
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

3-2016

The Performance Comparison of Hadoop and
Spark
Shengti Pan
St. Cloud State University, panshengti@hotmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Pan, Shengti, "The Performance Comparison of Hadoop and Spark" (2016). Culminating Projects in Computer Science and Information
Technology. 7.
https://repository.stcloudstate.edu/csit_etds/7

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/7?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

The Performance Comparison of Hadoop and Spark

by

Shengti Pan

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Computer Science

May, 2016

Starred Paper Committee:

Jie Hu Meichsner, Chairperson

Donald Hamnes

Jim Chen

2

Abstract

The main focus of this paper is to compare the performance between Hadoop and

Spark on some applications, such as iterative computation and real-time data processing. The

runtime architectures of both Spark and Hadoop will be compared to illustrate their

differences, and the components of their ecosystems will be tabled to show their respective

characteristics. In this paper, we will highlight the performance comparison between Spark

and Hadoop as the growth of data size and iteration counts, and also show how to tune in

Hadoop and Spark in order to achieve higher performance. At the end, there will be several

appendixes which describes how to install and launch Hadoop and Spark, how to implement

the three case studies using java programming, and how to verify the correctness of the

running results.

Keywords

MapReduce, RDD, latency, sorting, rank, executor, optimization

3

Acknowledgement

I would like to thank my advisor Dr. Meichsner for offering a lot of valuable

suggestions to my work. Without her help and coordination during my laboratory work, it

is difficult that my whole progress has gone so smoothly. I also thank the committee

members Dr. Hamnes and Dr. Chen for spending their time and energy in correcting my

paper and providing beneficial suggestions. For the laboratory work, Martin Smith

provides support for setting up hardware and system environment. I thank him for his time

and patience.

4

Table of Contents

 Page

List of Tables .. 6

List of Figures .. 7

Chapter

 1. Introduction ... 8

 1.1 The Overview of Hadoop and Spark .. 8

 1.2 Runtime Architecture ... 14

 1.3 The Overview of Ecosystems in Spark and Hadoop 16

 2. The Evaluation of Performance ... 18

 2.1 Laboratory Environment .. 18

 2.2 Laboratory Network Deployment ... 19

 2.3 Case Studies for Evaluation .. 19

 2.4 The Evaluation of Running Results .. 26

 3. Optimization of Hadoop and Spark ... 32

 3.1 Tuning in Hadoop ... 33

 3.2 Tuning in Spark .. 36

 4. Conclusions ... 38

References ... 39

Appendices

 A. Guide to Installing Hadoop ... 42

 B. Guide to Installing Spark ... 45

5

Chapter Page

 C. The Source Code of Case Studies ... 47

6

List of Tables

Table Page

 1. The Components of Hadoop and Spark ... 13

 2. The Ecosystems of Hadoop and Spark .. 17

 3. Datasets for Word Count–Sorted by Keys .. 20

 4. Datasets for PageRank Example ... 25

 5. Running Times for the Case Study of Word Count .. 28

 6. Running Times for the Case Study of Secondary Sort .. 29

 7. Running Times for the Case Study of PageRank .. 29

 8. Running Times for Word Count–Sorted by Keys on Spark 30

 9. Running Times for Word Count–Sorted by Values on Spark 30

 10. Running Times for PageRank on Spark .. 30

 11. The Running Times with Default Configuration Settings 32

 12. The Running Times with Optimization I in Hadoop ... 33

 13. The Running Times with Optimization II in Hadoop ... 34

 14. The Running Times with Optimization II and III in Hadoop 36

 15. The Running Times with Optimization I in Spark .. 37

 16. The Running Times with Optimization I and II in Spark 37

7

List of Figures

Figure Page

 1. Hadoop Components ... 8

 2. MapReduce Logical Data Flow ... 10

 3. Logical Data Flow in Spark ... 12

 4. Spark Components ... 13

 5. Hadoop Architecture ... 14

 6. Spark Architecture ... 16

 7. The Ecosystem of Hadoop ... 16

 8. The Ecosystem of Spark .. 16

 9. The Network Deployment of Hadoop and Spark .. 19

 10. The Data Sample of Word Count–Sorted by Keys ... 20

 11. Algorithms of Word Count in Hadoop and Spark ... 21

 12. The Data Sample of Word Count–Sorted by Values ... 22

 13. The Data Sample of PageRank .. 25

 14. The Example of Calculating the Rank Value of a Link .. 26

 15. Spark Application Web UI .. 27

 16. Hadoop Application Web UI ... 27

8

Chapter 1: Introduction

In this chapter, an overview of Hadoop and Spark is introduced to get a basic

understanding of their frameworks, including their key components and how data flows in

MapReduce and Spark respectively. Next, their runtime architectures are dissected to better

comprehend how an application works in Hadoop and Spark separately. In addition, their

ecosystems are illustrated to show the characteristic and functionality of each element.

1.1 The Overview of Hadoop and Spark

Apache Hadoop is a framework for the distributed processing of big data across

clusters of computers using MapReduce programming data model [1]. Figure 1 shows the

four core components of Apache Hadoop: MapReduce, Hadoop Utilities, YARN (Yet

Another Resource Negotiator) and HDFS (Hadoop Distributed File System).

MapReduce
(data processing)

YARN
(cluster resource management)

Hadoop
utilities

HDFS
(data storage)

Figure 1: Hadoop Components

MapReduce is a programming model which provides support for parallel computing,

locality-aware scheduling, fault-tolerance, and scalability on commodity clusters [2].

MapReduce separates the data processing into two stages: the map stage and the reduce stage.

The data flow in MapReduce in Figure 2 is as follows [3]:

9

1. Each split file is corresponding to a map task which is responsible for transforming

input records into immediate records [1], and the mapper outputs the result to a

circular memory buffer (the default size is 100M);

2. When the data in the circular buffer is approaching a threshold size (80% of the

default size), the mapper starts to spill the contents in the buffer to a spill file on

the local disk; before data are written to disk, a background thread divides the data

into a few partitions, the number of which is corresponding to the number of

reducers. Also, during partitioning, the data are sorted by key.

3. When the data fill up the circular memory buffer during spilling, the map task is

blocked until all of the contents in the buffer are emptied;

4. Once one mapper completes its output, a reducer, which is responsible for

reducing a set of immediate results that share the same key to a smaller set of

results [1], starts to fetch a particular partition. This process of transferring data

from the outputs of mapper to the inputs of reducer is called data shuffle, which is

an all-map-to-all-reduce personalized communication [4], and Hadoop uses its

internal algorithm to implement this shuffle processing.

5. After shuffling is done, the reducer starts to merge the partitions;

6. And then the reduce function is invoked to process the merged data;

7. Finally, the reduce function outputs the result on HDFS.

10

split0

split2

part0reduce

map

map

merge

spill

part1reduce

merge

split1 map

shuffle

map stage

reduce stage

Figure 2: MapReduce Logical Data Flow [3]

YARN is a cluster resource management framework in Hadoop [5]. YARN includes

two key daemons: a resource manager to schedule jobs and tasks or allocate resources across

the cluster, and node managers to start and monitor containers. A container is a Java virtual

machine instance, where an application or MapReduce tasks run with a given memory, CPU

and other resources.

HDFS is a file system which stores big data, links data blocks logically, and streams

data at high bandwidth to applications in a distributed system [6]. It separates file system

metadata from application data. The former are presented on NameNode, and the later are

stored on DataNode. Also, HDFS replicates data across clusters to achieve reliability in case

of failure of nodes [7].

Hadoop is believed to be reliable, scalable, and fault-tolerant. It is well known that

MapReduce is a good fit for applications of processing big data, but it is a poor fit for iteration

11

algorithms and low-latency computations because MapReduce relies on persistent storage to

provide fault-tolerance, and requires the entire data set to be loaded into system before

running analytical queries [8]. So that is why Spark was born.

Spark is a cluster computing framework and an engine for large-scale data processing.

It constructs a distributed collections of objects, resilient distributed datasets (RDDs) in

memory, and then performs a variety of operations in parallel on these datasets. Spark greatly

outperforms Hadoop MapReduce by 10x in iterative machine learning tasks [9] and is up to

20x faster for iterative applications [10].

Spark is an alternative to the MapReduce framework. It is mainly used for real-time

data stream processing or applied to iterative algorithms. RDDs is a distributed memory

abstraction [10], and each RDD is a read-only, partitioned collection of elements across the

cluster that can be operated on in parallel [9]. The immutability of a RDD means that changes

to the current RDD will create a new RDD, and makes caching and sharing it easy. When

operations are executed on each RDD, the number of partitions in it determines the degree of

parallelism. RDDs can be created by two ways: loading datasets from external resource, such

as HDFS, or parallelizing a collection in the driver program [5]. There are two types of

operations in processing RDDs: transformations and actions. The operation of transformations

builds a new RDD from a previous one, but actions compute a result based on an RDD, and

then either return it to the driver program or save it to an external storage system. Also,

transformations on RDDs are lazily evaluated [5], which means Spark does not execute those

operations immediately, but only records the metadata of how to calculate the data. Once one

action is invoked, Spark starts to execute all of operations. In this way, Spark decreases the

12

number of transfers of raw data between nodes. The logic data flow in Figure 3 is as follows

[5]:

1. An RDD is created by parallelizing an existing collection of data in the driver

program or loading a dataset from the external storage system, such as HDFS or

HBase;

2. And then the RDD may be transformed lazily a couple of times, which means the

results are not computed at once and are just recorded to apply to the dataset;

3. Once an action is called, all of transformations are computed. Also, each time a

new action is called, the entire RDD must be computed from the starting point. So

intermediate results can be persisted in memory using a cache() or persist()

method;

4. At last, the output is returned to the driver program.

create RDDs
transformations
(lazy evaluation)

actions
input output

map(),filter(),
union(),etc.

count(),collect(),
reduce(),etc.

parallize(),
textFile().

Figure 3: Logical Data Flow in Spark

Spark provides multiple optional modes for the resource management framework and

the file system according to the specific context. For example, if Spark is installed on an

empty set of machines, the Standalone cluster manager makes it easy to get started. But if a

Hadoop system already exists, and a spark application needs to be set up to access HDFS in

Hadoop, it is better to make Spark run on YARN because YARN provides support for

security and better integration with its resource management policies [11]. Figure 4 shows the

13

architecture of a spark system, and the descriptions of the components in Spark are listed in

the Table 1, which summarizes the functionalities of the components in Hadoop and Spark [1]

[9].

Spark
(batch processing,fault-
tolerance,and RDD etc.)

YARN,Mesos,or Built-in Standalone
Cluster

HDFS,FTP File system, Amazon-S3,
Windows Azure or Storage Blobs

Figure 4: Spark Components

Table 1: The Components of Hadoop and Spark

Framework Components Description

Hadoop

Hadoop utilities They provide support for other Hadoop modules.

Hadoop Distributed File

System (HDFS)

A filesystem aims to store a large scale data sets and

provide high-throughput access to them, running on a

distributed commodity hardware [1].

Yet Another

Resource Negotiator

(YARN)

A cluster resource manage system that schedules jobs

and manages the allocation of resources across the

cluster [1].

MapReduce A framework for parallel processing of big data.

Spark

Spark SQL

It integrates the SQL queries into Spark programs. The

Spark SQL Server can be connected through JDBC or

ODBC. Also, Spark SQL is compatible with the existing

Hive data warehouse [9].

Spark Streaming

This component makes it easy to build scalable fault-

tolerant streaming applications [9].

Machine Learning Lib

MLlib helps users to create and tune the machine

learning pipelines [9].

Graphx: This is a graph computation engine, which is used for

graphs or graphs in parallel computation [9].

Apache Spark Core

Component

It includes batch processing, APIs, fault-tolerance, and

Resilient Distributed Datasets (RDD).

14

1.2 Runtime Architecture

 Running a MapReduce job in Hadoop

As shown in Figure 5, first, a driver program creates a jobClient and this jobClient

asks the ResourceManager for an application ID. Once it gets the ID, the jobClient copies the

resources from HDFS, including the libs which the application needs to run, and the

configuration files. Next, the jobClient submits the application to ResourceManager and

requests the YARN scheduler to allocate a container in a NodeManager node, where the

ResourceManager launches the application master that initializes the application job, and

creates a map task for each split and reduce tasks. If it is a small job, the map and reduce tasks

will be executed in parallel in the local node. Usually, a small job is one that owns less than

10 map tasks, only one reduce task and the size of each input file is less than the HDFS block

size [3]. Otherwise, the application master will send a request to ResourceManager and ask

for more containers to run MapReduce tasks.

Driver program

NodeManager Node

ResourceManager

Application

Master

NodeManager

JobClient

NodeManager Node

Container

(tasks)

NodeManager

Figure 5: Hadoop Architecture [3]

15

 Running a driver program in Spark

Spark takes advantage of a master-slave architecture. A Spark application includes a

central coordinator (driver) and a number of workers (executors). The driver is either the

process where the main() function of the program runs, or when a Spark shell is launched, a

driver program will be created. By default, the driver runs in the “client” mode which means

the submitter starts the driver outside the cluster [9], and worker nodes are responsible for

running executor processes, but the driver program can also be shipped to execute on any

worker node by specifying the “cluster” mode. In addition, the driver and each executor are

separated Java processes.

The driver has two duties: one duty is to convert a user program into units of tasks,

which are the smallest unit of work in Spark [5]; the other is to schedule tasks on executors,

which are started at the beginning of a Spark application. Executors have two roles, one is to

be responsible for running the tasks and then return status to the driver; the other is to provide

memory-based storage for RDDs. As shown in Figure 6: a driver program first creates

SparkContext and connects to Cluster Manager and then the cluster manager allocates

resources, such as executors, for the application. Next, the application code is sent to the

executor. Finally, SparkContext delivers tasks to the executors to run [5].

16

SparkContext

Driver Program

Cluster Manager
(Standalone)

Cache

Cache

Executor

Executor

Worker Node

Worker Node

Task Task

Task Task

Figure 6: Spark Architecture [5]

1.3 The Overview of Ecosystems in Spark and Hadoop

As Hadoop and Spark are evolving, they have built their own respective ecosystems,

and each of them establishes a set of businesses and their interrelationships in a common

framework [12]. As a result, neither Spark nor Hadoop ecosystem is an individual product,

but they are a collection of components, whose interrelationships are illustrated in Figures 7

and 8. Their descriptions and functionalities are listed in the Table 2. Currently, because

Spark is younger thank Hadoop, it has fewer components.

HDFS(Hadoop Distribubed File System)

YARN(Cluster Resource Management)

SQL Query

(Hive)

Management

Interface

(ZooKeeper)

Data Flow

Processing

(Pig)

RMDB

(Sqoop)

Machine

Learning

(Mahout)

Stream

Tool

(Flume)

NoSQL

Database

(HBase)

Stream

Processing

(Storm)

Graph

Processing

(Giraph)

Figure 7: The Ecosystem of Hadoop

HDFS,Cassandra,Amazon-S3,or Kudu

YARN,Mesos,or Built-in Standalone Cluster

SQL Query

(Spark

SQL)

Machine

Learning

(MLib)

Stream

Processing
(Spark

Stream)

Graph

Processing

(GraphX)

Figure 8: The Ecosystem of Spark

17

Table 2: The Ecosystems of Hadoop and Spark

 Ecosystem

Elements

Hadoop Spark

Distributed File

Systems

HDFS, FTP File system, Amazon-S3,

Windows Azure Storage Blobs

HDFS, Cassandra,

Amazon-S3, Kudu

Distributed Resource

Management

YARN framework It is adaptable. YARN,

Mesos, or Built-in

Standalone Manager

which provides the easiest

way to run applications on

a cluster [5].

SQL Query HIVE: A data warehouse component

SPARK SQL

Machine Learning Mahout: A Machine learning component MLib

Stream Processing Storm: real-time computational

engine

Spark Stream

Graph Processing Giraph: A framework for large-scale

graph processing

GraphX

Management Interface ZooKeeper: A management tool for

Hadoop cluster.

No support

Stream tool Flume: a service for efficiently

transferring streaming data into

the Hadoop Distributed File System

(HDFS).

No support

Pluggable to RMDB Sqoop: transfer data between Relational

Database

Management System (RDBMS)

 and Hadoop

No support

Data Flow Processing Pig: a high level scripting data flow

language which expresses data flows by

applying a series of transformations to

loaded data [12].

No support

NoSQL database HBase: based on BigTable, and

column-oriented

No support

https://en.wikipedia.org/wiki/FTP
http://azure.microsoft.com/en-us/documentation/articles/hdinsight-use-blob-storage
http://getkudu.io/
https://engineering.linkedin.com/open-source/apache-giraph-framework-large-scale-graph-processing-hadoop-reaches-01-milestone
https://engineering.linkedin.com/open-source/apache-giraph-framework-large-scale-graph-processing-hadoop-reaches-01-milestone

18

Chapter 2: The Evaluation of Performance

In order to show that Spark is faster than Hadoop on performance, a laboratory work is

conducted in a cluster with eight virtual machines during break (machines are relatively idle),

where Hadoop and Spark are installed and deployed. Three case studies based on the same

algorithm and programming language are employed to run on this cluster. The running times

of each case study on Hadoop system and Spark system are tabled to exhibit the performance

difference.

2.1 Laboratory Environment

 Hardware configuration (8 virtual machines)

Hostname IP CPU Storage

shengti1 10.59.7.151 For each IP:

AMD quad-core

Opteron 2348 @

2.7GHZ

NFS raid array,

WD Re 4TB 7200

RPM 64MB Cache

SATA 6.0Gb/s 3.5"

shengti2 10.59.7.152

shengti3 10.59.7.153

shengti4 10.59.7.154

shengti5 10.59.7.155 For each IP:

AMD 12 core

Opteron 6174 @ 2.2

GHZ

local disk, WD Re

1TB 7200 RPM

64MB Cache

SATA 6.0Gb/s 3.5"

shengti6 10.59.7.156

shengti7 10.59.7.157

shengti8 10.59.7.158

Storage size on each machine: 100G

Memory size on each Machine: 6G

 Software configuration

Software Name Version

Operating System Ubuntu 12.04, 32-bit

Apache Hadoop 2.7.1

Apache Spark 1.4

JRE Java(TM) SE Runtime Environment (build 1.8.0_66-

b17)

SSH openssh_5.9p1

virtualization platform VMware vSphere 5.5

19

2.2 Laboratory Network Deployment

In this project, both Hadoop and Spark are deployed on 8 virtual machines. The master

node IP is 10.59.7.151, and other slave nodes or workers are from 10.59.7.152 ~ 10.59.7.158.

For the Hadoop system, the namenode process and the YARN cluster manager are launched

on the master node, and each slave node is responsible for launching its own datanode

process. For the Spark system, the master process and the built-in standalone cluster are

started on the master node, each worker is responsible for launching the executor process. The

network topology of the two systems is as shown in Figure 9:.

NameNode &
YARN cluster

10.59.7.151

Master &
Standalone cluster

Hadoop

Spark

DataNode6

Worker6

DataNode5

Worker5

DataNode4

Worker4

DataNode3

Worker3

DataNode2

Worker2

DataNode1

Worker1

10.59.7.152 10.59.7.153 10.59.7.154 10.59.7.155 10.59.7.156 10.59.7.157

10.59.7.151

DataNode7

Worker7

10.59.7.158

Figure 9: The Network Deployment of Hadoop and Spark

2.3 Case Studies for Evaluation

A couple of cases are used for evaluation in this project. Each case uses different

number of iterations, but the examples of each case running on Hadoop and Spark are based

on the same algorithm. In this case, with the same configurations of hardware and the default

20

settings of Hadoop and Spark, a resulting comparison on performance should be feasible and

reasonable.

2.3.1 Word Count—Sorted by Keys

The classic example of word count is provided for both Hadoop and Spark, which make

use of MapReduce to do the job. The data source is generated by a program which

randomly picks words from a dictionary file which includes 5000 English words, and

places one word on each line in the output file. The following Table 3 shows the data

size used in this case study and the next case study Word Count–Sorted by Values.

Table 3: Datasets for Word Count–Sorted by Keys

Sample Name Sample Size

wc_100M.txt 99.96MB

wc_500M.txt 499.72MB

wc_1G.txt 999.44MB

wc_2G.txt 1.95GB

 Data Sample

hadoop
spark
test
key

sort
test

value
sort

hadoop 1
key 1

sort 2
spark 1
test 2

value 1

Original
Data

Word Count
Sorted by keys

Figure 10: The Data Sample of Word Count–Sorted by Keys

21

 Algorithm Description

Algorithm 1 in Figure 11 shows how the Word Count case study is implemented in

Hadoop. At first, the map function splits one line at a time into words using a token, and then

outputs key-value pairs by the format < <word>, 1> as the input data of the reduce function.

Before the reduce function is called, the keys are sorted with the default dictionary order.

Next, the reduce function sums up the counts for each unique word. At last, the reduce

function outputs the result on HDFS.

Algorithm 2 in Figure 11 shows how the Word Count case study is implemented in

Spark. At first, an RDD is created by loading data from HDFS using the fuction textFile().

Next, a few transformation functions, such as flatMap(), map(), and reduceByKey(), are

invoked to record the metadata of how to process the actual data. At last, all of

transformations are called to compute the actual immediate data once an action like the

function saveAsText() is called.

Algorithm 1: Word Count in Hadoop

1: class Mapper<K1,V1,K2,V2>
2: function map(K1,V1)
3: List words = V1.splitBy(token);
4: foreach K2 in words
5: write(K2,1);
6: end for
7: end function
8: end class

1: class Reducer<K2,V2,K3,V3>
2: function reduce(K2,Iterable<V2> itor)
3: sum = 0;
4: foreach count in itor
5: sum += count;
6: end for
7: write(k3,sum);
8: end function
9: end class

Algorithm 2: Word Count in Spark

1: class WordCount
2: function main(String[] args)
3: file = sparkContext.textFile(filePath);
4: JavaRDD<String> words = flatMap <- file;
5: JavaPairRDD<String,Integer> pairs = map <- words;
6: JavaPairRDD<String,Integer> counts = reduceByKey <- pairs
7: result = sortByKey <- counts;
8: end function
9: end class

Figure 11: Algorithms of Word Count in Hadoop and Spark

22

2.3.2 Word Count—Sorted By Values

By default, the output of the example of Word Count is sorted by key with dictionary

order. In the following example in Figure 12, the default sorting function will be

overridden by an integer sorting function to sort values. As shown in the Figure 12,

there are three jobs which complete the whole program. The first job outputs the same

immediate data as what the first case study does. The second job swaps key-value

pairs, and then uses the integer sorting function to sort frequencies. At last, the third

job is to group the immediate data by frequency and then sort by words.

 Data Sample

hadoop
spark
test
key
sort
test
value
sort

hadoop 1
key 1
sort 2
spark 1
test 2
value 1

Original
Data

Word
Count

Sorted by
Frequency

Partitioned by
frequency and

sort each partition

2 test
2 sort
1 value
1 hadoop
1 key
1 spark

sort 2
test 2

hadoop 1
key 1

spark 1
value 1

Swap
Mapper

1 hadoop
1 key
2 sort
1 spark
2 test
1 value

Job 1 Job 2 Job 3

Figure 12: The Data Sample of Word Count–Sorted by Values

 Algorithm Description

1. Based on the case study of word count, swap the key and the value of Mapper;

2. Overwrite the comparator of Mapper, and sort frequency with integer type;

3. Partition the running result by frequency;

4. Swap the key and the value of each partition;

23

5. Sort each partition by words;

6. Merge the partition;

7. Finally, output the result.

2.3.3 Iterative algorithm

Here, PageRank is chosen to show the difference of performance between Hadoop and

Spark because of the following reasons:

1) the implementation of PageRank algorithm is involved in multiple iterations of

computation;

2) in Hadoop, for each iteration computation, MapReduce always writes immediate

data back to HDFS (Hadoop distributed file system) after a map or reduce action.

3) However, Spark processes immediate data in an in-memory cache.

In this case, for such a specific application, it is obviously expected that Spark

would completely overwhelm Hadoop on performance.

 Algorithm Description

Because this paper mainly focus on the comparison of performance between Spark

and Hadoop, a common PageRank algorithm will be used in this case study.

PageRank appears along with the development of web search engines. It is considered

as the probability that a user, who is given a random page and clicks links at random

all the time, eventually gets bored and jumps to another page at random [14]. As

result, it is used to calculate a quality ranking for each page in the link structure of the

web, and thus improves the precision of searching results. This is the way that Google

searching engine evaluates the quality of web pages.

24

Basically, the core idea of PageRank is as follows [14]:

I. If a page is linked by a large number of other pages, it is much more important

than a page linked by a few others, and this page also owns higher rank value;

II. If a page is linked by another page with higher rank value, its rank value is

improved;

III. The final goal of this algorithm is to find stable ranks for all of links after

multiple iterations.

In this case study, a PageRank value will be calculated by the following formula [15],

which was proposed by the Google founders Brin and Page in 1998:

𝑅𝑖 = 𝑑 ∗ ∑(𝑅𝑗/𝑁𝑗)

𝑗∊𝑆

+ (1 − 𝑑)

𝑅𝑖 : The PageRank value of the link i

𝑅𝑗 : The PageRank value of the link j

𝑁𝑗 : The number of outgoing links of link j pointing to its neighbor links

𝑆 : The set of links that point to the link i

𝑑 : The damping factor (usually, d = 0.85)

2.3.4 Sample data preparation and running results

The sample datasets in the Table 4 are used to evaluate the performances of the

PageRank application respectively running in Hadoop and Spark. All of the data

source are from http://snap.stanford.edu/data/ [16].

http://snap.stanford.edu/data/

25

Table 4: Datasets for PageRank Example

Sample Name Sample Size Nodes Edges

web-NotreDame.txt 20.56MB 325,729 1,497,134

web-Google.txt 73.6MB 875,713 5,105,039

as-Skitter.txt 142.2MB 1,696,415 11,095,298

 Data Sample

The data sample shown in Figure 13 is from web-Google.txt. Each line represents a

directed edge. The left column represents starting link points, and the right column is the

ending link points.

0
0
0

11342
11342
11342
11342

824020
824020

11342
824020
867932

0
27469
23689

867932
0

91807

From
LinkId

To
LinkId

Figure 13: The Data Sample of PageRank

Let us take some sample data as an example to show how PageRank values are

calculated. Initially, the PageRank value of each link is equal to 1.0, and then their final

values are calculated as follows:

http://snap.stanford.edu/data/web-Stanford.html
https://snap.stanford.edu/data/as-skitter.html

26

0

11342

824020

827932

27469

23689

867932

91807

After the first iteration

The PageRank value of link ID 0:
0.15 + 0.85(1.0/4 + 1.0/2) = 0.7875

Link ID 11342: 4 outgoing links
Link ID 824020: 2 outgoing links
Link ID 827932: No outgoing
links,which means no contribution to
other links. So, here ignore it.

Figure 14: The Example of Calculating the Rank Value of a Link

2.4 The Evaluation of Running Results

2.4.1 Performance Measurement and Metrics

For the three case studies above, their performance in Hadoop and in Spark are

compared by the running times. To keep a fair comparison, we guarantee the

following metrics which are applied to Hadoop and Spark:

 Hadoop and Spark platforms run on the same cluster machines;

 Both Hadoop and Spark use HDFS as the file storage system;

 Case studies implemented in Hadoop and Spare are based on the same programing

language and algorithm;

 At last, we take advantage of Hadoop Application Web UI and Spark Application

Web UI where the Start Time and Finish Time are listed to calculate the elapsed

time of a Hadoop or Spark application, as shown in the Figures 15 and 16:

27

Figure 15: Spark Application Web UI

Figure 16: Hadoop Application Web UI

Since the goal of this paper is not to focus on how to achieve the convergence of

PageRank, 15 iterations are applied to each dataset in Hadoop and Spark respectively

to just make sure we are able to evaluate the time difference between Hadoop and

Spark.

2.4.2 The Comparison of Running Results

In this project, each case study was repeated more than 10 times of testing to obtain

the average running results. Sometimes because of unstable network traffic, there are a

few seconds of error band for a small job, or tens of seconds of error band for a big

job. Tables 5, 6, and 7 show the average running time comparison based on different

sizes of data for each case study in Hadoop and in Spark. The observations are as

follows:

28

 In the first case study Word Count, for a small data size which is less than the

default block size of 128MB, there is a stable performance ratio between Spark

and Hadoop because the data is processed in the local node no matter whether it is

in Hadoop or in Spark. However, as the growth of data size, i.e., more split blocks

are generated, there is an increasing performance ratio between Spark and Hadoop.

Here performance ratio (PR) is defined as:

𝑃𝑅 =
The running time of a given data size in Spark

The running time of the same data size in Hadoop

 In the second case study, Word Count–Sorted by Values, the performance ratio

value is bigger than that in the first case study because there is more than one

iteration.

 When multiple iterations, such as 15 iterations, apply to Hadoop and Spark

respectively, Spark has a compelling performance enhancement when being

compared with Hadoop.

Table 5: Running Times for the Case Study of Word Count

 Data size

System

100 MB 500 MB 1 GB 2 GB

Hadoop 58 secs 1 min 12 secs 1 min 48 secs 2 mins 25 secs

Spark 16 secs 23 secs 25 secs 30 secs

 PR=3.63 PR=3.13 PR=4.32 PR=4.83

29

Table 6: Running Times for the Case Study of Secondary Sort

 Data size

System

100 MB 500 MB 1 GB 2GB

Hadoop 1 min 43 secs 1 min 56 secs 2 mins 27 secs 3 mins 2 secs

Spark 12 secs 22 secs 23 secs 30 secs

 PR=8.58 PR=5.27 PR=6.39 PR=6.07

Table 7: Running Times for the Case Study of PageRank

 Data size

 System

20.56 MB

NotreDame

67.02 MB

Google

145.62 MB

as-skitter

Hadoop 7 mins 22 secs 15 mins 3 secs 38 mins 51 secs

Spark 37 secs 1 min 18 secs 2 mins 48 secs

 PR = 11.95 PR = 11.58 PR=13.86

As mentioned before, Spark utilizes memory-based storage for RDDs but

MapReduce in Hadoop processes disk-based operations, so it stands to reason that

the performance of Spark outperforms that of Hadoop. However, Spark allows to

limit the memory usage of each executor by assigning spark.executor.memory to a

proper value, e.g., 2 GB. Therefore, as the memory usage limit is varied between 1

and 3 GB on each executor, comparable running results are listed in the Table 8, 9,

and 10 (Time Unit: seconds), and we have the following observations:

 For small size of data or fewer iterations, increasing memory does not contribute

to the improvement of performance, as shown in Tables 8 and 9.

30

 As the growth of data size and multiple iterations are executed, there is a

significant performance improvement with the increasing memory usage by

setting the value of spark.executor.memory, as shown in Table 9.

 Table 8: Running Times for Word Count–Sorted by Keys on Spark

 Data

size

Memory usage

(GB)

100 MB 500MB 1GB 2GB

3 16 secs 24 secs 25 secs 29 secs

2 16 secs 24 secs 24 secs 30 secs

1 16 secs 23 secs 25 secs 31 secs

 Table 9: Running Times for Word Count–Sorted by Values on Spark

 Data size

Memory usage

(GB)

100 MB 500 MB 1 GB 2 GB

3 16 secs 24 secs 25 secs 31 secs

2 17 secs 23 secs 27 secs 29 secs

1 15 secs 23 secs 24 secs 31 secs

Table 10: Running Times for PageRank on Spark

 Data

size

Memory usage

(GB)

20.56 MB

NotreDame

67.02 MB

Google

145.62 MB

as-skitter

3 36 secs 78 secs 162 secs

2 37 secs 78 secs 180 secs

1 33 secs 114 secs 780 secs

31

Based on the same memory usage, Spark still performs better than Hadoop (The

default memory for a map task is 1GB [1]). The reasons mainly result from the

following factors [17]:

1) Spark workloads have a higher number of disk accesses per second than Hadoop’s;

2) Spark has a better memory bandwidth utilization than Hadoop;

3) Spark achieves higher IPCs than Hadoop;

Also, in Spark, task scheduling is based on an event-driven mode but Hadoop employs

heartbeat to tracking tasks, which periodically causes a few seconds delays [18].

Moreover, in Hadoop, there is overhead to complete the minimal requirements of job

setup, starting tasks, and cleaning up because of the minimum overhead of the Hadoop

software stack [10]. For some applications involved in iterative algorithm, Hadoop is

totally overwhelmed by Spark because multiple jobs in Hadoop cannot share data and

have to access HDFS frequently [19].

32

Chapter 3: Optimization of Hadoop and Spark

Hadoop provides over hundreds of default parameter configuration settings for

clusters and applications [20], and Spark allows users to customize dozens of properties for

application tuning. Changing some default values may have an impact on other performance

because of their interconnections. For example, in Hadoop, assume that given proper map

tasks, if the number of reducers is set to a higher value, tasks will be processed in parallel in

the cluster but the process of shuffling data between mapper and reducer will cause a lot of

overhead because the shuffle phase includes network transferring, in-memory merging and

any on-disk merging. However, if the number of reducers is set to one, the bandwidth of the

network will limit heavy data transfer and degrade the whole performance of the application.

So, optimization of parameter or property configuration settings in Hadoop and Spark not

only depends on application characteristics but also the hardware environment itself on which

the cluster runs.

Here, we take the first case study Word Count–Sorted by Keys as an example of

tuning some parameter configuration settings to see how its performance will be improved

step by step when running on Hadoop and Spark respectively. In order to make a comparison

between each step, the running time on Hadoop and Spark respectively with default

configuration settings is shown as follows:

Table 11: The Running Times with Default Configuration Settings

 Data size

System

100 MB 500 MB 1 GB 2 GB

Hadoop 55 secs 1 min 44 secs 1 min 59 secs 3 mins 53 secs

Spark 18 secs 26 secs 28 secs 34 secs

33

3.1 Tuning in Hadoop

 Optimization I: data Compression

By default, Hadoop provides support for three types of data compression: gzip,

bzip2 and LZO, and each of them has different compression ratios and speeds [3].

In this case study, a better performance is achieved for a bigger size of data by

setting the following factors:

a) mapreduce.map.output.compress = true (false by default)

b) mapreduce.map.output.compress.codec = gzip

For a small size of data, up to 2GB data, the performance is degraded due to the

cost of compressing and decompressing data as shown below:

Table 12: The Running Times with Optimization I in Hadoop

 Data

size

System

100 MB 500 MB 1 GB 2 GB

Hadoop 1 min 3 secs 2 mins 4 secs 2 mins 10 secs

3 mins 23 secs

 Optimization II: Change memory management and YARN parameter

configuration

From the running results with default configuration settings, we have two

observations in Hadoop:

1) The map stage dominates the total running time;

2) With the growth of data, the cost of reducer stage becomes bigger;

34

During a map stage, the mapper output is first buffered in memory and then spilled

to disk after a threshold value is exceeded. The cost of outputting mapper results to

disk is decided by two factors: mapreduce.task.io.sort.mb, the size of in-memory

buffer, and mapreduce.map.sort.spill.percent, the threshold of the buffer before its

content is spilled to disk. Therefore, we first optimize the map stage through

modifying the following factors in mapred-site.xml:

a) Enlarge the size of the circular memory buffer to 500M(100M by default) by

setting the property mapreduce.task.io.sort.mb;

b) Set the number of shuffling copies in parallel to 20 (5 by default) by setting the

property mapreduce.reduce.shuffle.parallelcopies;

c) Reduce data spilling by setting mapreduce.map.sort.spill.percent = 0.95 (0.8 by

default).

After running the first case Word Count–Sorted by Keys, a better performance

improvement based on the default configuration is achieved as shown in the

following Table. But for the data size which is less than the block size such as

100M, the running time is stable (sometimes a few seconds of error band) because

the data is always processed in the local node.

Table 13: The Running Times with Optimization II in Hadoop

 Data

size

System

100 MB 500 MB 1 GB 2 GB

Hadoop 53 secs 1 min 18 secs 1 min 43 secs 2 min 27 secs

35

 Optimization III: Change data partitioning configuration

The number of reduce tasks is one of the most basic Hadoop MapReduce

parameters, so optimizing the number of reducers will contribute to performance

improvement [21]. In Hadoop, by default there is a single reducer [3], namely a

single partition.

Increasing the number of reducers improves load balancing and lowers the cost

of failures, but increases the cost of network communication between nodes. The

right number of reducers is suitable when it is about 0.95 or 1.75 * (Number of

Nodes * Number of Maximum containers per node)

The factor of 0.95 means that all of reduces can launch immediately and start

transferring map outputs as the maps finish [1]. The factor of 1.75 means that the

faster nodes will finish their first round of reduces and launch a second wave of

reduces doing a much better job of load balancing [1].

In our laboratory environment, the memory size of each node is 6G, but the

free memory for each work node is less than 3.5G after starting some necessary

processes or daemons, such as a NodeManager process and a DataNode process in

Hadoop, and a worker process in Spark. In the configuration, we set

mapreduce.map.memory.mb = 1204M for each mapper container

and

mapreduce.reduce.memory.mb = 2560M for each reducer container.

As a result, there are at most two mapper containers or one reducer container

which are able to be launched in a node. So, a suitable reducer number for the case

36

studies should be about 6~8 or 12~14. However, based on the configuration of

optimization II, different reducer numbers are tried and the best performance

improvement achieved is showed in the following table, where the reducer number

is listed in the parenthesis:

Table 14: The Running Times with Optimization II and III in Hadoop

 Data

size

System

100 MB 500 MB 1 GB 2 GB

Hadoop 53 secs

(reducer = 1)

1 min 16 secs

(reducer = 1)

1 min 34 secs

(reducer = 6)

2 mins 23 secs

(reducer = 13)

3.2 Tuning in Spark

Spark provides support for three types of data compression: lz4, lzf, and snappy [9].

By default, the codec used to compress RDD partitions is snappy.

 Optimization I: Change memory management

By default, the number of cores used for the driver process is 1, and its memory

usage is set to 1GB. Also, the amount of memory used for each executor process is

1GB [9]. In order to take full advantage of in-memory processing to improve the

computing efficiency, it is important to allocate enough memory needed for RDDs

to avoid possible slowdown of the execution [22]. Here, when we set

spark.driver.cores = 2,

spark.driver.memory = 2G,

and spark.executor.memory = 3G,

the best performance is achieved as follows:

37

Table 15: The Running Times with Optimization I in Spark

 Data

size

System

100 MB 500 MB 1 GB 2 GB

Spark 15 secs 25 secs 26 secs 31 secs

 Optimization II: data partition

In this project, only one partition is output for each case study running in Hadoop

or Spark. But this way will degrade the performance because of network

bottleneck when there are a number of map tasks. Therefore, a proper partitioning

will contribute to the performance improvement. In Spark, the number of partitions

of each RDD is decided by the number of map tasks, which means that each

mapper output is corresponding to one partition of an RDD. Repartitioning data in

Spark is a fairly expensive operation [5], so a better performance is achieved by

the default partitions based on the optimization I.

Table 16: The Running Times with Optimization I and II in Spark

 Data

size

System

100 MB 500 MB 1 GB 2 GB

Spark 16 secs 23 secs 24 secs 29 secs

38

Chapter 4: Conclusions

From the laboratory work, we find that Spark totally overshadows Hadoop on

performance in all of case studies, especially those involved in the iterative algorithm. We

conclude that several factors can give a rise to a significant performance difference. First of

all, Spark pipelines RDDs transformations and keeps persistent RDDs in memory by default,

but Hadoop mainly concentrates on high throughput of data rather than on job execution

performance [23] such that MapReduce results in overheads due to data replication, disk I/O,

and serialization, which can dominate application execution times. Also, in order to achieve

fault-tolerance efficiently, RDDs provide a coarse-grained transformations rather than fine-

grained updates to shared state or data replication across cluster [10], which means Spark

builds the lineage of RDDs through transformations rather than the actual data. For example,

if a partition of an RDD is missing, the RDD can retrieve the information about how it was

originated from other RDDs. Last but not least, Spark has more optimizations, such as the

number of disk accesses per second, memory bandwidth utilization and IPC rate, than

Hadoop, so that it provides a better performance.

Spark is generally faster than Hadoop because it is at the expense of significant

memory consumption. But Spark is not a good fit for applications that make asynchronous

fine-grained updates to shared state [10]. Also, if we do not have sufficient memory and the

speed is not a demanding requirement, Hadoop is a better choice. For those applications

which are time sensitive or involved in iterative algorithms and there is abundant memory

available, Spark is sure to be the best fit.

39

References

[1] MapReduce Tutorial, 2015, http://hadoop.apache.org/.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster

computing with working sets,” in Proceedings of the 2nd USENIX Conference on Hot

Topics in Cloud Computing (HotCloud'10), USENIX Association, Berkeley, CA, 2010,

p. 10-10.

[3] T. White, Hadoop: The Definitive Guide (Fourth edition). Sebastopol, CA: O'Reilly

Media, 2015.

[4] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “MapReduce with

communication overlap (MaRCO),” Journal of Parallel and Distributed Computing, pp.

608-620, n.d.

[5] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark. Sebastopol, CA:

O'Reilly Media, 2015.

[6] K. Shvachko, K. Hairong, S. Radia, and R. Chansler, “The Hadoop Distributed File

System,” in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies

(MSST), pp.1-10, May 3-7, 2010.

[7] H. Ahmed, M. A. Ismail, and M. F. Hyder, “Performance optimization of Hadoop

cluster using Linux services,” in Multi-Topic Conference (INMIC), 2014 IEEE 17th

International, pp.167-172, December 8-10, 2014.

[8] B. Li, E. Mazur, Y. Diao, A. Mcgregor, and P. Shenoy, “A platform for scalable one-

pass analytics using MapReduce,” in Proceedings of the 2011 International Conference

on Management of Data-SIGMOD '11.

[9] Spark Overview, 2015, http://spark.apache.org/.

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, and I. Stoica, “Resilient distributed datasets: a fault-tolerant abstraction for in-

memory cluster computing,” in Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation (NSDI'12), USENIX Association,

Berkeley, CA, 2012, pp. 2-2.

[11] N. Islam, S. Sharmin, M. Wasi-ur-Rahman, X. Lu, D. Shankar, D. K. Panda,

“Performance characterization and acceleration of in-memory file systems for Hadoop

and Spark applications on HPC clusters,” in 2015 IEEE International Conference

on Big Data (Big Data), October 29, 2015-November 1, 2015, pp. 243-252.

http://hadoop.apache.org/

40

[12] E. Yu and S. Deng, “Understanding software ecosystems: A strategic modeling

approach,” in Proceedings of the Workshop on Software Ecosystems 2011,

746(IWSECO2011), 2011, p. 6-6.

[13] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine,

December 3, 2015, http://infolab.stanford.edu/~backrub/google.html.

[14] G. Rumi, C. Colella, and D. Ardagna, “Optimization techniques within the Hadoop eco-

system: a survey,” in 2014 16th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), September 22-25, 2014, pp. 437-444.

[15] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” ACM Trans. Inter. Tech.

TOIT ACM Transactions on Internet Technology, pp. 92-128, 2005.

[16] Stanford University, “Stanford large network dataset collection,” 2009,

http://snap.stanford.edu/, November 10, 2015.

[17] J. Tao, Q. Zhang, R. Hou, L. Chai, S. A. Mckee, J. Zhen, and N. Sun, “Understanding

the behavior of in-memory computing workloads,” in 2014 IEEE International

Symposium on Workload Characterization (IISWC), October 26-28, 2014, pp. 22-30.

[18] X. Lin, P. Wang, and B. Wu, “Log analysis in cloud computing environment with

Hadoop and Spark,” in 2013 5th IEEE International Conference on Broadband Network

& Multimedia Technology (IC-BNMT), November 17-19, 2013, pp. 273-276.

[19] L. Gu and H. Li, “Memory or time: performance evaluation for iterative operation on

Hadoop and Spark,” in 2013 IEEE 10th International Conference on High Performance

Computing and Communications & 2013 IEEE International Conference on Embedded

and Ubiquitous Computing (HPCC_EUC), November 13-15, 2013, pp. 721-727.

[20] B. Mathiya and V. Desai, “Apache Hadoop yarn parameter configuration challenges and

optimization,” in 2015 International Conference on Soft-Computing and Networks

Security (ICSNS).

[21] J. Zhan, “Big data benchmarks, performance optimization, and emerging hardware,” 4th

and 5th Workshops, BPOE 2014, Salt Lake City, March 1, 2014 and Hangzhou, China,

September 5, 2014, Revised selected papers.

[22] K. Wang and M. M. H. Khan, “Performance prediction for Apache Spark platform,”

in 2015 IEEE 12th International Conference on Embedded Software and Systems

(ICESS), 2015 IEEE 17th International Conference on High Performance Computing

and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace

Safety and Security (CSS), August 24-26, 2015, pp. 166-173.

http://snap.stanford.edu/

41

[23] J. Yan, X. Yang, R. Gu, C. Yuan, and Y. Huang, “Performance optimization for short

MapReduce job execution in Hadoop,” in 2012 Second International Conference

on Cloud and Green Computing (CGC), November 1-3, pp. 688-694.

42

Appendix A: Guide to Installing Hadoop

This project is conducted under the software configuration in Chapter 2.1 Laboratory

Environment. Therefore, before installing Hadoop 2.7.1, make sure that the operating system

Ubuntu 14.0.2 and all of other software are already set up, and then follow the steps one by

one:

 Step 1: Download Hadoop-2.7.1 and unpack it.

 Step 2: Edit /etc/profile and set HADOOP_PREFIX, JAVA_HOME and

HADOOP_CLASSPATH.

 Step 3: Set up passphraseless SSH on the master machine.

 Step 4: copy id_das.pub on the master machine to all other slave machines and make sure

that the master machine can access all of slave machines through SSH service without

password.

 Step 5: Set up Hadoop cluster environment by editing the configuration files core-

site.xml, hdfs-site.xml, mapred-site.xml, yarn-site.xml and slaves under the directory

$HADOOP_HOME/etc/hadoo/.

43

 core-site.xml hdfs-site.xml

 yarn-site.xml slaves

mapred-site.xml

 Step 6: Copy the entire HADOOP_HOME fold to the same path of each slave machine

 Step 7: Start Hadoop Cluster in the $HADOOP_HOME

 Step 8: Verify if all daemons are launched on the master node and slave nodes.

When running the command “jps”, if we can see NameNode and ResourceManager

processes listed as below, it shows that the master node works successfully.

44

When opening the URL like http://10.59.7.151:50070/, if we can see there are 7 live

nodes, it shows that all slave nodes work successfully.

http://10.59.7.151:50070/

45

Appendix B: Guide to Installing Spark

Before installing Spark-1.4.1, make sure that the operating system Ubuntu 14.0.2 and

all of other software mentioned in Chapter 2.1 Laboratory Environment are already set up,

and then follow the steps one by one:

 Step 1: Download Spark-1.4.1 and unpack it.

 Step 2: Because in this laboratory work, Spark needs to access HDFS and use the

Standalone Manager to schedule resources and tasks, we add the following two properties

to $SPARK_HOME/conf/spark-env.sh:

 Step 3: Configure the slave file

 Step 4: Copy the entire SPARK_HOME fold to the same path of each slave machine

 Step 5: Start Spark Cluster in the $SPARK_HOME

 Step 6: Verify if all daemons are launched on the master node and woker nodes.

46

When running the command “jps”, if we can see a Master process listed as below, it

shows that the master node works successfully.

When opening the URL like http://10.59.7.151:8080/, if we can see there are 7 worker

nodes listed as below, it shows that all worker nodes works successfully.

http://10.59.7.151:8080/

47

Appendix C: The Source Code of Case Studies

 Source Code: WordCountHadoop.java

1. /**

2. * Copyright [2015] [Shengti Pan]

3. *

4. * Licensed under the Apache License, Version 2.0 (the "License");

5. * you may not use this file except in compliance with the License.

6. * You may obtain a copy of the License at

7. *

8. * http://www.apache.org/licenses/LICENSE-2.0

9. *

10. * Unless required by applicable law or agreed to in writing, software

11. * distributed under the License is distributed on an "AS IS" BASIS,

12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

13. * See the License for the specific language governing permissions and

14. * limitations under the License.

15. */

16.
17.
18. import java.io.IOException;

19. import java.util.StringTokenizer;

20. import org.apache.hadoop.conf.Configuration;

21. import org.apache.hadoop.fs.Path;

22. import org.apache.hadoop.io.IntWritable;

23. import org.apache.hadoop.io.Text;

24. import org.apache.hadoop.mapreduce.Job;

25. import org.apache.hadoop.mapreduce.Mapper;

26. import org.apache.hadoop.mapreduce.Reducer;

27. import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

28. import org.apache.hadoop.mapreduce.lib.output.*;

29. import org.apache.hadoop.io.compress.*;

30.
31. /**

32. * This Hadoop program is to implement counting the frequency

33. * of words in a text file which is stored in HDFS.

34. */

35.
36. public class WordCountHadoop {

37.
38. private final static String rootPath = "/user/hadoop/";

39.

48

40. //map each word to a value one

41. public static class TokenizerMapper extends

42. Mapper<Object, Text, Text, IntWritable> {

43. private final static IntWritable one = new IntWritable(1);

44. private Text word = new Text();

45. public void map(Object key, Text value, Context context)

46. throws IOException, InterruptedException {

47. StringTokenizer itr = new StringTokenizer(value.toString());

48. while (itr.hasMoreTokens()) {

49. word.set(itr.nextToken());

50. context.write(word, one);

51. }

52. }

53. }

54.
55. //reduce values by a unique word

56. public static class IntSumReducer extends

57. Reducer<Text, IntWritable, Text, IntWritable> {

58. private IntWritable result = new IntWritable();

59. public void reduce(Text key, Iterable<IntWritable> values,

60. Context context) throws IOException, InterruptedException {

61. int sum = 0;

62. for (IntWritable val : values) {

63. sum += val.get();

64. }

65. result.set(sum);

66. context.write(key, result);

67. }

68. }

69.
70. public static void main(String[] args) throws Exception {

71. //this program accepts two parameters by default;

72. //if there is a third paramter, it is treated as the number of the reducers

73. if(args.length < 2 || args.length > 3){

74. System.out.println("Usage: wc.jar <input file> <output file> or");

75. System.out.println("wc.jar <input file> <output file> <reduce number>");

76. System.exit(1);

77. }

78.
79. //set up Hadoop configuration

80. Configuration conf = new Configuration();

81.
82. //set the compression format for map output

83. conf.setBoolean(Job.MAP_OUTPUT_COMPRESS,true);

49

84. conf.setClass(Job.MAP_OUTPUT_COMPRESS_CODEC,GzipCodec.class,

85. CompressionCodec.class);

86.
87. //create a Hadoop job

88. Job job = Job.getInstance(conf, "WordCount for " + args[0]);

89. job.setJarByClass(WordCountHadoop.class);

90. job.setMapperClass(TokenizerMapper.class);

91. job.setCombinerClass(IntSumReducer.class);

92. job.setReducerClass(IntSumReducer.class);

93. job.setOutputKeyClass(Text.class);

94. job.setOutputValueClass(IntWritable.class);

95.
96. //set the number of reducers. By default, No. of reducers = 1

97. if (args.length == 3) {

98. job.setNumReduceTasks(Integer.parseInt(args[2]));

99. }

100. FileInputFormat.addInputPath(job, new Path(rootPath + "input/"

101. + args[0]));

102. FileOutputFormat

103. .setOutputPath(job, new Path(rootPath + args[1]));

104. System.exit(job.waitForCompletion(true) ? 0 : 1);

105. }

106. }

 Source Code : WordCountSpark.java

1. /**

2. * Copyright [2015] [Shengti Pan]

3. *

4. * Licensed under the Apache License, Version 2.0 (the "License");

5. * you may not use this file except in compliance with the License.

6. * You may obtain a copy of the License at

7. *

8. * http://www.apache.org/licenses/LICENSE-2.0

9. *

10. * Unless required by applicable law or agreed to in writing, software

11. * distributed under the License is distributed on an "AS IS" BASIS,

12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

13. * See the License for the specific language governing permissions and

14. * limitations under the License.

50

15. */

16.
17. import scala.Tuple2;

18. import org.apache.spark.SparkConf;

19. import org.apache.spark.api.java.JavaPairRDD;

20. import org.apache.spark.api.java.JavaRDD;

21. import org.apache.spark.api.java.JavaSparkContext;

22. import org.apache.spark.api.java.function.FlatMapFunction;

23. import org.apache.spark.api.java.function.Function2;

24. import org.apache.spark.api.java.function.PairFunction;

25. import org.apache.spark.serializer.KryoRegistrator;

26. import java.util.Arrays;

27. import java.util.List;

28. import java.util.regex.Pattern;

29.
30.
31. /**

32. * This spark program is to implement counting the frequency

33. * of words in a text file which is stored in HDFS.

34. */

35.
36. public class WordCountSpark {

37. private static int num = 0;//the partition number

38. //the path to access HDFS

39. private final static String rootPath = "hdfs://10.59.7.151:9000/user/hadoop/";

40.
41. public static void main(String[] args) throws Exception {

42. //this program accepts two parameters by default;

43. //if there is a third paramter, it is treated as the

44. parameter of a partition number

45. if(args.length < 2 || args.length > 3){

46. System.out.println("Usage: wc.jar <input file> <output file> or");

47. System.out.println("wc.jar <input file> <output file> <partition number>");

48. System.exit(1);

49. }

50. if(args.length == 3)

51. num = Integer.parseInt(args[2]);

52.
53. //set up the configuration and context of this spark application

54. SparkConf sparkConf = new SparkConf().setAppName("WordCountSpark");

55. JavaSparkContext spark = new JavaSparkContext(sparkConf);

56.
57. //words are split by space

58. JavaRDD<String> textFile = spark

51

59. .textFile(rootPath + "input/"

60. + args[0]);

61. JavaRDD<String> words = textFile

62. .flatMap(new FlatMapFunction<String, String>() {

63. public Iterable<String> call(String s) {

64. return Arrays.asList(s.split(" "));

65. }

66. });

67.
68. //map each word to the value 1

69. JavaPairRDD<String, Integer> wordsMap = words

70. .mapToPair(new PairFunction<String, String, Integer>() {

71. public Tuple2<String, Integer> call(String s) {

72. return new Tuple2<String, Integer>(s, 1);

73. }

74. });

75.
76. //reduce the value of a unique word

77. JavaPairRDD<String, Integer> freqPair = wordsMap

78. .reduceByKey(new Function2<Integer, Integer, Integer>() {

79. public Integer call(Integer a, Integer b) {

80. return a + b;

81. }

82. });

83.
84. //if num == 0, using the default partition rule

85. if(num == 0)

86. freqPair.sortByKey().map(x -> x._1 + "\t" + x._2).

87. saveAsTextFile(rootPath + args[1]);

88. else

89. //else manually assign the partition number

90. freqPair.repartition(num).

91. sortByKey().map(x -> x._1 + "\t" + x._2).

92. saveAsTextFile(rootPath + args[1]);

93.
94. //terminate the spark application

95. spark.stop();

96. }

97. }

 Source Code : WCHadoopSortValues.java

1. /**

2. * This Hadoop program is to implement a secondary sort

52

3. * of the WordCount example, which means that the final

4. * result is not only sorted by frequency, but also sorted

5. * by words.

6. */

7.

8. import java.util.*;

9. import java.io.*;

10. import org.apache.hadoop.fs.FileSystem;

11. import org.apache.hadoop.io.*;

12. import org.apache.hadoop.conf.Configuration;

13. import org.apache.hadoop.fs.Path;

14. import org.apache.hadoop.mapreduce.lib.input.*;

15. import org.apache.hadoop.mapreduce.lib.output.*;

16. import org.apache.hadoop.mapreduce.*;

17. import org.apache.hadoop.mapreduce.Partitioner;

18. import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

19. import org.apache.hadoop.mapreduce.lib.map.InverseMapper;

20.
21. public class WCHadoopSortValues {

22.
23. public static String rootPath = "/user/hadoop/";

24.
25. public static class TokenizerMapper extends

26. Mapper<Object, Text, Text, IntWritable> {

27.
28. private final static IntWritable one = new IntWritable(1);

29. private Text word = new Text();

30.
31. // map each word to a value one

32. public void map(Object key, Text value, Context context)

33. throws IOException, InterruptedException {

34. StringTokenizer itr = new StringTokenizer(value.toString());

35. while (itr.hasMoreTokens()) {

36. word.set(itr.nextToken());

37. context.write(word, one);

38. }

39. }

40. }

41.
42. // calculate the frequency of a unique word via reduce

43. public static class IntSumReducer extends

44. Reducer<Text, IntWritable, Text, IntWritable> {

45. private IntWritable result = new IntWritable();

46.

53

47. public void reduce(Text key, Iterable<IntWritable> values,

48. Context context) throws IOException, InterruptedException {

49. int sum = 0;

50. for (IntWritable val : values) {

51. sum += val.get();

52. }

53. result.set(sum);

54. context.write(key, result);

55. }

56. }

57.
58. // construct a map with a composite key, such as ((hadoop,1),null);

59. public static class SecondaryMapper extends

60. Mapper<IntWritable, Text, CompositeKey, Text> {

61. private Text word = new Text();

62.
63. public void map(IntWritable value, Text key, Context context)

64. throws IOException, InterruptedException {

65. context.write(new CompositeKey((Text) key, value), word);

66. }

67. }

68.
69. // implement a comparator for the comparison between two integers

70. private static class IntWritableComparator extends IntWritable.Comparator {

71. public int compare(WritableComparable a, WritableComparable b) {

72. return -super.compare(a, b);

73. }

74.
75. public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {

76. return -super.compare(b1, s1, l1, b2, s2, l2);

77. }

78. }

79.
80. public static void main(String[] args) throws Exception {

81. Configuration conf = new Configuration();

82. Job job = Job.getInstance(conf, "WordCount for " + args[0]);

83.
84. // save the immediate result into a temp file

85. Path tempDir = new Path("temp_wc_" + System.currentTimeMillis());

86. job.setJarByClass(WCHadoopSortValues.class);

87. job.setMapperClass(TokenizerMapper.class);

88. job.setCombinerClass(IntSumReducer.class);

89. job.setReducerClass(IntSumReducer.class);

90. job.setOutputKeyClass(Text.class);

54

91. job.setOutputValueClass(IntWritable.class);

92. FileInputFormat.addInputPath(job, new Path(rootPath + "input/"

93. + args[0]));

94. FileOutputFormat.setOutputPath(job, tempDir);

95. job.setOutputFormatClass(SequenceFileOutputFormat.class);

96.
97. // order by frequency

98. if (job.waitForCompletion(true)) {

99. Job job2 = new Job(conf, "sorted by frequency");

100. job2.setJarByClass(WCHadoopSortValues.class);

101.

102. FileInputFormat.addInputPath(job2, tempDir);

103. job2.setInputFormatClass(SequenceFileInputFormat.class);

104.

105. job2.setMapperClass(InverseMapper.class);

106. FileOutputFormat.setOutputPath(job2, new Path(args[1]));

107.

108. job2.setOutputKeyClass(IntWritable.class);

109. job2.setOutputValueClass(Text.class);

110. job2.setSortComparatorClass(IntWritableComparator.class);

111. FileSystem.get(conf).deleteOnExit(tempDir);

112. tempDir = new Path("temp_wc_" + System.currentTimeMillis());

113. FileOutputFormat.setOutputPath(job2, tempDir);

114. job2.setOutputFormatClass(SequenceFileOutputFormat.class);

115.

116. // order by word

117. if (job2.waitForCompletion(true)) {

118. Job job3 = new Job(conf, "sorted by word");

119. job3.setJarByClass(WCHadoopSortValues.class);

120.

121. FileInputFormat.addInputPath(job3, tempDir);

122. job3.setInputFormatClass(SequenceFileInputFormat.class);

123. job3.setMapperClass(SecondaryMapper.class);

124.

125. // set parameters for the job3, such as paritioner and

126. // comparator

127. job3.setMapOutputKeyClass(CompositeKey.class);

128. job3.setPartitionerClass(KeyPartitioner.class);

129. job3.setSortComparatorClass(CompositeKeyComparator.class);

130. job3.setGroupingComparatorClass(KeyGroupingComparator.class);

131.

132. FileOutputFormat.setOutputPath(job3, new Path(rootPath

133. + args[1]));

134. job3.setOutputKeyClass(IntWritable.class);

55

135. job3.setOutputValueClass(Text.class);

136.

137. System.exit(job3.waitForCompletion(true) ? 0 : 1);

138. }

139. }

140. FileSystem.get(conf).deleteOnExit(tempDir);

141. }

142. }

143.

144. // partitioned by frequency

145. class KeyPartitioner extends Partitioner<CompositeKey, Text> {

146. HashPartitioner<IntWritable, Text> hashPartitioner =

147. new HashPartitioner<IntWritable, Text>();

148. IntWritable newKey = new IntWritable();

149.

150. @Override

151. public int getPartition(CompositeKey key, Text value, int numReduceTasks) {

152.

153. try {

154. return hashPartitioner.getPartition(key.getFrequency(), value,

155. numReduceTasks);

156. } catch (Exception e) {

157. e.printStackTrace();

158. return (int) (Math.random() * numReduceTasks);

159. }

160. }

161. }

162.

163. // group words together by frequency order

164. class KeyGroupingComparator extends WritableComparator {

165. protected KeyGroupingComparator() {

166.

167. super(CompositeKey.class, true);

168. }

169.

170. @SuppressWarnings("rawtypes")

171. @Override

172. public int compare(WritableComparable w1, WritableComparable w2) {

173. CompositeKey key1 = (CompositeKey) w1;

174. CompositeKey key2 = (CompositeKey) w2;

175. return key2.getFrequency().compareTo(key1.getFrequency());

176. }

177. }

178.

56

179. // comparison between composite keys

180. class CompositeKeyComparator extends WritableComparator {

181. protected CompositeKeyComparator() {

182. super(CompositeKey.class, true);

183. }

184.

185. @SuppressWarnings("rawtypes")

186. @Override

187. public int compare(WritableComparable w1, WritableComparable w2) {

188.

189. CompositeKey key1 = (CompositeKey) w1;

190. CompositeKey key2 = (CompositeKey) w2;

191. int cmp = key2.getFrequency().compareTo(key1.getFrequency());

192. if (cmp != 0)

193. return cmp;

194. return key1.getWord().compareTo(key2.getWord());

195. }

196. }

197.

198. // construct a composite key class

199. class CompositeKey implements WritableComparable<CompositeKey> {

200. private Text word;

201. private IntWritable frequency;

202.

203. public CompositeKey() {

204. set(new Text(), new IntWritable());

205. }

206.

207. public CompositeKey(String word, int frequency) {

208.

209. set(new Text(word), new IntWritable(frequency));

210. }

211.

212. public CompositeKey(Text w, IntWritable f) {

213. set(w, f);

214. }

215.

216. public void set(Text t, IntWritable n) {

217. this.word = t;

218. this.frequency = n;

219. }

220.

221. @Override

222. public String toString() {

57

223. return (new StringBuilder()).append(frequency).append(' ').append(word)

224. .toString();

225. }

226.

227. @Override

228. public boolean equals(Object o) {

229. if (o instanceof CompositeKey) {

230. CompositeKey comp = (CompositeKey) o;

231. return word.equals(comp.word) && frequency.equals(comp.frequency);

232. }

233. return false;

234. }

235.

236. @Override

237. public void readFields(DataInput in) throws IOException {

238. word.readFields(in);

239. frequency.readFields(in);

240. }

241.

242. @Override

243. public void write(DataOutput out) throws IOException {

244. word.write(out);

245. frequency.write(out);

246. }

247.

248. @Override

249. public int compareTo(CompositeKey o) {

250. int result = word.compareTo(o.word);

251. if (result != 0) {

252. return result;

253. }

254. return result = frequency.compareTo(o.frequency);

255. }

256.

257. public Text getWord() {

258. return word;

259. }

260.

261. public IntWritable getFrequency() {

262. return frequency;

263. }

264. }

58

 Source Code : WCSparkSortValues.java

1. /**

2. * This Spark program is to implement a secondary sort

3. * of the WordCount example, which means that the final

4. * result is not only sorted by frequency, but also sorted

5. * by words.

6. */

7.

8. import scala.Tuple2;

9. import org.apache.spark.SparkConf;

10. import java.util.*;

11. import org.apache.spark.api.java.*;

12. import org.apache.spark.Partitioner;

13. import org.apache.spark.HashPartitioner;

14. import org.apache.hadoop.conf.Configuration;

15. import org.apache.spark.api.java.function.FlatMapFunction;

16. import org.apache.spark.api.java.function.Function2;

17. import org.apache.spark.api.java.function.PairFunction;

18. import org.apache.hadoop.fs.*;

19. import java.io.Serializable;

20. import java.util.regex.Pattern;

21.
22.
23. public final class WCSparkSortValues {

24. private static final Pattern SPACE = Pattern.compile(" ");

25. private static String rootPath = "hdfs://10.59.7.151:9000/user/hadoop/";

26.
27. public static void main(String[] args) throws Exception {

28. SparkConf sparkConf = new SparkConf().setAppName("WordCount in Spark");

29. JavaSparkContext spark = new JavaSparkContext(sparkConf);

30.
31. FileSystem fs = FileSystem.get(spark.hadoopConfiguration());

32. JavaRDD<String> textFile = spark.textFile(rootPath + "/input/" + args[0]);

33. //load data for HDFS and split each line by space

34. JavaRDD<String> words = textFile

35. .flatMap(new FlatMapFunction<String, String>() {

36. public Iterable<String> call(String s) {

37. return Arrays.asList(s.split(" "));}

38. });

39.
40. //map each word to the value one

41. JavaPairRDD<String, Integer> pairs = words

42. .mapToPair(new PairFunction<String, String, Integer>() {

59

43. public Tuple2<String, Integer> call(String s) {

44. return new Tuple2<String, Integer>(s, 1); }

45. });

46.
47. //reduce by key, namely, the words.

48. JavaPairRDD<String, Integer> counts = pairs

49. .reduceByKey(new Function2<Integer, Integer, Integer>()

50. {

51. public Integer call(Integer a, Integer b) { return a + b; }

52. });

53.
54. //sort by key

55. JavaPairRDD<String, Integer> sortedByKeyList = counts.sortByKey(true);

56.
57. //reverse key-to-value to value-to-key

58. JavaPairRDD<Tuple2<Integer, String>, Integer> countInKey = sortedByKeyList

59. .mapToPair(a -> new Tuple2(

60. new Tuple2<Integer, String>(a._2, a._1), null));

61.
62. //construct a composite RDD pair and also group by frequency

63. JavaPairRDD<Tuple2<Integer, String>, Integer> groupAndOrderByvalues

64. = countInKey.repartitionAndSortWithinPartitions(new MyPartitioner(1),

65. new TupleComparator());

66.
67. //extract the key of the composite RDD pair

68. JavaRDD<Tuple2<Integer,String>> data = groupAndOrderByvalues.keys();

69.
70. //convert JavaPairRDD to JavaRDD

71. JavaPairRDD<Integer,String> results = JavaPairRDD.fromJavaRDD(data);

72.
73. //make sure only one output and also format it

74. results.repartition(1).map(s -> s._1 + "\t" + s._2)

75. .saveAsTextFile(rootPath + args[1]);

76.
77. //stop the spark application

78. spark.stop();

79. }

80. }

81.
82. class TupleStringComparator implements

83. Comparator<Tuple2<Integer, String>>, Serializable {

84. @Override

85. public int compare(Tuple2<Integer, String> tuple1,

86. Tuple2<Integer, String> tuple2) {

60

87. return tuple1._2.compareTo(tuple2._2);

88. }

89. }

90.
91. //construct a practitioner by frequency

92. class MyPartitioner extends Partitioner {

93. private int partitions;

94. public MyPartitioner(int partitions) {

95. this.partitions = partitions;

96. }

97.
98. @Override

99. public int getPartition(Object o) {

100. Tuple2 newKey = (Tuple2) o;

101. return (int) newKey._1 % partitions;

102. }

103.

104. @Override

105. public int numPartitions() {

106. return partitions;

107. }

108. }

109.

110. //construct a key comparator in a composite RDD

111. class TupleComparator implements Comparator<Tuple2<Integer, String>>,

112. Serializable {

113. @Override

114. public int compare(Tuple2<Integer, String> tuple1,

115. Tuple2<Integer, String> tuple2) {

116. return tuple2._1 - tuple1._1;

117. }

118. }

 Source Code : PageRankHadoop.java

1. /**

2. * This Hadoop program is to implement a PageRank algorithm,

3. * which was proposed by the Google founders Brin and Page.

4. * The datasouce is from SNAP (https://snap.stanford.edu/).

5. */

6.

7. import java.io.IOException;

8. import java.text.*;

9. import java.util.*;

61

10. import org.apache.hadoop.io.*;

11. import org.apache.hadoop.mapreduce.Mapper;

12. import org.apache.hadoop.mapreduce.Reducer;

13. import org.apache.hadoop.conf.Configuration;

14. import org.apache.hadoop.fs.FileSystem;

15. import org.apache.hadoop.fs.Path;

16. import org.apache.hadoop.mapreduce.lib.input.*;

17. import org.apache.hadoop.mapreduce.lib.output.*;

18. import org.apache.hadoop.mapreduce.Job;

19.
20. public class PageRankHadoop {

21. // utility attributes

22. public static NumberFormat NF = new DecimalFormat("00");

23. public static String LINKS_SEPARATOR = "|";

24.
25. // configuration values

26. public static Double DAMPING = 0.85;

27. public static int ITERATIONS = 1;

28. public static String INPUT_PATH = "/user/hadoop/input/";

29. public static String OUTPUT_PATH = "/user/hadoop/";

30.
31. // A map task of the first job: transfer each line to a map pair

32. public static class FetchNeighborsMapper extends

33. Mapper<LongWritable, Text, Text, Text> {

34. public void map(LongWritable key, Text value, Context context)

35. throws IOException, InterruptedException {

36. //skip the comment line with #

37. if (value.charAt(0) != '#') {

38. int tabIndex = value.find("\t");

39. String nodeA = Text.decode(value.getBytes(), 0, tabIndex);

40. String nodeB = Text.decode(value.getBytes(), tabIndex + 1,

41. value.getLength() - (tabIndex + 1));

42. context.write(new Text(nodeA), new Text(nodeB));

43. }

44. }

45. }

46.
47. // A reduce task of the first job: fetch the neighbor's links

48. // and set the initial value of fromLinkId 1.0

49. public static class FetchNeighborsReducer extends

50. Reducer<Text, Text, Text, Text> {

51. public void reduce(Text key, Iterable<Text> values, Context context)

52. throws IOException, InterruptedException {

53. boolean first = true;

62

54. String links = "1.0\t";

55. int count = 0;

56. for (Text value : values) {

57. if (!first)

58. links += ",";

59. links += value.toString();

60. first = false;

61. count++;

62. }

63. context.write(key, new Text(links));

64. }

65.
66. }

67.
68. // A map task of the second job:

69. public static class CalculateRankMapper extends

70. Mapper<LongWritable, Text, Text, Text> {

71. public void map(LongWritable key, Text value, Context context)

72. throws IOException, InterruptedException {

73.
74. int tIdx1 = value.find("\t");

75. int tIdx2 = value.find("\t", tIdx1 + 1);

76.
77. // extract tokens from the current line

78. String page = Text.decode(value.getBytes(), 0, tIdx1);

79. String pageRank = Text.decode(value.getBytes(), tIdx1 + 1, tIdx2

80. - (tIdx1 + 1));

81.
82. // Skip pages with no links.

83. if (tIdx2 == -1)

84. return;

85.
86. String links = Text.decode(value.getBytes(), tIdx2 + 1,

87. value.getLength() - (tIdx2 + 1));

88. String[] allOtherPages = links.split(",");

89. for (String otherPage : allOtherPages) {

90. Text pageRankWithTotalLinks = new Text(pageRank + "\t"

91. + allOtherPages.length);

92. context.write(new Text(otherPage), pageRankWithTotalLinks);

93. }

94.
95. // put the original links so the reducer is able to produce the

96. // correct output

63

97. context.write(new Text(page), new Text(PageRankHadoop.LINKS_SEPARAT

OR

98. + links));

99. }

100. }

101.

102. public static class CalculateRankReducer extends

103. Reducer<Text, Text, Text, Text> {

104. public void reduce(Text key, Iterable<Text> values, Context context)

105. throws IOException, InterruptedException {

106. String links = "";

107. double sumShareOtherPageRanks = 0.0;

108.

109. for (Text value : values) {

110.

111. String content = value.toString();

112.

113. //check if a linke has an appending 'links' string

114. if (content.startsWith(PageRankHadoop.LINKS_SEPARATOR)) {

115. links += content.substring(PageRankHadoop.LINKS_SEPARATOR

116. .length());

117. } else {

118. String[] split = content.split("\\t");

119.

120. // extract tokens

121. double pageRank = Double.parseDouble(split[0]);

122. if (split[1] != null && !split[1].equals("null")) {

123. int totalLinks = Integer.parseInt(split[1]);

124.

125. // calculate the contribution of each outgoing link

126. // of the current link

127. sumShareOtherPageRanks += (pageRank / totalLinks);

128. }

129. }

130.

131. }

132. //get the final page rank of the current link

133. double newRank = PageRankHadoop.DAMPING * sumShareOtherPageRanks

134. + (1 - PageRankHadoop.DAMPING);

135. //ignore the link which has no outgoing links

136. if (newRank > 0.15000000000000002

137. && !key.toString().trim().equals(""))

138. context.write(key, new Text(newRank + "\t" + links));

64

139. }

140. }

141.

142. // A map task of the third job for sorting

143. public static class SortRankMapper extends

144. Mapper<LongWritable, Text, Text, DoubleWritable> {

145. public void map(LongWritable key, Text value, Context context)

146. throws IOException, InterruptedException {

147.

148. int tIdx1 = value.find("\t");

149. int tIdx2 = value.find("\t", tIdx1 + 1);

150.

151. // extract tokens from the current line

152. String page = Text.decode(value.getBytes(), 0, tIdx1);

153. double pageRank = Double.parseDouble(Text.decode(value.getBytes(),

154. tIdx1 + 1, tIdx2 - (tIdx1 + 1)));

155. context.write(new Text(page), new DoubleWritable(pageRank));

156. }

157.

158. }

159.

160. public static void main(String[] args) throws Exception {

161.

162. if(args.length == 6){

163. //set the iteration numbers

164. if(args[0].equals("-c"))

165. PageRankHadoop.ITERATIONS = Math.max(Integer.parseInt(args[1]), 1);

166. else printHelp();

167. //set input path

168. if(args[2].equals("-i"))

169. PageRankHadoop.INPUT_PATH = PageRankHadoop.INPUT_PATH + args[3

];

170. else printHelp();

171. //set output path

172. if(args[4].equals("-o"))

173. PageRankHadoop.OUTPUT_PATH = PageRankHadoop.OUTPUT_PATH + a

rgs[5];

174. else printHelp();

175. }else{

176. printHelp();

177. }

178.

179. String inPath = null;

180. String lastOutPath = null;

65

181. PageRankHadoop pagerank = new PageRankHadoop();

182.

183. System.out.println("Start to fetch neighbor links ...");

184. boolean isCompleted = pagerank.job("fetchNeighborLinks",

185. FetchNeighborsMapper.class, FetchNeighborsReducer.class,

186. INPUT_PATH, OUTPUT_PATH + "/iter00");

187. if (!isCompleted) {

188. System.exit(1);

189. }

190.

191. for (int runs = 0; runs < ITERATIONS; runs++) {

192. inPath = OUTPUT_PATH + "/iter" + NF.format(runs);

193. lastOutPath = OUTPUT_PATH + "/iter" + NF.format(runs + 1);

194. System.out.println("Start to calculate rank [" + (runs + 1) + "/"

195. + PageRankHadoop.ITERATIONS + "] ...");

196. isCompleted = pagerank.job("jobOfCalculatingRanks",

197. CalculateRankMapper.class, CalculateRankReducer.class,

198. inPath, lastOutPath);

199. if (!isCompleted) {

200. System.exit(1);

201. }

202. }

203.

204. System.out.println("Start to sort ranks ...");

205. isCompleted = pagerank.job("jobOfSortingRanks", SortRankMapper.class,

206. SortRankMapper.class, lastOutPath, OUTPUT_PATH + "/result");

207. if (!isCompleted) {

208. System.exit(1);

209. }

210.

211. System.out.println("All jobs done!");

212. System.exit(0);

213. }

214.

215. public boolean job(String jobName, Class m, Class r, String in, String out)

216. throws IOException, ClassNotFoundException, InterruptedException {

217. Configuration conf = new Configuration();

218. Job job = Job.getInstance(conf, jobName);

219. job.setJarByClass(PageRankHadoop.class);

220.

221. // input / mapper

222. FileInputFormat.addInputPath(job, new Path(in));

223. job.setInputFormatClass(TextInputFormat.class);

224. if (jobName.equals("jobOfSortingRanks")) {

66

225. job.setOutputKeyClass(Text.class);

226. job.setMapOutputValueClass(DoubleWritable.class);

227. } else {

228. job.setMapOutputKeyClass(Text.class);

229. job.setMapOutputValueClass(Text.class);

230. }

231.

232. job.setMapperClass(m);

233.

234. // output / reducer

235. FileOutputFormat.setOutputPath(job, new Path(out));

236. job.setOutputFormatClass(TextOutputFormat.class);

237.

238. if (jobName.equals("jobOfSortingRanks")) {

239. job.setOutputKeyClass(Text.class);

240. job.setMapOutputValueClass(DoubleWritable.class);

241. } else {

242. job.setOutputKeyClass(Text.class);

243. job.setOutputValueClass(Text.class);

244. job.setReducerClass(r);

245. }

246.

247. return job.waitForCompletion(true);

248.

249. }

250.

251. //Print help message if the user does know how to run the program

252. public static void printHelp() {

253. System.out.println("Usage: PageRank.jar -c <iterations>

254. -i <input file>

255. -o <output file> \n");

256. }

257. }

 Source Code : PageRankSpark.java

1. /**

2. * Copyright [2015] [Shengti Pan]

3. *

4. * Licensed under the Apache License, Version 2.0 (the "License");

5. * you may not use this file except in compliance with the License.

6. * You may obtain a copy of the License at

7. *

8. * http://www.apache.org/licenses/LICENSE-2.0

67

9. *

10. * Unless required by applicable law or agreed to in writing, software

11. * distributed under the License is distributed on an "AS IS" BASIS,

12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

13. * See the License for the specific language governing permissions and

14. * limitations under the License.

15. */

16.
17. import scala.Tuple2;

18. import com.google.common.collect.Iterables;

19. import org.apache.spark.SparkConf;

20. import org.apache.spark.api.java.JavaPairRDD;

21. import org.apache.spark.HashPartitioner;

22. import org.apache.spark.storage.StorageLevel;

23. import org.apache.spark.api.java.JavaRDD;

24. import org.apache.spark.api.java.JavaSparkContext;

25. import org.apache.spark.api.java.function.*;

26. import java.util.*;

27. import java.util.regex.Pattern;

28.
29. /**

30. * This Spark program is to implement a PageRank algorithm,

31. * which was proposed by the Google founders Brin and Page.

32. * The datasouce is from SNAP (https://snap.stanford.edu/).

33. */

34.
35. public final class PageRankSpark {

36. private static final Pattern SPACES = Pattern.compile("\\t+");

37. private static final String ROOT_PATH = "hdfs://10.59.7.151:9000/user/hadoop/";

38. private static final double DAMPING_FACTOR = 0.85d;

39.
40. public static void main(String[] args) throws Exception {

41. if (args.length < 3) {

42. System.err.println("Usage: PageRankSpark <file> <iteration number> <output>");

43. System.exit(1);

44. }

45.
46. SparkConf sparkConf = new SparkConf().setAppName("PageRankSpark");

47. JavaSparkContext ctx = new JavaSparkContext(sparkConf);

48. JavaRDD<String> lines = ctx.textFile(ROOT_PATH + "/input/" + args[0], 1);

49.
50. //filter the data and ignor the comment line

51. final JavaRDD<String> data = lines.filter(new Function<String,Boolean>(){

68

52. public Boolean call(String s) {

53. return !s.startsWith("#");

54. }

55. });

56.
57. //load all links and fetch their neighbors.

58. JavaPairRDD<String, Iterable<String>> links = data.mapToPair(

59. new PairFunction<String, String, String>() {

60. @Override

61. public Tuple2<String, String> call(String s) {

62. String[] parts = SPACES.split(s);

63. return new Tuple2<String, String>(parts[0], parts[1]);

64. }

65. }).groupByKey().persist(StorageLevel.MEMORY_ONLY());

66.
67. //initialize the rank value of each link to 1.0

68. JavaPairRDD<String, Double> ranks = links.mapValues(new Function<Iterable<Stri

ng>,

69. Double>() {

70. @Override

71. public Double call(Iterable<String> rs) {

72. return 1.0;

73. }

74. });

75.
76. //calculate and update the ranks in multiple iterations

77. for (int current = 0; current < Integer.parseInt(args[1]); current++) {

78. //calculate the contributions to its outgoing links of the current link.

79. JavaPairRDD<String, Double> contribs = links.join(ranks).values()

80. .flatMapToPair(new PairFlatMapFunction<Tuple2<Iterable<String>, Double>,

81. String, Double>() {

82. @Override

83. public Iterable<Tuple2<String, Double>>

84. call(Tuple2<Iterable<String>, Double> s) {

85. int urlCount = Iterables.size(s._1);

86. List<Tuple2<String, Double>> results = new

87. ArrayList<Tuple2<String, Double>>();

88. for (String n : s._1) {

89. results.add(new Tuple2<String, Double>(n, s._2() / urlCount));

90. }

91. return results;

92. }

93. });

94.

69

95. //get the final rank of the current link

96. ranks = contribs.reduceByKey(new Sum()).mapValues(new Function<Double, Dou

ble>()

97. {

98. @Override

99. public Double call(Double sum) {

100. return (1.0 - DAMPING_FACTOR) + sum * DAMPING_FACTOR;

101. }

102. });

103. }

104.

105. //sort and format the result

106. ranks.sortByKey().repartition(1).map(x -> x._1 + "\t" + x._2)

107. .saveAsTextFile(ROOT_PATH + args[2]);

108. ctx.stop();

109. }

110.

111. private static class Sum implements Function2<Double, Double, Double> {

112. @Override

113. public Double call(Double a, Double b) { return a + b; }

114. }

115. }

70

Appendix D: Verify the Correctness of Running Results

In order to make sure the correctness of programs and running results, we make use of

Sqoop to export the running results on HDFS into Mysql database. Sqoop is one of

components in Hadoop ecosystem, and it is able to transfer data on HDFS into tables in

relational databases. In this case, it is easy to check the correctness and consistency of the

records between two tables which respectively save the running results of Hadoop and Spark.

Here, we take the second case study as an example to show how to verify the data step by

step.

 Step 1: Mark the running results

Before exporting the running results on HDFS into Mysql, we first mark each row of the

running results with a sequential number as follows:

 Step 2: Create two tables for saving the marked running results of Hadoop and Spark.

 Step 3: Export the marked running results into tables in Mysql using Sqoop.

71

 Step 4: Browse the data of tables in Mysql after exporting data is done.

 Step 5: For all rows, verify that the sequence number on successive rows differ by one.

 Step 6: At last, check if the two tables have the same running results.

	St. Cloud State University
	theRepository at St. Cloud State
	3-2016

	The Performance Comparison of Hadoop and Spark
	Shengti Pan
	Recommended Citation

	tmp.1456720432.pdf.Stze5

