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FORECASTING EMERGENCY DEPARTMENT VOLUMES USING TIME
SERIES AND OTHER TECHNIQUES

Uchechukwu A. Nwoke

The aim of thisresearchis to forecast patient volumes inthe Emergency
Department of a regional hospital in Minnesota, which eventually will aid in addressing
the issue of registered nurse staffing fluctuation, more specifically, productivity and
capacity planninginthe ED. Several methods are applied to forecast arrival patient
volume, and cumulative patient volume to evaluate each model’s performance. The
methods considered are linear regression, time series models and dynamiclatent factor
method. Longtermforecast for as longas six months ahead is the goal here due union
regulations thatonly allows forsignificant changesinregistered nurse staffing schedule
be putin place sixmonthsinadvance. Thislongterm forecast will enableadministrators
implement effective and timely changes to enhance productivity.

The patientarrival count, where each patientis counted once in the system, is
analyzedto see how many patients the department encounters hourly. Also, cumulative
patient count which gives us an idea of how many patientsare inthe departmentatany
giventime was also considered, here patients are counted forevery hourtheyare in the
emergency department (ED). Patient who come to the ED are categorized by theiracuity
level. Of all the patients that came to the ED, 52% need urgent care; this groupis also
analyzedto predicttheirarrival volume.

Lastly data was simulated with different patterns and the forecasting results from
the different methods were compared and estimated. The forecast accuracy and
performance forthese modelsisthen evaluated using out-of-sample forecasts forup to
sixmonths ahead. Mean square error (MSE), Root mean square error (RMSE) and mean
absolute error (MAE) were utilized tosee which method is mostreliable and also
consistent.
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Chapter 1

INTRODUCTION

The health care system has experienced anincreased interestin and recognized
appreciation of the essential role nurses play in patient care.**® During atime in which
health care resources are becoming limited, overwhelmed, and financially taxing, the key
focus has become productivity and capacity planning. This problem is multi-dimensional,
due to the fact that administrators must carefully considertheir operations. Some of
whichinclude; adequately staffing registered nurses and allocating resources. The
objective istoensure quality patient care, while avoiding overstaffing and thus avoiding
unnecessary expenditure.'® %3
Operational studies have been successfullyimplemented in several areas to
improve patient experience: reduced wait time, more accurate patientrecord
keeping, patient satisfaction “surveys,” open and frequent communication, and
forecasting.”> HealthCarehasseenalotof improvementoverthe years butthere

is still room for more. Planning and staffingis of the utmostimportance because
of itsdirectimpact on patientand employeesafety.’

Understanding staffing fluctuation and patient volume could help improve the
health care delivery system across every level butitappears to be more difficult for the
Emergency Department (ED). Ina clinicor surgery setting staffingis fairly predictable
because patients make appointments and so the departments know what to expectand
can planahead, but thisisnot so forthe ED. Due to The Emergency Medical Treatment

and Labor Act (EMTALA) *, non-profit emergency departments must provide medical



screening forevery patient. Many people thatdo not have insurance utilizethe EDas a
place to receive primary care.*' Onthe otherhand, there are timeswhenthe ED
experiences alow volume of patients, having more than required staff increases health
care expenditure and cost, also reduces the overall efficiency of the department.’
When staffingand planningis effective and efficient, employees willhave
necessary resources to dotheirjob well and productivity can be maximized. Thisinturn
improves positive patient outcomes and experiences, patient and optimum throughput,

employeesatisfaction, and reduces unnecessary spending (see figure below).

Positive Patient
Outcomes/Experience

Optimum Productivity

\‘ht -~

i.-

LN -

‘ Reduces Unnecessary Spending

g 7 '}j __"W_VH

Proper Planning and Staffing

Patient Safety
Y

.’

Employee Satisfaction

Figure 1: Capacity Planning Chart

First, Forecasting can be defined as, “the process of making statements about
events whose actual outcomes (typically) has not yet been observed. Acommonplace

example might be estimation of some variable of interest at some specified future date.”?



In otherwordsit istryingto estimate avariable beforeitisobserved, orto “foresee the
future”. Avery common example of forecastingis weatherforecast. Forecastingis widely
used in marketing, securities analysis and, it has evolved into a multidisciplinary science.”
2928 |t isan essential instrument in most industries requiring scientific planning. There are
several cases where forecasting can be applied; it might be whethertoforecast whenthe
sunwill rise tomorrow or what a house boughttoday will be worth in five years, whatever
the case may be, forecastingis avital tool that facilitates proficient and effective planning
and productivity.”® the predictability of an event ora variable relies on various factors
including.”®
i. How muchdatais collected

ii. How accuratelyisthe data collected

iii. Ifthe contributingfactors can be adequately explained orunderstood.

iv. Willthe eventorvariable be affected by forecast values?
An exampleis, if a patientfamily medical historyis known and the patient lifestyleis
closely monitored the possibility of having a heart attack might be highly accurate
compared to that patient beinginvolvedin an accident. Inthe latter case the data most
likelyisn’t collected and all the contributing factors are not understood. Sometimes the
forecastcan initself affect the outcome, and thisis one of the dangers of forecasting.’ For
example say thereisaforecastforincrease inthe price of a commodity, this will in most
cases drive consumerstoincrease theirdemand. When demand surpasses supply, thisin

turn will lead to price increase. One really has to keep in mind the limitations and choose

rather to err on the side of caution, when applicable.



Next, forecasting methodis “a procedure for computing forecasts from present
and pastvalues”.* Agood forecast is based on the assumption that the factors involved
are changingand aims to capture the way the things are changing. Forecasts method can
be simple like linearregression or complex like artificial neural networks. Various
forecasting methods have been utilized inthe quest for proper planning: linear
regression, artificial neural network, time series, etc. In this paper even though other
methods are considered, the main focus willbe on time series methods.

Then, time seriesis defined by Chatfield as “a collection of observations made
sequentiallythrough time”.” Examples are daily temperature of a city, number of babies
born every hourina hospital, etc. Time series forecastinvolves using data collected
sequentiallyto make predictions. The aim of usingtime series methodsisto predict
future values based on data collected in the past and present.?” Time series forecasting
amongst other methodsis a tool that has been be appliedin predicting patient volumes
and othervariables (example length of stay) that are peculiartothe ED. Various studies
have been carried out using both univariate and multivariate methods. Univariate
methods depend solely on previous values of the series being forecasted whilea
multivariate series relies on additional explanatory variables.* Examples of these methods
include; historicalaverage, linearregression, time series models which includes; auto

regressive integrated moving average (ARIMA) models and multivariable time series.?***

30.33,363% The ARIMA model has most widely being used in predicting patient volumes,
length of stay, etc. One limitation of ARIMA modelsis thatit does not accommodate

series with multiple seasonal patterns as our data suggests. Inthis paperthe aim to isto

apply ARIMA models that have been modified toinclude multiple seasonality, some



innovative exponential smoothing methods proposed by Taylor,***° Gould etal.** and De
Livera,’ and also a factor latent model based on Poisson process proposed by Matteson
‘These methods are being are considered because the series for PatientvolumeinEDis
characterized by multiple seasonal patterns. We will compare these to the previously

used methodstoseeifthereisincreasedaccuracy.



Chapter 2

A REVIEW OF LITERATURE

In recentyears, many research studies have been done inforecasting daily
patientvolumesinacute care hospitals. The legislation passed in Californiain 1999 has
led to a series of questions and close monitoring of registered nurse staffing.” %"
Emergency departments are one of the most used providers of acute care in the health
sector; the study of which can play a vital role inthe development of the subdivision and
the entire industryingeneral. '

The numberof emergency departmentsinthe US declined by 425 departmentsin
the years 1993 to 2003. Despite this decrease, the patientvolumehasincreased by 26%
invisits.”* Alsobetween 1997 and 2007 there wasan increase in patientvolume of 12.5%
and a decrease of 189 departments. This development has made the planningand

1.%3%%® One way to tackle this problemis the use

effectiveallocation of resources crucia
of modelsto produce accurate forecasts to help ensure that supply meets demand.
Several authors have used statistical techniques to build models to forecast different ED
behaviors like patient volume, length of stay or patient acuity with or without
Covariates.zz' 24,30, 33,36-38

There have been a lot of publications on Emergency departmentsin recentyears,

and we would be looking at some of them to answerthese questions. Thisreview

attemptsto answersome of the following questions:

6



a) What forecasting methods have been studied?

b) What factors were considered and why?

c) How effective were these models?

d) Arethere otherfactors thatshould have been considered?
e) Isthereanyneedfornew forecasting methodology?

f) How suitable are these methods especially forlong term forecasts?

Emergency Medicine Papers

Jonesetal. (2007)** used multiplelinear regressions as abenchmark model while
comparingseveral other models; forinstance, time series models such as SARIMA
(Seasonal Autoregressive Integrated Moving Average), exponential smoothing, time series
regression, and Artificial neuralnetwork to predict daily patient volumesinthe ED. The
variables considered in the linearregression model were calendarvariables (weekday,
month and holiday). This was done using dummy variables and a “near holiday” variable
was also considered, Climaticvariables were putinthe model as well, but only the time
seriesregression used thesevariables. Twenty-seven months’ worth of datawas collected
for the analysis. The goal was to predict 1- 30 daysin advance and compare the
benchmark model to the othersto see if the any of the new models achieved better
forecastaccuracy.

The time series regression modelshowed some improvement from the linear
regression model but offered only little improvementin post forecast accuracy. All others
(SARIMA, exponential smoothing and artificial neural network) failed to provide

consistently accurate forecasts for ED volumes. This study also confirmed the widely held



belief thatthere are weekly and seasonal patterns found in patient volume butdid not
take this property intoaccount when modeling the time series data. Jonesetal.
concludedthat eventhough time series regression provided slightly more accurate
forecasts of ED, they violated a majorassumptioninlinearregression. The regression
based model thatincorporated calendar variables and accounted for site -specific, special
day effects and also allow for residual auto-correlation, provided the mostinformative
and consistently accurate predictions of daily ED volumes. In other words the regression
model was preferred tothe time series model but long term forecasts were not
consideredin thisstudy.

Schweigleretal. (2009)°* also applied statistical models to predict overcrowding
of the ED. Historical averages were considered reliableforlongtermforecast, but short
termforecasts were also desired. In developing a model, two main factors were
considered: the ability for wide usage, and simple models yet accurate forecastin making
predictions. Three different locations were used in the analysis datawas collected hourly.
Two methods, namely; a 24-hour SARIMA model and a sinusoidal modelwith an AR
structured errorterm, were compared with the historical average method as the
benchmark. The historical average (HA) method was basically the mean occupancy for
each site each hour of the day. The two AR (seasonal and sinusoidal) models were chosen
because they were the accounted most conservatively forthe 24-hourcycle and had a
strong correlation between the previous and the next hour’s occupancy. The HA showed
the bestgoodness of fit but using the AIC (Akaike’s Information Criterion), which is
basically ameasure of relative goodness of fit, SARIMA performed best becausethe HA

requires more parametersthanthe ARmodels. Onthe otherhand, forecast accuracy



measured using RMSE (root mean square error), whichis calculated by summing the
difference between the observed and predicted values, showed that the AR models
performed better.

While AR models are an improvement from the historical average method, it does
not account forother cycles such as seasonal cycles, weekly cycles etc. and other complex
season’s patterns that characterize the patientvolumeinan ED. In simplerterms:times
seriesmodels provide a better statistical fit than other models such as linearregression or
historical experience, but performance against future behavior has not typically been
dealtwith. Alsotime series methods have notyet been used to directly investigate
overcrowding but have been usedto model related behaviors such as patient arrival per
minute.

Sun, Heng, and Seow, (2009)*° carried outa study in Singapore intended to
identify local factors associated with daily patient volume and develop coordinating
prediction models. Patient acuity levels were taken into consideration. Variable selection
was based onliterature, local weatherfactors and availability of data.

ARIMA models were applied to the three categories of acuity and overall data.
The three categories: P1(resuscitation and those inimminent danger), P2 (major
emergency, with severe symptoms)and P3 (minoremergency with moderate symptoms).
Mean absolute percentage error (MAPE) and Ljung test was used to choose the best-fit
model. The best-fitmodel forP1was ARIMA (0, 1, 1) and it did not show any weekly or
yearly periodicity and was only predicted by ambient air quality, while for P2 was ARIMA
(1,12,1) (12,0, 1) showedweekly cycles and was significantly correlated with public

holidays. ForP3 wasARIMA (0, 1, 1) (1,0,1) showed strong correlation with day of the



10
week, month, publicholiday and ambient air quality of PSl(pollution standard index)>50.
The MAPE forP1, P2, P3 andtotal attendances were 16.9%, 6.7%, 8.6% and 4.8%,
respectively.

The authors concluded that eventhough there was a high variability in the data,
the predictions had a good accuracy; despite P1 havingthe highest MAPE, it still
demonstrated acceptableforecasting abilities. It was observed that weatherdid not have
a significantimpact onthe models unlike previous studies, and this might be due to the
fact that Singaporeisinthe tropics. P3 factors predicted higherattendances. This model
was effective for both short-term forecasts (weekly) and long term (three months).

The limitations of this study include, other lurking variables notidentified and
studied, and the use of average daily temperature, also other forms of explanatory
variables were not studied( quadratic, log, etc.). It would have proven more beneficial to
predict hourly ratherthan daily patientvolume. Anotherlimitationis that only one year
of information was used of this study and so annual trends cannot be captured, alsolong
term forecasts were not considered.

Kam, H. J.(2010)** investigated the possibility of buildinga model to predict the
number of patientvisitsto a regional ED per day. Analyses were done using moving
average; univariate and multivariate seasonal auto regressive integrated moving average
(SARIMA) models. Theseresults were later compared and evaluated. For the moving
average method, past time series data was used to calculate the arithmeticmean; its
main advantage is its capability to remove non-conforming changes or periodicfactors.

The seasonal ARIMA is an extended ARIMA model that allows for seasonal

factors. When utilizing this method, the trend and seasonality are removed to “stabilize”
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the series before forecasting. This was seen to be effectivein shortterm forecasting while
the multivariate SARIMA modelincorporates explanatory variables. Weatherand
calendricinformation were used as explanatory variables in building the model. The
results suggest that the moving average method was flatasit returned the value of the
mean renderingitinadequate. The SARIMA models were more accurate thanthe MA. The
multivariate ARIMA was most accurate in predicting the daily volume. The authors
suggested incorporating weatherinformation (temperature and rain) to predict daily
volumes, and further recommended that local, geographical and cultural factors be
considered, and long term forecasts was not the focus here.

Rathlev (2011)*° focused on analyzing length of stay and using staffingas a
covariate. The authors analyzed the relationship between several covariates and length of
stay per 8- shift. The covariatesinclude: ED nurseson duty, ED discharged (defined as
patients who wenthome, were transferred oradmitted), ED discharge on previous shift,
resuscitation cases, admissions and ICUadmissions. This study was carried outin 8-hour
shifts, 7.00 am -3.00pm, 3.00pm-11.00 pm, and 11.00 pm-7.00am. Patients were assigned
based on theirtime of departure ratherthan initial presentation. Hospital occupancy was
measured based on a 24 hour period. Due to the correlation of length of stay (LOS) (since
the outcomes are not independent) ARIMA model was used to analyze the data. AICwas
use selectthe best model and otherrelevant diagnostics were carried out. A full model
was used and laterall insignificantterms were dropped but there was no significant
differenceintheresults. ARIMA (2, 2) was the bestfit forthe model, however, most of
the covariates were found to be insignificant except for the number of ED admissions

which was significant forall three shifts. ICUadmissions on shift 1 were also significant
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and this can be explained by the fact that these patients require more nurses. Fewer than

three ICU admissions were also seen asinsignificant.

Statistical Papers

There have beenrecentinnovationsintime series modeling thatare
groundbreaking and stimulating.

Taylor, J. W. (2003)* first proposed that double seasonality can be appliedtoa
time seriesto capture both seasonalities. Here the datawas seento possess intraday and
intraweek patterns. Multiplicative Seasonal ARIMA and the Holt-Winters exponential
smoothing formulation were applied with the latter adjusted to accommodate both
seasonalities. The multiplicative seasonal ARIMA had earlier been proposed by Box et al .?
and can be easily extended to accommodate three or more seasonalities.

Priorto thistime no literature had considered extending the Holt-Winters
method which was quite suitable forone seasonal patterntoaccommodate double
seasonality. In Taylor’'s paper, empiricalanalysis were carried out to compare the newly
proposed double seasonal Holt-Winters method with the standard Holt-winters and also
to compare it with the double multiplicative double seasonal ARIMA model. It was
observed thatthe new model outperformed the traditional method. It was alsoimproved
by the inclusion of an AR (1) model forresiduals and this was optimal when the
parameters were estimated in the same process as the exponential smoothing technique.
It also outperformed the well-specified double seasonal ARIMA modeland so the author

concludedthat this new formulation has great potential.
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Gould et al. (2007)" in their paperfocused on modeling time series with multiple
seasonal patterns and different lengths. This study introduced a new method applying the
innovation space models which formsthe basis forall exponential smoothing methods.
Holt Winters (HW) exponential smoothing method and ARIMA methods of Box etal.” are
most frequently used but they do not have the capability to account or detect day to day
patternsand alsoittreats all days as same and does not pick up the varying patterns of
different days. The double seasonal exponential smoothing method (DS) proposed by
Tayloris a majorimprovementasitallows us to nesta cycle withinacycle but its major
drawbackis itassumesthe same intraday cycle forall days of the week.

Thus a majorobjective of this new model called multiple seasonal (MS) processes
isto allow forthe seasonal termsthatrepresentaseasonal cycle to be restructured more
than once withinacycle if the need arises. Forexampleinan hourly datathere are 24
potential sub cycles, howeverif all the hours from 1lam to 7am have a similar structure, it
might be simplerto use the same sub-cycle forthese 7 hours and the models be updated
more frequently toimprove accuracy also different smoothing parameters may be
appliedtodifferent sub-cycles. This also helps reduce the number of sub-cycles. This
model was developed for both additive and multiplicative seasonal patterns and was
appliedto a utility dataset obtained from acompany in Midwestern United statesand
alsoto trafficdata (hourly vehicle counts) forthe Monash freeway in Victoria, Australia;
both of them were recorded hourly.

In general the MS models provided more accurate forecasts than the HW method
and DS methods and were also bettersuited to capture the changesinseasonalityinthe

data. Several of the MS models were used with different restrictions and varying
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parametersand a model selection criterion was applied toselect the bestone usinga
combination of the mean square forecast error (MSFE), number of parameters and seed
valuesin each model. In conclusion the MS model is an improvement to fromthe HW and
DS because of its flexibility. It also allows for reducing the number of parametersand
seedsrequired by the full MS model and missing values were adequately handled in both
cases.

Taylor, J. W. (2010)* proposed to extend three of the more successful models
than accommodated double seasonality toincludetriple seasonality. The three models
are double seasonal ARMA model, Holt- Winters exponential smoothing (HWT) and the
multiple seasonal (MS) method earlier proposed by Gould et al. Three cycleswere
considered;intraday, intraweek and annual cycles, and was used to forecast shortterm
electricity demand on a British and French load series which consists of half hourly data
collected forfive years. Artificial Neural Network Model was also included in this study as
the benchmark model.

In the ARMA and Holt-Winters methods, a single model was first considered using
the intraweek cycle and this was further expanded toincludethe intraday and another
the annual cycles thus for the double seasonal ARMA and exponential smoothing two
series are proposed; oneisthe intraday and intraweek cycle the otheris the intraweek
and annual cycle. Finally, the intraday-intraweek model was extended to include the
annual cycle, formingthe triple seasonal models.

The MS model renamed the “intra cycle exponential smoothing method” (IC) here
dueto itsemphasis on the intraday cycle also, only modelsthatinclude the intraday cycle

are considered. Acommon modelis proposed for days that exhibit comparable patterns.
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When certain restrictions are made this model becomes very similarto the double
seasonal HW method for intraday and intraweek cycle.

The worth of extending the various models was estimated and it was observed
that there was evidentimprovementin forecast accuracy when using double instead of
single and a further substantial improvement when using the triple seasonal model. This
was alsoseeninthe Holt-Winters method. Inthe ARMA approach there was little
difference inthe double seasonal models butinthe HWT method was a significant
difference, with the intraday-intraweek model havinganincreased accuracy overthe
intraweek-intrayear cycles. An autocorrelation adjustmenttermwas alsoincluded in the
HWT and IC methods; and compared to models without the adjustment. Results show
that itleadsto significantimprovementinthe ICmethod, and even though the results
were similarforthe HWT methods this adjustmentis needed.

On comparingthe various methods it was seen that the HWT and the IC methods
show strong similarities and also the triple seasonalversions. Double seasonal ARMA
model did betterthan the double seasonal HWT method forthe intraweek and intrayear
but forthe intraday andintra week double seasonal HWT was a little more precise. Both
triple seasonal methods performed alike. When compared with the benchmark method,
all models were seento outperformthe benchmark model.

Although forecastaccuracy is of great significance, itis notthe only benchmark to
use whenselectingaforecasting method. In comparison, HWT is superiorto the ARMA
model because the latterrequires extensive specification and amore demanding
optimization due to farlarger number of parameters. Itis also the same problem with the

IC method and also thereis no clearway to decide uponthe number of unique cyclesto
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be used. In otherwords since the HWT method is as good and less complex; the triple
seasonal HWT model carries the day.

De Liveraetal. (2011)° introduced a state space modeling framework for
modeling complex seasonal periods which incorporates Box-Coxtransformations, Fourier
representations and time varying coefficients and ARMA error correction. A major
attribute of thisframeworkisthatit is expedientto awide range of applications and this
isshownin three empirical studies. Thisisimportant because most time series models are
designedtoaccommodate simpleseasonal patterns with asmall integer-valued period
but are sufficiently developed to deal with time series with multiple patterns and non-
linear patterns. The new method proposed here is stipulated to be amore versatile
approach than previous existing models; it allows for multiple nested and non-nested
patterns, handles potential nonlinearities andis able to produce betterforecasts than
previously existing models. Itis also more suitable to handle complexseasonal patterns
like non-integer seasonality, calendar effects and non-nested seasonal patterns.

The models proposed are the BATS (Box-Cox transform, ARMA errors, Trend and
Seasonal components) and TBATS (Trigonometric Box-Cox transform, ARMA errors, Trend
and Seasonal components) models are acronyms forthe key features of the model. BATS
model includes a Box-Cox transform parameter, ARMA (auto regressive moving average)
errors parameters and seasonal periods. Itis the most obvious generalization of
traditional seasonal innovations model to accommodate multiple seasonal periods,
however, itcannot be adapted for non-integral seasonality amongst other drawbacks.

The TBATS model is obtained by replacing the seasonal componentin the BATS

model with atrigonometricseasonal function, because of thisit can be used to model
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non-integerseasonal frequencies. There are some advantages to ascribe to usingthis
model which includes it can accommodate typical non-linearfeatures that are often
encounteredinreal time seriesanditinvolves amuch simpleryet efficient procedure.

The model selectionisbased onthe following:

e AlIC(Aiake Information Criterion) is used to choose between models and
provide the best basis forautomated model selection. Other methods can
alsobe used.

e Theforecastforthe TBATS model depend onthe numberof harmonics used
for the seasonal component. Thisis needed becauseitanditisimpracticable
to considerall the possible combinations possible. A method was proposed to
selectthe best model anditwas based on a regression model usingan
approach based on multiple linearregressions.

e Suitable valuesforthe ARMA orders are selected using atwo-step approach
and subsequent study*® indicated that this approach provided the best out of
sample prediction forthe ARMA models compared to several alternatives.

The proposed modelswere applied tothree complex timeseries; weekly gasoline

data whichisan example of non-integer seasonal periods, 5-minute interval retail banking
calls data; an example of multiple nested seasonal periods and daily electricity demand in
turkey an example of multiple non-nested and non-integer seasonal periods. The results
fromthese models were compared by out-of-sample performance usingthe root mean
squared error (RMSE). In all three, the TBATS models had a lower RMSE and so itwas

concludedthatitoutperformedthe BATS model.
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The authors suggested that other explanatory variables may be applied to the
BATS and TBATS models, thus allowing more information to be included in the models.
Thisapproach was also seento be general and can be used forany innovationsin the
state space model. [t was also seen thatthe adaptability of the TBATS model isan
improvement from previously existing models.

Matteson, David S (2011),?” used a method which involves combininginteger-
valued time series model with adynamic factor structure. Here, anintegervaluedtime
seriesmodel isintroduced with adynamiclatent factor structure with day of the week
and week of the year effects, accounted for as simple constraints on factor loadings. This
factor structure allows fora substantial reductioninthe numberof parametersinthe
model. This model is claimed tolead to better shortterm forecast accuracy because it
models unambiguously the remaining serialdependence. Thisis done by introducing the
covariates (Day of the week and week of the year effects) using simple constraints on the
factor loadings. Smoothing splines are used to estimate the model by imposing smooth
evolutionthe factorlevels of loading. Factorlevels account for the non-stationary pattern
inthe intraday call arrivals while the time series model depicts the remaining relationship
inthe process. The data used inthis studyis call arrival data received by Toronto EMS
betweenJanuary 1, 2007 and December 31, 2008 for which ambulances were dispatched.
This analysis was carried out using 2007 data as training dataand 2008 as validation data
and vice versa.

To estimate the intraday arrival rate model, athin plate regression splines with a
ten dimensional basis, the Poisson family and the log-link functions are used through the

GAM function. Thin plate regression splines are low rank isotropicsmoothers possessing



19
some beneficial properties like, not needingto decide on the placement of knots and can
be applied efficiently for large datasets.** The amount of smoothness for the factors and
the loading function are allowed to be automatically estimated by generalized cross
validation (GVC). The time series plot of the multiplicative residuals from this factor
model, appearto be stationary butreveal some sequential dependence. Time series
models forthe latent conditional intensityinflation rate (CIIR) process to accountfor this
dependence. AGAM" model is considered here with some restrictions and also an
integer-GARCH (1, 1) model is applied. If this models sufficiently explains the dependence
then and autocorrelation plot of the multiplicative residuals is expected to be statistically
independentforall lags. Three nonlinear generalizations are also considered as they may
better characterize the sequential dependence; namely; Exponential autoregressive
model, piecewise linear threshold model and amodel with regime switching at
deterministictimes.

Out-of-sample comparison was done carried out by fitting models to the 2007
training dataand using 2008 as validation andvice versa. A series of models were
considered; simple prediction, factor models (FM) without constraints withK=1... 6, FM
with constraints and FM with constraints and smoothing splines and the latter FMwith
k=4 and the inclusion of the CIIR process with the various time series models. The RMSE
and otherresidual types were considered.

The FM models did slightly worse than the SP models, the FMwith constraints
was a substantial improvement, whilethe FMwith constraints and smoothingsplines also

presented extraimprovement. Also with the addition of the intGARCH model forthe CIIR
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process to FM=4, the RSME improved  slightly again. This modelhas the best performance
for both sets.

In conclusion, itis observed thatthe factor model estimation with smoothing
splines significantly increases forecast performance. This model was able to capture the
nonstationary behavior exhibited in call arrivals. Also the introduction of the CIIR process
allowed adaptiveforecasts of deviations from this diurnal pattern. There are also some
limitations to this model; there is no predictioninterval for the predictionsand also it
assumesthatthe thereis nochangein pattern betweenthe observed and predicted time

frame.
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DATA DESCRIPTION

The data usedin this study was provided by a non-profit regional medical center
in Wright County, Minnesota that provides care to about 70,000 patients everyyear.’ The
data consists of daily observations from 2009 January 1°-December 31° 2012, inclusive.
The data contains 84,329 patients but only 65,535 observations was be used foranalysis
and 18,794 observations will be used for validation. Our empirical analysis used the first
three years of data to estimate forecasting methods parameters and 2012 data was used
to evaluate post-sampleforecastaccuracy. We will deal with only the test datasetfor
now and include the validation dataset post-analysis.

The variablesin ourdatainclude:

e Arrival Datetime:time of patient’s arrival

e ED Depart Datetime:time of patient’s departure from ED

e We usethedifference between ED departure and arrival times to compute

length of stayin ED

e Hospital Discharge Datetime:time of patient’s discharge from hospital (same

as ED departtime if patient was not admitted.

21
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Acuity Level: this can be defined as “The measurement of the intensity of care
required fora patient accomplished by aregistered nurse”**.This plays amajorrolein
determining how much nursing care a patientneeds. The levelsare:™
1. Resuscitation: This group of patients requiresimmediate lifesaving
intervention orareinan unresponsive state.
2. Emergent: The patientsinthis category arein a high risk condition and might
be confused, lethargic, disorientated in distress orin severe pain
3. Urgent: Patientsinahigh risk situation but with stable vitals. This group
requires severalresources like, 1.V, lab tests, X-rays etc
4. Semi-Urgent: Patientsinastable condition requiringone ortwo resources
5. NonUrgent: Patients notrequiring any resources.
First Assigned Nurse Start Datetime: thisis the time when the nurse started attending to
the patient (the difference with arrival time gives us the waittime).
Age at Admit: Age of patient at time of admits.
Gender: Sex of patient.
Inpatient Admit Datetime: time the patient was admitted.
Ready for Discharge Datetime: time the patient was ready to be discharged.
Ready for Inpatient Admit Datetime: time the patient was ready to be admitted.
Roomed Datetime: time the patient was putina room

Transfer Datetime: time of patient transferto anotherfacility.
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On average, there were about 58 daily ED visits from January 2009 to December

2012.

In 2009 the mean was 64, 61 in 2010, 56 in 2011 and 52 in 2012; we observe that

thereisadeclinein patient count, from 64 to 52 within fouryears.

.

Table 1: Average Daily ED Daily Attendances

62

70.7

62.5

66.4

69.1

62.3

61.2

59.2

61.8

72.7

56.5

56.1

57 60.4

59.5

54.9

59.1

63.5

61.9

63.4

63.7

61.9

61.2

58.0

58.9

73.9

69.4

61.7

62.7

49.2

53.0

50.4

50.6

49.7

47.9

44.0

48.8

48.3

51.1

55.4

55.5

49.4

52.8

49.2

49.7

58.9

58.9

58.9

61.6

57.2

58.3

55.7

56.8

58.2

53.0

54.5



24

We graph the total count of patients foreach month by year:

Mean Daily Count of Patients by Year
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Figure 2: Graph of Mean Daily Count by Year

From the above graph we see that 2009 and 2010 track closely, 2011 tracks
closely withthe previous years until May but then we notice a decline and this decline
continuestill 2012. We also observe that the overall mean drops after May. This dropin
patient count might be due to certain factors which are beyond the scope of this study.
Alsowe see a similar pattern of behavior of the curves. We can say that our data shows a

monthly orseasonal pattern. We also plot the data for each day of the week:
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Count of patients by day of the week
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Figure 3: Graph of Patient Count by Day of the Week

Here also we see can identify patterns and trends;

Saturday and Sunday have the highest patient count significantly higherthan the
week days and this might be due to the fact the hospital is situated in aresidentialarea
and most people are home on the weekend as opposed to week days when most
residents are away at workinthe metro area. Also we see that Monday has a higher
volume than the Tuesday, Wednesday, Thursday and Friday. This leads us to assume our
data has a weekly pattern. We graph the hour of the day foreach day of the weekto see

if there is any intraday patterns for our data:
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Figure 4: Graph of Mean Patient Count by Hour of Day and Day of the Week

From our graph we see that all days of the week behave similarly from 1am till
7am, the average patient countwithin thattime isaboutone. After 8 am on weekends
(Saturday and Sunday) we see a spike in patient tally and the average patient count at this
time is approximately five patients and the peaks occurs about 10 am and continuesttill
about5pm where we see notice aslightdip between the hours of 6-9pm mostly on
Saturdays apart fromthis we see a sort of “merge” in pattern, furtherinvestigation
revealsthat the count decreased significantly between 3pmto 11pm in 2011 butthe
pattern remains the same.

For week days we beginto notice anincrease in patient countat 8 am, but here
there isan average increase of one patient as opposedtofive onthe weekend, then at
3pm we see anotherincrease thistime with an average of two patientsincrease. Atabout

6pm we observe thatthere isa merge with the weekend data.
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We see from our graph that again there is a differenceinthe weekends and

weekdays, also we can assume that our data has an intraday cycle.

Acuity

The proportion of patients based on acuity for 2009-2011 is giveninthe table

below:

Table 2: Acuity Level Proportions

Acuity levels Proportion

1 (Resuscitation) 0.16%
2 (Emergent) 9.89%
3 (Urgent) 51.93%

4 (Semi-Urgent) 33.87%
5 (Non Urgent) 3.21%
Blank 0.95%

From we tableitis observedthat 52% of the patients who come to emergency are
of level 3acuity (Urgent) while 34% are of the semi-urgent category, together both
groups account for 86% of the patientsarriving at the ED, while emergent accounts for
10% , Resuscitationisthe least encountered category.

The proportion based on acuityis plotted by hour of the day to observe the

distribution.
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PROPORTION OF PATIENTS BASED ON ACUITY LEVEL BY HOUR OF THE

DAY

80.0%
70.0% -

= =#= =2 (Emergent)
60.0% -
50.0% - /—f —— 3 (Urgent)
40.0% - -
30.0% - 4 (Semi-Urgent)
20.0% -

== 5 {Non Urgent
10.0% -QH*HMMQ-O-Q-NN 0-0-0-"'” ( gent)
0.0% %ﬁ#&m

—=¢ - 1 (Resuscitation)
1234567 8 9101112131415161718192021222324

Figure 5: Proportion of Patients Based on Acuity Level by Hour of the Day

Itisseenhere againthat the largest proportion of patients are urgentand semi
urgent, with urgent beingat 70% at midnight and reduce gradually to about 50% at 11
am, drops to 40% at 6pm and gradually rises again. The semi urgent patients onthe other
hand; at midnight the proportion forthis group is about 20%, this dropsa little at6 am
and gradually beginstorise to40% at 11 am, is steady till 4 pm, peaks at 6pm the begins
to decline again. Thisimplies that patients with more severe illness come in at night while
those whose symptoms are not as severe prefertocome in duringthe day. All the other
acuity levels are steady throughout the day with Emergent at about 10%, non-urgentand

resuscitation is about 5% and this is similarto what was obtained by Sun etal.>®
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AVERAGE TIME IN MINUTES PER HOUR OF THE DAY BASED ON ACUITY LEVEL
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Figure 6: Graph of Mean LOS in Minutes Based on Acuity Level

The overall average length of stay (LOS) inthe ED at any given time of the day is
135 minutes, with astandard deviation of 17 minutes. Fortable 2 we see that the mean
LOS for emergent category is 33 minutes more than the LOS of urgent category. Semi-

urgentspend 80 minutes less time than the Urgent category.

Table 3: Mean LOS by Acuity Level

Mean LOS in
Acuity levels Minutes
1 (Resuscitation) 152
2 (Emergent) 196
3 (Urgent) 163
4 (Semi-Urgent) 83
5 (Non Urgent) 71

OVERALL 135
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RESEARCH QUESTIONS

The main goal of thisstudyisto attemptto help attain more efficient allocation of
human resourcesinthe ED to maximize productivity. Thisisto be done by forecasting
how many nurses are needed to efficiently run the ED at a given time. Thisistoensure
that there are enough nursesinthe departmentto effectively take care of patients needs
and maximize productivity. This study will attemptto answerthe following questions:

e (Can patientarrival volume be predicted accurately?

e Usingthe same methods for predicting patient arrival, can cumulative patient

volume also be accurately forecasted?

e How muchdatais required to make the most accurate predictions?

e How accurate will six months predictions be?

e  Whichmethod(s) is mostsuitable forourdata?

e Can we predicturgentacuity patientarrival volume?

e What forecast methods can handle multi seasonality?

o |Ifthereisatrend (steadydeclineorincrease) inthe datawhich forecasts

method will most successfully capture it?

e How easily canthese methods be implementedinthe ED?

30
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The following forecasting methods will be used to build models to forecast ED
arrival patientvolume, cumulative patient volume, simulated data and urgent acuity
patient arrival volume. Data collected for 2012 was used forvalidation and longterm
forecast of about 180 days is considered. Forecast accuracy will be estimated using the
mean square error (MSE), root mean squared error (RMSE) and mean absolute error
(MAE).
%+ Linearregression
++» Seasonal autoregressionintegrated moving average (ARIMA)
++ Exponential smoothing methods which include; Holt-Winters exponential
smoothing method (HWT), Box-Cox transform, ARMA errors, Trend and
Seasonal components (BATS),proposed by De Livera® and TBATS
(Trigonometric Box-Cox transform, ARMA errors, Trend and Seasonal
components) methods also proposed by De Livera.’

% Factor latent structure model.
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HOW MUCH DATA IS NEEDED?

A major factor in determining the accuracy of our data is how much data is
needed to build the model. In exponential smoothing more weight is put on the most
recent observations but how much of this data is useful in the analysis.

Regression: Here three year data was also more appropriate that using just one
yearor twoyears and it also helps stabilize the variance in the data.

Time Series Models: We plotthe outof sample root mean square error (RSME)
for our three time series models usingone month, three months, sixmonths, nine
months, twelve months, twenty four and thirty six months to forecast one month ahead
(744 observations).

Factor Latent model: For this model we use the data from the average of the
three years to build our latent factor model. This is to stabilize the data and reduce the
effect of the decline experienced from June 2011. In other words, using only 2011 data

had more average than using the three year hourly average for each day,
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Out of sample RMSE plot for models
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Figure 7: Out of Sample RMSE for Time Series Models for Different Time Periods

From the plotit is observed that usingtwelve months of datais as effective as
using twenty-four months orthirty six forthe BATS and TBATS models butfor SARIMA
three years of datais a better choice, it performs as good as the other models at this
point. Forour models three years of datawas used, except forthe dynamiclatent factor

model where and average of the three year data was utilized.
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METHODS

The differenthourly dataseries that will be analyzed include:
* Patientarrival volume

*  Patientcumulativevolume

*  Simulated data

* Urgent acuity arrival data volume

The methods previously outlined will be evaluated.

SECTION I: PATIENT ARRIVAL COUNT

Regression Model

A regression modeltries to model or explain the relationship between aresponse
or dependentvariable and one or more predictor or explanatory variables.">>* This
relationship might be either associative or causative. The response must be a continuous
variable but the predictors can be nominal or continuous. There are several reasons for
regression modelingwhich includes:*'

e Prediction of future observations ( forecasting)

e Assessment of the relationship between explanatory and response variables

e General description of datastructure

34
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e Parameterestimation
e Variable selection
Here we are mainly concernedin usingregression forforecasting.

The basic form of a regression equationis:
Y=o+ BX+ BoXo + ot X +E
The parameters 3, B, f,,..., B, are called regression coefficients with /3,

known as the intercept € accounts forthe variationin y not explained by the x's . The

error terms are assumed to be independent andidentically distributed. The betas
measure the effect of each of each covariate, aftertakingintoaccountall other covariates
inthe model ** The best estimates of betaare the ones which minimizes the sum of the

squared errors, this implies we find the values of betas that minimize; **

Zn:giz :Zn:(Yi -5 _:B1X1,i _"'_ﬁkxk,i)z'

Fitting the Regression Model

The covariates or explanatory variables used for fitting aregression model are
categorical variablesfor, hour of the day, day of the weekand month of the year. For day
of the week variables, Wednesday is the reference category while for hour of the day
12.00 am is he reference Category and for Month of the year Decemberisthe reference
category.

There are 40 explanatory variablesintotal, with 1 or 0 values and using 40

degreesof freedom.
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The corresponding regression equation can be seenin appendix(Sitereference
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Afterfitting the regression modelwe plot the residuals to checkif the conditions

for regression are satisfied:

residual plot for regression model
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Figure 8a: Regression Residual Plot for Patient Arrival Count Data
ACF plot for reg residual
0 ]
o
LL'S _
Iz I3
O_ \_J“L _____ ..u.;lll.“.lu ez coodaaddne o o ool lidi = = = =
o T
| | | | | |
0] 20 40 60 80 100
Lag

Figure 8b: Regression Residual ACF Plot for Patient Arrival Count Data
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PACF plot for reg residual
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Figure 8c: Regression Residual PACF Plot for Patient Arrival Count Data

From the ACF and PACF plot of the residuals, it can be deduced that there is still
remainingserial dependence afterthe regression has explained 72.3% variation between
patientcountand the covariates. auto.arima functionis applied to the residuals to model
the remainingrelationship, and thenthe residualis forecasted and added to the
regression prediction.

The ARIMA model used to model the residualsis:

Series: arrival regression residuals
ARIMA (2,0,2) with non-zero mean

Coefficients:

arl ar2 mal ma2 intercept

1.3941 -0.5040 -0.5199 -0.0741 0.1112

s.e. 0.0622 0.0433 0.0626 0.0145 0.0517

sigma”2 estimated as 5.156: log likelihood=-58843.05
AIC=117698.1 AICc=117698.1 BIC=117747.2
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This means the non-seasonal ARMA model has the following coefficients; MA (2)
and AR (2) with zero differencingand non-zero mean, the AR coefficients are 1.39 and

-.50 and the MA coefficients are -0.52and -0.74. This model is selected based on AIC.

Time Series Methods

We plotthe first our data as a time series:

TIME SERIES PLOT FOR JANUARY 2009
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Figure 9a: Time Series Plot for Patient Arrival Data for January 2009
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Figure 9b: Time Series Plot for Patient Arrival Data for First Two Weeks of 2009
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From outtime series plotof January (744 hours), it can be seen that ourtime
series exhibits multiple seasonal patterns. These multiple seasonality is more visiblein
Figure 6b, plotforthe firsttwo weeks of January 2009. Intraday and weekly cycles are
observed fromthe plots. These cycles are not uniform(Figure 3), Saturday and Sunday
have a similar pattern, Monday tracks closely while the rest of the weekdays exhibita
similar pattern. The underlying levels of the daily patterns also vary from week toweek
but are highly correlated with the levels of the daysimmediately preceding. An effective
model forthis data must take into account this features without beingtoo complicated
msts.

The msts command inthe forecast package'’ in Risusedto plotour data soas to
capture the multi-seasonality feature. This command develops from the popular ts class
butithas an added feature which contains the vector of seasonal periods. All procedures
that work on the ts class also work on this class."’

Alsowe plotthe ACF and PACF graphs forour data:
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Figure 10a: ACF Plot for Patient Arrival Count Data
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Figure 10b: PACF Plot for Patient Arrival Count Data

This multi seasonal time series will now be used to build our models.

Seasonal Autoregressive Moving Average
(Sarima) Models

The general form of the multiplicative seasonal ARIMA model can be written as

(see Box etal.’page 333):

#, (B)D, (B )VV X, =6,(B)O, (B )W, +5

X; Is the time series observation

Where B is the backshift operator;thatis; Bth =X¢j» j=0,£1,+2,...

6(B) Is amovingaverage (MA) operator of the form:1+ 6B +...+ o, BY,

An autoregressive (AR) polynomial X isofthe form ¢(2) =1-¢z—..—@,2" (4, #0).

Thenthe AR process can be writtenas ¢(B) X, =W, .
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WhereWt iswhite noisethatfollows the normal distribution with mean 0and variance

o . Thiscan be written as: {Wt} ~WN(0,5?)
Where the resulting multiplicative process will be said to be of order

(p,d,q)x(P,D,Q), The ordinary or non-seasonalautoregressive and moving average

polynomials are represented by ¢(B) and &(B) of order p and ( respectively (also see

Shumway &Scoffer*’page 157) and the seasonal auto-regressive and moving average

componentsby @, (B®) and 0, (B*) oforders P and Q, and ordinary and seasonal

difference componentsby V¢ = (1-B)® and V2 = (1-B®)®.

For preliminary analysis the dataisfitasa time series with afrequency of 24 for
each day. auto.arima functionis used to fitan AR model a MA model and an ARMA
model. The “best” models chosen are then used to predictup to one hour ahead.

The chosen model forthe AR model is:

Series: Patient.arr.ct
ARIMA (47,0,0) with non-zero mean

For the MA modelitis:

Series: patient.arr.ct
ARIMA (0,0,10) with non-zero mean

For the ARMA modelis:

Series: patient.arr.ct
ARIMA (5,0,1) with non-zero mean



The plot forthe forecasts and the actual plotsis given below:
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Figure 11: Graph of AR, MA and ARMA Model Predictions/Actual 2012 Count

From this plotitcan be observedthatthese modelsare notable to predictour

data accurately. The predictions are flat around zero. Jones et al.>* stated that ARIMA

model performed worsethan the linearregression model.

Again we use the mstsfunctionto fita time series as earlierdescribed,

auto.arima functioninR (in the forecast package) isthen applied. This function generates

the best ARIMA model using multiple model selection criteria, and it also accommodates

covariates."’

We fittwo models, the first without covariates and the second we include the

covariates as we he selected modelisthen used forourforecast.

Sarima Model Result

The result for the SARIMA model selected by the auto.arima commandis:
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Series: Patient arrival count

ARIMA (3,1,3) (0,0,2)[24] with drift

sigma”2 estimated as 3.703: log likelihood=-54493.44
AIC=109006.9 AICc=109006.9 BIC=109088.6

This means the non-seasonal ARMA model has the following order; MA (3) and
AR (3) with one differencing and drift, the seasonal ARMA had only MA(2) with seasonal
lag of 24 (one day). The coefficients forthe non-seasonal AR models are 1.53,-0.48 and-
0.498 while forthe MA modelsare,-0.113, -2.25 and 1.6094.For the seasonal MA model
the coefficients are 0.169 and 0.090 respectively, this model was selected based on AIC.
The resultfor the selectionincluding the covariates (hour of day, day of week
and month of year) by the auto.arima commandiis:

Series: Patient arrival count
ARIMA (2,1,2) (0,0,1) [24] with drift

sigma”2 estimated as 3.086: log likelihood=-52095.61
AIC=104283.2 AICc=104283.4 BIC=104659.3

This means the non-seasonal ARMA model has the following order; MA (2) and
AR (2) with one differencing and drift, the seasonal ARMA had only MA(2) with seasonal
lag of 24 (one day). For the non-seasonal components, The AR coefficients are 0.467 and
0.027 while forthe MA theyare -1.31 and 0.316 respectively. Forthe seasonal MA the
coefficientis 0.0687 and the driftis 0.0001. This model was selected based on AIC.

These results are then used to forecast six months ahead to see how they would
performforlongterm predictions.

From the results, it was observed thatincluding covariates in the latter SARIMA

model is a significantimprovement from the former ARIMA model.



Exponential Smoothing Methods

Exponential smoothing can be defined as a process for repetitively updatinga
forecastin light of more recent experience.”? It assigns exponentially increasing weights
to more recent observations. Atime series model can be decomposed tothree
components; trend (T),cyclical component(C),seasonality (S) and error component®.This
method has been around since the 1950s buta modeling framework applying stochastic
models, likelihood calculations, prediction intervals and model selection procedures were
not developed until more recently in 1997 and 2002.%° The state space model makes

room forconsiderable flexibility in the specification of the parametric structure of this
method.*

A linearinnovations state space model can be defined as follows
Let Y, =observationattime t
X; = state vector

The model can be written as:

Yi :W’Xt—l+gt’ (1.1a)

X =FX_,+0¢, (1.1b)
Where {8t} isa white noise series, F , g and W are coefficients. Equation (1.1a)
isknown as the measurement equation; it describes the relationship between the

unobservedstates X,_; and the observation Y, . Equation (1.1b) is the transition equation.

It describes the state evolution of the states overtime. Using the identical errors for both

models makesitan “innovation” state space model. These equations are identical to
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several exponential smoothing methods. One advantage that exponential smoothing
models have over ARIMA modelsis that the trend, cyclical components and seasonality
are stated explicitly in exponential smoothing models but thisis notseen as easilyin the
ARIMA models®. Another useful attribute of the exponential state space modelis thatall
the model parameters can be selected automatically without any input fromthe user,
they are easily automated.”

The Holt Winters method generalizes exponential smoothing method to
accommodate trend and seasonal variation.* There are two classes of these models:
Additive and multiplicative seasonal models. A model can be described as seasonal if it
displays characteristics that recurs every S period.”* The period Sis the season length.

An additive model isamodel that can be expressed as:

Data=Trend+ Seasonal Effect +cyclical component +Residual

While amultiplicative model can be written as:
Data=Trend X Seasonal Effect X cyclical component X Residual

A multiplicative modelcan be transformed to an additive model by take the log of
the data”?

For our models we will onlybe considering at additive models.

The traditional Holt Winters method has been modified to handle awidervariety
of seasonal patterns.’

The BATS modelis one of such modifications. It stands for Box-cox transform,

ARMA errors, Trend and Seasonal components. It comprises of the following components;



46

(o,9, P,q,M;,M,, .., M ) @ indicates the Box-Coxparameter, ¢ isthe damping

parameter, P and ( are the ARMA parameters and the seasonal periods (ml,...,mT) N

The HW method can be representedin this form, forexample, BATS (1, 1, 0, 0, M,
) representsthe underlying modelfor the traditional Holt-Winters additive single

seasonal method. BATS (1,1, 0, 0, M, , M, ) represents the double seasonal Holt-Winters

additive seasonal described by Taylor.>**°

In the TBATS model the seasonal componentinthe BATS modelisreplaced by the
trigonometricseasonalformulation. Itcan be represented as
(. ¢,p,0,{m, Kk },{m,,K,},....{m; ,K; }) ° Due to the feature that it relies on
trigonometricfunction, it can be used to model non-integer seasonal frequencies. Some
of the advantages of the TBATS model are that, it allows forthe accommodation of
nested and non-nested multiple seasonal components; it handles typical nonlinear

featuresthatare oftenseeninreal time series. Also, itaccommodates any

autocorrelationinthe residuals.

Fitting the BATS And TBATS Models

Alsolike in previous methods we use 2009-2011 data to fit our model and 2012

data for validation.

BATS output.

BATS(0.003, {1,1}, 0.999, {24,168})

Call: bats(y = patient arrival count)
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Parameters
Lambda: 0.003109
Alpha: 0.008765254
Beta: -4.83746e-06
Damping Parameter: 0.998953
Gamma Values: 0.01069493 4.239887e-05
AR coefficients: -0.050986

MA coefficients: 0.091149

Lambda represents the Box-Cox transform which is 0.003 in this case and the
smoothing parameters are alpha, betaand gamma which are 0.0088, -0.0000048, 0.011
and 0.000042 respectively .The damping parameteris0.999 while the ARMA orderis AR
(1) and MA (1) with coefficients -0.051 and 0.091 respectively and finally the seasonal
periods are 24 representing daily cycle and 168 representing weekly cycles, with 196

estimated parameters.

TBATS output.
TBATS (0.001, {4,3}, -, {<24,6>, <168,6>})
Call: tbats(y = patient arrival count)
Parameters

Lambda: 0.000971

Alpha: 0.00572104

Gamma-1 Values: 6.403008e-07 1.90908e-06

Gamma-2 Values: -8.633531e-06 6.324464e-07

AR coefficients: 0.089391 -0.095853 0.031388 0.012412
MA coefficients: -0.005474 0.126531 0.010637
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Lambda represents the Box-Cox transform which is 0.001 in this case and the
smoothing parameters are alphaand gamma values. The is no damping parameterin this
model while the ARMA orderis AR (4) and MA (3) with coefficients seenin the output
above andfinally the seasonal periods are 24 representing daily cycle and 168

representing weekly cycles, with 32 estimated parameters.

DynamicLatent Factor Model by Matteson

There are a large number of people who can come into the emergency
departmentatany time and each one of them as a low probability of doing so. Another
observation made from the patientarrival volume is thatit varies with time of the day,
thusit is nonstationary. Italso exhibits aseasonal pattern;itvaries over weeks and
months. The Palm-Khintchine theorem states that the arrival process thatarisesfroma
large number of independent sources, where no source contributes too much to the
arrivals, is approximately a Poisson process,” ** based on these we assume that the
patient arrival volume has a Poisson distribution. An extension of the Palm- Khintchine
theoremisthatthe suitable modelforarrivalsinanonhomogeneous Poisson process
(NHPP).*®

NONHOMOGENEOUS POISSON PROCESS (NHPP)*:

A counting process {Y (t) :t > 0}{ issaidtobea

Nonhomogeneous Poisson process with intensity function l(t) , 0> 0if
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ii. Foreacht > 0,Y (t) has a Poisson distribution with mean
m(t) = I} A(s)ds.

ii. Foreach 0<t <t,<..<t ,Y(t),Y(t)-Y(),. . Y )-Y(t, ) are
independentrandom variables.
Several studies have been carried out based on this assumption formodeling call center

8,16,27,34 27
P2 Matteson

arrival rates which has similar underlying assumptions as our data.
proposed amodel whichis based on the assumption thatthe datahas a Poisson
distribution and accommodates low counts whichis characteristic of our data. This model
avoids use of variance stabilizing transformations. It assumes that the intensity function is
arandom process andthat it can be forecast using previous observations. This
interpretationissimilarto a Cox process. A Cox processisa Poisson processwitha
stochasticintensity and can be referred to as a doubly stochastic Poisson process®. The
main difference hereisthat while ina Cox process the random intensity depends mainly
on itsown history here italso depends on previous observations. The random intensity

functionis partitioned into stationary and nonstaionary components. We would use this

method to model our data.

Notation

Our datais collected hourly, and so we assume (following the method proposed
by Matteson®’) thatthe latent call intensity function for these periods can be

approximated to be constant, and our data was collected sequentiallyintime. We

suppose total patientarrival follow anonhomogeneous counting process {Yt ‘t € Z}with
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discretetimeindex t . Underlyingthisisalatent, real-values nonnegative process

{4 :teZ}.1tisfurtherassumed that conditional on 4, , Y, follows a Poisson distribution

withmean 4, .

As seenin figuredthe pattern of patientarrival ina given day has a distinct
pattern even though the weekdays are closely similar. They considered an arrival process

that has been repeatedly observed in a 24 hour time period (one day). Let

{y,:t=1...n}={y,:i=1..d;j=1..,m} denotethesequence of call arrival counts,
observed overtime period { denote the sequence of patientarrival counts, observed over
time period {, which corresponds one-to-one with the j th sub-period of the 1 thday, so

that n=dm. Theirbasicideahere wasto model the arrival intensity At foreach unique

day using some smooth curves.

A, Is defined as the conditional expectation of Y, given F_; and X where X is
covariate information for each model (calendarinformation; day-of-week and week-of
yearwere used here) represented by X ={X1, ey Xn} and Ft isa o —field generated by
Y, ... Y. Let 14 = E(Y, | X) > 0denote the conditional mean of Y, givenonlythe
covariates. Let

@ A=EM IR X) =B 4| Fy, X) = i,
In which 77, > 0 isreferred to as the conditional intensityinflation rate (CIIR). By

construction,

E(7, 1 X) = E(EQY, | oy, X)1 XD/t =, ECY,/ X)/ 44, =L
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The CIIR was proposed to model any remaining serialdependence in patient
arrival for available covariates. This serial dependence could be due to various factors that
may or may not be measureable.

MODELLING: A dynamiclatent factor model with integervalued time seriesis
combined with covariates. These covariates are introduced through simple constraints on
the factor loadings. Smoothing splinesis applied to estimate the model because it forces
smooth evolutioninthe factorlevels and loadings.

The factor model provides a parsimonious representation of the nonstationary
patterninintraday calls arrivals, while the time series models capture the remaining serial
dependence inthe patientarrival process.

DYNAMIC LATENT FACTOR: Assume M consecutive observations per day are
available for d consecutive days with no omissionsinthe record. Let Y = (yij)denote the
d x m matrix of observed counts foreach day I over each sub-K period j .Let
5 =E(Y;; | X) and M = g, denote the corresponding d x mlatentintensity matrix. A

K-factor modelisintroduced to reduce the dimension of the intensity Matrix M.
They assumed thatthe intraday pattern of expected patientarrivals onthe log

scale can be well approximated by alinear combination of (asmall number) K factorsor

functions, denoted by f, fork =1...,K . The factors are orthogonal length- m vectors.

The intraday arrival rate model 4 overa particularday I is given by

(2 logu =L, f+..+Lf,
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Whenis much smallerthaneither m ord , the dimensionality of the general
problemisgreatly reduced. K isdetermined manually.

In matrix form we have
(3)  logM =LFT,
inwhich F =(f,,..., f,) denotesthe mxk matrix of underlyingfactorsand L denotes
the corresponding d x K matrix of factor loadings, both of which are assumed to be full

column rank.

Since neither F nor L are observable, the expression (3) is notidentifiable. We

furtherrequire F'F =1 toalleviatethis ambiguity and we iteratively estimate F and L.

To furtherreduce dimensionality substantially, constraints are imposed with
certain conditions (see paper) on the factorloading matrix L .

The constraints considered by Matteson include auxiliary information about the
rows and columns of the observations Y to simplify estimation and improve out-of-
sample predictions. The day-of-week and week-of-year effects are incorporated into the
factor loadings by specifying appropriate constraints.

Another majorassumption considered by the authorsisthat the nonstaionary
intensity process L4 varies smoothly overthe hours j of eachday i . To include this
smoothnessintothe model, Generalized Additive models (GAMs) is used in the
estimation of the common factors f, . GAMs are generalized linear models with the linear

predictor partly dependent, linearly on some unknown smooth functions.*

Matteson recommended the use of the gam functionin the mgcv library.*®
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To estimate model (2) usingthe gam function, thin plate regression splines with
ten-dimensional basis, Poisson family, and the log-link functions were used. These spines

are alowrank, isotropicsmootherwith any desirable properties.(see wood 2006). The

degree of smoothness forthe factors fk andthe loadings functions are automatically

estimated by generalized cross validation (GVC).

Adaptive Forecasting with Time Series Models

Let ét =Yt /,LAIt denote the multiplicativeresidual in period t implied by the fitted

values /I, from afactor model as earlier described. Time series plots of the residuals even

though sees stationary, reveals some serialdependence. Atime series model is

considered forthe latent ClIR process 77, = E(Y, / 14 | F,_;, X) to explain this dependence.

We look at the ACFand PACF plots for €, .

To depictthe seriesdependence ageneralized autoregressive linear model,

defined by recursion
(4) n=w+a€ + P,

To ensure positivity certain restrictionsare employed; @ >0, @, >0 and a + [ <1(
to guarantee stationarity of 77, ).
The resultingmodel for Yt when (4 is constantisan integer-GARCH (1, 1) model.

When ﬂt is a nonstationary process, the conditional intensity

A = i,
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isalso nonstationary. This 77, is the stationary multiplicative deviation orinflation rate,
between A, and 4, . Let

ét =Y, /jt
representthe multiplicative standardized residual process given an estimated CIIR process

ﬁt the model defined by (4) adequately accounts for the observed linear dependencein

ét , thenthe autocorrelation plot of é‘t should not be statistically significant.

Fittingthe Dynamiclatent Factor Models

The data from 2009-2011 was usedtofit the model, and use 2012 data for
validation. The average for the three years was used after the day of the week was
alignedtofitthe corresponding covariates. A factorloadings model with constraints and
smoothingsplines with K = 3 was applied after using multiplicative root mean square
error (RMSE) to determine the best fit for K inourmodels. We also added the CIIR
process through time series models earlier defined. From our ACF and PACF plots we do
not expectsignificantimprovementfromthe CIIR process because the serial dependence

inthe residuals after fittingthe factor model appears weak.
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Figure 12a: ACF Plot for Factor Model Residuals for Patient Arrival Data
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Figure 12b: PACF Plot for Factor Model Residuals for Patient Arrival Data
Results

Forecasting evaluation. There are several methods that can be used to assessthe

performance of our forecasting models.'® Some of these basic methods include; mean
absolute error (MAE), mean absolute percentage error (MAPE), mean square error (MSE),

root meansquare error (RMSE). Error is calculated by subtracting the forecasted values
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fromthe observedvalue, foreach observation. The mean absolute errorinvolves finding
the absolute value of the errors, summingthemall up and dividing by n (samplesize).The
mean square error involves squaringall the errors, then summing them up, finding the
mean, while the RMSE involves taking the root of the MSE. The mean absolute
percentage erroris calculated by dividing the absolute error by the observed valuefor
each observation, summingthem up, dividingby N and multiplyingby 100 to get a
percentvalue.

The RMS and the MSE are the most commonly used of these methods *dueto
theirrelevance in statistical modeling. The RMSE methodis on the same scale as the data
soitis more preferable tothe MSE but they are both more sensitive to outliers than the
MAE. Anotherdrawback tothe RMSE and MSE is that they increase as the variance
associated with the frequency distribution of errorin the modelincreases.*” This occurs
mainly when the errors are greaterthan one, the reverse isthe case when the errors are
lessthan one. The mean absolute percentis calculated by dividing the absolute error by

the observedvalue, finding the mean and multiplying by 100. The major drawback for this
methodisthat whenthe observed Y, iszerothisthen thiscalculationisundefined. There

are some zerosinour data and so this method is unsuitable forourdata set,

Let € = Yiconserved) ~ Yi(predicted)

Then MAE =%i|ei|

i=1

Also RME :EZef , RMSE = /EZef , and
=] n'=
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MAPE =3imx1oo

i1 Y
The out of sample forecast accuracy for the first six months of 2012 data (4368)
observations is calculated using MAE, MSE and RMSE and the results are givenin Table 4
below.

Table 4: Patient Arrival Count Forecast Evaluation Results

METHODS BATS TBATS SARIMA  SARIMA+REG L.REGRESSION Factor FACTOR
MODEL+CIIR
MAE 1.16 1.15 1.60 1.21 1.33 1.33 1.33
MSE 241 2.36 3.67 2.50 2.88 3.05 3.04
RMSE 1.55 1.53 1.92 1.58 1.70 1.75 1.74

Observed/Predicted for arrival patient count
BATS

TBATS

SARI

SARIREG
= Factor+CIIR
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Figure 13: Graph of Predicted/Actual 2012 Patient Counts for Patient Arrival Data

Conclusion

We see fromthe Table 4 thatthe TBATS model has the smallest of all three
matrices and the SARIMA model without covariates performed the worst. The BATS
model performed second to the TBATS model. We also see that adding covariatestothe

SARIMA model improved its performance quitesignificantly. Most of our methods have
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the ability to produce reliable long term forecasts (up to one yearahead), whichis needed
for capacity planning. Surprisingly linear regression performed betterthan the SARIMA
model with covariates. For our latent factor models with constraints and smoothing
splines, itis observed thatthey are also same and thisis expected because the serial
dependence inthe error after fitting the model is not significant. A major drawback for
this modelis that it does not produce confidenceintervals or predictionintervals by

default whilethe other models are capable of doing so.

SECTION II: CUMULATIVE PATIENT COUNT

Previously only the patientarrival count was considered now we would be looking
at the cumulative patient count foreach hour. Thisimplies thatif a patientcame in at
12.35am and was discharged at4.25 am, he would be counted for1.am, 2.am 3.am and
4.am because he wasin the ED at these times. We would be applying same methods to
seeif we would get similarresults.

To achieve thisfrom ourarrival data a variable was created called length of stay in
minutes, thisis the duration of the patient’s stay in the ED. If the Length of stay isless
than 60 minutesthe patientis only counted forone time period which is the arrival hour,
if a patientstayslongerthentheyare countedforevery hour presentinthe ED. The main
drawback of this methodis this, suppose a patient comesinat 11.38am and leaves at
12.20pm, this patient would only be counted for 11am and notfor 12 noon. The systemin
the hospital is able to successfully generate the cumulative data but this was not available

at the time of this study.



Regression Model

The covariates or explanatory variables used for fitting the regression model for

the cumulative patient countare the same as used for patient arrival count. They are

categorical variablesfor, hour of the day, day of the weekand month of the year. Again

for day of the week variables, Wednesday is the reference category while forhourof the

day 12 midnightisthe reference Category and for Month of the year Decemberisthe

reference category.

There are 40 explanatory variablesin total, with 1or 0 values and using 40

degreesof freedom.

Afterfittingthe regression model we plotthe residuals to checkif the conditions

for regression are satisfied.

count
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Figure 14a: Regression Residual Plot for Cumulative Patient Data
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Figure 14b: ACF Plot for Cumulative Patient Data
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Figure 14c: PACF Plot for Cumulative Patient Data

From the ACF and PACF plot of the residuals, it can be deduced that there is still
remainingserial dependence afterthe regression has explained 82.46% variation

between cumulative patient countand the covariates. Auto.arima functionis again



appliedtothe residualsto model the remaining relationship, and then the residual is

forecasted and added to the regression prediction.

Series:
ARIMA (2,0,2)

Coefficients:
arl

1.3941

s.e. 0.0622

ar2
-0.5040
0.0433

sigma”2 estimated as 5.156:

AIC=117698.1

with non-zero mean

mal
-0.5199
0.0626

AICc=117698.1

cum data regression model

ma2

-0.0741
0.0145

intercept
0.1112
0.0517

log likelihood=-58843.05
BIC=117747.2

This means the ARMA model has the followingorder; MA (2) and AR (2) with
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zerodifferencingand non-zero mean. The AR coefficients are 1.394 and -0.504 while for

the MA theyare -0.52 and 0.0741, respectively.

Time Series Plot

Patient count for the first 2 weeks (336 hours)
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Figure 15a: Graph of Cumulative Patient Count for First Two Weeks of 2009

We plotthe two series the patient countand the cumulative patient count for

the firsttwo weeks:
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Figure 15b: Graph of Arrival/Cumulative Patient Count for First Two Weeks of 2009

Itis observed that both seriesfollow asimilar pattern, butthe cumulative series
isappearssmootherthan the patientarrival countand thisis expected.

We plotthe ACF and the PACF for the cumulative patient count:
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Figure 16a: ACF for Cumulative Patient Count Data
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Figure 16ba: PACF for Cumulative Patient Count Data

Sarima Model

The resultfor the SARIMA model without covariates as described earlieris for

the cumulated patient countis:

Series

: Cumulative Patient Count

ARIMA (4,1,4) (2,0,2) [24]

sigma”2 estimated as 5.015:

AIC=11
arl

sarl

0.0381
EBEE

0.0545

4468.6
ar?2
sar2
0.9684
0.3828
0.0731
0.0615
smal
-0.3321
0.0596

AICc=114468.6

ar3

-0.8247

0

.6129

0.0426

0.

-0.
0.

0614
sma2
6134
0576

ar4

0.5300

0.0413

BIC=114578.6

mal

-0.0597

0.0400

ma?2

-1.0721

0.0729

log likelihood=-58474.6

ma3

0.6958

0.0479

ma4

-0.5801

0.0510
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From the above output, the non-seasonal ARMA model has the following order;
AR(4) and MA (4) with one differencing and drift, the seasonal ARMA has AR(2) and
MA(2) with seasonal lag of 24 (one day). Forthe non-seasonalcomponents, The AR
coefficientsare 0.6129, 0.9684, -0.8247 and 0.53 while for the MA they are -0.06,-1.072,
0.7 and -0.58 respectively. Forthe seasonal components the AR coefficients are -0.038
and 0.383 while the MA coefficients are -.33and -0.61. This model was selected based on
AlC.

The corresponding SARIMA model with covariates resultis:

Series: Ccumulative Patient Count
ARIMA(4,1,5) (2,0,0) [24] with drift

Coefficients:
arl ar2 ar3 ar4d mal ma2 ma3 ma4 mab
sarl
0.1859 0.5058 0.6558 -0.5935 -0.3050 -0.7197 -0.7456 0.6786 0.098
0.0429
s.e. 0.0266 0.0246 0.0190 0.0176 0.0273 0.0247 0.0218 0.0266 0.010
0.0063
sar2 drift
0.0029 1le-04
s.e. 0.0063 4e-04

From the above output, the non-seasonal ARMA model has the following order;
AR (4) and MA (5) with one differencing and drift, the seasonal ARMA has AR(2) with
seasonal lag of 24 (one day) and drift. For the non-seasonal components, The AR
coefficients are 0.186, 0506, -0.6558 and -0.56 while forthe MA they are -0.305,-0.72, -
0.746, 0.679 and -0.098 respectively. Forthe seasonal components the AR coefficients are

0.043 and 0.003. This model was selected based on AIC.



BATS and TBATS Model

Alsolike in previous methods we use 2009-2011 data to fit our model and 2012
data for validation. The output forthe cumulative patient countis given below:

BATS (0.003, {1,3}, 0.999, {24,168})
Call: bats(y = cum.patient count)
Parameters
Lambda: 0.00347
Alpha: 0.003780952
Beta: -1.665636e-06
Damping Parameter: 0.998993
Gamma Values: -1.273514e-05 0.000489981
AR coefficients: 0.660068
MA coefficients: 0.067323 -0.016772 -0.014099

Sigma: 0.3418187
AIC: 306764.5

Lambda represents the Box-Cox transform which is 0.003 in this case and the
smoothing parameters are alpha, betaand gamma which are 0.004, -0.0000017,-
0.000013 and 0.00049 respectively .The damping parameteris 0.999 while the ARMA
orderis AR(3) and MA (1) with coefficients 0.067,-0.017 and -0.014 and for MA is 0.66
respectively and finally the seasonal periods are 24 representing daily cycle and 168
representing weekly cycles, with 198 estimated parameters.

For the TBATS model the corresponding outputis;

TBATS (0.164, {2,1}, 0.929, {<24,6>, <168,2>})
Call: tbats(y = cum.patient count)
Parameters

Lambda: 0.164324

Alpha: 0.01012952

Beta: -0.0003620897

Damping Parameter: 0.928777
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Gamma-1 Values: 0.0001652112 0.0001819758
Gamma-2 Values: 9.49861e-07 -0.00115996
AR coefficients: 1.709499 -0.716389

MA coefficients: -0.977066

Sigma: 0.4436025
AIC: 304777.9

Lambda represents the Box-Cox transform which is 0.164 in this case and the
smoothing parameters are alpha, betaand gamma which are 0.01, -0.00037,- 0.00017 ,
0.00018,0.00000095 and -0.0012 respectively .The damping parameteris0.929 while the
ARMA orderis AR(2) and MA(1) with coefficients 1.71and -0.72and for AR is -0.Finally
the seasonal periods are 24 representing daily cycle and 168 representing weekly cycles,

with 21 estimated parameters.

Factor Latent Model

We use only the averaged countforthree years afterthe alignmentis done for
the corresponding covariates. Same method is applied but with K =4, and the CIIR
processisalsoadded. Whenthe residual is plotted the serial dependent appearsto be
strongerthan earlier observed, so we expectthatthe predictionsincluding the CIIR
componentwould be animprovement from the factorlevel only prediction (Figure 15a

and b here).
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Figure 17a: ACF Plot for Factor Model Residuals for Cumulative Patient Data
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Figure 17b: PACF Plot for Factor Model Residuals for Cumulative Patient Data
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Results

Forecasting evaluation. The out of sample forecastaccuracy for cumulative

patient countdata for the first 26 weeks (4368 observations) of 2012 is calculated using

MAE, MSE and RMSE and the results are givenin Table 5 below.

Table 5: Cumulative Arrival Count Forecast Evaluation Results

METHODS BATS TBATS SARIMA+REG SARIMA  L.REGRESSION Factor FACIOR
MODEL+CIIR
MAE 241 243 4.68 5.68 2.67 3.25 3.23
MSE 10.07 10.41 28.43 47.94 11.53 18.89 18.33
RMSE 3.17 3.23 5.33 6.92 3.40 4.35 4.28

Here we observe that based on all three metrics that the BATS method has the
bestforecastaccuracy followed by the TBATS method. The SARIMA with covariates,
performed worse that the SARIMA without covariates. This may be due to the ARIMA
models notbeingsuitableforlongtermforecasts. Also the latent factor model with the
ClIR factor performed worse that the that factor model without the CIIR, this may be due

to the intGARCH(1,1) not being suitable for this data.
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Figure 18: Graph of Predicted/Actual 2012 Patient Counts for Cumulative Patient Data

SECTION I1l: ANALYSIS OF URGENT ACUITY

As earlierobserved, of all the patients that came into the ED from 2009-2011,

52% were of the urgentacuity category,34% the semi-urgent category, 10% were of the
emergent category whilethe rest were resuscitation, non-urgent and unknown
categories. Alsoitwasseenthatthe length of stay foreach patientdependsonthe
category and thisleadstoa furtherstudy of the urgent category.

The average proportion of acuity for each hour by day was calculated and applied
to the arrival counts predicted by each method previously. Also the methods were
applied onthe arrival counts data and predicted for2012. These methods are then
compared.

The average hourly urgentacuity category for three years for each day of the

weekis plotted below:
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Figure 19: Mean Proportion of Urgent Acuity Patient for One Week

Regression Model

The covariates or explanatory variables used for fitting the regression model for
the urgentacuity group are the same as used for patientarrival count. They are
categorical variablesfor, hour of the day, day of the week and month of the year. Again
for day of the week variables, Wednesday is the reference category while for hour of the
day 12 midnightisthe reference Category and for Month of the year Decemberisthe
reference category.

There are 40 explanatory variables in total, with 1or 0 values and using 40
degreesof freedom.

Afterfitting the regression modelwe plot the residuals to checkif the conditions

for regression are satisfied:
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Figure 20a: Regression Residual Plot for Urgent Patient Acuity Patient Data
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Figure 20b: ACF Plot for Regression Residual for Urgent Acuity Patient Count
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PACF plot for urgent reg residual
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Figure 20c: PACF Plot for Regression Residual for Urgent Acuity Patient Count

From the ACF and PACF plot of the residuals, it can be deduced that the residuals
of the urgentregression modelis white noise, thereis noindication of any serial
dependence afterthe regression has explained about 60% of the variation betweenthe
urgent patientarrival count and the covariates. Since there is negligibleinformationin the

residuals, nofurtheranalysisis done onthem.

Time Series Method

Here the urgentacuity seriesis plotted with the arrival countdataseriesto

compare patterns.
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Figure 21: Graph of Urgent Acuity Patient Arrival Count/Patient Arrival
Count for Two Weeks
Itis observedthatboth seriesfollow asimilar pattern.
The ACF and PACF plots of the urgent acuity level time series models are given
below:
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Figure 22a: ACF Plot for Urgent Acuity Patient Arrival Count Data
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PACF plot for urgent Acuity arr. ct
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Figure 22b: PACF Plot for Urgent Acuity Patient Arrival Count Data

Alsolike in previous methods we use the first three years of the datato fitour

model and the last year (2012) for validation. The output forthe urgentacuity arrival data

isgivenbelow.

Sarima Model

The resultfromthe auto.arima function forthe SARIMA model without covariates

as described earlierisforthe simulated datais:

Series: urgent patient count
ARIMA (3,1,4) (2,0,2) [24]

Coefficients:
arl ar2 ar3 mal
0.1317 0.2349 0.1363 -1.0874
sar2 sma 1
0.3097 -0.6342
s.e. 0.0042 0.0071 0.0042 0.0066
0.0580 0.0573
sma 2
-0.3285
s.e. 0.0556

ma?2
-0.1264

0.0122

ma3 ma 4 sarl
0.1001 0.1146 0.6877
0.0121 0.0066 0.0581
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sioma”2 estimated as 1.398: log likelihood=-41686.72
AIC=83396.95 AICc=83396.96 BIC=83495.07

From the above output, the non-seasonal ARMA model has the following order;
AR (3) and MA (4) with one differencing The seasonal ARMA has AR(2) and MA(2) with
zerodifferencing with seasonal lag of 24 (one day) . For the non-seasonal components,
The AR coefficientsare 0.132, 0.235 and 0.1363, while forthe MA theyare -1.09, -0.13,
0.01 and 0.11, respectively. Forthe seasonal components the AR coefficients are 0.69 and
0.31 and the MA coefficientsare -0.63and -0.33. Thismodel was selected based on AlC.

The output for the SARIMA model with covariatesisas follows:

Series: urgent patient count
ARIMA(2,1,2) (2,0,2)[24] with drift

Coefficients:
arl ar2 mal ma?2 sarl sar2 smal sma2
-0.8103 0.0215 -0.1572 -0.8328 0.3912 -0.2706 -0.3624 0.2558
le-04
s.e. 0.1596 0.0080 0.1597 0.1591 0.1815 0.1169 0.1822 0.1153
drift
le-04

sigma”2 estimated as 1.36: log likelihood=-41325.85
AIC=82749.28 AICc=82749.46 BIC=83149. 93

From the above output, the non-seasonal ARMA model has the following order;
AR(2) and MA(2) with one differencing with drift. The seasonal ARMA has AR(2) and
MA(2) with zero differencing with seasonallag of 24 (one day). For the non-seasonal
components, The AR coefficients are -0.81and 0.022 while the MA Coefficients are -0.16
and -0.83 respectively. For the seasonal components the AR coefficients are 0.39 and
-0.027 also the MA coefficients are -0.36 and 0.026. This model was selected based on

AlC.
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BATS and TBATS Model

The BATS model that best suits our simulated datais as follows:

BATS (0, {0,0}, -, {24,168})

Call: bats (y urgent patient count)

Parameters
Lambda: 0.000114
Alpha: 0.004796037

Gamma Values: 1.295485e-07 -1.221693e-08

Lambda represents the Box-Cox transform which is 0.000114 in this case and
the smoothing parameters are alpha and gamma parameters which are 0.005,
0.00000013 and -0.0000000122 respectively. There are no damping parameterand ARMA

errors for this model. Finally the seasonal periods are 24 representing daily cycle and 168
representing weekly cycles, with 193 estimated parameters.

For the TBATS model the corresponding outputis;
TBATS (0, {1,1}, 0.997, {<24,6>, <168,6>})

Call: tbats(y = urgent patient. count)
Parameters

Lambda: 3e-06

Alpha: 0.004296292

Beta: -1.200812e-05

Damping Parameter: 0.996749

Gamma-1 Values: 6.213437e-06 3.166494e-06
Gamma-2 Values: -1.890419e-08 3.477005e-08
AR coefficients: 0.018446

MA coefficients: 0.003665
Lambda represents the Box-Cox transform which is approximately zero in this
case and the smoothing parameters are alpha, betawhich is 0.0043, -0.000012 and

gamma coefficients which are almost zero. The damping parameteris 0.998 while the
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ARMA orderis AR (1) and MA(1) with coefficients 0.018 and for MA 0.0037.Finally the
seasonal periods are 24 representing daily cycle and 168 representing weekly cycles, with

28 estimated parameters.

Factor Latent Model

We use only the averaged urgentacuity count forthree years afterthe alignment
is done for the corresponding covariates. Same method is applied with K =4 , and the
ClIR processisalsoadded. When the residual is plotted the serialdependent appears to
be strongerthan earlierobserved, so we expectthatthe predictionsincluding the CIIR
componentwould be animprovement from the factorlevel only prediction.

The ACF and PACF plots for the residuals after fitting the latent factor model are

shown below:
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Figure 23a: ACF Plot of Factor Model Residuals for Urgent Acuity Arrival Patient Data
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PACF plot for urgent latent factor model
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Figure 23b: PACF Plot of Factor Model Residuals for Urgent Acuity Arrival Patient Data

Forecast Evaluation

Firstthe average proportions foreach hour of the day calculated earlier was
appliedtothe predicted countfrom patient arrival count. The out of sample forecast

errorsfor the first 26 weeks (4368 observations) of 2012 are given below.

Table 6a: Urgent Arrival Count (using mean proportions) Forecast Evaluation Results

METHODS BATS TBATS SARIMA+REG SARIMA L.REGRESSION FMA(():-I;(E)ECIIR Factor
MAE 0.86 0.86 1.19 0.94 0.88 0.88 0.92
MSE 136 133 2.07 1.51 1.38 1.26 1.26
RMSE 117 1.15 1.44 1.23 1.17 1.12 1.12

We see fromthe table 6a that the Factor latent models with CIIR and without CIIR

both have the smallestvalues of all three matrices, followed by the TBATS model. The

SARIMA model without covariates performed the worst followed by the SARIMA model

with covariates.. We also observe again that adding covariates to the SARIMA model
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improved its performance quite significantly. Most of our methods have the ability to

produce reliable long term forecasts (one yearahead), which is needed for capacity

planning. Forourlatentfactor models with constraints and smoothing spl

ines, itis

observedthattheyare also same and thisis expected because the serial dependence in

the error afterfitting the latent factor model is notsignificant. A major drawback for this

modelisthatit does not produce confidenceintervals or prediction intervals by default

while the other models are capable of doing so.

Observed/predicted urgent acuity using mean

i R 2012 count

——— BATS

TBATS

SARI

SARIREG

Factor+CIIR

= = = Factor

linreg

Figure 24: Predicted/Actual 2012 obs for Urgent Acuity Patient Arrival Data Using

Mean Proportions

The out-of sample forecast errors forthe urgent count data analysis of all the

methodsis given below.
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Table 6b: Actual Urgent Arrival Count Forecast Evaluation Results

Methods BATS TBATS SARIMA+REG  SARIMA M;‘;?L?;IR Factor
MAE 0.84 085 0.92 1.14 1.62 0.90 0.90
MSE 127 131 1.34 1.86 4.04 1.35 1.35
RMSE 113 114 1.16 1.36 2.01 1.16 1.16

It can be seenfrom Table 6b that the BATS model performed best of all the
models followed by the TBATS model and the factor latent models. SARIMA models
performed worst but adding the covariates was an improvement from the model without
the covariates. This mirrors the results obtained with the arrival patient volume. This
meanis a good method butit depends heavily on how good the patientvolume

predictionis.

i Observed/predicted urgent acuity patient vol aats
5 | ' , TBATS
: SARI
. : :
i Z SARIREG

51 < i Factor+CIIR
27 2 A = = = Factor
14 linreg
0 ? cenrennes 2012 count

1 13 25 37 49 61 73 85 97 109 121 133 145 157

Figure 25: Predicted/Actual 2012 obs for Urgent Acuity Patient Arrival Data
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SECTION IV: SIMULATED DATA WITHOUT TREND COMPONENT

Data Simulation

The purpose of this sectionis to simulate datathat has a similar pattern with our
actual patientcountandto apply the methods usedinthe previous sections and compare
with our actual results. It was earlier stated that the arrival countis a Poisson processand
so to simulate the data, we would use the random Poisson distribution.?’

It was observedthatthereisadailyand weekly cycle in the data; this hasto be
incorporatedin the data alsothere isthe error component of the data whichisa ARIMA
process. The error componentis generated using the function arima.sim functioninR
with coefficients forthe AR(2) componentare 0.95 and -.45 and the MA(2) coefficients
are -.84 and .29, and thisis randomly generated using the random normal distribution
withvariance .134. We generate datafor 104 weeks (two years) the first half will be used
to buildthe model and the second half will be used forvalidation.

For the cycle we generate a rate defined as:
rate = 12+10* sin(2*pi*hour/24) + 2*cos(2*pi*week/52) +err;

Finally we generate the datausing:
ysim =rpois(X,rate).

We plotthe patientarrival countand the simulated datato compare the patterns

and we observe thatthe patterns are identical.
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Figure 26: Plot of Simulated Data/Patient Arrival Data for First 336 obs

Regression Model

The covariates or explanatory variables used for fitting the regression model for
the simulated are the same as used for patient arrival count. They are categorical
variables for, hour of the day, day of the week and month of the year. Again for day of the
week variables, Wednesday is the reference category whilefor hour of the day 12
midnightisthe reference Category and for Month of the year Decemberis the refere nce
category.

There are 40 explanatory variablesin total, with 1or 0 values and using 40
degreesof freedom.

Afterfitting the regression modelwe plot the residuals to checkif the conditions

for regression are satisfied:
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residual plot for sim regression model
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Figure 27a: Regression Residual Plot for Simulated Data without Trend
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Figure 27b: ACF Plot for Regression Residual for Simulated Data without Trend
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Partial ACF

PACF plot for sim reg residual
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Figure 27c: PACF Plot for Regression Residual for Simulated Data without Trend

From the ACFand PACF plot of the residuals, it can be deduced thatthereisa

very weak serial dependence afterthe regression has explained 90.4% variation between

the simulated dataandthe covariates. Since there is negligible informationin the

residuals, nofurtheranalysisis done onthem.

Time Series Method
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Figure 28: Time Series Plot of Simulated Data without Trend for First 336 obs
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ACF plot for simulated data
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Figure 29a: ACF Plot for Simulated Data without Trend
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Figure 29b: PACF Plot for Simulated Data without Trend
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The output for the simulated data without trend component timeseries models

are givenbelow.

Sarima Model
The resultfromthe auto.arima function forthe SARIMA model without

covariates as described earlieris forthe simulated datawithouttrend is:

Series: simulated datal
ARIMA (3,1,2) (2,0,2) [24]

Coefficients:
arl ar2 ar3 mal ma 2 sarl sar2 smal
0.1121 -0.0319 -0.0175 -1.1028 0.1104 0.4502 0.5496 -0.4052
sma2
-0.5404
s.e. 0.0250 0.0108 0.0107 0.0271 0.0270 0.0572 0.0572 0.0567
0.0550

sigma”2 estimated as 13.07: 1log likelihood=-23619.3
AIC=47255.47 AICc=47255.49 BIC=47326.22

Training set error measures:
ME RMSE MAE MPE MAPE
MASE

0.03651052 3.6040593 2.715831 -13.789489 32.40253
0.672224

From the above output, the non-seasonal ARMA model has the following order;
AR (3) and MA (2) with one differencing. The seasonal ARMA has AR(2) and MA(2) with
zero differencing with seasonal lag of 24 (one day) . For the non-seasonal components,
The AR coefficientsare 0.11, -0.0319 and -0.018 while the MA Coefficientsare -1.1and
0.11 respectively. Forthe seasonal components the AR coefficients are 0.45 and 0.55 also
the MA coefficients are -0.41and -0.54. This model was selected based on AlC.

The corresponding SARIMA model with covariates resultis:

Series: simulated datal

ARIMA(2,1,2)(2,0,2)[24] with drift
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sigma”2 estimated as 12.79: 1log likelihood=-23527.27
AIC=47146.53 AICc=47147.03 BIC=47471.99

Coefficients:

arl ar2 mal ma2 sarl sar2 smal
-0.8103 0.0215 -0.1572 -0.8328 0.3912 -0.2706 -0.3624
sma2 drift
0.2558 1le-04

s.e. 0.1596 0.0080 0.1597 0.1591 0.1815 0.1169 0.1822 0.1153 1e-0

Training set error measures:
ME RMSE MAE MPE MAPE
-0.000077618 3.575836563 2.713255152 -15.438955034 33.368517394
MASE
0.671586391

From the above output, the non-seasonal ARMA model has the following order;
AR (2) and MA (2) with zero differencing. The seasonal ARMA has AR(2) and MA(2) with
zerodifferencing with seasonal lag of 24 (one day). For the non-seasonal components,
The AR coefficientsare -0.81 and 0.0215 while the MA Coefficientsare -0.16and -0.833
respectively. Forthe seasonal components the AR coefficients are 0.39 and -0.271 also

the MA coefficients are -.36and 0.256 with drift. This model was selected based on AlC.

BATS and TBATS Model

The BATS model that best suits our simulated data

BATS (0.612, {0,0}, 0.999, {24,168})

Call: bats(y = simulated datal)

Parameters
Lambda: 0.612368
Alpha: 0.02963382
Beta: 2.954125e-05
Damping Parameter: 0.998748
Gamma Values: 0.02549024 2.004902e-07

Sigma: 1.320385
AIC: 99975.18
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Lambda represents the Box-Cox transform which is 0.612 in this case and the
smoothing parameters are alpha, beta and gamma parameters which are 0.03, 0.00003,
0.025 and 0.0000002 respectively. The damping parameterforthis modelis0.999 but
there are no ARMA errors for this model. Finally the seasonal periods are 24 representing
daily cycle and 168 representing weeklycycles, with 194 estimated parameters.

For the TBATS model the corresponding outputis;

TBATS (0.673, {0,0}, 1, ({<24,3>, <168,2>})

Call: tbats(y = simulated.datal)

Parameters
Lambda: 0.67301
Alpha: 0.003834106
Beta: 2.570862e-05
Damping Parameter: 1
Gamma-1 Values: 4.845342e-07 1.03767e-05
Gamma-2 Values: -1.571637e-08 5.779328e-06

Sigma: 1.512353
AIC: 99569.7

Lambda represents the Box-Cox transform which is 0.673 in this case and the
smoothing parameters are alphaand betawhich are 0.0038 and 0.00003 and alsogamma
parameters which are all close to zero. The damping parameterforthis modelis 1 but
there are no ARMA errors for this model. Finally the seasonal periods are 24 representing

daily cycle and 168 representing weeklycycles, with 22 estimated parameters.

Factor Latent Model

We use the first half of the data to fit the factor model with hour of the day,

day of the week and week of the year covariates. Same method is applied but with



K =4, and the CIIR process is also added. The later half of the data is used for

validation.

The ACF and PACF plots for the residuals after fitting the latent factor model

are shown below:
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Figure 30b: PACF Plot of Factor Model Residuals for Simulated Data without Trend
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The plots are similar butthere is notinformation that can be deduced form them,
We would fitamodelincludingthe CIIR process and see whatimprovement this might

bringto our model.

Forecast Evaluation

The out of sample forecastaccuracy for simulated datafor the first 26 weeks
(4368 observations) of 2012 is calculated using MAE, MSE and RMSE and the results are

giveninTable 7 below.

Table 7: Simulated Data without Trend Forecast Evaluation Results

METHODS BATS TBATS SARIMA+REG SARIMA L.REGRESSION FACTOR Factor
MODEL+CIIR
MAE 4.69 18.90 11.97 19.33 12.10 11.96 11.96
MSE 3215 7150 12.85 75.43 13.23 12.89 12.90
RMSE 5.67 8.46 3.58 8.69 3.64 3.59 3.59

We see from the table 4 that the Factor latent models with ClIR and without CIIR
both have the smallest values of all three matrices, followed by the SARIMA model with
covariates. The TBATS model performed the worst followed by the SARIMA model
without covariates. The BATS model didn’t perform as good as expected from the
previousresults. We also observeagain that adding covariates to the SARIMA model
improved its performance quite significantly. Most of our methods have the ability to
produce reliable longterm forecasts (one yearahead), which is needed for capacity
planning. Forourlatentfactor models with constraints and smoothing splines, itis
observedthattheyare also same and thisis expected because the serial dependence in

the error afterfitting the latent factor model is notsignificant. A major drawback for this
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modelisthatit does not produce confidenceintervals or predictionintervals by default

while the other models are capable of doingso.

Observed/Predicted for sim data with no trend BATS
> i , TBATS
50 ] i '=: H .;:
A : i i Nk ; i ¥ SAR
25 g g i i
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Figure 31: Predicted/Actual Simulated Data for Simulated Data without Trend

SECTION V: SIMULATED DATA WITH TREND

We observed that starting in May 2011 there was a steady decline in patient
arrival volume that continued till 2012. This is a trend and so what happens when our
data has a trend? Will our models be able to capture this trend?

To our simulated datawe add a quadratic trend component. The datais
generated as follows:
t=12,...N

ysim, is our previously simulated data

ysim _ with_trend = ysim, +(t* / (5*10°))
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plot of simulated data with quad term
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Figure 32: Plot of Simulated Data with Trend Component

Regression Model

The covariates or explanatory variables used for fitting the regression model for
the simulated datawith trend are the same as used for patient arrival count. They are
categorical variablesfor, hour of the day, day of the weekand month of the year. Again
for day of the week variables, Wednesday is the reference category while for hour of the
day 12 midnightisthe reference Category and for Month of the year Decemberisthe
reference category.

There are 40 explanatory variables in total, with 1or 0 values and using 40
degreesof freedom.

Afterfitting the regression modelwe plot the residuals to checkif the conditions

for regression are satisfied:
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residual plot for quad sim regression model
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Figure 33b: ACF Plot for Regression Residual of Simulated Data with Trend
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PACF plot for quad sim reg residual
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Figure 33c: PACF Plot for Regression Residual of Simulated Data with Trend

From the ACF and PACF plot of the residuals, itcan be deduced thatthereisa
serial dependence after the regression has explained 94% variation between the
simulated dataand the covariates. Since there is negligible information in the residuals,
no furtheranalysisis done onthem. The ACF and PACF plots for the simulated data with

trend componentare given below:
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ACF plot for quad simulated data
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Figure 34a: ACF Plot for Simulated Data with Trend Component
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Figure 34b: PACF Plot for Simulated Data with Trend Component

The outputs forthe simulated data with trend component time series models are

as follows:



96
Sarima Model
The result from the auto.arima function for the SARIMA model without
covariates asdescribed earlieris forthe simulated datais:

Series:sim quad
ARIMA (3,1,2) (2,0,2) [24]

Coefficients:
arl ar2 ar3 mal maz2 sarl sar?2
smal sma?2

0.1123 -0.0319 -0.0177 -1.1028 0.1107 0.4542 0.5457 -
0.4089 -0.5364

s.e. 0.0253 0.0108 0.0107 0.0274 0.0273 0.0575 0.0575
0.0571 0.0554

sigma”2 estimated as 13.07: log likelihood=-23620.39
AIC=47257.63 AICc=47257.66 BIC=47328.39

From the above output, the non-seasonal ARMA model has the following order;
AR (3) and MA (2) with one differencing. The seasonal ARMA has AR(2) and MA(2) with
zero differencing with seasonal lag of 24 (one day). For the non-seasonal components,
The AR coefficients are 0.11, -0.0319 and -0.018 while the MA Coefficientsare -1.1and
0.11 respectively. Forthe seasonal components the AR coefficients are 0.45 and 0.55 also
the MA coefficients are -0.41and -0.54. This model was selected based on AlC.

The corresponding SARIMA model with covariates resultis:

Series: sim quad

ARIMA (2,0,0) (1,0,0) [24] with non-zero mean

Coefficients:
arl ar2 sarl intercept
0.0378 0.0065 0.0445 19.9127
s.e. 0.0108 0.0108 0.0108 0.2223

sigma”2 estimated as 13.06: log likelihood=-23620.51

AIC=47329.02 AICc=47329.47 BIC=47640.33
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From the above output, the non-seasonal ARMA model has the following order;
AR(2) with no differencing. The seasonal ARMA has AR(1) with zero differencing with
seasonal lag of 24 (one day) and non-zero mean. Forthe non-seasonal components, The
AR coefficients are 0.038 and 0.0065. For the seasonal componentsthe AR coefficientis

0.45. Thismodel was selected based on AIC.

BATS and TBATS Model

To fitthese models successfully, the trend option has to be specified. The BATS

model that best suits our simulated data with trend is:

BATS (0.941, {0,0}, 1, {24,168})
Call: bats(y = sim.quad, use.trend = TRUE)

Parameters
Lambda: 0.940917
Alpha: 0.04138617
Beta: 0.0009097658
Damping Parameter: 1

Gamma Values: 0.0012371 -1.569877e-08

Sigma: 3.025002
AIC: 101714.6

Lambda represents the Box-Cox transform which is 0.941 in this case and the
smoothing parameters are alpha, beta and gamma parameters which are 0.041, 0.00091,
0.0012 and -0.000000016 respectively. The damping parameterforthis modelis 1but
there are no ARMA errors for this model. Due to the presence of trendinthe data the
trend optionisused. Finally the seasonal periods are 24 representing daily cycle and 168
representing weekly cycles, with 194 estimated parameters.

For the TBATS model the corresponding outputis;
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TBATS (0.788, {0,0}, 1, {<24,5>, <168,5>})
Call: tbats(y = sim quad, use.trend = TRUE)

Parameters
Lambda: 0.788415
Alpha: 0.004433112
Beta: 2.749054e-05
Damping Parameter: 1
Gamma-1 Values: 0.00211541 0.002081061
Gamma-2 Values: -0.0001151335 0.0002147104

Sigma: 1.966455
AIC: 100807.6

Lambda represents the Box-Cox transform which is 0.788 in this case and the
smoothing parameters are alpha, beta and gamma parameters which are 0.0044,
0.000027, 0.0021,0.002,-0.00012 and-0.00021 respectively. The damping parameterfor
thismodelis 1 but there are no ARMA errors for this model. Due tothe presence of trend
inthe data the trend optionis used. Finally the seasonal periods are 24 representing daily

cycle and 168 representing weekly cycles, with 22 estimated parameters.

Factor Latent Model

We use the first half of the data to fit the factor model with hour of the day,
day of the week and week of the year covariates. Same method is applied but with
K =4, and the CIIR process is also added.

The ACF and PACF plots for the residuals after fitting the latent factor model

are shown below:
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Figure 35a: ACF Plot of Factor Model Residuals for Simulated Data with Trend

Factor model ACF res.plot for sim quad data
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Figure 35b: PACF Plot of Factor Model Residuals for Simulated Data without Trend

The plotsare similarbutthere is notinformation that can be deduced formthem,
we would fita model including the CIIR process and see whatimprovement this might

bring to our model.
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Table 8: Simulated Data with Trend Forecast Evaluation Results

METHODS SARIREG Factor+CIIR

MAE 37.12 5.17 5.09 2391 28.95 22.50 22.39
MSE 1780.20 | 38.10 35.75 604.17 917.01 549.14 547.59
RMSE 42.19 6.17 5.98 24.58 30.28 23.43 23.40

We observe that the SARIMA model without covariates performed the best
followed by the TBATS model. BATS Model here performed worst this was due to the fact
that itwas able to detect the trend in the data but was notable to model the other
seasonal patterns. Fromthe plotitis observedthat the factor model regression and

SARIMA with covariates might over fit the data.

Observed/Predicted for sim data with trend

BATS

TBATS

SARI

'\ — — SARIREG

Factor+CIIR

Count

Factor

linreg

--------- 2012 count

Mo of hours

Figure 36: Predicted/Actual Simulated Data for Simulated Data with Trend



Chapter7

SUMMARY

Here is a summary of the performance of the models utilized for our analysis.

Linear Regression

This method while itdid not perform the best for any of our modelsitalsowas
not the worst. Of all the methods applied, itisthe easiest model to explain butthe
covariates have to be carefully defined. The residuals also need to be explored forany
serial dependence that can still be extracted, which mightimprove forecast results. The
adjusted Rsquared also plays a major role in determining how useful the residual analysis
is;whenthe R squaredis high eventhough there mightstill be serial dependence in the

residuals, itmight notimprove ourforecast.

Time Series Models

In all models, except the simulated data with trend ,the SARIMA model with
covariatesisan improvement from the SARIMA model without covariates. The auto.arima
functioninthe forecast package in R has the ability to successfully capture trend
accordingto AIC and AlCc, while fittingthe SARIMA model. The reason addingthe
covariates made the model worse might be it caused over fitting. Again the dataneedsto

be examined carefully to determine suitable covariates.

101
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The BATS model performed bestinthe cumulative data, urgentacuity data,
simulated datawithout quadraticterm and closely second to the TBATS method inthe
arrival data. The BATS model was pretty consistentin performing best butfor the
simulated datawith quadraticterm the trend option has to be specified, but the model
over estimates the trend in the data. This seems to be the majordrawback of the model.

The TBATS model did pretty well in estimating the simulated data with trend after
the SARIMA model without covariates, the trend option also needs to be specified. For
the arrival data it performed bestand forurgentand cumulative datait performed
second to the BATS model butdidn’t perform as good for the simulated datawithout the

trend component.

Factor Model

The CIIR factor produced a significanceimprovementin only two models; the
cumulative dataand the simulated datawith trend it was not necessaryinall the other
models. They performed bestonly in the simulated data without quadraticcomponent.
This methodis not automated and requires the Kto be determined manually.

In conclusion, the BATS and TBATS models performed consistently better that
othermodels, is easily automated and does notinclude additionalinformation or
covariates. It also does not require residual analysis like the linear regression modeland
latent factor models. These models however, have afew drawbacks; they do not
accommodate zeros values and sorequire a transformation, do notaccommodate

covariates andthe trend option needs to be specified; auto.arimain Ron the other hand
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has the ability to capture trend for a SARIMA model and covariates can be added to this
model when necessary.

For the dynamicfactor model, we need to align the data carefully to make sure
that the factors for buildingthe models and fitting the residuals must match. Also the
number of factors K is decided manually beforefitting the model, also residualanalysis
needsto be done to check forany serial dependencethat can improve forecasts. The time
structures formodel building and forecasting should be the same. A note of caution for
thismodelisitdoesn’t work well if there is any change inthe pattern of our data like seen
when forecasting the simulated data with quadraticcomponent. A major drawback for
thismodelisthat it doesn’t give confidence intervals for the predictions. Residual
analysisisimportantforlinearregression and factor models also the datahas to be
examined carefully to determine suitable covariates.

The performance of this research will be evaluated on how well we are able to
answerthe following questions.

e (Can patientarrival volume be predicted accurately? Yes, this can be done

fairly accurately.

e Usingthe same methods forpredicting patientarrival, can cumulative patient

volume also be accurately forecasted? Yes, this can also be done adequately.

e How muchdatais required to make the mostaccurate predictions? Three

years of data produced the mostaccurate predictions.

e How accurate will six months predictions be? Six months forecasts perform

comparably to one week forecasts.
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e Which method(s)is mostsuitable forourdata? BATS and TBATS were most
consistently the best modelsand they are easily automated and do not
require covariates.

e Can we predicturgent acuity patientarrival volume? Yes, this can be done
satisfactorily.

e What forecast methods can handle multi seasonality? Fitting the time series
with msts helpsthe models handle multiseasonalities better

o [fthereis atrend(steadydeclineorincrease) inthe datawhich forecasts
method will most successfully capture it? TBATS and SARIMA were better
suited for depicting trend.

e How easily canthese methods be implemented inthe ED? Time series
methods are easily automated, residual analysis need to be done manually
and this makeslinearregression adds alayer of difficulty and dynamiclatent
factor modelis not easily automated because the functionis notyet
automatedinR and also K needsto be set manually.

The suggested procedure foranalysis is as follows:

First, at leasttwo years of data is collected to be used for analysis, though having

three or more years of data to build modelsislikely toincrease forecast accuracy.

Next, preliminary analysis like plots, descriptive statisticsand otherdata

exploration techniques should be carried out on the data to identify patterns, trends and

outliers. Thisis vital in setting up research goals while also defining covariates.
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Then, the data is divided into two parts; testand validation portion. The most
recentyeardata is used forvalidation and the earlier portionis used for buildingthe
models, after which the most preferred model isthen selected based on performance.
Finally, the datais now updatedtoinclude mostrecent observations (validation
portion) and used to generate forecasts for six months ahead. Itisrecommended that the
process be reevaluated every six months also; the performance of these models should

be closely tracked.
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TIME SERIES MODEL

#### R code for time series models ########### #HFHFHHFHEHRHHF HHH
#### Data is loaded into R ######### #4444 4444 FH S HHHHFFHHHE 1S
### Preliminary time series models ############H#HHFRR44 FHHHH 4

### Data is plotted using the ts function #### FHFFHEFFHFEFFEFHFHE

pat.arr.ct=ts(hourlyl[, 3], freg=24)

112

###we fit an AR, MA and ARMA model using the auto.arima function #########

mod.ar = auto.arima(pat.arr.ct, max.p=200, max.qg=0,

start.Q=1, stationary=FALSE, seasonal=TRUE)

mod.ma = auto.arima(pat.arr.ct, max.p=0, max.g=200, max.P=0, max.Q=0,
max.order=5, start.p=2, start.g=2, start.P=1, start.Q=1,

stationary=FALSE, seasonal=TRUE)
mod.arma = auto.arima (pat.arr.ct, max.p=200, max.g=200,

max.P=0, max.Q0=0, max.order=5, start.p=2, start.g=2,
start.P=1, start.Q=1, stationary=FALSE, seasonal=TRUE)

#### We forecast for up to one year ahead #######FH#FFEFHFFESS
pred.ar=forecast (mod.ar,h=8736)
pred.ma=forecast (mod.ma,h=8736)

pred.arma=forecast (mod.arma,h=8736)

##### We combine all our predictions

arma.res=cbind(as.vector (pred.maSmean) -1, as.vector (pred.arSmean) -
1l,as.vector (pred.arma$mean)-1,as.vector (predy[1:8736,3]))

colnames (arma.res)=c("MA", "AR", "ARMA", "OBS")

FHEH A R R R R R R

max.P=0,
max.Q=0, max.order=5, start.p=2, start.g=2, start.P=1,

#### Data is fitted as a multi seasonal time series using the msts command

###4 24 for daily cycle
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###4 168 for weekly cycle
#### 1 is added to the series due to BATS and TBATS restrictions

patient.arr.ct=msts (hourly[,3]+1, seasonal.periods=c(24,168),
ts.frequency=24)

####ARIMA model without covariates ###### #4444

fit.mod=auto.arima (patient.arr.ct)

####ARIMA model with covariates ############4H##4H##
fit.mod.reg=auto.arima (patient.arr.ct,xreg=hourly)
### BATS and TBATS model ###############4444HSHHH#HHS
bats.mod=bats (patient.arr.ct)

tbats.mod=tbats (patient.arr.ct)

######+ We now forecast for one year ahead #######4FHFFFFEFEF SIS

pred.sarim=forecast (fit.mod,h=8736)
pred.sarim=forecast (fit.mod,h=8736, xreg=hourly)
pred.bats=forecast (bats.mod,h=8736, level=c(80,95))

pred.tbats=forecast (tbats.mod,h=8736, level=c (80,95))

######4+ We combine all the time series predictions######

###### We subtract 1 that was added earlier #######FH##4#

arr.ts.pred=cbind (as.vector (pred.batsSmean) -1, as.vector (pred. tbatsSmean) -
1,as.vector (pred.sarim$mean) -1, as.vector (pred. sarim.regS$Smean) -
1l,as.vector (predy[1:8736,31))

colnames (fored)=c ("BATS", "TBATS", "SARI", "SARI+REG", "OBS")



#H4####4## Calculating Residuals####4##4#

res.arr.ts.pre

arr.ts.predl[,
arr.ts.pred|[
arr.ts.predl[,

###FHHEF MSE

mean (res.arr.

mean (res.arr.

mean (res.arr.

mean (res.arr.

5
;5
5

d

]1),as.vector (arr.ts.pred[,2] -
]),as.vector (arr.ts.pred[,3] -
1

and RMSE ##### #4444 #4H4H4

ts.pred[,1]1"2); sgrt(mean(res.arr.
ts.pred[,2]72); sgrt(mean(res.arr.
ts.pred[,3]172); sgrt(mean(res.arr.

ts.pred[,4]172); sgrt(mean(res.arr.

#H##E MAEHHH HHFHF R R RS HEEEHA

mean (abs (res.

mean (abs (res.

mean (abs (res.

mean (abs (res.

arr.ts.pred[, 1]))
arr.ts.pred[, 2]))
arr.ts.predl[, 31))

arr.ts.predl[, 4])

ts

ts

ts

ts
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= cbind(as.vector(arr.ts.pred[,1]-

,as.vector (arr.ts.pred[,4] —arr.ts.pred[,5])))

.pred[, 1172))
.predl[, 2]172))
.predl[, 317°2))

.pred[, 4]72))



FACTOR MODEL R CODE

#H######## The patient arrival data set is loaded into R ########
#H#HHd S H A HHH#FH#EE It has 5 columns and 8736 observations ####
FHEH R FHFHHHHF Column one contains date #####HHH4H FHFHHFHHS
#H####### Column two is day of the week ranging from 1 to 7 ####
#44#4444 Column three is week of the year ranging from 1 to 52##
### Column four contains hour of the day ranging from 1 to 24###

##4#### Column five is the actual y value labeled y #########44##

T = 24*7*52

hour = hosp[,4]

day = rep(l: (7*¥52), each = 24)

dofw = hospl[,2]

week = hospl[, 3]

FHEF A R A A R R
y=hosp[, 5]

head (y)

D = length(y)/ (N); D # number of "days"

ND = length(y) # total number of observations

ND

dofwindex = as.factor (dofw)
weekindex = as.factor (week)
Y = t(matrix (y,N, D))

DoW = t (matrix(dofw,N,D))

WEEK = t (matrix(week,N,D))

A A A A A A A
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FACTOR MODEL
R
#### The main estimation algorithm for
#### fitting the K-factor model

#### using constraints and

#### smoothing splines

ER R i

K.max = 3

muhat = matrix (0, N*D, K.max)
Max.iter = 40
# Set exit level for relative reduction in deviance

dev.exit = 0.0001

for(k in 1:K.max) {
S
# Initialization:
dim(Y); min(Y); min(ifelse(Y==0,0.01,Y))
gY = log(ifelse (Y==0,0.01,Y))

gYsvd = svd(gY)

# coefs
B.new = matrix(0,D, k)

for(i in 1:k){ B.new[,1i] = g¥svdS$d[i]l*gY¥svdSul,1i] }

#factors
F.new = matrix(0,N, k)

for(i in 1:k){ F.new[,1] = g¥svdS$Sv[,1i] }
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FHEFHH AR A A A R R 4
# Begin iterative algorithm
iter =1

dev.new = Inf

while (iter < Max.iter) {

tic = proc.time() [3]

dev.old = dev.new
F.old = F.new

B.old = B.new

FHAEF A AR A A A A
X.temp = matrix (0,ND, k)

for(kk in 1:k){ X.temp[,kk] = rep(F.old[,kk],D) }

xnam <- paste (paste("s (as.numeric(weekindex),by = X.temp[,", 1l:k,
Sep:""), "],bS:'CC')", sep = ll")

fmla <- as.formula(paste("y ~ -1 + X.temp:dofwindex +", paste (xnam,
collapse= "+")))

fit6 = gam(fmla, family = poisson)

B.tempD = matrix(as.vector(fit6$coefficients([1l: (7*k)]), 7, k,
byrow=TRUE)

# Extracting fitted values

o]
Il

52 # number of weeks in the year

n
I

NULL
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for (s in 1:k) {
raw <- fit6$model[fité6$smooth([ [s]]$term]
xx <- seg(min(raw), max(raw), length = n)
by <- rep(l, n)
dat <- data.frame(x = xx, by = by)
names (dat) <- c (fit6S$smooth[[s]]$term, fit6$Ssmooth[[s]] Sby)
Xmat <- PredictMat (fit6$smooth[[s]], dat)
first <- fit6$Ssmooth[[s]]S$first.para
last <- fit6$smooth[[s]]S$last.para
p <- fit6S$Scoefficients[first:last]
S.temp <- Xmat %$*% p

S = c(S,S.temp)

B.tempW = matrix(as.vector(S), 52, k, byrow=FALSE)

FHEF A A A A A A S
B.temp = matrix (0, D, k, byrow=TRUE)

rm(£fite)

# 7 days in the week
for(j in 1:7) {
for(ell in 1:k) {
B.temp[which(DoW[1:D,1] == levels (dofwindex) [j]) ,ell] =
B.temp[which (DoW[1:D,1] == levels(dofwindex) []j]),ell] +

as.numeric (B.tempD[]j,ell])

}



for (j in 2:53){

for(ell in 1:k) {

B.temp[which (WEEK[1:D,1] == levels(weekindex) [j]),ell]

B.temp[which (WEEK[1:D, 1]
as.numeric (B.tempW[ (j-1),ell])

= levels (weekindex) [j]),ell] +

}

Z.temp = matrix(0,ND, k)

for(kk in 1:k){ Z.temp[,kk] = rep(B.temp[, kk],each=N) }

AR A A R

znam <- paste (paste("s (hour,by = Z.temp[,", 1l:k, sep=""),

Illl)

fmla <- as.formula(paste("y ~ -1 +", paste (znam, collapse= "+")))

fit4 = gam(fmla, family = poisson)

# Extracting fitted values

n = 24 # 24 hours per day

0n
1

NULL

for (s in 1:k) {
raw <- fit4Smodel[fit4Ssmooth[ [s]]Sterm]
xx <- seg(min(raw), max(raw), length = n)
by <= rep(l, n)

dat <- data.frame(x = xx, by = by)

names (dat) <- c(fit4$smooth[[s]]Sterm, fitd$smooth[[s]] Sby)

"])n’
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Xmat <- PredictMat (fit4$smooth[[s]], dat)
first <- fitd4S$smooth[[s]]$first.para
last <- fit4$smooth[ [s]]$last.para

p <- fitd4S$Scoefficients[first:last]

S.temp <- Xmat $%$*% p

S = c(S,S.temp)

F.temp = matrix(as.vector(S),N,k, byrow=FALSE)

# Save most recent fit before orthogonalization
fit.final = fit4

rm(fit4)

FhHEHEEEEFH A AR R S R R
# Orthogonalize Factors F

G.temp = B.temp %*% t(F.temp)

Gsvd = svd(G. temp)

B.new = matrix (0, D, k)
for (i in 1:k){ B.new[,1i] = GsvdS$d[i] *GsvdSul[,i] }

F.new = matrix (0, N, k)

for(i in 1:k){ F.new[,i] = GsvdS$v[,1i] }
dev.new = fit.finalS$deviance
if (0 < dev.old - dev.new & dev.old - dev.new < dev.exit) iter = Inf

toc = proc.time() [3] - tic ; toc
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# optional print statements
print(c(iter, toc/60))

iter = iter + 1
print(fit.final$deviance)

flush.console ()

muhat [, k] = fit.final$fitted

# optional print statements
#print (k)

#print (summary (F.old - F.new)) ;
#print (max (abs (F.old - F.new)))

#print (summary (B.old - B.new)) ;

#print (max (abs (B.old B.new) ))
#print (round (crossprod(F.old, F.new) ,4))

#print (diag (round(crossprod(F.old, F.new),4)))

# fitted values in vector form (same length as y) for k = K.max

index = seq(l,24,by=1)

mu.hat = numeric (ND)

for(i in 1:D){

mu.hat[ ((1i-1)*N+1): (i*N) ] = as.vector(exp(F.new[index, ]%$*%$B.new[i,]))
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# multiplicative residual

Et = y/mu.hat

# a couple residual plots

par (mfrow=c(1,1))

ts.plot (Y[1:5007)

acf(y,lag.max=100,main="ACF plot for Y")

pacf (y, lag.max=100,main="PACF plot for ¥Y")

ts.plot (Et[1:500] ,main="error time series plot") ; abline(h = 1)

acf (Et, ylim=c(-0.01,0.7), lag.max = 96*2+16,main="ACF plot for mu err for
arr.vol")

pacf (Et, ylim=c(-0.01,0.1), lag.max = 96*2+16,main="PACF plot for mu err
for arr vol")

abline(v = c(96.6, 192.6), 1lty = 2, col = 2)

acf (Et, ylim=c(-0.02,0.1), lag.max = 50, type = "partial")
abline(v = c(96.6, 192.6), lty = 2, col = 2)

FHEF A A A A R A R R
# if some missing days were removed use 'misshour' below

# to reinitilize the conditional likelihoods below

misshour = c (1, ifelse(diff(day) > 1 , 1, 0))

sum (misshour)

CTE R i o
#######4 For conditional ML estimation of HhEHHHE
#H####### Int-GARCH(1, 1) liddddidi
FHAFEE SRR A A R A R R A R R

"condPoissonIntll" = function(parms, y, mu, misshour, 11lik) {



123

alpha = parms[1]

beta

parms[2]

omega = 1 - alpha - beta

N = length (y)

lambda = numeric (N)

eta = numeric (N)

epsilon = y/mu

etal[l] =1

lambda[l] =1

loglik = 0 # -sum(lfactorial(y))
for(i in 2:N) {

eta[i] = omega + alpha*epsilon|[(i-1)] + beta*ifelse(misshour[ (i-1)] ==
1, 1, etal(i-1)1)

lambda[i] = mul[i] *eta[i]

# if(lambda[i] <= 0){print(c(i,lambda[i],alpha,beta))}
temp = -lambda[i] + y[i]*log(lambda[i]) - (lfactorial(yl[il]))
loglik = loglik + ifelse(misshour([i] == 1, 0, temp)

}
if(11ik==TRUE) { -loglik}
elsef{eta}
}
FH S A A A A R S A R A

theta.0 = ¢(0.05, 0.5)

condPoissonIntll (parms = theta.0, y = y, mu = mu.hat, misshour = misshour,
11ik = TRUE)

outIntll = optim(par=theta.0, fn = condPoissonIntll, y = y, mu=mu.hat,
11ik=TRUE,
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misshour= misshour, method = "L-BFGS-B", lower =
c(0.000,0.000),

upper = ¢ (0.2,0.9), hessian=T, control =
list(trace = TRUE, ndeps = rep.int(0.000001, 2),

maxit = 200L, factr = le+31l, pgtol = 0))

# parameter estimates

igparIntll = outIntll$par ; igparIntll ; 1 - sum(igparIntll)

# approximate SEs

igseIntll = sqgrt(diag (solve(outIntllS$hessian))) ; igselIntll

# CIIR

etaIntll = condPoissonIntll (parms = outIntll$par,y= y, mu=mu.hat,
misshour= misshour, 11ik=FALSE)

# Mltiplicative residuals

e = y/mu.hat

# Fitted values
lambdaIntll =mu.hat*etalIntll
length (lambdalIntll)

pred.factor=cbind (as.vector (lambdalIntll), as.vector (mu.hat),as.vector (predy
[1:8736,31))

colnames (pred.factor)=c("lamda", "mu.hat", "OBS")

#44###4## Residuals are calculated## #####

res.factor=cbind(as.vector (pred.factor[,1]-
pred.factor([,3]),as.vector (pred.factor[,2] -pred.factor[, 31))

#H#HHH# S MSE and RMSE##### #H####44#



mean (res.factor[,1]72); sqgrt(mean(res.factor[,1]"2))

mean (res.factor([,2]72); sgrt(mean(res.factor[,2]"2))

#H### MAE#H## 44 H S H S
mean (abs (res.factor[,1]))

mean (abs (res.factor[, 2]))
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REGRESSION CODE

FHAHHHEH Patient arrival Data is loaded into R ####### 4444444

pat.arr.reg=read.csv ("C:\\Users\\utchay\\Dropbox\\regl.csv", header=T)

predy=read.csv ("C:\\Users\\utchay\\Dropbox\\hourly2reg.csv", header=T)

#H###### Fitting regression model ######FH#FFEHHFHEHES

arr.reg=lm(patient.count~0+ ., data=pat.arr.req)

summary (arr.reqg)

#H##### 44 checking residuals plots ###########H#HSHH444

plot (arr.reg$res[1:1000], type="1", main=" residual plot for regression
model", ylab="count", xlab="lags")

abline (h=0)

res.arr.reg=ts(arr.reg$res,start=1, freg=1)

acf (res.arr.reg, lag.max=100,main="ACF plot for reg residual",ylab="
count")

pacf (res.arr.reg, lag.max=100,main="PACF plot for reg residual",ylim=c (-
.1,.2))

#H##H#####HF Fitting an ARIMA model for the regression residuals
A

reg.res.mod=auto.arima(res.arr.reqg,ic="aicc",d=0,D=0,max.p=10,max.g=10)

reg.res.mod
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######4### Predicting up to one year ahead
A A A A

pred.res.reg=forecast (reg.res.mod, h=8736, level=c (80, 95))

#H####f###+ (Adding the time series residuals prediction to the regression
predictions ######H4###444HH

fore.reg=cbind(as.vector (pred.res.regSmean[1:8736]) ,as.vector (arr.regs$fit]
1:8736]))

colnames (fore.reg)=c("reg", "res")
fore.reg$pred=as.vector (fore.reg[,1] + fore.regl[,2])
dim(fore.reqg)

reg.pred=apply(fore.reg, 1, sum)

dim(reg.pred)

###### Extracting residuals ######H#4#HFHF 444
reg.pred.res=cbind(as.vector (reg.pred[4368]),as.vector(predy[1:4368,3]))

reg.res= apply(reg.pred.res,1l,sum)

mean (reg.res”2); sqgrt (mean (reg.res”"2))

FH##E MAEHHH HHFHF R R RS HEEHHA

mean (abs (reg.res))
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