.9 69.4 48.8 58.9 

April 66.4 59.1 61.7 48.3 58.9 

May 69.1 63.5 62.7 51.1 61.6 

June 62.3 61.9 49.2 55.4 57.2 

July 61.2 63.4 53.0 55.5 58.3 

August 59.2 63.7 50.4 49.4 55.7 

September 61.8 61.9 50.6 52.8 56.8 

October 72.7 61.2 49.7 49.2 58.2 

November 56.5 58.0 47.9 49.7 53.0 

December 56.1 58.9 44.0 58.9 54.5 
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 We graph the total count of patients for each month by year:  

 

 

Figure 2: Graph of Mean Daily Count by Year 
 
 

 From the above graph we see that 2009 and 2010 track closely, 2011 tracks 

closely with the previous years until May but then we notice a decline and this decline 

continues till 2012. We also observe that the overall mean drops after May. This drop in 

patient count might be due to certain factors which are beyond the scope of this study. 

Also we see a similar pattern of behavior of the curves. We can say that our data shows a 

monthly or seasonal pattern. We also plot the data for each day of the week: 
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Figure 3: Graph of Patient Count by Day of the Week 
 
 
 Here also we see can identify patterns and trends; 

 Saturday and Sunday have the highest patient count significantly higher than the 

week days and this might be due to the fact the hospital is situated in a residential area 

and most people are home on the weekend as opposed to week days when most 

residents are away at work in the metro area. Also we see that Monday has a higher 

volume than the Tuesday, Wednesday, Thursday and Friday. This leads us to assume our 

data has a weekly pattern. We graph the hour of the day for each day of the week to see 

if there is any intraday patterns for our data: 

 



26 
 

 

 

Figure 4: Graph of Mean Patient Count by Hour of Day and Day of the Week 
 
 

 From our graph we see that all days of the week behave similarly from 1 am till 

7am, the average patient count within that time is about one. After 8 am on weekends 

(Saturday and Sunday) we see a spike in patient tally and the average patient count at this 

time is approximately five patients and the peaks occurs about 10 am and continues till 

about 5pm where we see notice a slight dip between the hours of 6-9pm mostly on 

Saturdays apart from this we see a sort of “merge” in pattern, further investigation 

reveals that the count decreased significantly between 3pm to 11pm in 2011 but the 

pattern remains the same. 

 For week days we begin to notice an increase in patient count at 8 am, but here 

there is an average increase of one patient as opposed to five on the weekend, then at 

3pm we see another increase this time with an average of two patients increase. At about 

6pm we observe that there is a merge with the weekend data. 
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 We see from our graph that again there is a difference in the weekends and 

weekdays, also we can assume that our data has an intraday cycle. 

 
Acuity 

 The proportion of patients based on acuity for 2009-2011 is given in the table 

below: 

 
Table 2: Acuity Level Proportions 

 

Acuity levels Proportion 

1 (Resuscitation) 0.16% 

2 (Emergent) 9.89% 

3 (Urgent) 51.93% 

4 (Semi-Urgent) 33.87% 

5 (Non Urgent) 3.21% 

Blank 0.95% 

 

 From we table it is observed that 52% of the patients who come to emergency are 

of level 3 acuity (Urgent) while 34% are of the semi-urgent category , together both 

groups account for 86% of the patients arriving at the ED, while emergent accounts for 

10% , Resuscitation is the least encountered category. 

 The proportion based on acuity is plotted by hour of the day to observe the 

distribution. 
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Figure 5: Proportion of Patients Based on Acuity Level by Hour of the Day 
 
 

 It is seen here again that the largest proportion of patients are urgent and semi 

urgent, with urgent being at 70% at midnight and reduce gradually to about 50% at 11 

am, drops to 40% at 6pm and gradually rises again. The semi urgent patients on the other 

hand; at midnight  the proportion for this group is about 20%, this  drops a little at 6 am 

and gradually begins to rise to 40% at 11 am , is steady till 4 pm, peaks at 6pm the begins 

to decline again. This implies that patients with more severe illness come in at night while 

those whose symptoms are not as severe prefer to come in during the day. All the other 

acuity levels are steady throughout the day with Emergent at about 10%, non-urgent and 

resuscitation is about 5% and this is similar to what was obtained by Sun et al.36 
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Figure 6: Graph of Mean LOS in Minutes Based on Acuity Level 
 
 

 The overall average length of stay (LOS) in the ED at any given time of the day is 

135 minutes, with a standard deviation of 17 minutes. For table 2 we see that the mean 

LOS for emergent category is 33 minutes more than the LOS of urgent category. Semi -

urgent spend 80 minutes less time than the Urgent category. 

 
Table 3:  Mean LOS by Acuity Level 

 

Acuity levels 

Mean LOS in 

Minutes 

1 (Resuscitation) 152 

2 (Emergent) 196 

3 (Urgent) 163 

4 (Semi-Urgent) 83 

5 (Non Urgent) 71 

OVERALL 135 
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Chapter 4 

 
 

RESEARCH QUESTIONS 
 
 

 The main goal of this study is to attempt to help attain more efficient allocation of 

human resources in the ED to maximize productivity.  This is to be done by forecasting 

how many nurses are needed to efficiently run the ED at a given time. This is to ensure 

that there are enough nurses in the department to effectively take care of patients needs 

and maximize productivity. This study will attempt to answer the following questions: 

 Can patient arrival volume be predicted accurately? 

 Using the same methods for predicting patient arrival, can cumulative patient 

volume also be accurately forecasted? 

 How much data is required to make the most accurate predictions? 

 How accurate will six months predictions be? 

 Which method(s) is most suitable for our data? 

 Can we predict urgent acuity patient arrival volume? 

 What forecast methods can handle multi seasonality? 

 If there is a trend (steady decline or increase) in the data which forecasts 

method will most successfully capture it? 

 How easily can these methods be implemented in the ED? 



31 
 

 

 The following forecasting methods will be used to build models to forecast ED 

arrival patient volume, cumulative patient volume, simulated data and urgent acuity 

patient arrival volume. Data collected for 2012 was used for validation and long term 

forecast of about 180 days is considered. Forecast accuracy will be estimated using the 

mean square error (MSE), root mean squared error (RMSE) and mean absolute error 

(MAE).  

 Linear regression  

 Seasonal auto regression integrated moving average (ARIMA) 

 Exponential smoothing methods which include; Holt-Winters exponential 

smoothing method (HWT) , Box-Cox transform, ARMA errors, Trend and 

Seasonal components (BATS),proposed by De  Livera9  and TBATS 

(Trigonometric Box-Cox transform, ARMA errors, Trend and Seasonal 

components) methods  also proposed by De  Livera.9 

 Factor latent structure model.  
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Chapter 5 
 
 

HOW MUCH DATA IS NEEDED? 
 
 

 A major factor in determining the accuracy of our data is how much data is 

needed to build the model. In exponential smoothing more weight is put on the most 

recent observations but how much of this data is useful in the analysis. 

 Regression: Here three year data was also more appropriate that using just one 

year or two years and it also helps stabilize the variance in the data. 

 Time Series Models: We plot the  out of sample root mean square error (RSME) 

for our three  time series models using one month, three months, six months, nine 

months, twelve months, twenty four and thirty six months to forecast one month ahead 

(744 observations). 

 Factor Latent model: For this model we use the data from the average of the 

three years to build our latent factor model. This is to stabilize the data and reduce the 

effect of the decline experienced from June 2011. In other words, using only 2011 data 

had more average than using the three year hourly average for each day,  
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Figure 7: Out of Sample RMSE for Time Series Models for Different Time Periods 
 
 

 From the plot it is observed that using twelve months of data is as effective as 

using twenty-four months or thirty six for the BATS and TBATS models but for SARIMA 

three years of data is a better choice, it performs as good as the other models at this 

point. For our models three years of data was used, except for the dynamic latent factor 

model where and average of the three year data was utilized. 
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Chapter 6 
 
 

METHODS 
 
 

 The different hourly data series that will be analyzed include: 

 Patient arrival volume  

 Patient cumulative volume  

 Simulated data 

 Urgent acuity arrival data volume 

 The methods previously outlined will be evaluated. 

 
SECTION I: PATIENT ARRIVAL COUNT 

 
 
Regression Model 

 A regression model tries to model or explain the relationship between a response 

or dependent variable and one or more predictor or explanatory variables.12, 31 This 

relationship might be either associative or causative. The response must be a continuous 

variable but the predictors can be nominal or continuous. There are several reasons for 

regression modeling which includes:31 

 Prediction of future observations ( forecasting)  

 Assessment of the relationship between explanatory and response variables  

 General description of data structure 
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 Parameter estimation 

 Variable selection 

 Here we are mainly concerned in using regression for forecasting.  

 The basic form of a regression equation is: 

0 1 1 2 2 ... k ky x x x e          

 The parameters 0 1 2, , ,..., k     are called regression coefficients with 0

known as the intercept e accounts for the variation in y  not explained by the 'x s .  The 

error terms are assumed to be independent and identically distributed. The betas 

measure the effect of each of each covariate, after taking into account all other covariates 

in the model 26. The best estimates of beta are the ones which minimizes the sum of the 

squared errors, this implies we find the values of betas that minimize;  31 

2 2

0 1 1, ,

1 1

( ... ) .
n n

i i i k k i

i i

y x x   
 

       

Fitting the Regression Model 

 The covariates or explanatory variables used for fitting a regression model are 

categorical variables for, hour of the day, day of the week and month of the year. For day 

of the week variables, Wednesday is the reference category while for hour of the day 

12.00 am  is he reference Category and for Month of the year December is the reference 

category. 

 There are 40 explanatory variables in total, with 1 or 0 values and using 40 

degrees of freedom. 
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 The corresponding regression equation can be seen in appendix(Site reference 

here). 

 After fitting the regression model we plot the residuals to check if the conditions 

for regression are satisfied: 

 

 

Figure 8a: Regression Residual Plot for Patient Arrival Count Data 
 
 

 

Figure 8b:  Regression Residual ACF Plot for Patient Arrival Count Data 
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Figure 8c: Regression Residual PACF Plot for Patient Arrival Count Data 
 
 

 From the ACF and PACF plot of the residuals, it can be deduced that there is still 

remaining serial dependence after the regression has explained 72.3% variation between 

patient count and the covariates. auto.arima function is applied to the residuals to model 

the remaining relationship, and then the residual is forecasted and added to the 

regression prediction.  

 The ARIMA model used to model the residuals is: 

Series: arrival regression residuals 

ARIMA(2,0,2) with non-zero mean 

 

Coefficients: 

ar1      ar2      ma1      ma2  intercept 

1.3941  -0.5040  -0.5199  -0.0741     0.1112 

s.e.  0.0622   0.0433   0.0626   0.0145     0.0517 

 

sigma^2 estimated as 5.156:  log likelihood=-58843.05 

AIC=117698.1   AICc=117698.1   BIC=117747.2 
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 This means the non-seasonal ARMA model has the following coefficients;   MA (2) 

and AR (2) with zero differencing and non-zero mean, the AR coefficients are 1.39 and       

-.50 and the MA coefficients are -0.52 and -0.74. This model is selected based on AIC. 

 
Time Series Methods 

 We plot the first our data as a time series:  

 

Figure 9a: Time Series Plot for Patient Arrival Data for January 2009 
 
 

 

Figure 9b: Time Series Plot for Patient Arrival Data for First Two Weeks of 2009 
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 From out time series plot of January (744 hours), it can be seen that our time 

series exhibits multiple seasonal patterns. These multiple seasonality is more visible in 

Figure 6b, plot for the first two weeks of January 2009. Intraday and weekly cycles are 

observed from the plots. These cycles are not uniform(Figure 3), Saturday and Sunday 

have a similar pattern, Monday tracks closely while the rest of the weekdays exhibit a 

similar pattern. The underlying levels of the daily patterns also vary from week to week  

but are highly correlated with the levels of the days immediately preceding. An effective 

model for this data must take into account this features without being too complicated 

msts.  

 The msts command in the forecast package17 in R is used to plot our data so as to 

capture the multi-seasonality feature. This command develops from the popular ts class 

but it has an added feature which contains the vector of seasonal periods. All procedures 

that work on the ts class also work on this class.17 

 Also we plot the ACF and PACF graphs for our data: 

 

Figure 10a: ACF Plot for Patient Arrival Count Data 
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Figure 10b: PACF Plot for Patient Arrival Count Data 
 
 
 This multi seasonal time series will now be used to build our models.  

 
Seasonal Autoregressive Moving Average 
      (Sarima) Models 

 The general form of the multiplicative seasonal ARIMA model can be written as 

(see Box et al.3page 333): 

( ) ( ) ( ) ( )s d D s

p P s t q Q tB B x B B w       
 

tx  Is the time series observation
 

Where B  is the backshift operator; that is; ,j

t t jB X X   0, 1, 2,...j     

( )B  Is a moving average (MA) operator of the form: 11 ... q

qB B    , 

An autoregressive (AR) polynomial tX is of the form 1( ) 1 ... p

pz z z        ( 0)p  . 

Then the AR process can be written as ( ) t tB X W  . 
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Where tW is white noise that follows the normal distribution with mean 0 and variance

2 . This can be written as:   2(0, )tW WN   

Where the resulting multiplicative process will be said to be of order  

( , , ) ( , , )sp d q P D Q
.
 The ordinary  or non-seasonal autoregressive and moving average 

polynomials are represented by ( )B and ( )B  of order p  and q  respectively (also see 

Shumway &Scoffer 37page 157) and the seasonal auto-regressive and moving average 

components by ( )S

P B  and ( )s

Q B  of orders P and Q , and ordinary and seasonal 

difference components by (1 )d dB    and (1 )D S D

s B   .
  

 For preliminary analysis the data is fit as a time series with a frequency of 24 for 

each day. auto.arima function is used to fit an AR model a MA model and an ARMA 

model. The “best” models chosen are then used to predict up to one hour ahead. 

 The chosen model for the AR model is: 

Series: Patient.arr.ct  

ARIMA(47,0,0) with non-zero mean  

  
 For the MA model it is: 

Series: patient.arr.ct 

ARIMA(0,0,10) with non-zero mean  

 

  For the ARMA model is: 

Series: patient.arr.ct  

ARIMA(5,0,1) with non-zero mean  
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 The plot for the forecasts and the actual plots is given below: 

 

 

Figure 11: Graph of AR, MA and ARMA Model Predictions/Actual 2012 Count 
 
 

 From this plot it can be observed that these models are not able to predict our 

data accurately. The predictions are flat around zero. Jones et al.22 stated that ARIMA 

model performed worse than the linear regression model. 

 Again we use the msts function to fit a time series as earlier described, 

auto.arima function in R (in the forecast package) is then applied. This function generates 

the best ARIMA model using multiple model selection criteria, and it also accommodates 

covariates.17  

 We fit two models, the first without covariates and the second we include the 

covariates as we he selected model is then used for our forecast.  

 
 Sarima Model Result 

 The result for the SARIMA model selected by the auto.arima command is: 
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Series: Patient arrival count  

ARIMA(3,1,3)(0,0,2)[24] with drift 

 

sigma^2 estimated as 3.703:  log likelihood=-54493.44 

AIC=109006.9   AICc=109006.9   BIC=109088.6  

     
This means the non-seasonal ARMA model has the following order;   MA (3) and 

AR (3) with one differencing and drift, the seasonal ARMA had only MA(2) with seasonal 

lag of 24 (one day). The coefficients for the non-seasonal AR models are 1.53,-0.48 and-

0.498 while for the MA models are,-0.113, -2.25 and 1.6094.For the seasonal MA model 

the coefficients are 0.169 and  0.090 respectively, this model was selected based on AIC. 

 The result for the selection including the covariates (hour of day, day of week 

and month of year) by the auto.arima command is: 

Series: Patient arrival count  

ARIMA(2,1,2)(0,0,1)[24] with drift          

 

sigma^2 estimated as 3.086:  log likelihood=-52095.61 

AIC=104283.2   AICc=104283.4   BIC=104659.3 

 
 This means the non-seasonal ARMA model has the following order;   MA (2) and 

AR (2) with one differencing and drift, the seasonal ARMA had only MA(2) with seasonal 

lag of 24 (one day).  For the non-seasonal components, The AR coefficients are 0.467 and 

0.027 while for the MA they are -1.31 and 0.316 respectively. For the seasonal MA the 

coefficient is 0.0687 and the drift is 0.0001. This model was selected based on AIC. 

 These results are then used to forecast six months ahead to see how they would 

perform for long term predictions. 

 From the results, it was observed that including covariates in the latter SARIMA 

model is a significant improvement from the former ARIMA model.  



44 
 

 

Exponential Smoothing Methods 

 Exponential smoothing can be defined as a process for repetitively updating a 

forecast in light of more recent experience.23 It assigns exponentially increasing weights 

to more recent observations. A time series model can be decomposed to three 

components; trend (T) ,cyclical component(C) ,seasonality (S) and error component4.This 

method has been around since the 1950s but a modeling framework applying stochastic 

models, likelihood calculations, prediction intervals and model selection procedures were 

not developed until more recently in 1997 and 2002.26  The state space model makes 

room for considerable flexibility in the specification of the parametric structure of this 

method.4 

 A linear innovations state space model can be defined as follows19 

Let ty =observation at time t  

tx = state vector 

The model can be written as : 

1 ,t t ty w x 
 

                                                             (1.1a)                                                       

1 ,t t tx Fx g                                                               (1.1b) 

 Where t  is a white noise series, F , g and w  are coefficients. Equation (1.1a) 

is known as the measurement equation; it describes the relationship between the 

unobserved states 1tx  and the observation ty . Equation (1.1b) is the transition equation. 

It describes the state evolution of the states over time. Using the identical errors for both 

models makes it an “innovation” state space model. These equations are identical to 
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several exponential smoothing methods. One advantage that exponential smoothing 

models have over ARIMA models is that the trend, cyclical components and seasonality 

are stated explicitly in exponential smoothing models but this is not seen as easily in the 

ARIMA models3. Another useful attribute of the exponential state space model is that all 

the model parameters can be selected automatically without any input from the user, 

they are easily automated.20 

 The Holt Winters method generalizes exponential smoothing method to 

accommodate trend and seasonal variation.4 There are two classes of these models:  

Additive and multiplicative seasonal models. A model can be described as seasonal if it 

displays characteristics that recurs every S period.23 The period S is the season length.  

 An additive model is a model that can be expressed as: 

Data=Trend+ Seasonal Effect +cyclical component + Residual  

 While a multiplicative model can be written as: 

Data=Trend X Seasonal Effect X cyclical component X Residual 

 A multiplicative model can be transformed to an additive model by take the log of 

the data23 

 For our models we will only be considering at additive models.  

 The traditional Holt Winters method has been modified to handle a wider variety 

of seasonal patterns.9 

 The BATS model is one of such modifications. It stands for Box-cox transform, 

ARMA errors, Trend and Seasonal components. It comprises of the following components;  
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( 1 2 ., , , , , , ...,
T

p q m m m  )   indicates the Box-Cox parameter,   is the damping 

parameter, p and q  are the ARMA parameters and the seasonal periods 1( ,..., )Tm m .
5 

 The HW method can be represented in this form, for example, BATS (1,  1, 0, 0, 1m

) represents the underlying model for  the traditional Holt-Winters additive single 

seasonal method.  BATS (1, 1, 0, 0, 1m , 2m ) represents the double seasonal Holt-Winters 

additive seasonal described by Taylor.39, 40 

 In the TBATS model the seasonal component in the BATS model is replaced by the 

trigonometric seasonal formulation.  It can be represented as 

     1 1 2 2( , , , , , , , ,..., , )T Tp q m k m k m k  9. Due to the feature that it relies on 

trigonometric function, it can be used to model non-integer seasonal frequencies. Some 

of the advantages of the TBATS model are that, it allows for the accommodation of 

nested and non-nested multiple seasonal components; it handles typical nonlinear 

features that are often seen in real time series. Also, it accommodates any 

autocorrelation in the residuals. 

 
Fitting the BATS And TBATS Models 
 
 Also like in previous methods we use 2009-2011 data to fit our model and 2012 

data for validation. 

 BATS output.   

BATS(0.003, {1,1}, 0.999, {24,168}) 
 
Call: bats(y = patient arrival count) 
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Parameters 

  Lambda: 0.003109 

  Alpha: 0.008765254 

  Beta: -4.83746e-06 

  Damping Parameter: 0.998953 

  Gamma Values: 0.01069493 4.239887e-05 

  AR coefficients: -0.050986 

  MA coefficients: 0.091149 

 Lambda represents the Box-Cox transform which is 0.003 in this case and the 

smoothing parameters are alpha, beta and gamma which are 0.0088, -0.0000048, 0.011 

and 0.000042 respectively .The damping parameter is 0.999 while the ARMA order is AR 

(1) and MA (1) with coefficients -0.051 and 0.091 respectively and finally the seasonal 

periods are 24 representing daily cycle and 168 representing weekly cycles, with 196 

estimated parameters. 

 
 TBATS output. 
 
TBATS(0.001, {4,3}, -, {<24,6>, <168,6>}) 

Call: tbats(y = patient arrival count) 

Parameters 

  Lambda: 0.000971 

  Alpha: 0.00572104 

  Gamma-1 Values: 6.403008e-07 1.90908e-06 

  Gamma-2 Values: -8.633531e-06 6.324464e-07 

  AR coefficients: 0.089391 -0.095853 0.031388 0.012412 

  MA coefficients: -0.005474 0.126531 0.010637 
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 Lambda represents the Box-Cox transform which is 0.001 in this case and the 

smoothing parameters are alpha and gamma values. The is no damping parameter in this 

model while the ARMA order is AR (4) and MA (3) with coefficients seen in the output 

above and finally the seasonal periods are 24 representing daily cycle and 168 

representing weekly cycles, with 32 estimated parameters. 

 
 Dynamic Latent Factor Model by Matteson 
 
 There are a large number of people who can come into the emergency 

department at any time and each one of them as a low probability of doing so. Another 

observation made from the patient arrival volume is that it varies with time of the day, 

thus it is nonstationary. It also exhibits a seasonal pattern; it varies over weeks and 

months. The Palm-Khintchine theorem states that the arrival process that arises from a 

large number of independent sources, where no source contributes too much to the 

arrivals, is approximately a Poisson process,7, 16  based on these we assume that the 

patient arrival volume has a Poisson distribution.  An extension of the Palm- Khintchine 

theorem is that the suitable model for arrivals in a nonhomogeneous Poisson process 

(NHPP).16 

 NONHOMOGENEOUS POISSON PROCESS (NHPP)*: 

A counting process { ( ) : 0}Y t t  {  is said to be a 

Nonhomogeneous Poisson process with intensity function ( )t , t  0  if 

i. 
 0   0.Y 
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ii. For each t  0 ,  Y t has a Poisson distribution with mean  

0( ) ( ) .tm t s ds   

iii.  For each 1 20 ... ,mt t t    1 2 1 1( ), ( ) ( ),..., ( ) ( )m mY t Y t Y t Y t Y t    are 

independent random variables.  

Several studies have been carried out based on this assumption for modeling call center 

arrival rates which has similar underlying assumptions as our data.8, 16, 27, 34 Matteson27   

proposed a model which is based on the assumption that the data has a Poisson 

distribution and accommodates low counts which is characteristic of our data. This model 

avoids use of variance stabilizing transformations. It assumes that the intensity function is 

a random process and that it can be forecast using previous observations. This 

interpretation is similar to a Cox process. A Cox process is a Poisson process with a 

stochastic intensity and can be referred to as a doubly stochastic Poisson process 8. The 

main difference here is that while in a Cox process the random intensity depends mainly 

on its own history here it also depends on previous observations. The random intensity 

function is partitioned into stationary and nonstaionary components. We would use this 

method to model our data. 

 
Notation 

 Our data is collected hourly, and so we assume (following the method proposed 

by Matteson27) that the latent call intensity function for these periods can be 

approximated to be constant, and our data was collected sequentially in time. We 

suppose total patient arrival follow a nonhomogeneous counting process { : }tY t with 
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discrete time index t . Underlying this is a latent, real-values nonnegative process

{ : }t t  . It is further assumed that conditional on t , tY  follows a Poisson distribution 

with mean t . 

 As seen in figure4 the pattern of patient arrival in a given day has a distinct 

pattern even though the weekdays are closely similar. They considered an arrival process 

that has been repeatedly observed in a 24 hour time period (one day). Let  

{ : 1,..., } { : 1,..., ; 1,..., }t ty t n y i d j m      denote the sequence of call arrival counts, 

observed over time period t denote the sequence of patient arrival counts, observed over 

time period t , which corresponds one-to-one with the j th sub-period of the i th day, so 

that n dm . Their basic idea here was to model the arrival intensity t for each unique 

day using some smooth curves. 

 t Is defined as the conditional expectation of tY  given 1tF  and X where X  is 

covariate information for each model (calendar information; day-of-week and week-of 

year were used here) represented by 1{ ,..., }nX x x  and tF is a   field generated by

1,..., tY Y . Let ( | ) 0t tE Y X   denote the conditional mean of tY  given only the 

covariates. Let 

  (1)     1 1( | , ) ( / | , ) ,t t t t t t t t tE Y F X E Y F X        

In which 0t   is referred to as the conditional intensity inflation rate (CIIR). By 

construction, 

1( | ) ( ( | , ) | ) / ( / ) / 1.t t t t t t tE X E E Y F X X E Y X      
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 The CIIR was proposed to model any remaining serial dependence in patient 

arrival for available covariates. This serial dependence could be due to various factors that 

may or may not be measureable. 

 MODELLING: A dynamic latent factor model with integer valued time series is 

combined with covariates. These covariates are introduced through simple constraints on 

the factor loadings. Smoothing splines is applied to estimate the model because it forces 

smooth evolution in the factor levels and loadings. 

 The factor model provides a parsimonious representation of the nonstationary 

pattern in intraday calls arrivals, while the time series models capture the remaining serial 

dependence in the patient arrival process. 

 DYNAMIC  LATENT FACTOR: Assume m  consecutive observations per day are 

available for d consecutive days with no omissions in the record. Let ( )ijY y denote the 

d m  matrix of observed counts for each day i over each sub- K period j . Let 

|( | )ij ijE Y X   and ijM  denote the corresponding d m latent intensity matrix. A 

K-factor model is introduced to reduce the dimension of the intensity Matrix M.  

 They assumed that the intraday pattern of expected patient arrivals on the log 

scale can be well approximated by a linear combination of (a small number) K  factors or 

functions, denoted by kf for 1...,k K . The factors are orthogonal length- m  vectors. 

 The intraday arrival rate model i over a particular day i  is given by 

 (2)      1 1log ...i i iK kL f L f     
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 When is much smaller than either m  or d , the dimensionality of the general 

problem is greatly reduced.  K  is determined manually. 

 In matrix form we have 

(3)         log TM LF , 

in which 1( ,..., )KF f f  denotes the m k  matrix of underlying factors and  L  denotes 

the corresponding d K  matrix of factor loadings, both of which are assumed to be full  

column rank. 

 Since neither F  nor L are observable, the expression (3) is not identifiable. We 

further require
TF F I  to alleviate this ambiguity and we iteratively estimate F and L . 

 To further reduce dimensionality substantially, constraints are imposed with 

certain conditions (see paper) on the factor loading matrix L .  

 The constraints considered by Matteson include auxiliary information about the 

rows and columns of the observations Y to simplify estimation and improve out-of-

sample predictions. The day-of-week and week-of-year effects are incorporated into the 

factor loadings by specifying appropriate constraints. 

 Another major assumption considered by the authors is that   the nonstaionary 

intensity process ij varies smoothly over the hours j  of each day i . To include this 

smoothness into the model, Generalized Additive models (GAMs) is used in the 

estimation of the common factors kf .  GAMs are generalized linear models with the linear 

predictor partly dependent, linearly on some unknown smooth functions.39 

 Matteson recommended the use of the gam function in the mgcv library.38 
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 To estimate model (2) using the gam function, thin plate regression splines with 

ten-dimensional basis, Poisson family, and the log-link functions were used. These spines 

are a low rank, isotropic smoother with any desirable properties.(see wood 2006). The 

degree of smoothness for the factors kf  and the loadings functions are automatically 

estimated by generalized cross validation (GVC).  

 

Adaptive Forecasting with Time Series Models 

 Let ˆ ˆ/t t te Y  denote the multiplicative residual in period t implied by the fitted 

values ˆ
t from a factor model as earlier described. Time series plots of the residuals even 

though sees stationary, reveals some serial dependence. A time series model is 

considered for the latent CIIR process 1( / | , )t t t tE Y F X   to explain this dependence. 

We look at the ACF and PACF plots for t̂e . 

 To depict the series dependence a generalized autoregressive linear model, 

defined by recursion 

(4)                  1 1
ˆ .t t te        

To ensure positivity certain restrictions are employed; 0   , , 0    and 1   ( 

to guarantee stationarity of t ). 

 The resulting model for tY  when t is constant is an integer-GARCH (1, 1) model. 

When ˆt  is a nonstationary process, the conditional intensity  

t t t   
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is also nonstationary. This t is the stationary multiplicative deviation or inflation rate, 

between t  and t . Let  

ˆˆ /t t tY   

represent the multiplicative standardized residual process given an estimated CIIR process 

ˆ
t  the model defined by (4) adequately accounts for the observed linear dependence in

t̂e , then the autocorrelation plot of t̂ should  not be statistically significant. 

 
Fitting the  Dynamic Latent Factor Models 

 The data from 2009-2011 was used to fit the model, and use 2012 data for 

validation. The average for the three years was used after the day of the week was 

aligned to fit the corresponding covariates. A factor loadings model with constraints and 

smoothing splines with 3K   was applied after using multiplicative root mean square 

error (RMSE) to determine the best fit for K in our models. We also added the CIIR 

process through time series models earlier defined. From our ACF and PACF plots we do 

not expect significant improvement from the CIIR process because the serial dependence 

in the residuals after fitting the factor model appears weak. 
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Figure 12a: ACF Plot for Factor Model Residuals for Patient Arrival Data 
 
 

 

Figure 12b: PACF Plot for Factor Model Residuals for Patient Arrival Data 
 
 

Results 

 Forecasting evaluation.  There are several methods that can be used to assess the 

performance of our forecasting models.18 Some of these basic methods include; mean 

absolute error (MAE), mean absolute percentage error (MAPE), mean square error (MSE), 

root mean square error (RMSE).  Error is calculated by subtracting the forecasted values 
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from the observed value, for each observation. The mean absolute error involves finding 

the absolute value of the errors, summing them all up and dividing by n (sample size).The 

mean square error involves squaring all the errors, then summing them up, finding the 

mean, while the RMSE involves taking the root of the MSE. The mean absolute 

percentage error is calculated by dividing the absolute error by the observed value for 

each observation, summing them up, dividing by n  and multiplying by 100 to get a 

percent value. 

 The RMS and the MSE are the most commonly used of these methods18 due to 

their relevance in statistical  modeling. The RMSE method is on the same scale as the data 

so it is more preferable to the MSE but they are both more sensitive to outliers than the 

MAE.  Another drawback to the RMSE and MSE is that they increase as the variance 

associated with the frequency distribution of error in the model increases.42 This occurs 

mainly when the errors are greater than one, the reverse is the case when the errors are 

less than one. The mean absolute percent is calculated by dividing the absolute error by 

the observed value, finding the mean and multiplying by 100. The major drawback for this 

method is that when the observed iy  is zero this then this calculation is undefined. There 

are some zeros in our data and so this method is unsuitable for our data set,  

Let  ( ) ( )i i observed i predictede y y     

Then  
1

1 n

i

i

MAE e
n 

   

Also 
2

1

1 n

i

i

RME e
n 

   , 2

1

1 n

i

i

RMSE e
n 

  , and  
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The out of sample forecast accuracy  for  the first  six months of 2012 data (4368) 

observations  is calculated using MAE, MSE and RMSE and the results are given in Table 4 

below. 

Table 4: Patient Arrival Count Forecast Evaluation Results 
 

METHODS BATS TBATS SARIMA SARIMA+REG L.REGRESSION  Factor 
FACTOR 

MODEL+CIIR 

MAE 1.16 1.15 1.60 1.21 1.33 1.33 1.33 

MSE 2.41 2.36 3.67 2.50 2.88 3.05 3.04 

RMSE 1.55 1.53 1.92 1.58 1.70 1.75 1.74 

 
 

 

Figure 13: Graph of Predicted/Actual 2012 Patient Counts for Patient Arrival Data 
 
 

Conclusion 

 We see from the Table 4 that the TBATS model has the smallest of all three 

matrices and the SARIMA model without covariates performed the worst. The BATS 

model performed second to the TBATS model. We also see that adding covariates to the 

SARIMA model improved its performance quite significantly. Most of our methods have 
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the ability to produce reliable long term forecasts (up to one year ahead), which is needed 

for capacity planning. Surprisingly linear regression performed better than the SARIMA 

model with covariates. For our latent factor models with constraints and smoothing 

splines, it is observed that they are also same and this is expected because the serial 

dependence in the error after fitting the model is not significant. A major drawback for 

this model is that it does not produce confidence intervals or prediction intervals by 

default while the other models are capable of doing so. 

 
SECTION II: CUMULATIVE PATIENT COUNT 

 
 
 Previously only the patient arrival count was considered now we would be looking 

at the cumulative patient count for each hour. This implies that if a patient came in at 

12.35am and was discharged at 4.25 am, he would be counted for 1.am, 2.am 3.am and 

4.am because he was in the ED at these times. We would be applying same methods to 

see if we would get similar results. 

 To achieve this from our arrival data a variable was created called length of stay in 

minutes, this is the duration of the patient’s stay in the ED. If the Length of stay is less 

than 60 minutes the patient is only counted for one time period which is the arrival hour, 

if a patient stays longer then they are counted for every hour present in the ED. The main 

drawback of this method is this, suppose a patient comes in at 11.38am and leaves at 

12.20pm, this patient would only be counted for 11am and not for 12 noon. The system in 

the hospital is able to successfully generate the cumulative data but this was not available 

at the time of this study.  
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Regression Model 
 
 The covariates or explanatory variables used for fitting the regression model for 

the cumulative patient count are the same as used for patient arrival count. They are 

categorical variables for, hour of the day, day of the week and month of the year. Again 

for day of the week variables, Wednesday is the reference category whi le for hour of the 

day 12 midnight is the reference Category and for Month of the year December is the 

reference category. 

 There are 40 explanatory variables in total, with 1 or 0 values and using 40 

degrees of freedom. 

 After fitting the regression model we plot the residuals to check if the conditions 

for regression are satisfied. 

 

 

Figure 14a: Regression Residual Plot for Cumulative Patient Data 
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Figure 14b: ACF Plot for Cumulative Patient Data 
 
 

  

Figure 14c: PACF Plot for Cumulative Patient Data  
 
 

 From the ACF and PACF plot of the residuals, it can be deduced that there is still 

remaining serial dependence after the regression has explained 82.46% variation 
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applied to the residuals to model the remaining relationship, and then the residual is 

forecasted and added to the regression prediction.  

Series: cum data regression model  

ARIMA(2,0,2) with non-zero mean  

Coefficients: 

         ar1      ar2      ma1      ma2  intercept 

      1.3941  -0.5040  -0.5199  -0.0741     0.1112 

s.e.  0.0622   0.0433   0.0626   0.0145     0.0517 

 

sigma^2 estimated as 5.156:  log likelihood=-58843.05 

AIC=117698.1   AICc=117698.1   BIC=117747.2 

 

This means the ARMA model has the following order;   MA (2) and AR (2) with 

zero differencing and non-zero mean.  The AR coefficients are 1.394 and -0.504 while for 

the MA they are -0.52 and 0.0741, respectively.  

 
Time Series Plot 
 

 

 
 

Figure 15a: Graph of Cumulative Patient Count for First Two Weeks of 2009 
 
 

 We plot the two series the patient count and the cumulative patient count for 

the first two weeks: 
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 Figure 15b: Graph of Arrival/Cumulative Patient Count for First Two Weeks of 2009 
 
 
 It is observed that both series follow a similar pattern, but the cumulative series 

is appears smoother than the patient arrival count and this is expected. 

We plot the ACF and the PACF for the cumulative patient count: 

 

 
 

Figure 16a: ACF for Cumulative Patient Count Data 
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Figure 16ba: PACF for Cumulative Patient Count Data 
 

 

Sarima Model 

 The result for the SARIMA model without covariates as described earlier is for 

the cumulated patient count is: 

Series: Cumulative Patient Count  

ARIMA(4,1,4)(2,0,2)[24]                     

sigma^2 estimated as 5.015:  log likelihood=-58474.6 

AIC=114468.6   AICc=114468.6   BIC=114578.6 

ar1      ar2     ar3      ar4      ma1     ma2      ma3      ma4    

sar1    sar2 

      0.9684  -0.8247  0.5300  -0.0597  -1.0721  0.6958  -0.5801  -

0.0381  0.3828  0.6129 

s.e.  0.0731   0.0426  0.0413   0.0400   0.0729  0.0479   0.0510   

0.0545  0.0615  0.0614 

         sma1     sma2 

      -0.3321  -0.6134 

s.e.   0.0596   0.0576 
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From the above output , the non-seasonal ARMA model has the following order;   

AR(4) and MA (4) with one differencing and drift, the seasonal ARMA has  AR(2) and 

MA(2) with seasonal lag of 24 (one day).  For the non-seasonal components, The AR 

coefficients are 0.6129, 0.9684, -0.8247 and 0.53 while for the MA they are -0.06,-1.072, 

0.7 and -0.58 respectively. For the seasonal components the AR coefficients are -0.038 

and 0.383 while the MA coefficients are -.33 and -0.61. This model was selected based on 

AIC. 

 The corresponding SARIMA model with covariates result is: 
 

Series: Cumulative Patient Count  

ARIMA(4,1,5)(2,0,0)[24] with drift          

 

Coefficients: 

         ar1     ar2     ar3      ar4      ma1      ma2      ma3     ma4    ma5    

sar1 

      0.1859  0.5058  0.6558  -0.5935  -0.3050  -0.7197  -0.7456  0.6786  0.098  

0.0429 

s.e.  0.0266  0.0246  0.0190   0.0176   0.0273   0.0247   0.0218  0.0266  0.010  

0.0063 

        sar2  drift   

      0.0029  1e-04   

s.e.  0.0063  4e-04   

       

From the above output , the non-seasonal ARMA model has the following order;   

AR (4) and MA (5) with one differencing and drift, the seasonal ARMA has  AR(2) with 

seasonal lag of 24 (one day) and drift.  For the non-seasonal components, The AR 

coefficients are 0.186, 0506, -0.6558 and -0.56 while for the MA they are -0.305,-0.72, - 

0.746, 0.679 and -0.098 respectively. For the seasonal components the AR coefficients are 

0.043 and 0.003. This model was selected based on AIC. 
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BATS and TBATS Model 

 Also like in previous methods we use 2009-2011 data to fit our model and 2012 

data for validation. The output for the cumulative patient count is given below: 

BATS(0.003, {1,3}, 0.999, {24,168}) 

Call: bats(y = cum.patient count) 

Parameters 

  Lambda: 0.00347 

  Alpha: 0.003780952 

  Beta: -1.665636e-06 

  Damping Parameter: 0.998993 

  Gamma Values: -1.273514e-05 0.000489981 

  AR coefficients: 0.660068 

  MA coefficients: 0.067323 -0.016772 -0.014099 

 

Sigma: 0.3418187 

AIC: 306764.5 

 

 Lambda represents the Box-Cox transform which is 0.003 in this case and the 

smoothing parameters are alpha, beta and gamma which are 0.004, -0.0000017,- 

0.000013 and 0.00049 respectively .The damping parameter is 0.999 while the ARMA 

order is AR (3) and MA (1) with coefficients 0.067,-0.017 and -0.014   and for MA is 0.66 

respectively and finally the seasonal periods are 24 representing daily cycle and 168 

representing weekly cycles, with 198 estimated parameters. 

 For the TBATS model the corresponding output is; 

TBATS(0.164, {2,1}, 0.929, {<24,6>, <168,2>}) 

Call: tbats(y = cum.patient count) 

Parameters 

  Lambda: 0.164324 

  Alpha: 0.01012952 

  Beta: -0.0003620897 

  Damping Parameter: 0.928777 
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  Gamma-1 Values: 0.0001652112 0.0001819758 

  Gamma-2 Values: 9.49861e-07 -0.00115996 

  AR coefficients: 1.709499 -0.716389 

  MA coefficients: -0.977066 

 

Sigma: 0.4436025 

AIC: 304777.9 

 
 Lambda represents the Box-Cox transform which is 0.164 in this case and the 

smoothing parameters are alpha, beta and gamma which are 0.01, -0.00037,- 0.00017 , 

0.00018,0.00000095 and -0.0012 respectively .The damping parameter is 0.929 while the 

ARMA order is AR(2) and MA(1) with coefficients 1.71 and -0.72and for AR is  -0.Finally 

the seasonal periods are 24 representing daily cycle and 168 representing weekly cycles, 

with 21 estimated parameters. 

 

Factor Latent Model 

 We use only the averaged count for three years after the alignment is done for 

the corresponding covariates. Same method is applied but with 4K  , and the CIIR 

process is also added. When the residual is plotted the serial dependent appears to be 

stronger than earlier observed, so we expect that the predictions including the CIIR 

component would be an improvement from the factor level only prediction (Figure 15a 

and b here).  
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Figure 17a: ACF Plot for Factor Model Residuals for Cumulative Patient Data 
 
 

 

Figure 17b: PACF Plot for Factor Model Residuals for Cumulative Patient Data 
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Results 

 Forecasting evaluation.  The out of sample forecast accuracy  for  cumulative 

patient count data for  the first 26 weeks (4368 observations) of 2012 is calculated using 

MAE, MSE and RMSE and the results are given in Table 5 below. 

 
Table 5: Cumulative Arrival Count Forecast Evaluation Results 

 

METHODS BATS TBATS SARIMA+REG SARIMA L.REGRESSION Factor 
FACTOR 

MODEL+CIIR 

MAE 2.41 2.43 4.68 5.68 2.67 3.25 3.23 

MSE 10.07 10.41 28.43 47.94 11.53 18.89 18.33 

RMSE 3.17 3.23 5.33 6.92 3.40 4.35 4.28 

 
 
 Here we observe that based on all three metrics that the BATS method has the 

best forecast accuracy followed by the TBATS method. The SARIMA with covariates, 

performed worse that the SARIMA without covariates. This may be due to the ARIMA 

models not being suitable for long term forecasts. Also the latent factor model with the 

CIIR factor performed worse that the that factor model without the CIIR, this may be due 

to the intGARCH(1,1) not being suitable for this data. 
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Figure 18: Graph of Predicted/Actual 2012 Patient Counts for Cumulative Patient Data 
 
 

SECTION III: ANALYSIS OF URGENT ACUITY 
 
 

 As earlier observed, of all the patients that came into the ED from 2009-2011, 

52% were of the urgent acuity category,34% the semi-urgent category, 10% were of the 

emergent category while the rest were resuscitation, non-urgent and unknown 

categories.  Also it was seen that the length of stay for each patient depends on the 

category and this leads to a further study of the urgent category.  

 The average proportion of acuity for each hour by day was calculated and applied 

to the arrival counts predicted by each method previously. Also the methods were 

applied on the arrival counts data and predicted for 2012. These methods are then 

compared. 

 The average hourly urgent acuity category for three years for each day of  the 

week is plotted below: 
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Figure 19: Mean Proportion of Urgent Acuity Patient for One Week  
 
 

Regression Model 

 The covariates or explanatory variables used for fitting the regression model for 

the urgent acuity group are the same as used for patient arrival count. They are 

categorical variables for, hour of the day, day of the week and month of the year. Again 

for day of the week variables, Wednesday is the reference category while for hour of the 

day 12 midnight is the reference Category and for Month of the year December is the 

reference category. 

 There are 40 explanatory variables in total, with 1 or 0 values and using 40 

degrees of freedom. 

 After fitting the regression model we plot the residuals to check if the conditions 

for regression are satisfied: 
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Figure 20a: Regression Residual Plot for Urgent Patient Acuity Patient Data 
 
 

 

Figure 20b: ACF Plot for Regression Residual for Urgent Acuity Patient Count 
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Figure 20c: PACF Plot for Regression Residual for Urgent Acuity Patient Count 
 
 
 From the ACF and PACF plot of the residuals, it can be deduced that the residuals 

of the urgent regression model is white noise, there is no indication of any serial 

dependence after the regression has explained about 60% of the  variation between the 

urgent patient arrival count and the covariates. Since there is negligible information in the 

residuals, no further analysis is done on them. 

 
Time Series Method 
 
 Here the urgent acuity series is plotted with the arrival count data series to 

compare patterns. 
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Figure 21: Graph of Urgent Acuity Patient Arrival Count/Patient Arrival  
Count for Two Weeks 

 
 It is observed that both series follow a similar pattern. 

 The ACF and PACF plots of the urgent acuity level time series models are given 

below: 

 

 

Figure 22a: ACF Plot for Urgent Acuity Patient Arrival Count Data 
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Figure 22b: PACF Plot for Urgent Acuity Patient Arrival Count Data 
 
 
 Also like in previous methods we use the first three years of the data to fit our 

model and the last year (2012) for validation. The output for the urgent acuity arrival data 

is given below. 

 
Sarima Model 

 The result from the auto.arima function for the SARIMA model without covariates 

as described earlier is for the simulated data is: 

Series: urgent patient count 

ARIMA(3,1,4)(2,0,2)[24]                     

 

Coefficients: 

         ar1     ar2     ar3      ma1      ma2     ma3     ma4    sar1     

      0.1317  0.2349  0.1363  -1.0874  -0.1264  0.1001  0.1146  0.6877 

sar2     sma1 

0.3097   -0.6342 

s.e.  0.0042  0.0071  0.0042   0.0066   0.0122  0.0121  0.0066  0.0581  

0.0580   0.0573 

         sma2 

      -0.3285 

s.e.   0.0556 
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sigma^2 estimated as 1.398:  log likelihood=-41686.72 

AIC=83396.95   AICc=83396.96   BIC=83495.07 

 

From the above output, the non-seasonal ARMA model has the following order;   

AR (3) and MA (4) with one differencing  The seasonal ARMA has AR(2) and MA(2) with 

zero differencing with seasonal lag of 24 (one day) .  For the non-seasonal components, 

The AR coefficients are 0.132, 0.235 and 0.1363, while for the MA they are -1.09, -0.13, 

0.01 and 0.11, respectively. For the seasonal components the AR coefficients are 0.69 and 

0.31 and the MA coefficients are -0.63 and -0.33. This model was selected based on AIC. 

The output for the SARIMA model with covariates is as follows: 

Series: urgent patient count  

ARIMA(2,1,2)(2,0,2)[24] with drift          

 

Coefficients: 

          ar1     ar2      ma1      ma2    sar1     sar2     sma1    sma2     

      -0.8103  0.0215  -0.1572  -0.8328  0.3912  -0.2706  -0.3624  0.2558  

1e-04   

s.e.   0.1596  0.0080   0.1597   0.1591  0.1815   0.1169   0.1822  0.1153 

drift 

  1e-04   

 

sigma^2 estimated as 1.36:  log likelihood=-41325.85 

AIC=82749.28   AICc=82749.46   BIC=83149.93 

 

From the above output, the non-seasonal ARMA model has the following order;   

AR(2) and MA(2) with one differencing with drift. The seasonal ARMA has AR(2) and 

MA(2) with zero differencing with seasonal lag of 24 (one day) .  For the non-seasonal 

components, The AR coefficients are -0.81 and 0.022 while the MA Coefficients are -0.16 

and -0.83 respectively. For the seasonal components the AR coefficients are 0.39 and         

-0.027 also the MA coefficients are -0.36 and 0.026. This model was selected based on 

AIC. 
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BATS and TBATS Model 

 The BATS model that best suits our simulated data is as follows: 

BATS(0, {0,0}, -, {24,168}) 

 

Call: bats(y = urgent patient count) 

 

Parameters 

  Lambda: 0.000114 

  Alpha: 0.004796037 

  Gamma Values: 1.295485e-07 -1.221693e-08 

 

 Lambda represents the Box-Cox transform which is 0.000114 in this case and 

the smoothing parameters are alpha and gamma parameters which are 0.005, 

0.00000013 and -0.0000000122 respectively. There are no damping parameter and ARMA 

errors for this model. Finally the seasonal periods are 24 representing daily cycle and 168 

representing weekly cycles, with 193 estimated parameters. 

 For the TBATS model the corresponding output is; 

TBATS(0, {1,1}, 0.997, {<24,6>, <168,6>}) 

 

Call: tbats(y = urgent patient. count) 

Parameters 

  Lambda: 3e-06 

  Alpha: 0.004296292 

  Beta: -1.200812e-05 

  Damping Parameter: 0.996749 

  Gamma-1 Values: 6.213437e-06 3.166494e-06 

  Gamma-2 Values: -1.890419e-08 3.477005e-08 

  AR coefficients: 0.018446 

  MA coefficients: 0.003665 

 
 Lambda represents the Box-Cox transform which is approximately zero in this 

case and the smoothing parameters are alpha, beta which is 0.0043, -0.000012 and 

gamma coefficients which are almost zero. The damping parameter is 0.998 while the 



77 
 

 

ARMA order is AR (1) and MA(1) with coefficients 0.018 and for MA 0.0037.Finally the 

seasonal periods are 24 representing daily cycle and 168 representing weekly cycles, with 

28 estimated parameters. 

 
Factor Latent Model 
 
 We use only the averaged urgent acuity count for three years after the alignment 

is done for the corresponding covariates. Same method is applied with 4K   , and the 

CIIR process is also added. When the residual is plotted the serial dependent appears to 

be stronger than earlier observed, so we expect that the predictions including the CIIR 

component would be an improvement from the factor level only prediction. 

 The ACF and PACF plots for the residuals after fitting the latent factor model are 

shown below: 

 

 

Figure 23a: ACF Plot of Factor Model Residuals for Urgent Acuity Arrival Patient Data 
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 Figure 23b: PACF Plot of Factor Model Residuals for Urgent Acuity Arrival Patient Data 
 
 

Forecast Evaluation  

 First the average proportions for each hour of the day calculated earlier was 

applied to the predicted count from patient arrival count. The out of sample forecast 

errors for the first 26 weeks (4368 observations) of 2012 are given below. 

 
Table 6a: Urgent Arrival Count (using mean proportions) Forecast Evaluation Results  

 

METHODS BATS TBATS SARIMA+REG SARIMA L.REGRESSION 
FACTOR 

MODEL+CIIR 
Factor  

MAE 0.86 0.86 1.19 0.94 0.88 0.88 0.92 

MSE 1.36 1.33 2.07 1.51 1.38 1.26 1.26 

RMSE 1.17 1.15 1.44 1.23 1.17 1.12 1.12 

 
   
 We see from the table 6a that the Factor latent models with CIIR and without CIIR 

both have the smallest values of all three matrices, followed by the TBATS model. The 

SARIMA model without covariates performed the worst followed by the SARIMA model 

with covariates.. We also observe again that adding covariates to the SARIMA model 
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improved its performance quite significantly. Most of our methods have the ability to 

produce reliable long term forecasts (one year ahead), which is needed for capacity 

planning. For our latent factor models with constraints and smoothing splines, it is 

observed that they are also same and this is expected because the serial dependence in 

the error after fitting the latent factor model is not significant. A major drawback for this 

model is that it does not produce confidence intervals or prediction intervals by default 

while the other models are capable of doing so. 

 

 

Figure 24: Predicted/Actual 2012 obs for Urgent Acuity Patient Arrival Data Using  
Mean Proportions 

 
 

 The out-of sample forecast errors for the urgent count data analysis of  all the 

methods is given below. 
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Table 6b:  Actual Urgent Arrival Count Forecast Evaluation Results 
 

Methods BATS TBATS SARIMA+REG SARIMA 
FACTOR 

MODEL+CIIR 
Factor L.REGRESSION 

MAE 0.84 0.85 0.92 1.14 1.62 0.90 0.90 

MSE 1.27 1.31 1.34 1.86 4.04 1.35 1.35 

RMSE 1.13 1.14 1.16 1.36 2.01 1.16 1.16 

 
 
 It can be seen from Table 6b that the BATS model performed best of all the 

models followed by the TBATS model and the factor latent models. SARIMA models 

performed worst but adding the covariates was an improvement from the model without 

the covariates. This mirrors the results obtained with the arrival patient volume. This 

mean is a good method but it depends heavily on how good the patient volume 

prediction is. 

 

 

Figure 25: Predicted/Actual 2012 obs for Urgent Acuity Patient Arrival Data 
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SECTION IV: SIMULATED DATA WITHOUT TREND COMPONENT 
 
 

Data Simulation 

 The purpose of this section is to simulate data that has a similar pattern with our 

actual patient count and to apply the methods used in the previous sections and compare 

with our actual results. It was earlier stated that the arrival count is a Poisson process and 

so to simulate the data, we would use the random Poisson distribution.27 

 It was observed that there is a daily and weekly cycle in the data; this has to be 

incorporated in the data also there is the error component of the data which is a ARIMA 

process. The error component is generated using the function arima.sim function in R 

with coefficients for the AR(2) component are 0.95 and -.45 and the MA(2) coefficients 

are -.84 and .29, and this is randomly generated using the random normal distribution 

with variance .134. We generate data for 104 weeks (two years) the first half will be used 

to build the model and the second half will be used for validation. 

 For the cycle we generate a rate defined as: 

rate = 12+10* sin(2*pi*hour/24) + 2*cos(2*pi*week/52) + err ;  

 Finally we generate the data using: 

ysim = rpois(X,rate). 

 We plot the patient arrival count and the simulated data to compare the patterns 

and we observe that the patterns are identical. 
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Figure 26: Plot of Simulated Data/Patient Arrival Data for First 336 obs 
 
 

Regression Model 

 The covariates or explanatory variables used for fitting the regression model for 

the simulated are the same as used for patient arrival count. They are categorical 

variables for, hour of the day, day of the week and month of the year. Again for day of the 

week variables, Wednesday is the reference category while for hour of the day 12 

midnight is the reference Category and for Month of the year December is the refere nce 

category. 

 There are 40 explanatory variables in total, with 1 or 0 values and using 40 

degrees of freedom. 

 After fitting the regression model we plot the residuals to check if the conditions 

for regression are satisfied: 
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Figure 27a: Regression Residual Plot for Simulated Data without Trend 
 
 

 

Figure 27b: ACF Plot for Regression Residual for Simulated Data without Trend 
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Figure 27c: PACF Plot for Regression Residual for Simulated Data without Trend 
 
 

 From the ACF and PACF plot of the residuals, it can be deduced that there is a 

very weak serial dependence after the regression has explained 90.4% variation between 

the simulated data and the covariates. Since there is negligible information in the 

residuals, no further analysis is done on them. 

 
Time Series Method 
 
 

 

Figure 28: Time Series Plot of Simulated Data without Trend for First 336 obs 
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Figure 29a: ACF Plot for Simulated Data without Trend 
 
 

 

Figure 29b: PACF Plot for Simulated Data without Trend 
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 The output for the simulated data without trend component time series models 

are given below. 

 
Sarima Model 

 The result from the auto.arima function for the SARIMA model without 

covariates as described earlier is for the simulated data without trend is: 

Series: simulated data1 

ARIMA(3,1,2)(2,0,2)[24]                     

 

Coefficients: 

         ar1      ar2      ar3      ma1     ma2    sar1    sar2     sma1      

      0.1121  -0.0319  -0.0175  -1.1028  0.1104  0.4502  0.5496  -0.4052   

sma2 

-0.5404 

s.e.  0.0250   0.0108   0.0107   0.0271  0.0270  0.0572  0.0572   0.0567   

0.0550 

 

sigma^2 estimated as 13.07:  log likelihood=-23619.3 

AIC=47255.47   AICc=47255.49   BIC=47326.22 

 

Training set error measures: 

          ME         RMSE          MAE          MPE         MAPE         

MASE  

  0.03651052   3.6040593    2.715831   -13.789489   32.40253     

0.672224  

 

 From the above output, the non-seasonal ARMA model has the following order;   

AR (3) and MA (2) with one differencing. The seasonal ARMA has AR(2) and MA(2) with 

zero differencing with seasonal lag of 24 (one day) .  For the non-seasonal components, 

The AR coefficients are 0.11, -0.0319 and -0.018 while the MA Coefficients are -1.1 and 

0.11 respectively. For the seasonal components the AR coefficients are 0.45 and 0.55 also 

the MA coefficients are -0.41 and -0.54. This model was selected based on AIC. 

 The corresponding SARIMA model with covariates result is: 

Series: simulated data1  

ARIMA(2,1,2)(2,0,2)[24] with drift  
 



87 
 

 

sigma^2 estimated as 12.79:  log likelihood=-23527.27 

AIC=47146.53   AICc=47147.03   BIC=47471.99 

 

Coefficients: 
          ar1     ar2      ma1      ma2    sar1     sar2     sma1     
      -0.8103  0.0215  -0.1572  -0.8328  0.3912  -0.2706  -0.3624  
sma2  drift   
 0.2558  1e-04   
s.e.   0.1596  0.0080   0.1597   0.1591  0.1815   0.1169   0.1822  0.1153  1e-0 
 

Training set error measures: 

           ME          RMSE           MAE           MPE          MAPE           

 -0.000077618   3.575836563   2.713255152 -15.438955034  33.368517394 

MASE 

   0.671586391  

 

 From the above output, the non-seasonal ARMA model has the following order;   

AR (2) and MA (2) with zero differencing. The seasonal ARMA has AR(2) and MA(2) with 

zero differencing with seasonal lag of 24 (one day).  For the non-seasonal components, 

The AR coefficients are -0.81 and 0.0215 while the MA Coefficients are -0.16 and -0.833 

respectively. For the seasonal components the AR coefficients are 0.39 and -0.271 also 

the MA coefficients are -.36 and 0.256 with drift. This model was selected based on AIC. 

 
BATS and TBATS Model 
 
 The BATS model that best suits our simulated data  

BATS(0.612, {0,0}, 0.999, {24,168}) 

 

Call: bats(y = simulated data1) 

 

Parameters 

  Lambda: 0.612368 

  Alpha: 0.02963382 

  Beta: 2.954125e-05 

  Damping Parameter: 0.998748 

  Gamma Values: 0.02549024 2.004902e-07 

 

Sigma: 1.320385 

AIC: 99975.18 
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 Lambda represents the Box-Cox transform which is 0.612 in this case and the 

smoothing parameters are alpha, beta and gamma parameters which are 0.03, 0.00003, 

0.025 and 0.0000002 respectively. The damping parameter for this model is 0.999 but 

there are no ARMA errors for this model. Finally the seasonal periods are 24 representing 

daily cycle and 168 representing weekly cycles, with 194 estimated parameters. 

 For the TBATS model the corresponding output is; 

TBATS(0.673, {0,0}, 1, {<24,3>, <168,2>}) 

 

Call: tbats(y = simulated.data1) 

 

Parameters 

  Lambda: 0.67301 

  Alpha: 0.003834106 

  Beta: 2.570862e-05 

  Damping Parameter: 1 

  Gamma-1 Values: 4.845342e-07 1.03767e-05 

  Gamma-2 Values: -1.571637e-08 5.779328e-06 

 

Sigma: 1.512353 

AIC: 99569.7 

 
 Lambda represents the Box-Cox transform which is 0.673 in this case and the 

smoothing parameters are alpha and beta which are 0.0038 and 0.00003 and also gamma 

parameters which are all close to zero. The damping parameter for this model is 1 but 

there are no ARMA errors for this model. Finally the seasonal periods are 24 representing 

daily cycle and 168 representing weekly cycles, with 22 estimated parameters. 

 

Factor Latent Model 

 

 We use the first half of the data to fit the factor model with hour of the day, 

day of the week and week of the year covariates. Same method is applied but with
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4K   , and the CIIR process is also added. The later half of the data is used for 

validation. 

 The ACF and PACF plots for the residuals after fitting the latent factor model 

are shown below: 

  

 

Figure 30a: ACF Plot of Factor Model Residuals for Simulated Data without Trend 
 
 

 

Figure 30b: PACF Plot of Factor Model Residuals for Simulated Data without Trend 
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 The plots are similar but there is not information that can be deduced form them, 

We would fit a model including the CIIR process and see what improvement this might 

bring to our model. 

 
Forecast Evaluation  
 
 The out of sample forecast accuracy  for simulated data for  the first 26 weeks 

(4368 observations) of 2012 is calculated using MAE, MSE and RMSE and the results are 

given in Table 7 below. 

 
Table 7: Simulated Data without Trend Forecast Evaluation Results 

 

METHODS BATS TBATS SARIMA+REG SARIMA L.REGRESSION 
FACTOR 

MODEL+CIIR 
Factor 

MAE 4.69 18.90 11.97 19.33 12.10 11.96 11.96 

MSE 32.15 71.50 12.85 75.43 13.23 12.89 12.90 

RMSE 5.67 8.46 3.58 8.69 3.64 3.59 3.59 

 

 We see from the table 4 that the Factor latent models with CIIR and without CIIR 

both have the smallest values of all three matrices, followed by the SARIMA model with 

covariates. The TBATS model performed the worst followed by the SARIMA model 

without covariates. The BATS model didn’t perform as good as expected from the 

previous results. We also observe again that adding covariates to the SARIMA model 

improved its performance quite significantly. Most of our methods have the ability to 

produce reliable long term forecasts (one year ahead), which is needed for capacity 

planning. For our latent factor models with constraints and smoothing splines, it is 

observed that they are also same and this is expected because the serial dependence in 

the error after fitting the latent factor model is not significant. A major drawback for this 



91 
 

 

model is that it does not produce confidence intervals or prediction intervals by default 

while the other models are capable of doing so. 

 

 

  Figure 31: Predicted/Actual Simulated Data for Simulated Data without Trend   
 
 

SECTION V: SIMULATED DATA WITH TREND 
 
 

 We observed that starting in May 2011 there was a steady decline in patient 

arrival volume that continued till 2012. This is a trend and so what happens when our 

data has a trend? Will our models be able to capture this trend? 

 To our simulated data we add a quadratic trend component. The data is 

generated as follows: 

1,2,...t N  

tysim  is our previously simulated data 

2 5_ _ ( / (5*10 ))tysim with trend ysim t   
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Figure 32: Plot of Simulated Data with Trend Component 
 
 

Regression Model 

 The covariates or explanatory variables used for fitting the regression model for 

the simulated data with trend are the same as used for patient arrival count. They are 

categorical variables for, hour of the day, day of the week and month of the year. Again 

for day of the week variables, Wednesday is the reference category while for hour of the 

day 12 midnight is the reference Category and for Month of the year December is the 

reference category. 

 There are 40 explanatory variables in total, with 1 or 0 values and using 40 

degrees of freedom. 

 After fitting the regression model we plot the residuals to check if the conditions 

for regression are satisfied: 
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Figure 33a: Regression Residual Plot for Simulated Data with Trend 
 
 

 

Figure 33b:  ACF Plot for Regression Residual of Simulated Data with Trend  
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Figure 33c:  PACF Plot for Regression Residual of Simulated Data with Trend 
 
 

 From the ACF and PACF plot of the residuals, it can be deduced that there is a 

serial dependence after the regression has explained 94% variation between the 

simulated data and the covariates. Since there is negligible information in the residuals, 

no further analysis is done on them. The ACF and PACF plots for the simulated data with 

trend component are given below: 
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Figure 34a: ACF Plot for Simulated Data with Trend Component 
 
 

  

Figure 34b: PACF Plot for Simulated Data with Trend Component 
 
 

  The outputs for the simulated data with trend component time series models are 

as follows: 
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Sarima Model 

 The result from the auto.arima function for the SARIMA model without 

covariates as described earlier is for the simulated data is: 

Series:sim quad 

ARIMA(3,1,2)(2,0,2)[24]                     

 

Coefficients: 

         ar1      ar2      ar3      ma1     ma2    sar1    sar2     

sma1     sma2 

      0.1123  -0.0319  -0.0177  -1.1028  0.1107  0.4542  0.5457  -

0.4089  -0.5364 

s.e.  0.0253   0.0108   0.0107   0.0274  0.0273  0.0575  0.0575   

0.0571   0.0554 

 

sigma^2 estimated as 13.07:  log likelihood=-23620.39 

AIC=47257.63   AICc=47257.66   BIC=47328.39 

 
 From the above output, the non-seasonal ARMA model has the following order;   

AR (3) and MA (2) with one differencing. The seasonal ARMA has AR(2) and MA(2) with 

zero differencing with seasonal lag of 24 (one day).  For the non-seasonal components, 

The AR coefficients are 0.11, -0.0319 and -0.018 while the MA Coefficients are -1.1 and 

0.11 respectively. For the seasonal components the AR coefficients are 0.45 and 0.55 also 

the MA coefficients are -0.41 and -0.54. This model was selected based on AIC. 

 The corresponding SARIMA model with covariates result is: 

Series: sim quad  

ARIMA(2,0,0)(1,0,0)[24] with non-zero mean  

 

Coefficients: 

         ar1     ar2    sar1  intercept     

      0.0378  0.0065  0.0445    19.9127       

s.e.  0.0108  0.0108  0.0108     0.2223  

  

sigma^2 estimated as 13.06:  log likelihood=-23620.51 

AIC=47329.02   AICc=47329.47   BIC=47640.33 



97 
 

 

 From the above output, the non-seasonal ARMA model has the following order;   

AR(2) with no differencing. The seasonal ARMA has AR(1) with zero differencing with 

seasonal lag of 24 (one day) and non-zero mean.  For the non-seasonal components, The 

AR coefficients are 0.038 and 0.0065. For the seasonal components the AR coefficient is 

0.45. This model was selected based on AIC. 

 
BATS and TBATS Model 

 To fit these models successfully, the trend option has to be specified. The BATS 

model that best suits our simulated data with trend is: 

BATS(0.941, {0,0}, 1, {24,168}) 
 

Call: bats(y = sim.quad, use.trend = TRUE) 

 

Parameters 

  Lambda: 0.940917 

  Alpha: 0.04138617 

  Beta: 0.0009097658 

  Damping Parameter: 1 

  Gamma Values: 0.0012371 -1.569877e-08 

 

Sigma: 3.025002 

AIC: 101714.6 

 

 Lambda represents the Box-Cox transform which is 0.941 in this case and the 

smoothing parameters are alpha, beta and gamma parameters which are 0.041, 0.00091, 

0.0012 and -0.000000016 respectively. The damping parameter for this model is 1 but 

there are no ARMA errors for this model. Due to the presence of trend in the data the 

trend option is used. Finally the seasonal periods are 24 representing daily cycle and 168 

representing weekly cycles, with 194 estimated parameters. 

 For the TBATS model the corresponding output is; 
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TBATS(0.788, {0,0}, 1, {<24,5>, <168,5>}) 

 

Call: tbats(y = sim quad, use.trend = TRUE) 

 

Parameters 

  Lambda: 0.788415 

  Alpha: 0.004433112 

  Beta: 2.749054e-05 

  Damping Parameter: 1 

  Gamma-1 Values: 0.00211541 0.002081061 

  Gamma-2 Values: -0.0001151335 0.0002147104 

 

Sigma: 1.966455 

AIC: 100807.6 

 

 Lambda represents the Box-Cox transform which is 0.788 in this case and the 

smoothing parameters are alpha, beta and gamma parameters which are 0.0044, 

0.000027, 0.0021,0.002,-0.00012 and -0.00021 respectively. The damping parameter for 

this model is 1 but there are no ARMA errors for this model. Due to the presence of trend 

in the data the trend option is used. Finally the seasonal periods are 24 representing daily 

cycle and 168 representing weekly cycles, with 22 estimated parameters. 

 
Factor Latent Model 

 We use the first half of the data to fit the factor model with hour of the day, 

day of the week and week of the year covariates. Same method is applied but with

4K   , and the CIIR process is also added.  

 The ACF and PACF plots for the residuals after fitting the latent factor model 

are shown below: 
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Figure 35a: ACF Plot of Factor Model Residuals for Simulated Data with Trend 

 
 

 
 

Figure 35b: PACF Plot of Factor Model Residuals for Simulated Data without Trend 
 
 

 The plots are similar but there is not information that can be deduced form them, 

we would fit a model including the CIIR process and see what improvement this might 

bring to our model. 
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Table 8: Simulated Data with Trend Forecast Evaluation Results 
 

METHODS BATS TBATS SARI SARIREG l.reg Factor+CIIR Factor 

MAE 37.12 5.17 5.09 23.91 28.95 22.50 22.39 

MSE 1780.20 38.10 35.75 604.17 917.01 549.14 547.59 

RMSE 42.19 6.17 5.98 24.58 30.28 23.43 23.40 

 

 We observe that the SARIMA model without covariates performed the best 

followed by the TBATS model. BATS Model here performed worst this was due to the fact 

that it was able to detect the trend in the data but was not able to model the other 

seasonal patterns. From the plot it is observed that the factor model regression and 

SARIMA with covariates might over fit the data. 

 

 

Figure 36: Predicted/Actual Simulated Data for Simulated Data with Trend 
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Chapter 7 
 
 

SUMMARY 
 
 

 Here is a summary of the performance of the models utilized for our analysis. 

 
Linear Regression 

 This method while it did not perform the best for any of our models it also was 

not the worst.  Of all the methods applied, it is the easiest model to explain but the 

covariates have to be carefully defined. The residuals also need to be explored for any 

serial dependence that can still be extracted, which might improve forecast results. The 

adjusted R squared also plays a major role in determining how useful the residual analysis 

is; when the R squared is high even though there might still be serial dependence in the 

residuals, it might not improve our forecast. 

 
Time Series Models 

 In all models, except the simulated data with trend ,the SARIMA model with 

covariates is an improvement from the SARIMA model without covariates. The auto.arima 

function in the forecast package in R has the ability to successfully capture trend 

according to AIC and AICc, while fitting the SARIMA model. The reason adding the 

covariates made the model worse might be it caused over fitting. Again the data needs to 

be examined carefully to determine suitable covariates. 
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 The BATS model performed best in the cumulative data, urgent acuity data, 

simulated data without quadratic term and closely second to the TBATS method in the 

arrival data. The BATS model was pretty consistent in performing best but for the 

simulated data with quadratic term the trend option has to be specified, but the model 

over estimates the trend in the data. This seems to be the major drawback of the model. 

 The TBATS model did pretty well in estimating the simulated data with trend after 

the SARIMA model without covariates, the trend option also needs to be specified. For 

the arrival data it performed best and for urgent and cumulative data it performed 

second to the BATS model but didn’t perform as good for the simulated data without the 

trend component. 

 
Factor Model 

 The CIIR factor produced a significance improvement in only two models; the 

cumulative data and the simulated data with trend it was not necessary in all the other 

models. They performed best only in the simulated data without quadratic component. 

This method is not automated and requires the K to be determined manually.  

 In conclusion, the BATS and TBATS models performed consistently better that 

other models, is easily automated and does not include additional information or 

covariates. It also does not require residual analysis like the linear regression model and 

latent factor models. These models however, have a few drawbacks; they do not 

accommodate zeros values and so require a transformation, do not accommodate 

covariates and the trend option needs to be specified; auto.arima in R on the other hand 
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has the ability to capture trend for a SARIMA model and covariates can be added to this 

model when necessary. 

 For the dynamic factor model, we need to align the data carefully to make sure  

that the factors for building the models and fitting the residuals must match. Also the 

number of factors K is decided manually before fitting the model, also residual analysis 

needs to be done to check for any serial dependence that can improve forecasts . The time 

structures for model building and forecasting should be the same. A note of caution for 

this model is it doesn’t work well if there is any change in the pattern of our data like seen 

when forecasting the simulated data with quadratic component. A major drawback for 

this model is that it doesn’t give confidence intervals for the predictions.  Residual 

analysis is important for linear regression and factor models also the data has to be 

examined carefully to determine suitable covariates. 

  The performance of this research will be evaluated on how well we are able to 

answer the following questions. 

 Can patient arrival volume be predicted accurately? Yes, this can be done 

fairly accurately. 

 Using the same methods for predicting patient arrival, can cumulative patient 

volume also be accurately forecasted? Yes, this can also be done adequately. 

 How much data is required to make the most accurate predictions? Three 

years of data produced the most accurate predictions. 

 How accurate will six months predictions be? Six months forecasts perform 

comparably to one week forecasts. 
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 Which method(s) is most suitable for our data? BATS and TBATS were most 

consistently the best models and they are easily automated and do not 

require covariates. 

 Can we predict urgent acuity patient arrival volume? Yes, this can be done 

satisfactorily. 

 What forecast methods can handle multi seasonality? Fitting the time series 

with msts  helps the models handle multiseasonalities better 

 If there is a trend (steady decline or increase) in the data which forecasts 

method will most successfully capture it? TBATS and SARIMA were better 

suited for depicting trend. 

 How easily can these methods be implemented in the ED? Time series 

methods are easily automated, residual analysis need to be done manually 

and this makes linear regression adds a layer of difficulty and dynamic latent 

factor model is not easily automated because the function is not yet 

automated in R and also K needs to be set manually. 

 The suggested procedure for analysis is as follows: 

 First, at least two years of data is collected to be used for analysis, though having 

three or more years of data to build models is likely to increase forecast accuracy.  

 Next, preliminary analysis like plots, descriptive statistics and other data 

exploration techniques should be carried out on the data to identify patterns, trends and 

outliers. This is vital in setting up research goals while also defining covariates. 



105 
 

 

 Then, the data is divided into two parts; test and validation portion. The most 

recent year data is used for validation and the earlier portion is used for building the 

models, after which the most preferred model is then selected based on performance.  

 Finally, the data is now updated to include most recent observations (validation 

portion) and used to generate forecasts for six months ahead. It is recommended that the 

process be reevaluated every six months also; the performance of these models should 

be closely tracked. 
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TIME SERIES MODEL 

#### R code for time series models ############################# 

#### Data is loaded into R ##################################### 

### Preliminary time series models ############################# 

### Data is plotted using the ts function ###################### 

 

pat.arr.ct=ts(hourly[,3],freq=24) 

 

###we fit an AR, MA and ARMA model using the auto.arima function ######### 

mod.ar = auto.arima(pat.arr.ct, max.p=200, max.q=0,               max.P=0, 

max.Q=0, max.order=5, start.p=2, start.q=2,                  start.P=1, 

start.Q=1, stationary=FALSE, seasonal=TRUE) 

mod.ma = auto.arima(pat.arr.ct, max.p=0, max.q=200, max.P=0, max.Q=0, 

max.order=5, start.p=2, start.q=2,            start.P=1, start.Q=1, 

stationary=FALSE, seasonal=TRUE) 

mod.arma = auto.arima(pat.arr.ct, max.p=200, max.q=200,                    

max.P=0, max.Q=0, max.order=5, start.p=2, start.q=2,                    

start.P=1, start.Q=1, stationary=FALSE, seasonal=TRUE) 

 

#### We forecast for up to one year ahead #################### 

pred.ar=forecast (mod.ar,h=8736) 

pred.ma=forecast (mod.ma,h=8736) 

pred.arma=forecast (mod.arma,h=8736) 

 

##### We combine all our predictions 

arma.res=cbind(as.vector(pred.ma$mean)-1,as.vector(pred.ar$mean)-

1,as.vector(pred.arma$mean)-1,as.vector(predy[1:8736,3])) 

colnames(arma.res)=c("MA","AR","ARMA","OBS") 

################################################################ 

#### Data is fitted as a multi seasonal time series using the msts command  

#### 24 for daily cycle  
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#### 168 for weekly cycle 

#### 1 is added to the series due to BATS and TBATS restrictions 

 patient.arr.ct=msts(hourly[,3]+1, seasonal.periods=c(24,168), 

ts.frequency=24) 

 

####ARIMA model without covariates ########### 

fit.mod=auto.arima (patient.arr.ct) 

 

####ARIMA model with covariates ################### 

fit.mod.reg=auto.arima(patient.arr.ct,xreg=hourly) 

### BATS and TBATS model ############################ 

bats.mod=bats (patient.arr.ct) 

tbats.mod=tbats (patient.arr.ct) 

 

####### We now forecast for one year ahead ##################### 

 

pred.sarim=forecast (fit.mod,h=8736) 

pred.sarim=forecast (fit.mod,h=8736, xreg=hourly) 

pred.bats=forecast (bats.mod,h=8736, level=c(80,95)) 

pred.tbats=forecast (tbats.mod,h=8736, level=c(80,95)) 

 

####### We combine all the time series predictions###### 

###### We subtract 1 that was added earlier ############ 

 

arr.ts.pred=cbind(as.vector(pred.bats$mean)-1,as.vector(pred.tbats$mean)-

1,as.vector(pred.sarim$mean)-1,as.vector(pred.sarim.reg$mean)-

1,as.vector(predy[1:8736,3])) 

colnames(fore4)=c("BATS","TBATS","SARI","SARI+REG","OBS") 
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######### Calculating Residuals####### 

res.arr.ts.pred = cbind(as.vector(arr.ts.pred[,1]-

arr.ts.pred[,5]),as.vector(arr.ts.pred[,2]-

arr.ts.pred[,5]),as.vector(arr.ts.pred[,3]-

arr.ts.pred[,5],as.vector(arr.ts.pred[,4]-arr.ts.pred[,5]))) 

 

######## MSE and RMSE############## 

mean(res.arr.ts.pred[,1]^2); sqrt(mean(res.arr.ts.pred[,1]^2)) 

mean(res.arr.ts.pred[,2]^2); sqrt(mean(res.arr.ts.pred[,2]^2)) 

mean(res.arr.ts.pred[,3]^2); sqrt(mean(res.arr.ts.pred[,3]^2)) 

mean(res.arr.ts.pred[,4]^2); sqrt(mean(res.arr.ts.pred[,4]^2)) 

 

##### MAE################## 

mean(abs(res.arr.ts.pred[,1]))  

mean(abs(res.arr.ts.pred[,2]))  

mean(abs(res.arr.ts.pred[,3])) 

mean(abs(res.arr.ts.pred[,4]) 
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FACTOR MODEL R CODE 

######### The patient arrival data set is loaded into R ######## 

#################### It has 5 columns and 8736 observations #### 

#################### Column one contains date ################## 

######## Column two is day of the week ranging from 1 to 7 #### 

######## Column three is week of the year ranging from 1 to 52## 

### Column four contains hour of the day ranging from 1 to 24### 

###### Column five is the actual y value labeled y ############# 

 

T = 24*7*52 

hour = hosp[,4] 

day = rep(1:(7*52), each = 24) 

dofw = hosp[,2] 

week = hosp[,3] 

######################################################### 

y=hosp[,5] 

head(y) 

D = length(y)/ (N); D # number of "days" 

ND = length(y) # total number of observations 

ND 

 

dofwindex = as.factor(dofw) 

weekindex = as.factor(week) 

Y = t(matrix(y,N,D)) 

DoW = t(matrix(dofw,N,D)) 

WEEK = t(matrix(week,N,D)) 

 

######################################## 
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FACTOR MODEL 

######################################## 

#### The main estimation algorithm for  

#### fitting the K-factor model  

#### using constraints and  

#### smoothing splines 

######################################## 

K.max = 3 

muhat = matrix(0,N*D,K.max) 

Max.iter = 40 

# Set exit level for relative reduction in deviance 

dev.exit = 0.0001 

 

for(k in 1:K.max){ 

  ######################################## 

  # Initialization: 

  dim(Y);  min(Y);  min(ifelse(Y==0,0.01,Y)) 

  gY = log(ifelse(Y==0,0.01,Y)) 

  gYsvd = svd(gY) 

   

  # coefs 

  B.new = matrix(0,D,k) 

  for(i in 1:k){  B.new[,i] = gYsvd$d[i]*gYsvd$u[,i]  } 

   

  #factors 

  F.new = matrix(0,N,k) 

  for(i in 1:k){  F.new[,i] = gYsvd$v[,i]  } 
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  ######################################## 

  # Begin iterative algorithm 

  iter = 1 

  dev.new = Inf 

   

  while(iter < Max.iter){ 

    tic = proc.time()[3]  

     

    dev.old = dev.new 

    F.old = F.new 

    B.old = B.new 

     

    ######################################## 

    X.temp = matrix(0,ND,k) 

    for(kk in 1:k){ X.temp[,kk] = rep(F.old[,kk],D) } 

     

    xnam <- paste(paste("s(as.numeric(weekindex),by = X.temp[,", 1:k, 

sep=""), "],bs='cc')", sep = "") 

    fmla <- as.formula(paste("y ~ -1 + X.temp:dofwindex +", paste(xnam, 

collapse= "+"))) 

     

    fit6 = gam(fmla, family = poisson) 

    B.tempD = matrix(as.vector(fit6$coefficients[1:(7*k)]), 7, k, 

byrow=TRUE) 

     

    # Extracting fitted values 

    n = 52 # number of weeks in the year 

    S = NULL   
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    for(s in 1:k){   

      raw <- fit6$model[fit6$smooth[[s]]$term] 

      xx <- seq(min(raw), max(raw), length = n) 

      by <- rep(1, n) 

      dat <- data.frame(x = xx, by = by) 

      names(dat) <- c(fit6$smooth[[s]]$term, fit6$smooth[[s]]$by) 

      Xmat <- PredictMat(fit6$smooth[[s]], dat) 

      first <- fit6$smooth[[s]]$first.para 

      last <- fit6$smooth[[s]]$last.para 

      p <- fit6$coefficients[first:last] 

      S.temp <- Xmat %*% p 

      S = c(S,S.temp) 

    } 

     

    B.tempW = matrix(as.vector(S), 52, k, byrow=FALSE) 

     

    ######################################## 

    B.temp = matrix(0, D, k, byrow=TRUE) 

    rm(fit6)  

     

    # 7 days in the week 

    for(j in 1:7){   

      for(ell in 1:k){ 

        B.temp[which(DoW[1:D,1] == levels(dofwindex)[j]),ell] = 

B.temp[which(DoW[1:D,1] == levels(dofwindex)[j]),ell] + 

as.numeric(B.tempD[j,ell]) 

      }   

    } 
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    for(j in 2:53){   

      for(ell in 1:k){ 

        B.temp[which(WEEK[1:D,1] == levels(weekindex)[j]),ell] = 

B.temp[which(WEEK[1:D,1] == levels(weekindex)[j]),ell] + 

as.numeric(B.tempW[(j-1),ell]) 

      }   

    } 

     

    Z.temp = matrix(0,ND,k) 

    for(kk in 1:k){ Z.temp[,kk] = rep(B.temp[,kk],each=N) } 

     

    ######################################## 

     

    znam <- paste(paste("s(hour,by = Z.temp[,", 1:k, sep=""), "])", sep = 

"") 

    fmla <- as.formula(paste("y ~ -1 +", paste(znam, collapse= "+"))) 

     

    fit4 = gam(fmla, family = poisson) 

     

    # Extracting fitted values 

    n = 24 # 24 hours per day 

    S = NULL   

     

    for(s in 1:k){   

      raw <- fit4$model[fit4$smooth[[s]]$term] 

      xx <- seq(min(raw), max(raw), length = n) 

      by <- rep(1, n) 

      dat <- data.frame(x = xx, by = by) 

      names(dat) <- c(fit4$smooth[[s]]$term, fit4$smooth[[s]]$by) 
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      Xmat <- PredictMat(fit4$smooth[[s]], dat) 

      first <- fit4$smooth[[s]]$first.para 

      last <- fit4$smooth[[s]]$last.para 

      p <- fit4$coefficients[first:last] 

      S.temp <- Xmat %*% p 

      S = c(S,S.temp) 

    } 

     

    F.temp = matrix(as.vector(S),N,k, byrow=FALSE) 

     

    # Save most recent fit before orthogonalization 

    fit.final = fit4 

    rm(fit4) 

     

    ######################################## 

    # Orthogonalize Factors F 

    G.temp = B.temp %*% t(F.temp) 

    Gsvd = svd(G.temp) 

     

    B.new = matrix(0, D, k) 

    for(i in 1:k){  B.new[,i] = Gsvd$d[i]*Gsvd$u[,i]  } 

    F.new = matrix(0,N,k) 

    for(i in 1:k){  F.new[,i] = Gsvd$v[,i]  } 

     

    dev.new = fit.final$deviance 

    if(0 < dev.old - dev.new & dev.old - dev.new < dev.exit) iter = Inf 

     

    toc = proc.time()[3] - tic ; toc  
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    # optional print statements  

    print(c(iter, toc/60)) 

    iter = iter + 1 

    print(fit.final$deviance) 

    flush.console() 

     

  } 

   

  muhat[,k] = fit.final$fitted 

   

  # optional print statements 

  #print(k) 

  #print(summary(F.old - F.new)) ;  

  #print(max(abs(F.old - F.new))) 

  #print(summary(B.old - B.new)) ;  

  #print(max(abs(B.old - B.new))) 

  #print(round(crossprod(F.old,F.new),4)) 

  #print(diag(round(crossprod(F.old,F.new),4))) 

   

} 

 

# fitted values in vector form (same length as y) for k = K.max 

index = seq(1,24,by=1) 

mu.hat = numeric(ND) 

 

for(i in 1:D){ 

   

  mu.hat[((i-1)*N+1):(i*N)] = as.vector(exp(F.new[index,]%*%B.new[i,])) 
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} 

 

# multiplicative residual 

Et = y/mu.hat 

 

# a couple residual plots 

par(mfrow=c(1,1)) 

ts.plot(Y[1:500]) 

acf(y,lag.max=100,main="ACF plot for Y") 

pacf(y,lag.max=100,main="PACF plot for Y") 

ts.plot(Et[1:500],main="error time series plot") ; abline(h = 1) 

acf(Et, ylim=c(-0.01,0.7), lag.max = 96*2+16,main="ACF plot for mu err for 

arr.vol") 

pacf(Et, ylim=c(-0.01,0.1), lag.max = 96*2+16,main="PACF plot for mu err 

for arr vol") 

abline(v = c(96.6, 192.6), lty = 2, col = 2) 

acf(Et, ylim=c(-0.02,0.1), lag.max = 50, type = "partial") 

abline(v = c(96.6, 192.6), lty = 2, col = 2) 

############################################################### 

# if some missing days were removed use 'misshour' below 

# to reinitilize the conditional likelihoods below 

misshour = c(1, ifelse(diff(day) > 1 , 1, 0)) 

sum(misshour) 

 

############################################################### 

######## For conditional ML estimation of               ####### 

######## Int-GARCH(1,1)                                 ####### 

############################################################### 

"condPoissonInt11" = function(parms, y, mu, misshour, llik){ 
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  alpha = parms[1] 

  beta  = parms[2] 

  omega = 1 - alpha - beta 

  N = length(y) 

  lambda = numeric(N)  

  eta = numeric(N) 

  epsilon = y/mu 

  eta[1] = 1 

  lambda[1] = 1    

  loglik = 0 # -sum(lfactorial(y)) 

  for(i in 2:N){ 

    eta[i] = omega + alpha*epsilon[(i-1)] + beta*ifelse(misshour[(i-1)] == 

1, 1, eta[(i-1)]) 

    lambda[i] = mu[i]*eta[i] 

    #    if(lambda[i] <= 0){print(c(i,lambda[i],alpha,beta))} 

    temp = -lambda[i] + y[i]*log(lambda[i]) - (lfactorial(y[i])) 

    loglik = loglik + ifelse(misshour[i] == 1, 0, temp) 

  } 

  if(llik==TRUE){-loglik} 

  else{eta} 

} 

############################################################### 

theta.0 = c(0.05, 0.5)  

 

condPoissonInt11(parms = theta.0, y = y, mu = mu.hat, misshour = misshour, 

llik = TRUE) 

 

outInt11 = optim(par=theta.0, fn = condPoissonInt11, y = y, mu=mu.hat, 

llik=TRUE,  
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                 misshour= misshour, method = "L-BFGS-B", lower = 

c(0.000,0.000),  

                 upper = c(0.2,0.9), hessian=T, control =  

                   list(trace = TRUE, ndeps = rep.int(0.000001, 2),  

                        maxit = 200L, factr = 1e+31, pgtol = 0)) 

 

# parameter estimates 

igparInt11 = outInt11$par ; igparInt11 ; 1 - sum(igparInt11) 

 

# approximate SEs 

igseInt11 = sqrt(diag(solve(outInt11$hessian))) ; igseInt11 

 

# CIIR 

etaInt11 = condPoissonInt11(parms = outInt11$par,y= y, mu=mu.hat, 

misshour= misshour, llik=FALSE) 

 

# Mltiplicative residuals 

e = y/mu.hat 

 

# Fitted values 

lambdaInt11 =mu.hat*etaInt11 

length(lambdaInt11) 

pred.factor=cbind(as.vector(lambdaInt11),as.vector(mu.hat),as.vector(predy

[1:8736,3])) 

colnames(pred.factor)=c("lamda","mu.hat","OBS") 

 

######### Residuals are calculated####### 

res.factor=cbind(as.vector(pred.factor[,1]-

pred.factor[,3]),as.vector(pred.factor[,2]-pred.factor[,3])) 

######## MSE and RMSE############## 
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mean(res.factor[,1]^2); sqrt(mean(res.factor[,1]^2)) 

mean(res.factor[,2]^2); sqrt(mean(res.factor[,2]^2)) 

 

##### MAE################## 

mean(abs(res.factor[,1]))  

mean(abs(res.factor[,2])) 
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REGRESSION CODE  

########   Patient arrival Data is loaded into R ############## 

 

pat.arr.reg=read.csv("C:\\Users\\utchay\\Dropbox\\reg1.csv", header=T) 

predy=read.csv("C:\\Users\\utchay\\Dropbox\\hourly2reg.csv", header=T) 

 

######## Fitting regression model #################### 

 

arr.reg=lm(patient.count~0+ ., data=pat.arr.reg) 

summary(arr.reg) 

 

######### checking residuals plots  ################### 

 

plot(arr.reg$res[1:1000],type="l", main=" residual plot for regression 

model", ylab="count", xlab="lags") 

abline(h=0) 

 

res.arr.reg=ts(arr.reg$res,start=1, freq=1) 

acf(res.arr.reg, lag.max=100,main="ACF plot for reg residual",ylab=" 

count") 

pacf(res.arr.reg, lag.max=100,main="PACF plot for reg residual",ylim=c(-

.1,.2)) 

 

########## Fitting an ARIMA model for the regression residuals 

############ 

 

reg.res.mod=auto.arima(res.arr.reg,ic="aicc",d=0,D=0,max.p=10,max.q=10) 

reg.res.mod 
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########## Predicting up to one year ahead 

################################ 

 

pred.res.reg=forecast(reg.res.mod,h=8736,level=c(80,95)) 

 

 

########### (Adding the time series residuals prediction to the regression 

predictions ############### 

fore.reg=cbind(as.vector(pred.res.reg$mean[1:8736]),as.vector(arr.reg$fit[

1:8736])) 

colnames(fore.reg)=c("reg", "res") 

fore.reg$pred=as.vector(fore.reg[,1] + fore.reg[,2]) 

dim(fore.reg) 

reg.pred=apply(fore.reg,1,sum) 

dim(reg.pred) 

 

###### Extracting residuals ################# 

reg.pred.res=cbind(as.vector(reg.pred[4368]),as.vector(predy[1:4368,3])) 

reg.res= apply(reg.pred.res,1,sum) 

 

mean(reg.res^2); sqrt(mean(reg.res^2)) 

 

##### MAE################## 

mean(abs(reg.res))  
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