
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

3-2016

Web development using C# MVC and ExtJS
Manish Shakya
St. Cloud State University, shma1201@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Shakya, Manish, "Web development using C# MVC and ExtJS" (2016). Culminating Projects in Computer Science and Information
Technology. 6.
https://repository.stcloudstate.edu/csit_etds/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232792219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/6?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Web Development using C# MVC and ExtJS

by

Manish Shakya

CSCI, Saint Cloud State University, Saint Cloud, 2016

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science

March, 2016

Starred Paper Committee

Meichsner, Jie

Anda, Andrew A

Kasi, Balasubramanian

i

Acknowledgement

A great many people have contributed to make this paper possible. I would like to thank all those

people who created an unforgettable experience for me and because of whom my graduate

experience has been one that I will cherish forever.

My deepest gratitude is to my advisor, Dr. Jie Hu Meichsner. I have been amazingly fortunate to

have an advisor who gave me the freedom to explore on my own. Her guidance, patience,

motivation, enthusiasm, and immense knowledge helped me in all the time of research, writing

and finishing of this paper.

Besides my advisor, I would like to thank the rest of my Starred paper committee: Dr. Andrew

Allen Anda, and Dr. Balasubramanian Kasi, for their encouragement, and insightful comments.

My sincere thanks to Dr. Anda, who has been always there to listen and give advice. I am deeply

grateful to him for the long discussions that helped me sort out the technical details of my work.

I am also thankful to him for encouraging the use of correct grammar and consistent notation in

my writings and for carefully reading and commenting on countless revisions of this manuscript.

Dr. Balasubramanian Kasi’s insightful comments and constructive criticisms throughout my

research were thought-provoking and they helped me focus my ideas.

Most importantly, none of this would have been possible without the love and patience of my

family. They have been a constant source of love, concern, support and strength all these years. I

would like to express my heart-felt gratitude to my family.

Finally, I really appreciate and would like to thank the Computer Science Department Faculty at

St. Cloud State University for providing me the education and technical skills required to write

this technical paper.

ii

Abstract

Web development refers to a term for the work involved in developing a web application for the

Internet (World Wide Web) or an intranet (a private network). The complexity of web

application ranges from developing the simplest static single page of plain text to the intricate

web-based internet applications such as electronic businesses applications, and social network

services. The intent of this paper is to show how MVC with ExtJS have changed the patterns of

web development. We discuss their performance enhancements, user interface, syntax, and

productive features including pre-built widgets, bundling, database migrations, tools for web

APIs, uniform responsive designs, and asynchronous support. Two similar application each built

using the different front end will be compared. One we develop using the primitive cshtml and

the other one using the ExtJS as the front end tool. We conclude with a comparison of several

popular JavaScript frameworks.

iii

Table of Contents

List of Figures……………………………………………………………………………………..iii

List of Tables……………………………………………………………………………………....v

1. Introduction ... 1

2. Literature review ... 2

2.1 MVC ... 2

2.1.1 Model ... 3

2.1.2 View ... 4

2.1.3 Controller ... 4

2.2 ExtJS ... 5

3. Why MVC with ExtJS? .. 6

3.1 Advantages of an MVC-Based Web Application ... 6

3.2 Features of the ASP.NET MVC Framework .. 7

3.3 Features of ExtJS .. 8

4. Setting up the environment. .. 10

4.1 Set up ExtJS .. 10

5. Implementation ... 12

6. Comparison of different JavaScript Frameworks ... 23

6.1 The Front-End Development Challenge ... 25

6.2 A Front-End Taxonomy .. 27

6.2.1 Interface Elements ... 28

6.2.2 View System .. 29

6.2.3 Data & Logic.. 30

6.2.4 Server Communication .. 32

6.3 Applying the Taxonomy to the Web Platform .. 33

6.4 A Quick Overview of Framework and Library ... 38

6.4.1 AngularJS ... 40

6.4.2 Backbone.js .. 41

6.4.3 Bootstrap .. 42

6.4.4 JQuery .. 43

iv

6.4.5 Ember JS .. 44

6.5 The Ext JS Stack ... 45

7. Conclusions ... 48

8. References ... 49

APPENDIX

A. Setting up the environment .. 50

v

List of figures

Figure 1: MVC flow diagram ... 3

Figure 2: ExtJS folder tree for the bookstore application ... 13

Figure 3: Folder tree for controller and model .. 14

Figure 4: Source code of client side model .. 14

Figure 5: Source code of server side model .. 15

Figure 6: Source code of ExtJS store .. 16

Figure 7: Source code of the GetData() method in BooksController class...................... 16

Figure 8: Location of the main application. .. 17

Figure 9: Source code of JavaScript of the main application. .. 17

Figure 10: The ExtJS data grid ... 18

Figure 11: The cshtml data grid .. 18

Figure 12: The form for Add Book ... 19

Figure 13: The form for Edit Book ... 19

Figure 14: The cshtml form for Create Book .. 20

Figure 15: The cshtml form for Edit Book ... 20

Figure 16: The source code for calendar widget ... 21

Figure 17: The calendar widget in the datefield ... 21

Figure 18: The source code to define an object as a grid panel .. 21

Figure 19: The sorting feature of Ext grid .. 22

Figure 20: Hide unwanted columns from the grid. ... 22

Figure 21: The web application in the past and present.. 24

Figure 22: Taxonomy of front-end stacks [12] ... 27

Figure 23: The components of interface elements .. 28

Figure 24: The components of View System .. 29

Figure 25: The components of data and logic ... 30

Figure 26: The components of server communication ... 32

Figure 27: Pre- HTML compatibilities in the front-end stack [12] 34

Figure 28: HTML5 compatibilities in our front end taxonomy [12] 36

Figure 29: Angular JS functionality map [12] ... 40

Figure 30: Backbone JS functionality map [12] .. 41

Figure 31: Bootstrap functionality map [12] .. 42

Figure 32: JQuery and JQueryUI functionality map [12] .. 43

Figure 33: Ember functionality map [12] ... 44

Figure 34: Ext JS functionality map [12] .. 45

Figure 35: Harbinger’s comparison of various JavaScript frameworks 47

vi

List of tables

Table 1: Content of the database table Books ... 12

Table 2: Common challenges faced by most multi-device application 25

Table 3: Major Development Frameworks and Libraries [12] ... 38

1

1. INTRODUCTION

Complex legacy solutions evolve to become simplified, more elegant, and easier to use solutions

today. The progress of technology is apparent in the world of web-based development where e-

business is the driving force behind the rapid advancement of websites, web applications, and

web services. Web development has evolved from static html pages to dynamic data driven

websites. Credit for this effort can be attributed to user-friendly web development software, such

as Adobe Dreamweaver and Microsoft Visual Studios (VS), which allow developers to utilize

diverse and powerful tools for web programming in an easy-to-learn environment. This paper

describes the two major technologies that have transformed web computing. These technologies

are the Model View Controller (MVC) architecture, along with a SQL server as the database

system, and the ExtJS which is a JavaScript framework. [1] One can develop a very efficient,

secure, and robust application by integrating these two powerful development tools. These are

both standalone tools which can be used independently to develop an application. In this paper,

we show how both of these technologies can be used in a single application. Our examples use

the C# MVC in the backend server side with a SQL server as the database management tool.

ExtJS is used on the client side.

2

2. LITERATURE REVIEW

An application architecture is important for providing structure and consistency to the

application framework. A good architecture yields several benefits: [11]

• Every application works the same way, so you only have to learn it once.

• It’s easy to share code between apps, because they all work the same way.

• It’s harder for developers to create overlapping and conflicting functionality.

One of the most popular architectures which has these three benefits is the Model View

Controller (MVC) architecture.

2.1 MVC

MVC (Model-View-Controller) is an architectural software pattern that essentially decouples

various components of a web application into model, view, and controller. ASP.NET is a unified

Web development model that includes the services necessary for you to build enterprise-class

Web applications with a minimum of coding [13]. The ASP.NET MVC framework allows a

developer to choose an alternative to the ASP.NET web forms pattern for creating MVC-based

web applications. The ASP.NET MVC framework is a lightweight, highly testable presentation

framework that is integrated with existing ASP.NET features, such as master pages and

membership-based authentication [2]. The MVC framework is defined in the

System.Web.MVC namespace and is a fundamental, supported part of the System.Web

namespace.

3

Figure 1 shows the flow diagram of the MVC architecture. Model, view, and controller are the

three different components. The user sends a request to the controller. The controller looks for

the data in the model which directly communicates with the data repository. The model sends the

data to the controller. The controller processes the data as per the user’s request and sends back

the view as the response to the user.

Figure 1: MVC flow diagram

2.1.1 Model

The model implements the logic for the application’s data domain. The major purpose of the

model is to retrieve and store the data to the database. For example, a book object might retrieve

information from a database, operate on it, and then write the updated information back to a book

table in the SQL server. The objects in the model map to the data in the SQL server.

4

2.1.2 View

Views are those components intended to display what the user requests. Typically, the user

interface is created using the model data. An example would be a load, create, edit or delete view

of a table that displays text boxes, drop-down lists, check boxes and the action buttons.

Generally, the views are HTML pages, but in our case, ExtJS is incorporated in the views to

design visually attractive web applications with pre-built and pre-tested components.

2.1.3 Controller

Controllers are the components that handle user interaction, work with the model, and select a

view to render those displays according to the user request. In an MVC application, the view

displays what is requested by the user; the controller handles and responds to user input and

interaction. For example, the controller handles query-string values, and passes these values to

the model, which in turn queries the database by using the values. [2]

The MVC pattern decouples the different aspects of the application which are the input logic,

business logic, and UI logic and provides a loose coupling between these elements. The pattern

specifies the location of each kind of elements. The UI logic, input logic, and business logic each

belong to the view, the controller and the model respectively. This enables one to focus on one

aspect of the implementation at a time, which thus manages the complexity of the application.

For example, one can focus on the view without depending on the business logic. [2]

5

2.2 ExtJS

The view is the component where the desired UI is rendered as per the user’s requirement. There

are different technologies which can be used to change the look and feel of the user interface.

Here, we are using ExtJS which is a highly robust, scalable and open source JavaScript

framework. There are different utilities which make the Document Object Model (DOM)

manipulation and DOM traversal very stable and easy. Moreover, cross browser compatibility is

reliable. Some commonly used ExtJS components are button, container, grid, charts, tree,

dropdown, menu, panel, and form.

http://docs.sencha.com/extjs/4.2.1/ [9] provides a very good online documentation.

http://docs.sencha.com/extjs/4.2.1/

6

3. WHY MVC WITH EXTJS?

There are several factors to choose MVC over the ASP.NET webform which we discuss in

section 4.1 and 4.2. Features of ExtJS are highlighted in Section 4.3. ExtJS is one of several rich

JavaScript frameworks. Therefore, choosing the front-end technology is dependent on several

criteria such as the type of application, size of application, and the features the application

provides. Our detailed comparison is presented in Chapter 6.

3.1 Advantages of an MVC-Based Web Application

The MVC framework offers the following advantages:

 The whole application is divided into 3 coupled components: the model, the view, and the

controller, hence it is easier to manage the complexity.

 The application is developed using a very good routing infrastructure. MVC uses a front

controller pattern that processes web application requests through a single controller. [2]

 Unlike classic ASP.NET, MVC does not use view state or server-based forms. It provides

better support for test-driven development. When an application is developed by a large

team, each developer and designer need more control over the behavior of the

application. In such cases, MVC will be more useful.

7

3.2 Features of the ASP.NET MVC Framework

The ASP.NET MVC framework provides the following features [2]:

 Separation of application tasks (input logic, business logic, and UI logic), testability, and

test-driven development (TDD) by default. All core contracts in the MVC framework are

interface-based and can be tested by using mock objects, which are simulated objects that

imitate the behavior of actual objects in the application. One can unit-test the application

without having to run the controllers in an ASP.NET process, which makes unit testing fast

and flexible. One can use any unit-testing framework that is compatible with the .NET

Framework.

 An extensible and pluggable framework. The components of the ASP.NET MVC framework

are designed so that they can be easily replaced or customized. One can plug in one’s own

view engine, URL routing policy, action-method parameter serialization, and other

components. The ASP.NET MVC framework also supports the use of Dependency Injection

(DI) and Inversion of Control (IOC) container models. DI facilitates injecting objects into a

class, instead of relying on the class to create the object itself. IOC specifies that if an object

requires another object, the first objects should get the second object from an outside source

such as a configuration file. This makes testing easier.

 A powerful URL-mapping component that facilitates building applications that have

comprehensive and searchable URLs. URLs do not have to include file-name extensions, and

are designed to support URL naming patterns that work well for search engine optimization

(SEO) and representational state transfer (REST) addressing.

8

 Support for using the markup in existing ASP.NET page (.aspx files, user control (.ascx

files), and master page (.master files) markup files as view templates. You can use existing

ASP.NET features with the ASP.NET MVC framework, such as nested master pages, in-line

expressions, declarative server controls, templates, data-binding, localization, and so on.

 Support for existing ASP.NET features. ASP.NET MVC lets you use features such as forms

authentication and Windows authentication, URL authorization, membership and roles,

output and data caching, session and profile state management, health monitoring, the

configuration system, and the provider architecture.

3.3 Features of ExtJS

Over the past few years the ExtJS library has grown significantly and gained developer

endorsements because of the following features it provides [8]:

 Rapid Prototyping – This tool allows one to design better and faster. Quickly prototyping the

future state of the website or application and then validating it with a broader team of users,

stakeholders, developers and designers is extremely valuable.

 Browser compatibility – When you write Document Object Model (DOM) manipulation

functions, developers can encounter browser compatibility issues. ExtJS is shielded from this.

 Multi-platform / No plugins – ExtJS has a big benefit over Java applets, Adobe Flex,

Microsoft Silverlight, in the way that no browser plugins need to be installed. This means that

you can have one dynamic website/application that will “just work” on iPhone and Android

devices. One can take this one step further and use the Sencha mobile.

 Support – The online support turnaround is very quick.

9

 Object oriented - the library is Object oriented, enabling reuse, extensibility, and all the

benefits of OOP.

 Data stores / Services / Rest – Out of the box one gets excellent remoting support, whether

XHR, direct, or script tag proxies. Most components can share the same underlying data

source, meaning an update event propagates to multiple views. Additionally, one can enable

the RESTful support to quickly gain CRUD operations.

The detailed comparison of ExtJS with various front-end tools is covered in Chapter 6.

10

 4. SETTING UP THE ENVIRONMENT.

Our intention is to demonstrate how MVC and ExtJS can be integrated together to develop an

efficient application. The application demonstrated won’t be a really sophisticated application,

but it will cover lots of features including how the data in the SQL server are mapped to models

of the MVC, how the controller manipulates all the actions as per the user requests, and how

those data are bound to the ExtJS grid, dropdowns and so on which are in the view.

4.1 Set up ExtJS

1. ExtJS can be downloaded from, “http://www.sencha.com/”. They provide a first 30 days trial

version for free. If you wish to continue developing then you need to purchase a license. But

there is a free developer version which is 4.2.1. You can use it to develop, but if you choose to

release the application for commercial purpose, then you need to purchase to follow their

policies.

2. After downloading, unzip the content in your IDE which is a Visual Studio in our case.

3. The unzipped folder contains several folders and files, out of which from the development

perspective, ext-debug.js, ext.js, ext-all-debug.js, ext-all.js are the

important files. Ext-debug.js is used only during development. It provides the minimum number

of core ExtJS classes needed to build the application. Ext.js is similar to ext-debug.js but

minified for use in production. Ext-all-debug.js contains the entire ExtJS library. Since in

most cases all the classes have not been used in a single application, ext-debug.js is

preferred over ext-all.js. Ext-all.js is a minified version of ext-all-

http://www.sencha.com/

11

debug.js that can be used in production environments, however, it is not recommended since

most applications will not make use of all the classes that it contains.

12

5. IMPLEMENTATION

We now compare two similar applications. One application is built using ASP.Net MVC

which utilizes HTML in the front end, C# in the backend and a SQL server as the database

system. The other application is built with MVC and ExtJS which has SQL on the backend.

Both systems are connected to the same database Books in our test environment.

The application is a bookstore application which stores the books in a database. The

database used is a SQL database named Books. It just has one table Books. The attributes of

the table are id, name, author, publish date, type, and price. The

content of the table is shown in Table 1. The query to see all the books in the table is:

SELECT * from Books

Table 1: Content of the database table Books

The purpose of this application is to show the content of the database in a grid in the user

interface. There are controls to add new books, edit existing books, and delete books.

The ExtJS provides a well-built user interface with additional features compared to the one built

using cshtml, in which we can use C# code in HTML. Though we can build a similar view using

the cshtml, it will require a significant effort.

13

The ExtJS source is very readable and expandable. It is important to maintain the folder tree

structure to make the application flexible. In this project, all the JavaScript files should be kept

inside a folder and each JavaScript file has their own importance. So to make it distinguishable,

the folder is sub-categorized as model, view, controller, and store. It is not necessary to create a

different store as it can be included in the model. The folder structure used in our application to

keep the JavaScript files is shown in Figure 2. There is a folder named app which has a sub

folder to keep the model, view, controller and store of the bookstore application.

Figure 2: ExtJS folder tree for the bookstore application

The backend source is kept in the Controllers and Models section as shown in Figure 3. They are

used to get, store, and update the data in the database table.

14

Figure 3: Folder tree for controller and model

The source for model book.js is shown in Figure 4. The fields are the attributes of the book. The

attributes have to be similar to the one in our database and one defined in the model Book.cs

which is shown in Figure 5.

Figure 4: Source code of client side model

15

Figure 5: Source code of server side model

The store Books.js is the ExtJS file which stores the data to be rendered in the view. The extend

is the inheritance property of the object oriented programming and the defined ext object is the

object of the component defined in the extend. The store has the API which is used to get data

from the database. In Figure 6, the proxy shows that the read is done using the method GetData

of the class Books which is actually the BooksController that is shown in Figure 7.

16

Figure 6: Source code of ExtJS store

Figure 7: Source code of the GetData() method in BooksController class

There are two JavaScript files inside the view folder. BooksList.js is the JavaScript code to

display the grid and it inherits the property of the component grid, which is used to show the

17

data in the tabular form on the client side. BooksForm.js is the JavaScript code to display

the form to add and delete the books. Booksform inherits the property of the ext component

window which is a panel used as an application window. So, the GetData() in the

BooksController.cs communicates with the SQL Server using the method GetBooks(). The

GetData() will return a JSON data which is then passed into the store where the reference to

the Books/GetData is included. The controller gets the data from the store and renders them

in the view. The controller also has a set of functions to manipulate the data.

The main application that is defined in the project is a separate JavaScript books.js as

shown in Figure 8.

Figure 8: Location of the main application.

The source of books.js is shown in figure 9.

Figure 9: Source code of JavaScript of the main application.

18

As shown in Figure 9, the main application has the namespace, the name of the controllers

used, and a launch function which has the name of the main view and the ID of the HTML

page where the view should be rendered which is output in default.html.

When the program is executed, the books information stored in the database Books is shown

in a well-organized table as shown in Figure 10. The features in the grid in our application

are default, but can be easily changed.

Figure 10: The ExtJS data grid

The table built using the basic HTML tags will be as shown in Figure 11. In order to make

the table similar to the ExtJS grid, we will require much CSS.

Figure 11: The cshtml data grid

19

Users can add new books and edit the existing books. The interface for adding and editing

books is shown in Figure 12 and Figure 13.

Figure 12: The form for Add Book

Figure 13: The form for Edit Book

A similar module in the cshtml project is shown in Figure14 and Figure15.

20

Figure 14: The cshtml form for Create Book

Figure 15: The cshtml form for Edit Book

These are the default styles in both. So ExtJS offers very pleasant styles.

The other advantage of ExtJS is widgets. There are lots of widgets which can be used easily.

Some examples are as follows:

21

Date picker

Simply adding one line of code mentioning the xtype as shown in Figure 16 will bring up

the calendar widget as shown in Figure17.

Figure 16: The source code for calendar widget

Figure 17: The calendar widget in the datefield

Sorting

The grid is created by using the library grid.Panel. The code snippet to use extend is

shown in Figure 18. By default, the grid has the sorting feature and we can easily sort by

clicking the ‘Sort Ascending’ and ‘Sort Descending’ shown in Figure19. In the HTML

version, that feature is not available and to bring this feature we need to add approximately

50 lines of code.

Figure 18: The source code to define an object as a grid panel

22

Figure 19: The sorting feature of Ext grid

Hide unwanted columns

The grid panel has the default feature to select the columns. The unwanted columns can be

hidden by unchecking as shown in Figure 20.

Figure 20: Hide unwanted columns from the grid.

There are many other widgets in the ExtJS library which can be added to the application

simply.

23

6. COMPARISON OF DIFFERENT JAVASCRIPT FRAMEWORKS

Much time and effort has been invested towards improving the development process and

building abilities centered on traditional Java application servers. Surprisingly, these ventures

have now become out of date. Mobile computing requires another construction model.

The considerable influx of desktop web applications assembled in the first decade of the 2000s

shared a common thin-client architecture. In this architecture, the heavyweight application

servers such as Oracle WebLogic served up complete pages to the browser which led to the page

requests and response going in and out of the server. During this handshaking, the whole

application workload, such as data management, integration, business logic and HTML and CSS

generation was performed on the server-side. Very few functionality of the application utilized

JavaScript. This was for three primary reasons. Firstly, browsers were primitive page viewers

with modest JavaScript engines. Secondly, desktop browsers rarely went offline. And thirdly, it

was easier to consider security when everything happened on the server. However, the progress

in mobile computing and the increasing popularity of HTML5 browsers implies that two out of

three of these reasons are no longer legitimate. Portable applications need to work offline, and

browsers (and native mobile OS) have turned out to be significantly more competent. In

contemporary advanced devices, a great part of the business logic and data handling which used

to be server based, now reside on the mobile device itself. Moreover, mobile application

experiences are richer than anything that static page-serving could ever perform.1

24

Figure 21: The web application in the past and present

Figure 21 shows the growth in the capabilities of the front end. The contemporary application

has a rich front-end which communicates with a thin-cloud back-end. A mobile device

communicates to RESTful APIs in the cloud using the JSON objects. This design movement is

behind the new era of utilizations that are stateful and data-rich, with quick user response. These

multi-device applications run on new cell phones, current desktop browsers, and other portable

devices including tablets and phablets. Large amount of data can be stored locally either in a

memory or a local data store. This helps in searching, filtering, sorting and grouping of data

rapidly as there is no need to make a round-trip to a server to fetch data after every action.

Additionally, these modern applications are significantly more stateful than Web 1.0 applications

which means the application has the memory of its own. These applications permit the client to

explore through content and information exhibited over numerous screens and sub-screens and to

take part in multi-step exchanges within a single response from the server. This means that these

applications are exceptionally information rich, permitting the presentation and control of vast

information sets in numerous ways.

25

6.1 The Front-End Development Challenge

The common challenges that are faced by most multi-device applications can be subjectively

isolated into following four categories as shown in Table 2.

Table 2: Common challenges faced by most multi-device application

Interface

Elements

 Create appealing themes and styles for interactive elements

 Present complex data using structured presentation elements like grids and

charts

 Create a standard visual vocabulary across apps

View

System

 Dynamically lay out screen elements in response to different screen sizes and

resizes

 Detect and respond to touch gestures beyond simple taps

 Swap in local language strings, handle RTL languages and keep everything

accessible

 Animate content

Logic &

Data

 Update the screen when data changes and vice versa

 Remember application states to enable undo/redo as well as

navigation

 Search, sort, filter, group and validate data

Server i/o

 Handle asynchronous calls to the server-side

 Parse and convert serialized data

 Call out to server-side code

1. Interface Elements refer to the client interface – the look and the conduct of application

substance including widgets, grids, charts and frameworks.

2. The view system deals with organizing and dealing with the prospective apparatus like the

design and intuitiveness of screen components and taking care of client necessities. View system

26

also handles the center issue of multi-gadget such as building applications that work on both

desktop screens with mouse input and portable screens with motion collaboration.

3. Logic and data updates the screen when data changes and update data when the user gives an

input. Moreover, it re-designs the screen when the information changes and updates information

according to the client input.

4. Server I/O relates to the back-end and server-side.

27

6.2 A Front-End Taxonomy

The problem that we discussed in the previous section has already been resolved in the native

development technologies. These rich customer applications can be observed in native runtimes

such as the Cocoa framework for Apple stages, the Flex framework for Flash development, or

Windows Presentation Foundation for Microsoft platforms. Each of these technology platforms

offer similar kinds of capabilities in similar stacks.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 22: Taxonomy of front-end stacks [12]

28

Utilizing the inherent abilities of the system libraries and their frameworks, native platforms

provides developers a rich tool to structure the application, change the look and feel of the user

interface, and automate common development tasks. Figure 22 presents a generic model of the

front-end stack and shows how the codes are organized. The individual components of the front

end module are:

6.2.1 Interface Elements

Figure 23: The components of interface elements

Basic widgets incorporate the fundamental presentation components of an application such as

text fields, form elements, buttons, progress indicators, loading indicators, menus etc.

Compound widgets integrate complex showcase components that show more than one data value

or include various sub-controls. A data grid, a multi-level file display, a nested list, and a

calendar on the date fields are all examples of compound widgets.

Visualizations incorporate data driven illustration components such as charts, graphs, waterfall

charts, and different graphs.

29

Containers are the holders for widgets and content which incorporate scrollable displays like

nested panels, card-based presentations and modal containers such as alerts or wizards.

Styles include font size, shadowing and other visual effects that are properties of the content or

widget set.

Themes are accumulations of style, and illustration resources that give a sound look and feel to

the application.

6.2.2 View System

Figure 24: The components of View System

The Layout manager basically has a set of layout rules to place the different screen components

in the x, y, and z space of the application view based on window size, resolution and device type.

Templating is a set of rules that can be applied to convert the placeholders into final content.

Complete templating frameworks have the ability to accept complex conditionals and iterations

and even full functions.

Gestures are those capabilities that help developer convert the interactions such as touch, scroll,

and stretch into the action. Drag and drop is also kept under this classification.

30

Visual impacts are used for property movements and visual changes including obscuring,

recoloring, desaturation and so on.

Drawing APIs are the tools that can be used for crafting rich drawings. Masking, blending,

clipping are the composite operations that can be achieved easily using drawing APIs or could be

equally considered as visual effects.

Localization is the feature that is used to convert the input and output text strings into different

formats based on the application requirements. In the view system, localization is shown as a

different block even though this is used in all stages in some way.

A theming framework accumulates different styles and provide a way to apply those to a whole

application.

Accessibility is the feature that facilitates keyboard navigation, screen reader compatibility and

high visual contrast themes for the visually impaired. Though accessibility is shown as a separate

block in the view system, it can be incorporated in different elements of the stack.

6.2.3 Data & Logic

Figure 25: The components of data and logic

31

State Management is the feature that enables the developers to manage the state of the

application. Undo, redo, and navigation to history are included in this stack.

Data objects refer to data accumulators such as collections, trees, and queues and graphs. There

are libraries that provide such data objects. However, when these are not available, the front-end

stack needs to supply them. Otherwise, the developer needs to supply them.

Data binding is a feature that enables simple change synchronization between in-memory

information variables and the screen components which portray that information. This definitely

eases the developer in composing explicit data interchange administration code.

Data models represent data structures that store the application's working datasets. The major

data mining operations such as search, filter, sort, validate, and grouping can be performed using

the well-featured data models. Additionally, data models can assist in serialization and

deserialization from wire formats.

Modularity refers to code management. This block of front-end stack is a very important block.

It helps individual developers and development teams to structure code and manage

dependencies using the proper namespacing and architectural patterns.

 The persistent data cache is a feature used to store and sync application assets and data locally

during the read-write events.

The front-end stack testing refers to the features provided for automated unit testing and system

testing such as error logging and event replay.

Multimedia capacities incorporate the capacity to install and customize system video and sound

playback inside of an application.

32

6.2.4 Server Communication

Figure 26 : The components of server communication

The server communication stack deals with server-side communication, including

request/response, full-duplex, handshaking and push-pull events. System libraries generally

facilitate in-server communications. However, in the case of web technologies, the browser

sandbox model prohibits raw socket communication and provides only the higher level facilities

such as web sockets and XHR.

This taxonomy excludes capabilities that are ordinarily handled by the operating systems such as

font rendering, threads or sensor APIs, so their browser analogs (web fonts, web workers,

geolocation, etc.) are excluded as well.

33

6.3 Applying the Taxonomy to the Web Platform

If we apply the front-end taxonomy to various web platforms, the outcomes are self-evident. This

section compares various front-end web platforms with their capabilities based on tabular

taxonomy from Figure 22.

Pre-HTML:

If we review the history of web development, HTML can be considered as the foremost front-end

tool which is still in existence. When we look at the pre-HTML web platform, there are only limited

number of tasks one can perform. In pre-HTML browsers, if we want solutions to any problem,

we have to build almost everything from the earliest stage or utilize non-browser plugins for

abilities like graphic design, video and full duplex server interchanges. Figure 27 shows the front-

end taxonomy applied to pre-HTML. The green components show the features that are supported

by pre-HTML.

The pre-HTML web platform has very limited capabilities.

Interface elements: Pre- HTML has a tiny set of basic widgets, and a very few styling and layout

capabilities.

View system: The layout manager is primitive, and the developer has to create their own layout.

Logic and data: The front-end has nothing to facilitate the data structure. All the actions related

to data are carried out in the back-end. Hence, many server calls are made during execution.

Server I/O: The front-end to back-end communication is done using request/ response HTTP

calls.

Most first generation web applications were built using a small subset of browser capabilities.

34

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 27: Pre- HTML compatibilities in the front-end stack [12]

35

HTML5

HTML5 emerged with numerous capabilities added to HTML. Although HTML5 introduces a lot

of new capabilities, the front-end taxonomy for HTML5 remains incomplete as compared to

ExtJS platforms. In Figure 28, we list features missing from HTML. The green blocks are those

features available in HTML5.

Interface elements: HTML5 introduced different input widgets including range sliders, color

pickers, date/time pickers, and progress bars. It also has the capability of manipulating the

gradients, borders of the elements. However, it lacks compound widgets, visualizations,

containers, and themes.

View system: As a layout management tool, HTML5 introduced flexbox which can be used to

design a comprehensive one-dimensional layout. However, its implementation is slightly

different in older webkit browsers such as, Internet Explorer 10, Chrome and Safari. For two-

dimensional lattices, they have a grid layout which can only be implemented in Internet

Explorer. HTML5 also introduced multicolumn which can be used to arrange text in columns

automatically, but the column widths are not customizable. HTML5 has support for recognizing

touch events. In Internet Explorer, touch events are implemented using a pointer event, whereas

other browsers recognize the touch. This indicates that touch events are not consistent in all

browsers. Moreover, the drag and drop API of HTML5 is poor too. It is based on the Internet

Explorer 5 Microsoft drag and drop API which has too many events [12].

Other attractions are WebGL (Web Graphics Library), SVG (Scalable Vector Graphics) and canvas

to support two-dimensional and three-dimensional graphics, bitmap and vector, motion graphics

CSS animations, and transitions.

36

Logic and data: The history push was introduced for storing the history. It does not have any

support for data binding. One of the major improvements was the introduction of audio and video

input support.

Server I/O: Full duplex server communication can be achieved using web sockets. Also, the

introduction of the XMLHttpRequest (XHR) API provides the client functionality for transferring

data between a client and a server. The XHR enables a webpage to update certain part of the page

without the need to refresh the whole page.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 28: HTML5 compatibilities in our front end taxonomy [12]

37

JavaScript

JavaScript was first delivered in 1995. With the ascent of JavaScript, various libraries,

preprocessors, frameworks, and scripts have been developed to extend the browser functionality.

With so many JavaScript frameworks, one must select one of several available libraries.

Choosing a front-end technique that best suits the application portfolio, the skill base, and the

arrangement necessities is one of the major concerns in web development today.

Some of the questions that arise in web development are “what is the best framework” or “should

we be using framework x or y.” But these are all misconceived questions. The right question for

development teams to ask should be related to the kinds of app to build, the language and skills

of development team, app’s maintenance lifetime, the browsers which the app need to support,

the size of application development team, and additional requirements.

The selection of framework depends on various factors. For example, a pure content application

which is developed and maintained by a solo developer and targets modern browsers, no

framework is needed. On the other hand, if the application is a complex portfolio and an

integration of a number of interdependent apps are developed by a large and changing team, then

it is good to standardize on a single framework across the organization.

38

6.4 A Quick Overview of Framework and Library Stereotypes

Table 3 shows the selection of the most visible frameworks and libraries in the web app

development community.

Table 3: Major Development Frameworks and Libraries [12]

Name Description

Bootstrap + Plugins CSS framework for responsive web sites

Backbone +

Underscore

Minimalist architectural framework + utility data classes

Angular JS HTML-based architecture package for modern browsers

Ember +

Handlebars

Highly structured architecture framework

jQuery + jQueryUI Easily learned, unstructured UI libraries

Ext JS + Deft.js Highly structured, full stack framework

• Bootstrap is a CSS framework that provides interface elements and some view management

capabilities like theming and layout. It has become very popular for websites that primarily

display content.

• Backbone.js is a minimalist MVC package with some data manipulation capabilities provided

by Underscore. It provides no interface elements or view management capabilities.

39

• AngularJS describes itself as a toolkit for creating frameworks. It provides an MVC structure

with a rich HTML-based templating system that allows widgets to be created declaratively using

markup.

• Ember is an opinionated MVC package that provides object and data binding and a full

component model.

• jQuery + jQueryUI is a classic combination that provides interface elements and some view

management capabilities without any architectural or data handling capabilities

• Ext JS + Deft JS is a full front-end JavaScript development stack with the Deft JS library

providing inversion of control capabilities to enable easier testability.

When we apply the front-end taxonomy to these different frameworks, we can see that, except

for ExtJS, each of these frameworks or libraries tackles a piece of the development stack front-

end. The first block which is grey represents the stack that is not present at all, the second block

in light-green is the stack which is partially developed whereas the third block in dark-green

signifies the fully developed stack.

40

6.4.1 AngularJS

Angular JS prioritizes the logic and data side. The interface and view system design are

completely developed by the developer. Angular JS provides the attributes to bind the input and

output to the model which is the JavaScript variable. Angular JS is good for single page

applications. Figure 29 shows the features that Angular JS completely or partially supports.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 29: Angular JS functionality map [12]

41

6.4.2 Backbone.js

Backbone.js is a framework with RESTful JSON interface. Figure 30 has most of the stack blocks

in grey which signifies that Backbone.js assumes most of the UI elements come from somewhere

else, i.e. from front-end designers. Backbone.js is used to keep various parts of the web

application synchronized such as multiple clients and servers.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 30: Backbone JS functionality map [12]

42

6.4.3 Bootstrap

Bookstrap is a framework that has a well-developed set of widgets, buttons, forms, responsive

containers, and panels. As a view system, Bootstrap contains HTML and CSS based design

templates and also supports other JavaScript plugins. However, it is a front end framework that

helps in developing a very sophisticated user interface and does not have any provision for the

server side code as shown in Figure 31. So, all the I/O calls have to be done at the back-end or

server.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 31: Bootstrap functionality map [12]

43

6.4.4 JQuery

JQuery is the most popular JavaScript library in use today and was developed to simplify the

client side HTML scripting. JQuery makes DOM traversal, DOM manipulation, event handling,

animation, and Ajax much simpler to use. JQuery UI is a set of widgets, themes, and styles built

on top of JQuery library. But again, JQuery UI does not have any facility that contributes to the

data and logic side of the application. The front-end stack for JQuery is shown in Figure 32.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 32: JQuery and JQueryUI functionality map [12]

44

6.4.5 Ember JS

EmberJS uses the handlebars template. The handlebar template is like HTML, but has the ability

to embed expressions which change with what is in the display - which means the data binding is

the strong point. Therefore ,we do not need to write any additional JavaScript to keep the

display up-to-date.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 33: Ember functionality map [12]

45

6.5 The Ext JS Stack

Figure 34 shows the front-end taxonomy for ExtJS. From this figure, we observe that ExtJS gives

a more complete framework compared to the other JavaScript frameworks we discussed earlier.

INTERFACE

ELEMENTS

VIEW

SYSTEM

LOGIC AND

DATA

SERVER I/O

Figure 34: Ext JS functionality map [12]

ExtJS offers an exceptionally wide choice of basic and compound widgets, a high level view

package and a lower level drawing API, a rich bundle of containers and themes, and a clean

visualization framework. All these capabilities are engineered and tested to work together. ExtJS

46

is professionally maintained, updated in a synchronized fashion, and backed by a customer

support team.

Actually, in the few spots where ExtJS lacks some features, the structure empowers the

developers group to expand it in ways that permit their code and the framework code to

cooperate. For instance, if the inherent formats don't cover the outline case, one can compose

new designs, and the new designs will carry on precisely as an implicit format. Likewise, there

are a wide variety of themes, compound widgets and different extensions accessible from Sencha

partners on the Sencha website. Whether one utilizes standard components, expands the standard

components ourselves, or uses extensions from Sencha market, one can generally get expected

results. Hence, ExtJS makes application development, testing, and maintenance much more

straightforward.

Additionally, ExtJS offers a broad set of data classes such as key-value stores and hashmaps.

ExtJS also gives the great state administration at the data level, permitting information exchange

via the session class. ExtJS helps developers to oversee application data, as well as give them

intense tools for empowering clients to interact with data to settle on convenient business

choices. For instance, the ExtJS data grid is a best-in-class compound widget for high

performance, sortable, filterable presentation of large datasets in a tabular format. These data

management and presentation capabilities are particularly essential in associations that assemble

data driven applications for clients.

47

ExtJS now provides a mature framework built to fit the most demanding mobile app needs and it

is called Sencha Touch. Touch inherits the best of ExtJS and has took it to the next level by

upgrading to utilize CSS3 and HTML5 practices.

Harbinger Systems compared different JavaScript Frameworks. Figure 35 presents the results of

their analyses. ExtJS stands out as having most of the features [6].

Figure 35: Harbinger’s comparison of various JavaScript frameworks

48

7. CONCLUSION

MVC is a currently popular architectural design. We showed that MVC decouples an application

into different elements and allows a developer to focus on each element separately. The MVC

architecture loosely couples the different element after building the application. MVC is now the

best practice in web development and there are many applications implemented with MVC

architecture. The user interface plays a significant role in the modern application. The

application should be smart and user friendly. There are various UI technologies evolving, and

ExtJS is one which offers a more complete framework than other known JavaScript frameworks.

ExtJS framework is a simple, robust, easy to use and a very transparent JavaScript framework.

This is also referred to as Sencha.

We compared two similar applications built using MVC but with different client tools. The

application built using ExtJS offers more benefits than the one using cshtml. Though we cannot

explore all the features of the ExtJS in one simple application, we have shown advantages via the

basic bookstore application.

We presented a comparison of ExtJS with several other JavaScript frameworks which are

currently popular. The choice of front-end technology depends on the type of applications and

the nature of the organization. Our comparison, shown with the help of front-end stack,

illuminates the advantage of using some of the popular JavaScript frameworks and also the

components lacking in those frameworks.

49

8. REFERENCES

[1]. Griffin, C,. & Longo, S. (2013). Mathematics and Computer Science Capstones. A

comparative look at entity framework code first (p. 11).

[2]. ASP.NET MVC Overview. (n.d.). Retrieved September 18, 2015, from

http://www.asp.net/mvc/tutorials/older-versions/overview/asp-net-mvc-overview

[3]. Entity Framework. (2013, October 16). Retrieved February 28, 2016, from

http://msdn.microsoft.com/en-us/library/gg696172(v=vs.103).aspx

[4]. MindTelligent Inc., Model View Controller (MVC) architecture

[5]. Entity Framework. (n.d.). Retrieved September 18, 2015, from

http://msdn.microsoft.com/en-us/library/gg696172(v=vs.103).aspx

[6]. (n.d.). Retrieved November 26, 2015, from http://www.harbinger-

systems.com/insights/whitepaper/HSTW 102-Comparing-Javascript-Frameworks.pdf’

[7]. How to use ExtJS 4.1.1 in .Net MVC 4 project using Visual Studio 2012. (n.d.). Retrieved

November 26, 2015, from https://www.sencha.com/forums/showthread.php?252644

[8]. Why Should You Use ExtJS? (n.d.). Retrieved November 28, 2015, from

http://sourcen.com/blog/why-should-you-use-ext-js#sthash.pbWZa9cB.dpuf

[9]. SDK Updates. (n.d.). Retrieved November 28, 2015, from

http://docs.sencha.com/extjs/4.2.1/

 [10]. The Rise of Web Technology, A Forrester Consulting Thought Leadership Paper

Commissioned By Sencha [Scholarly project]. (2015, October 12).

[11]. Kay, Art, “Making Sense of Application Architecture Choices”. Developer Relations

Manager Sencha, Inc, Summer 2014

[12]. The Modern Web Stack, “A Taxonomy of Front-End Technologies As an aid to Decision

Making”, Summer 2014, Sencha Inc.

[13]. ASP.NET Overview. (n.d.). Retrieved January 26, 2016, from

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx

http://www.asp.net/mvc/tutorials/older-versions/overview/asp-net-mvc-overview
http://msdn.microsoft.com/en-us/library/gg696172(v=vs.103).aspx
http://msdn.microsoft.com/en-us/library/gg696172(v=vs.103).aspx
http://www.harbinger-systems.com/insights/whitepaper/HSTW%20102-Comparing-Javascript-Frameworks.pdf
http://www.harbinger-systems.com/insights/whitepaper/HSTW%20102-Comparing-Javascript-Frameworks.pdf
https://www.sencha.com/forums/showthread.php?252644
http://sourcen.com/blog/why-should-you-use-ext-js#sthash.pbWZa9cB.dpuf
http://docs.sencha.com/extjs/4.2.1/
https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx

50

APPENDIX

A. Setting up the environment

We can develop a web application using MVC4 or ExtJS alone. However, we need some backend

code to connect to an external database server. ASP.NET MVC4 uses C# and generally the front-

end is written in asp or html. The steps to setup the environment to integrate the server side code

with ExtJS.

1. Download ExtJS, and extract the .zip file.

2. Create the project in Visual Studio 2012

a. Choose new project.

b. Under Web, select "ASP.NET MVC 4 Web Application"

c. Name the solution and provide the location.

d. For "View Engine" choose "Razor."

http://www.sencha.com/products/extjs/

51

e. Click "OK" to create the project.

3. Add necessary files to the web project.

a. Creating a tree structure of folders is important to manage all the files. Create a

folder to keep all the JavaScript files. From the downloaded file, copy the entire

folder resources and paste it into the folder you created for keeping the

JavaScript files.

b. Also, copy the file ext-all.js and paste it into the "Scripts" folder in the project.

52

4. Now bundle the JS files so our project can use them.

a. In the Solution Explorer, inside the App_Start we can see a cs file named

BundleConfig.cs.

b. Add the following codes in the method RegisterBundles.

bundles.Add(newScriptBundle(“~/bundles/extjs”).Include(“

~/Scripts/ext-all.js”));

c. Also bundle the .css file in the same file using the codes like below

Bundles.Add(newStyleBundle(“~/Content/extjs”).Include(“~/e

xtjs/resources/css/ext-all.css”));

5. Render your bundles in the _Layout.cshtml file so that any view can use it.

Add the following lines of code inside the <head> tag of _Layout.cshtml.

Styles.Render (“~/Content/extjs”)

@Scripts.Render (“~/bundles/extjs”)

6. Add a JavaScript reference so that you have intellisense support. Inside the Scripts

folder, open the file named _references.js then add the following code to the end

of the document

/// <reference path=”ext-all.js” />

53

7. Test the environment.

a. At the very bottom of the file Index.cshtml, type the following (notice that you

should have intellisense working):

<Script>Ext.onReady (function () {alert (‘hello’)}) ;

< /script>

b. Build and Run.[7]

In the above method, ExtJS serves only as a front-end tool. All the functionalities are

written at the backend.

However, we can use ExtJS to develop these functionalities and the backend can be used

only to communicate with the SQL server. In such an architecture ExtJS has its own model,

view and controller. The steps for setting up the environment in the following section.

1. Download ExtJS, and extract the .zip file.

2. Create the project in Visual Studio 2012

a. Choose New Project

b. Under Installed-Templates-Visual C#-Web, select "ASP.NET MVC 4 Web

Application"

http://www.sencha.com/products/extjs/

54

c. Choose the empty template.

3. Create the folder structure as follows.

It is not necessary to create a folder for store as this can be placed inside the model too.

55

4. Copy the unzipped ExtJS folder and paste it inside the project directory. Reopen the

solution. The folder ext-4.2.1 is included in the project.

5. Set the ExtJS path in the file that is used to render.

	St. Cloud State University
	theRepository at St. Cloud State
	3-2016

	Web development using C# MVC and ExtJS
	Manish Shakya
	Recommended Citation

	tmp.1457241244.pdf.KcIbP

