
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

3-2016

A Comparative Analysis of Node.js (Server-Side
JavaScript)
Nimesh Chhetri
Saint Cloud State University, chni1201@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Chhetri, Nimesh, "A Comparative Analysis of Node.js (Server-Side JavaScript)" (2016). Culminating Projects in Computer Science and
Information Technology. 5.
https://repository.stcloudstate.edu/csit_etds/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232792216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/5?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

A Comparative Analysis of Node.js (Server-Side JavaScript)

by

Nimesh Chhetri

A Starred Paper

Submitted to the Graduate Faculty

of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

St. Cloud, Minnesota

February, 2016

Starred Paper Committee:

Andrew A. Anda, Chairperson

Bryant A. Julstrom

Dennis Guster

Acknowledgements

I would like to thank my committee members, Professor Andrew A. Anda, Professor

Bryant A. Julstrom, and Professor Dennis Guster for their continuous support, feedback and

guidance. My special thank goes to Professor Dennis Guster and Martin Smith for providing the

test environment in BCRL (Business Computing Research Laboratory) without which one of the

important section of this paper would not have been possible. Also, I would like to thank the

Computer Science Department Faculty at St. Cloud State University for providing me high-tech

education and technical skills required to write technical paper like this. Special thanks also go to

my family for supporting me and encouraging me to do the best.

i

Abstract

Node.js (also termed Node) is a platform built on Google Chrome V8 JavaScript runtime

engine for easily building fast, scalable, and lightweight applications.V8 and Node are mostly

implemented in C and C++ focusing on performance and low memory consumption. In this

paper, we provide an overview of Node by comparing it to a conventional server-side scripting

programming language, PHP. Initially, we focus on Node’s modularity, its in-built package

manager labeled Node Package Manager and Node’s working architecture. The main feature of

Node is its use of non-blocking event-driven I/O with an asynchronous programming model to

remain lightweight and efficient in handling concurrency. These comprise the underlying

features of Node which we discuss in detail. Node differs from JavaScript which we describe by

emphasizing some major deficiencies in JavaScript that Node remediates. Likewise, by

introducing AJAX, and its pros and cons, we show how Node surpasses AJAX in real-time

application development usability. With Node.js, complex real-time applications can be built that

can scale to millions of client connections. We also discuss factors supporting choosing Node

and why developers should use it. We describe some of the security holes in Node with solutions

to handle them. In order to clarify where Node succeeds and where it fails, we present two

different benchmarks comparing Node with PHP. We conclude by highlighting some of the

limitations of Node and we discuss the current developments in process to remediate Node’s

deficiencies.

ii

Table of Contents

Page

List of Tables .. v

List of Figures .. vi

Chapter

I. Introduction ... 1

Objectives of our Study .. 2

Simple HTTP Server with Node.js ... 3

Node.js Modules ... 4

NPM: Node Package Manager.. 6

How Node.js Works? .. 7

Non-Blocking Event Loop .. 8

Single-Threaded Model .. 9

Asynchronous Programming .. 12

II. JavaScript vs. Node.js ... 16

Module System ... 16

Global Object .. 17

Buffer .. 18

III. AJAX vs. Node.js ... 19

AJAX .. 19

iii

Chapter Page

AJAX Polling .. 23

AJAX Long Polling .. 23

Real Time Application Development with Socket.io ... 24

IV. Why Node.js? .. 28

High Performance Web-Servers ... 28

Popularity of JavaScript .. 29

One Language Multiple Functionality .. 29

Simple Development Environment ... 29

Good Reputation ... 30

V. Node.js Security .. 31

Cross Site Scripting (XSS).. 31

Denial of Service (DoS) .. 34

Regular Expression DoS (ReDoS) .. 36

File System Access ... 38

Execution of Binary Files ... 40

VI. Benchmarking Node.js .. 41

Benchmarking Methodology .. 41

Test 1: Fibonacci number calculation ... 44

Test 2: Reading large text file with concurrent requests ... 45

iv

Chapter Page

Benchmarking Results and Findings .. 45

VII. Limitations of Node.js .. 55

Poor handling of heavy server-side computation.. 55

Server-side application with relational database ... 56

Complexity with callback function ... 56

Ecosystem in Development... 57

Adherence to JavaScript ... 57

VIII. Limitations and recommendations for further Study .. 58

IX. Conclusion .. 60

References ... 62

Appendix ... 65

v

List of Tables

 Table Page

1. Test Environment Server Configuration .. 42

2. Test 1: Windows 7 Environment (Apache-PHP) ... 46

3. Test 1: Windows 7 Environment (Node.js) ... 47

4. Test 1: Ubuntu Environment (Apache-PHP) ... 48

5. Test 1: Ubuntu Environment (Node.js) .. 49

6. Test 2: Windows 7 Environment (Apache-PHP) ... 52

7. Test 2: Windows 7 Environment (Node.js) ... 52

8. Test 2: Ubuntu Environment (Apache-PHP) ... 53

9. Test 2: Ubuntu Environment (Node.js) .. 53

vi

List of Figures

 Figure Page

1. Simple HTTP Server in Node.js .. 3

2. Local Node.js module exposing functions ... 5

3. Example of Blocking PHP Code Example .. 8

4. Example of Non-Blocking Node.js Code .. 9

5. Example of Single-Threaded Node Model .. 10

6. Example of Multiple Thread per requests in PHP ... 10

7. Threaded Model of Apache-PHP ... 11

8. Single-Threaded Model of Node.js .. 12

9. Reading Text File Using PHP Synchronously ... 13

10. Reading Text File Using Incorrect Node.js Asynchronously .. 13

11. Reading Text File Using Node.js Asynchronously.. 14

12. Node.js Architecture .. 15

13. Classic vs. AJAX Web Application Model ... 21

14. Example of AJAX Call .. 22

15. AJAX Polling ... 23

16. AJAX Long Polling .. 24

17. Example of Socket.io Server Side Script ... 26

18. Example of Socket.io Client Side .. 26

19. Block Diagram of Socket.io ... 27

vii

 Figure Page

20. Example of XSS in Client-Side JavaScript .. 32

21. Example of XSS in Server-Side JavaScript ... 33

22. Use of Strict Mode in Node.js.. 34

23. Example of Try Catch Block ... 35

24. Example of Vulnerable RegEx .. 36

25. Analysis of Vulnerable RegEx ... 37

26. Check for safe regular expression .. 37

27. Recursive function to calculate Fibonacci number .. 44

28. Test 1: CPU Utilization Windows7 Environment (Apache-PHP) 46

29. Test 1: CPU Utilization Windows7 Environment (Node.js) ... 47

30. Test 1: CPU Utilization Ubuntu Environment (Apache-PHP) 48

31. Test 1: CPU Utilization Ubuntu Environment (Node.js) ... 50

32. Test 1: Response Time Graph with HTTP Requests & 200 Concurrent 50

33. Test 1: CPU Utilization ratio with HTTP Requests & 200 Concurrent (Single Thread)

.. 51

34. Test 2: Response Time Graph with HTTP Requests & 200 Concurrent 54

1

Chapter 1: Introduction

Node.js (Node) [1] is a cross platform runtime environment originally developed in 2009

by Ryan Dahl for developing server-side applications. It can be regarded as server-side

JavaScript. It was created to address the issues platforms can have with the performance in

network communication time dedicating excessive time processing web requests and responses.

“Node.js is a platform built on Chrome’s JavaScript runtime for easily building fast, scalable

network applications. Node.js uses an event-driven, non-blocking I/O model that makes it

lightweight and efficient, perfect for data-intensive real-time applications that run across

distributed devices [1].”

Node has become popular as it makes creating high performance, real-time web

applications easy. Node allows JavaScript to be used end to end, both on the server and on the

client. JavaScript has originally run only in the web browser, but the considerable demand has

brought it to the server-side. JavaScript has developed very much and has exceled to dominate

server-side scripting. We need to analyze the security issues in Node applications because of its

use with JavaScript, which has security liabilities. Node is event-based rather than thread-based.

Node uses an event loop within a single thread instead of multiple threads, and is able to scale to

millions of concurrent connections. In Node, a single thread can accomplish a high concurrency.

Every I/O operation in Node is carried out in an asynchronous fashion, meaning that the server

can continue to process incoming requests while the I/O operation is taking place [2]. Because

http://nodejs.org/
https://en.wikipedia.org/wiki/Asynchronous_I/O

2

Node is also asynchronous, AJAX (See Chapter 3) could be mistakenly considered equivalent to

Node, though they are significantly different.

Objectives of our Study

JavaScript was created shortly after the World Wide Web (WWW) came into existence.

JavaScript has played an integral role in adding interaction to the user interface of web

applications and websites until the recent release of HTML5 (Hyper Text Markup Language) and

modern JavaScript frameworks. JavaScript is also an integral part of AJAX which was

introduced in late 1990’s with the advent of Web 2.0 to add real-time like interactivity in the

webpages. Despite all of this progress, JavaScript has been considered as the scripting language

for client-side programming (that runs only from the browser). However, this approach has

changed with the development of server-side JavaScript (among which Node is considered

prominent). Node has not just strengthened server-side JavaScript, but also has been competitive

with other popular server-side scripting languages with respect to performance and scalability. In

this paper, we will describe the advantageous features of Node. The underlying features of Node:

single-threaded, event-driven I/0, and asynchronous programming are discussed with sufficient

examples to give better insight into the working architecture of Node that led to Node’s success.

In this paper, we also distinguish Node from JavaScript, which is the backbone on top of which

Node has been developed. The same is true of AJAX, which is often time confused with Node.

We perform an analysis of Node’s performance with real-time data by implementing two well-

known applications (Fibonacci number calculation and reading large text file). For further

development and enhancement, we also highlight the existing limitations and deficiencies of

Node.

3

Simple HTTP Server with Node.js

One of the common uses of Node is to build servers. Node can be used to create different

types of servers [7]. A simple HTTP (Hyper Text Transfer Protocol) web server that responds

“Hello Node!” to every request it receives can be created with very few lines of code. Type the

following code in the text editor, save it as hello_server.js and execute it by typing node

hello_server.js from the command prompt. Then, visit this URL:

http://localhost:8000 which should print the “Hello Node!” message in the browser.

Figure 1

Simple HTTP Server in Node.js

Description of Figure 1 is as follows [6]:

0. The 'use strict' string is a directive that enables strict mode, which is a restricted

subset of the language that fixes a few important language deficiencies and provides

stronger error checking and increased security. For example, strict mode makes it

impossible to accidentally create global variables.

1. Imports the http module and assign it to the http object.

2. Defines the port number from which the server will be accepting connections.

4

3. Create the web server by calling the factory method from the HTTP module and send it

a callback function. This anonymous function takes req and res (HTTP request and

response) objects as parameters. Every time a client makes a request, this function will

get called.

4. Displays to standard output the request information (method, requested resource, and

request headers) followed by a new line.

5. Writes the response line and header fields. A HTTP status code need to be specified

(200, for example, when the request was successful) and an object with all the response

headers.

6. Writes the response body before the end method closes the HTTP connection.

7. Tells the web server to start accepting connections on the specified port.

8. Call the console.log method to print the information to standard output.

Node.js Modules

Modules are plugins, add-ons, and extensions for Node to help with the development

process. The Node module exposes a public API (Application Programming Interface) that one

can use after the module is imported into the current script. Node modules can be categorized as

core modules, third party modules, and local modules. Core modules are modules that come with

Node’s installation and are preloaded when a Node process starts. Core modules are referenced

simply by name while local modules and third party modules maps into a file path. Third party

modules are modules registered in NPM and installed using npm command. NPM by default

dumps modules installed from NPM repository into node_modules local directory. And local

modules are self-created modules [9].

https://en.wikipedia.org/wiki/Application_programming_interface

5

To load a module of any type in Node, require function should be used like this:

var modulex = require ('module_name');

For instance, modules can be loaded in Node in following ways:

//loading http core module by directly referring to name

var http = require('http')

// loading local module named my_module using absolute path

var myModule = require('/home/nimesh/my_modules/my_module')

//loading local module named my_module referring by relative path

var myModule = require('./my_module')

//loading third party module express after installation

var express = require('express')

Sharing objects among files in a Node application is possible only by using the CommonJS

module system. For a module to expose an API, module and module.exports are used, module

is a variable representing the module currently in consideration and module.exports is the

object that the module will export to other script that requires this module. For instance, a

module can be created that exports a set of functions as shown in Figure 2 [9].

Figure 2

Local Node.js module exposing functions

http://wiki.commonjs.org/wiki/Modules/1.1

6

Then, the client of this module uses this module like this:

var myModule2 = require('./myModule2');

myModule2.printA(); // prints A

myModule2.printB(); // prints B

NPM: Node Package Manager

Besides writing local modules oneself, and using default modules provided by Node,

modules written by other people in the Node community can be used. Also, self-created local

modules can be published for others. NPM which stands for Node Package Manager is the most

common way to do so [10].

NPM is a built-in tool that is included by default with every installation of Node. NPM

helps in easily managing modules in Node projects by downloading packages, resolving

dependencies, running tests, and installing command line utilities [8]. The main purpose of the

NPM modular system is to ease the availability and installation of bunch of publicly available,

reusable components via an online repository, with version and dependency management.

Modules are plugins, add-ons, and extensions for Node to help with the development process. A

full list of packaged modules can be found on the NPM website https://npmjs.org/, or accessed

using the NPM CLI (Command Line Interpreter) tool that automatically gets installed with Node.

The Node’s module ecosystem is open to all, and anyone can publish their own module to be

listed in the NPM repository [11].

To ensure the successful installation of NPM, issue the following command which should

display the NPM version [8]: npm –version

https://npmjs.org/

7

To install modules via npm, npm install command should be used which requires the

name of the module package to be installed and its version. For instance, mysql module package

can be installed by issuing this command [10]:

npm install mysql@2.0.0

NPM installs module packages to the node_modules subdirectory of the project. Thousands

of modules in the registry can be explored using the search and view commands. The search

command is useful when the name of the package to be installed is not known so it prints the

name and description of all matching published modules [8, 10].

npm search sql

The properties and package.json of the package can be viewed by running the npm

view command followed by the module name [8].

npm view sql

package.json is a JSON (JavaScript Object Notation) file that allows to locally manage

installed npm packages. It serves as documentation for what packages the project depends on,

allowing to specify the version of a package that the project can use [31].

How Node.js Works?

The main distinctive features of the Node architecture are the usage of non-blocking, event-

driven, asynchronous I/O calls that operate in a single thread. Conventional web servers handle

concurrency by spawning new threads for each new request, which can max out the available

memory. Node is lightweight, efficient, and different. It is able to support tens of thousands of

concurrent connections because of its unique features. Even with limited memory and a single

http://www.json.org/

8

thread, Node can achieve high concurrency rate without having to perform context switching

between threads [12].

The Node architecture and its working mechanism can be better clarified by understanding

its underlying features and comparing it with previous approaches.

Non-Blocking Event Loop

Node is non-blocking in the sense that it is able to service multiple requests, and it doesn’t

waste clock cycles in I/O tasks as is the case in the conventional blocking model. The

conventional blocking model tends to block subsequent requests sent to a server when it is

performing I/O operations such as reading content from a database. In order to be non-blocking,

Node uses an event loop, a software pattern that facilitates non-blocking I/O combined with

event-driven I/O, a scheme where a registered event callback function is invoked when some

action happens in the program [3].

Consider this blocking PHP (Hypertext Pre-processor) code and non-blocking Node.js code

in Figure 3 and Figure 4 respectively [8].

Figure 3

Example of Blocking PHP Code Example [8]

9

Figure 4

Example of Non-Blocking Node.js Code [8]

In the first example, the PHP sleep() function blocks the thread of execution. While the

program is sleeping, it does not perform any tasks but waits for the time specified. The execution

is thus blocked as long as it is specified. And no other instructions are executed until the

specified time elapses, indicating it’s synchronous. Node on the other hand, leverages the event

loop. So, even the use of blocking, setTimeout() is non-blocking in the latter case. It

registers an event for the future and lets the program continue to run, therefore being

asynchronous.

Single-Threaded Model

Node is a process that runs in an event loop making use of a single thread to service any

requests. Whereas other web servers like Apache spawn a new thread per request, which starts

with a fresh state every time [8]. Node is powerful considering the way it permits non-blocking

I/O to occur in a single thread which makes the overhead of Node very small, because no new

threads are created. When a Node application needs to perform operations, it sends an

asynchronous task to the event loop, registers a callback function, and then continues to handle

other operations. The event loop keeps track of the asynchronous operation, executes the given

callback and when it completes, returns its result to the application. Node is able to handle a

10

large number of operations (even with a single thread) by managing the thread pool and

optimizing the task execution, such as client connections or computations [13].

Consider the following getLanguages() function in Figure 5. This function gets

executed every time the user makes a request to the getLanguages() function and returns a

collection of languages in HTML form.

Figure 5

Example of Single-Threaded Node Model [8]

The equivalent PHP code is shown in Figure 6.

Figure 6

Example of Multiple Thread per requests in PHP [8]

11

A subsequent request to the getLanguages() function in Node and PHP gives different

results. Node handles the first request and returns the concatenated string of languages in html

variable. The second request returns nothing because the scope variable (html) is not affected as

Node runs in the same process. PHP code returns the concatenated string of languages in both

the cases because the $languages variable gets repopulated each time in a new thread per

request.

In accordance with the above example we can draw the diagram as shown in Figure 7 and

Figure 8.

Figure 7

Threaded Model of Apache-PHP [8]

12

Figure 8

Single-Threaded Model of Node.js [8]

Asynchronous Programming

While the non-blocking part of Node makes it able to accept virtually all the requests made

to it, its asynchronous programming makes it possible to handle the requests by effectively

utilizing the limited clock cycles and memory available to its single-threaded architecture.

Asynchrony is in the root of Node because almost all the APIs exposed through Node modules

are asynchronous (although synchronous versions may exist). Node is able to achieve high

concurrency by its asynchronous calls via a callback function to handle the tasks in its event

loop. Node integrates asynchronous programming in its architecture by means of asynchronous

APIs with callback function.

In order to understand the concept of an asynchronous call, consider these three examples

to read a text file content as shown in Figure 9, Figure 10, and Figure 11.

13

Figure 9

Reading Text File Using PHP Synchronously

This is obviously an inefficient version in Figure 9, which wastes lots of clock cycles,

doing nothing, waiting for the computer file system to do its job.

Figure 10

Reading Text File Using Incorrect Node.js Asynchronously [10]

Figure 10 is a rewritten Node version of the synchronous PHP script in Figure 9. However,

this code is incorrectly written and throws an error because the fs.open function runs

asynchronously; it returns immediately, before the file has been opened. The file variable is

14

not set until the file has been opened and the handle to it has been received in the callback

specified as the third parameter to the fs.open function.

Figure 11

Reading Text File Using Node.js Asynchronously [10]

This script version in Figure 11 takes the callback function passed as the third argument to

an asynchronous function (fs.open). The first parameter in the callback indicates either the

success or failure status of the last operation, and a second parameter indicates some sort of

additional results or information from the last operation, such as a file handle [10].

Thus, a non-blocking event loop running on a single thread with asynchronous handling of

tasks forms a Node architecture which can be visualized in the diagram shown in Figure 12.

15

Figure 12

Node.js Architecture [12]

16

Chapter 2: JavaScript vs. Node.js

JavaScript is a prototype-based, object oriented, loosely-typed dynamic client side scripting

language [37]. It is based on the implementation of the ECMAScript language standard. It sits

and runs within the browser. It has been extensively used for adding interactivity to websites.

Therefore, it requires help from another programming language if it has to perform any

interactions with the server.

Although Node is based on JavaScript, and uses the construct of JavaScript for almost all

of its functionality, Node offers an entirely different environment than JavaScript. Node can be

regarded as superset of JavaScript. It has bundled additional functionalities and features on top of

JavaScript.

Node is a wrapper on top of the High Performance Google Chrome V8 JavaScript runtime

engine. As a result, most of the Node syntax is very similar to front-end JavaScript, including

objects, functions and methods [9]. However, Node does have some features that are not

available in a conventional browser-based JavaScript. Most of these features address the

deficiencies that existed in JavaScript. Node took the basic JavaScript language and added

different APIs on top of it to add more power for enhancing the network applications.

Module System

One of the deficiencies in browser JavaScript is lack of modularity. The only way to link

together different scripts is by using a different language such as HTML. Even if including a

module is possible in an inefficient way, dependency management is lacking [9].

http://www.ecmascript.org/

17

It would not be any different to categorize JavaScript as an environment of globals, because

all the APIs that are normally used are globally exposed in a JavaScript code. When any third-

party modules are included, a global variable is required to expose and to make it accessible.

JavaScript doesn’t describe an API for module dependency and isolation in its

specification. As a result, including multiple modules is only possible by exposing a global

variable. For example, the jQuery module can be included in a HTML document by including

this line at the head tag <script src="http://code.jquery.com/jquery-

1.6.0.js">. Then, refer to this module through the global jQuery object. This process

pollutes the global namespace and can result in potential naming collisions [8].

Instead of defining a number of globals, Node has introduced a modular system (See

Chapter 1). One can define their own module or can use the core modules or third party modules.

Node ships with a lot of core modules such as http, net, and fs. These modules are the

fundamental toolkits for building modern applications. Modularity in Node is made possible

because of these three globals: require, module, and exports [8].

Global Object [8]

There is a global object in the browser JavaScript named window. Variables can be

defined in the window object to make it globally available to all parts of the application code.

Node implements globals with a clear separation. In Node, these two global objects are used for

this purpose:

 global: Similar to a window object in JavaScript, any property can be attached to a global

to make variables accessible from anywhere in the application code.

https://jquery.com/

18

 process: There is a process object in Node that are assigned for everything that pertains

to the global context of execution.

In JavaScript, there is one window object. While in Node, there is only one process at any

given time. For instance, in JavaScript, the window name is window.name, and in Node, the

name of the process is process.title.

Buffer

Another deficiency in JavaScript is its support for handling binary data [8]. Manipulation

of binary data is poorly supported in JavaScript language, even though it is often necessary.

Node’s Buffer class resolved this deficiency by providing APIs for easy manipulation of binary

data [14]. Buffer is a Node’s addition to four primitive data types (boolean, string, number, and

RegExp) and all-encompassing objects (array and functions are also objects) in a front-end

JavaScript. It uses extremely efficient data storage [9].

Buffer, a global object that represents a fixed memory allocation, behaves like an array of

octets, effectively letting binary data to be represented in JavaScript. Most of the Node APIs that

perform data I/O take and export data as buffers [8].

http://www.w3resource.com/node.js/nodejs-buffer.php
http://www.w3resource.com/node.js/nodejs-buffer.php

19

Chapter 3: AJAX vs. Node.js

Node is often confused with another technology, AJAX, but both of them are completely

different and serve different purposes. The only similarity between AJAX and Node is that they

both run on JavaScript. While Node is mostly used for server-side operations for developing a

complete server-side application, AJAX is used for client-side operations for dynamically

updating the content of the page without refreshing it. This can be more clarified by discussing

what AJAX really is, why it is used, what its limitations are and how Node proves superior

fulfilling those limitations that AJAX has.

AJAX

AJAX [18], an abbreviation for "Asynchronous JavaScript and XML”, is a set of

techniques for creating highly interactive websites and web applications [18]. AJAX is broadly

used to refer to all the methods of communicating with a server from a client using JavaScript.

Although, AJAX is mostly used for asynchronous communication and mostly involves XML for

data transfer, it can be synchronous and can make use of other data formats like JSON [16].

AJAX has transformed the way users interact on the web. Applications no longer need to

refresh the whole page in response to each user input. Using AJAX, application can call a

specific procedure on the server and update only the specific section of the webpage. Before

AJAX, interactivity on web pages was rather clumsy and expensive. Because, for any user

interaction to happen, an updated version of the page was required to be generated on the server,

sent back to the browser and rendered. Even if the required update was minute, the result was

20

always a whole new page refresh. This model wasted both bandwidth and resources.

AJAX simplified this approach by modifying the process at a granular level [17].

In AJAX, JavaScript code uses a special object built into the browser: an

XMLHttpRequest object to open a connection to the server and download data from the

server [18]. AJAX is the mechanism for sending the data to, and retrieving the data from, the

server with AJAX. The overall steps involved in making AJAX requests and getting the

responses, are listed as follows [16]:

1. An XMLHttpRequest object is created using an

XMLHttpRequest() constructor.

2. That object is used to make HTTP requests. To do so, the object is initialized with the

open() method, which takes three arguments: Request Type (String: POST, GET, or

HEAD), URL (String) and Asynchronous (Boolean).

3. The xmlhttp object's readyState property holds the current state of the response.

There are five possible states (0-4): 0 refers to uninitialized, 1 refers to loading, 2 refers

to loaded, 3 refers to interactive and 4 refers to complete.

4. Send the response back to the client.

An introduction of AJAX and its flow, compared to the classic web model is diagrammed

in Figure 13.

21

Figure 13

Classic vs. AJAX Web Application Model [32]

In Figure 14, we illustrate all the steps required for an AJAX call. In this example, using

AJAX, the client updates the text with the weather forecast of the city within divs with the text

read from a text file initiated by a windows onload event [18].

22

<?php

//processJson.php reads content from data.json file and return

//back the data in JSON format

echo file_get_contents("data.json");

?>

Figure 14

Example of AJAX Call

AJAX enables applications to update pages, only in response to user actions on the page. It

does not solve the problem of updates coming from the server. It does not offer a way to push

information from the server to the browser [17]. With AJAX, the clients always have to query

the server continuously for any new information or data that is available for the application. The

server cannot push information to the client without being asked first. The consequence is an

23

application user will not see the data unless they ask for it from the server. In turn, the data

which the applications gets will be outdated i.e. the data will not be real-time. This is where

AJAX appears inferior to what Node has to offer. Although, there are some techniques using

AJAX such as AJAX polling and AJAX long polling, to make application simulate real-time,

there are caveats to these approaches.

AJAX Polling [32]

In AJAX polling, the request is sent from the client to the server at a regular interval of

time to check for any new updates that are available. If there are any new updates available from

the server, they are sent back. The drawback to this approach is that there will still be delays and

will not replicate a real-time communication. Also, there will be lots of requests and responses to

and from the client and server even if there are no updates. This is shown in Figure 15.

Figure 15

AJAX Polling [32]

AJAX Long Polling [32]

Another approach is AJAX long polling, which is just a slight variation to AJAX polling.

Like regular polling, when the server receive requests, it immediately returns the new data if it's

24

available. However, if there are no new data to return, server keeps the connection open, and

returns the data once it becomes available. Once the client receives data, the client immediately

sends another request to the server again. This is shown in Figure 16.

Figure 16

AJAX Long Polling [32]

Real Time Application Development with Socket.io [32]

There are more techniques besides AJAX polling and AJAX long polling, to establish a

real time communication between the client and the server or at least resemble it like SSE

(Server Sent Events) and Web Sockets. But nothing gets the job done for bi-directional

communication between client and server in real-time as Socket.io does. SSEs allow servers to

push data to their clients, but the client can’t send data back to the server. Web Sockets allows

simultaneous duplex communication in both directions, between client and server, but it’s an

entirely new protocol.

Socket.io is a library for real-time web applications. It is a module built in Node and it can

be installed in Node application as:

npm install socket.io

https://en.wikipedia.org/wiki/Server-sent_events
https://en.wikipedia.org/wiki/WebSocket

25

Socket.io is event-driven and has both server-side and client-side components exhibiting

similar APIs. Basically, Socket.io is made up of two parts:

 A server that mounts on or attaches to Node’s HTTP server.

 A client-side library that allows interaction with the server.

Both the client and server parts essentially do the same thing: allow the sending (or

emitting) of events and provide a way to define event handlers. In order to setup the Socket.io

server components, the following steps should be followed:

 Create a Socket.io server and attach it to existing HTTP server.

 Define what the server will do on connection.

 Within that connection handler:

o Define what the server will handle other custom events.

o Send messages.

Likewise, in order to setup Socket.io on the client, following steps could be followed:

 Bring in the client side library.

 Create a socket object (an interface to the connection).

 Use that socket object to:

o Send messages.

o Define callbacks that get triggered on specific events.

To understand the real usage of Socket.io, consider the following script in Figure 17, which

implements the same weather update scenario, already discussed for AJAX.

The server-side Node.js script is shown in Figure 17. The functionalities of important

statements are described in a comment section.

26

Figure 17

Example of Socket.io Server Side Script

In the example, the data.json file used for data interchange appears as:

{"city": "Minneapolis", "max_temp": "42", "min_temp": "10"}

The client-side script is shown in Figure 18.

Figure 18

Example of Socket.io Client Side

27

The Socket.io model diagram can be depicted as shown in Figure 19.

Figure 19

Block Diagram of Socket.io [32]

28

Chapter 4: Why Node.js?

Node has been popular among developers and with its success has attracted many high-tech

companies who have adopted Node replacing their existing technologies. There are many

reasons for Node’s popularity and why one should use Node for their application development.

High Performance Web-Servers [5]

With the emergence of Web 2.0 and the Internet connectivity in different devices: cell

phones, tablets, desktop, and laptops; the scope of application has highly scaled up. Aligning

with the demands to support higher numbers of users and deliver a real-time experience in the

application has become the major challenge. While installing new hardware adds power to

continually increasing demands for speed and faster connectivity in the applications, which is not

the optimal solution as it more expensive. Node attempts to solve this problem by introducing the

architecture termed event-driven programming for web servers. Node is much more efficient

with memory than conventional servers and can keep providing a very fast response time despite

many concurrent users. This is because Node runs in a single thread, and whenever Node has to

do something slow, like wait for a confirmation, it simply moves on to service another request.

Conventional approaches can accomplish this by multi-threading, which requires more memory.

At the same time conventional approaches are complex and involve context switching. Node is

preferable in this aspect, providing a less expensive, scalable, and high performance application

environment.

29

Popularity of JavaScript [19]

Since early in the evolution of WWW, JavaScript has been there in the browser. Even

available when AJAX emerged, JavaScript was vital. This has led to the popularity of JavaScript

among developers, despite some criticism. No matter which server-side scripting language is

used, JavaScript has been the choice for client-side scripting. Familiarity with JavaScript and

adherence of Node to JavaScript, with capabilities to code in the server-side and numerous other

features has developers to adopt Node. By leveraging the best features of JavaScript as a

language and nurturing a vibrant community, Node has become a popular platform and

framework, with continued adoption growth.

One Language Multiple Functionality [19]

Node allows running JavaScript code on the server-side as well as the client-side. Node has

elevated JavaScript to a new height of application development. Any system developed in Node

will run from just about anywhere-on a local or on a client’s platform, or from a high-end Node

server hosted elsewhere. In addition, there are thousands of Node modules available for free.

Applications can be developed locally using Node’s built-in web server. So, unlike other

programming languages, where a separate web server is required for it to get hosted or even

tested, Node has everything it requires-a web server, client-side scripting, and server-side

scripting.

Simple Development Environment [19]

Conventionally, setting up the development environment for new projects has been

cumbersome for developers. It requires time and effort, the first step involves getting the

development environment right, making sure all the software packages are installed with

30

required versions, and then putting the code in the repository to test. Many times a conventional

environment requires developer to look back and check if something was missed. Node

simplifies this process, increasing the developer’s productivity. In the Node environment,

developers simply download Node, pull their code from the repository, and go from there. Node

installers are available for all the major OSes: Mac, Linux, Windows and SunOS. The source

code can also be downloaded and built from the ground up. So, setting up the Node’s

development environment is comparatively much simpler (See Appendix).

Good Reputation [19]

Node has earned a good reputation in the tech industry. Many big players in the technology

industry are using Node. Node plays a critical role in the technology stack of many high-profile

companies who depend on its unique benefits. Node gives Microsoft Azure users the first end-to-

end JavaScript experience for the development of a whole new class of real-time applications.

Node’s I/O event model freed eBay from worrying about locking and concurrency issues

common with multi-threaded asynchronous I/O. On the server-side, the entire mobile software

stack of LinkedIn is completely built in Node [30].

PayPal, after making a move from Java to Node for their existing projects, saw significant

improvement over Java. Using Node, the re-written app was delivered in half the time with fewer

developers, using fewer lines of code but with ability to handle twice as many requests each with

one-third less latency. Hence, they saw their development and product performance increase

dramatically after the switch [19].

31

Chapter 5: Node.js Security

The surge of demand for JavaScript in the programming field has expanded in scope from

client-side to server-side. As a result, SSJS (Server-Side JavaScript) features are available almost

everywhere, be it in database servers (like Mongo DB), file servers, and web servers (like Node).

This move of JavaScript to SSJS has brought many benefits, but also bundled together some

drawbacks in terms of security. Client-side script injection, that has existed for a long time can

be exploited to execute on the server. Server-side script injections are equally easy to

accidentally introduce into server-side application code as they are for client-side code.

Comparatively, the effects of SSJS injection are far more severe. One of such vulnerability is

cross site scripting. Since, Node is based on JavaScript it is also vulnerable to cross site

scripting.

Cross Site Scripting (XSS)

XSS is an attack that allows the attacker to inject malicious script in the web application.

XSS vulnerabilities are caused by a failure in the web application to properly validate user input.

By subverting client-side scripting languages, an attacker can take full control over the victim’s

browser [20].

XSS vulnerabilities are not only extremely dangerous; they are extremely widespread as

well. The Open Web Application Security Project (OWASP) currently ranks XSS as the second

most dangerous threat to web applications (behind SQL injection), and the 2011 CWE/SANS

Top 25 Most Dangerous Software Errors ranks XSS as the #4 threat (down from #1 in the 2010

list) [21].

https://en.wikipedia.org/wiki/JavaScript#Server-side_JavaScript

32

Consider this block of client-side JavaScript code in Figure 20, intended to process weather

forecast requests. The code uses JSON as the message format and XMLHttpRequest as the

request object.

Figure 20

Example of XSS in Client-Side JavaScript

The block of code in Figure 20 makes a call to the eval function that potentially

introduces a serious vulnerability. This function takes a string argument which can represent an

expression, statement, or a series of statements, and it is executed as any other JavaScript source

code [22]. An attacker can modify the JSON response like this statement to leak the cookie

information of the client.

{"city": "MSP", "maxtemp": "<script>document.cookie</script>"};

Again consider a very similar block of server-side JavaScript code in Figure 21 designed to

parse JSON requests, executing on the server to implement a Node web server.

33

Figure 21

Example of XSS in Server-Side JavaScript

The code snippet in Figure 21 exposes a similar kind of vulnerability caused by the eval

function as in the client-side example. However, in this case, the effects of the vulnerability are

much more severe than a leakage of a victim's cookies. For example, a normal JSON message to

the forecast service looks like this:

{"city": "MSP", "maxtemp": "65"}

However, an attacker can modify JSON message with malicious content like this:

{"city": "MSP", "maxtemp": "process.exit()"}

The server would execute above injected command to potentially kill the process and

program as a whole. One should ensure that all user inputs are parsed and filtered properly to

ensure such vulnerability are not exposed. The best heuristic to follow regarding user input

filtering is to deny all but a pre-selected element set of benign characters in the web input stream

[20].

Another solution is running JavaScript in strict mode that reduces most of the harmful

practices in JavaScript caused by the culprit eval and makes the compiler throw errors in its

bad usage. Simply place user strict directive at the top of JavaScript. The most important

34

vulnerability addressed by strict mode is that the eval() function cannot be renamed and hence

prevents an attacker from introducing new variables to the global scope. As shown in Figure 22,

in strict mode, use of eval throws errors.

Figure 22

Use of Strict Mode in Node.js

Denial of Service (DoS)

DoS is an attack which makes information or data unavailable to its intended hosts [23]. It

is one of the simplest forms of network attack. Instead of trying to steal or modify information,

the aim of this attack is to prevent access to the service or resource. This is usually achieved by

flooding the server with a large amount of requests, tying up the server's resources and

preventing legitimate requests from being fulfilled [5].

This means of DoS attack may be not be quite effective in the Node platform as it would be

in conventional web servers, but CPU intensive tasks can succumb to DoS victim [22]. This is

because the Node architecture uses very few system resources and bombarding it with tons of

requests comprising the DoS attack becomes ineffective in Node but it might exhibit bandwidth

problems.

There are several other ways to perform DoS attacks in Node unlike conventional request

flooding which is not effective (as discussed above). One of the ways to attack is by using flaws

35

in the system such as a lack of error handling or other methods to make the server unresponsive.

For instance, a DoS attack can be simulated by issuing this following while command [21]:

while(1)

The infinite while loop will consume all the processor time in the targeted server slowing

it down. This will make the server unresponsive and thus will make it unable to handle any

requests.

Another way to perform a DoS attack in Node would be to simply exit or kill the running

process [21]:

process.exit()

process.kill(process.pid)

The appropriate approach to handle a DoS attack is by implementing a good error handling

code. It’s the developer’s responsibility to handle the situation where the application will push

the server in a stalemate situation. One of the possible solutions is to use the try...catch

statement. Try-catch statements tries to execute good code inside try block and upon error will

be directed to the catch statement to handle the error. An example is shown in Figure 23.

Figure 23

Example of Try Catch Block

36

Regular Expression DoS (ReDoS)

Although the responsiveness of the server and availability of resources are not quite

considered as security issue, their impacts can be severe. Node is based on a single thread event

loop architecture which makes it a suitable candidate with respect to loss of resource availability.

There are many ways to block the event loop. One way an attacker can do that is with ReDoS

[24].

“The Regular expression Denial of Service (ReDoS) is a Denial of Service attack, that

exploits the fact that most Regular Expression implementations may reach extreme situations

that cause them to work very slowly (exponentially related to input size) [25].”

If an application uses Regular Expressions containing vulnerable Regex, it is open to

attackers who can prepare a well-crafted input to make the system unresponsive. Alternatively, if

a Regex itself is affected by a user input, the attacker can inject a vulnerable Regex, and harm the

system [25].

In Figure 24, a vulnerable RegEx example has been considered that attempts to validate an

email address on the server.

Figure 24

Example of Vulnerable RegEx [24]

The impact of vulnerable Regex in Figure 24 can be checked with this test script shown in

Figure 25 to analyze the responsiveness of the server.

37

Figure 25

Analysis of Vulnerable RegEx [24]

Here is the output from the script in Figure 25:

true

Good Input Time:

[0, 13792252]

false

Bad Input Time:

[7, 935494039]

A check for bad regular expressions can be done in an automated way by using a module

called safe-regex. Additionally, OWASP has a list of regular expressions for common validations

that can be utilized for validations in our applications [26].

First, install the safe-regex module by using the npm command.

npm install safe-regex

Then check for good regular expression as shown in Figure 26.

Figure 26

Check for safe regular expression [24]

https://github.com/substack/safe-regex

38

File System Access [21]

Node provides the File I/O functionality in the built-in module that comes with the Node

installation. Attackers can use the APIs exposed in this module to read the contents of the files

from the local system. A file module can be imported by issuing this command:

var fs = require('fs');

All the methods in the fs module have two forms: asynchronous and synchronous. The

asynchronous method always takes a completion callback as its last argument. Depending on the

method, the arguments passed to the completion callback differs, but the first argument is always

for an exception. In case the operation was completed successfully, the first argument will be

either null or undefined. When using the synchronous form, any exceptions are immediately

thrown [27].

Following are the details of some of the File I/O methods in the fs module that the

attacker can utilize:

1) fs.readdirSync(path) [27]

This is the synchronous readdir function that reads the contents of a directory

specified in the path as argument. It returns an array of filenames excluding '.' and '..'.

2) fs.readFileSync(filename[, options]) [27]

This is the synchronous version of fs.readFile. It returns the contents of

the filename. If the encoding option is specified then this function returns a string

otherwise a buffer.

39

It can take two arguments:

 filename String

 options Object

o encoding String | Null default = null

o flag String default = 'r'

3) fs.writeFileSync(filename, data[, options]) [27]

This is the synchronous version of fs.writeFile. It returns undefined. It takes the

following arguments:

 filename String

 data String | Buffer

 options Object

o encoding String | Null default = 'utf8'

o mode Number default = 438

o flag String default = 'w'

There is a way to add the file system access functionality in the currently running script

even if it originally doesn’t exist by including the appropriate require command such as the

fs module. An attacker can utilize any of the methods described above to list the contents of the

directory or even the file and even write to that. This can be accomplished by issuing the series

of commands and methods chained together like this:

response.end(require('fs').readdirSync('.').toString())

response.end(require('fs').readdirSync('..').toString())

40

The preceding scripts will list the contents of the current directory and parent directory

respectively. A complete directory structure of the entire file system can be built this way. The

actual contents of a file can be listed by issuing the following command:

response.end(require('fs').readFileSync(filename))

More danger lies in the possibility of writing to the file as compared to just reading the

contents of the file. This can be done and is demonstrated below:

var fs = require('fs');

var currentFile = process.argv[1];

fs.writeFileSync(currentFile, 'hacked' + fs.readFileSync(currentFile));

This attack shows how easy it is to write to a file by prepending the string “hacked” to the

start of the currently executing file. The boundary is thus wide open for attackers to invoke more

malicious attack than this.

Execution of Binary Files [21]

It has been noted that it is possible to create arbitrary files on the target server, including

binary executable files:

require('fs').writeFileSync(filename,data,'base64');

In the preceding command, filename is the name of the resulting file (i.e. foo.exe)

and data is the base-64 encoded contents that will be written to the new file. The attacker now

only needs a way to execute this binary on the server.

Now that the attacker has written their attack binary to the server, they need to execute it by

issuing this command:

require('child_process').spawn(filename);

41

Chapter 6: Benchmarking Node.js

In several section of this paper, we discussed the pros and cons of single-threaded Node by

comparing it with a conventional threaded programming model. This has been limited to theory

so far. So, in this section we verify those statements with testing. Tests were performed using

programs in Node and PHP. Those programs were executed in two different servers which were

configured prior to tests. The detailed benchmarking methodology and the results are discussed

separately below.

Benchmarking Methodology

Benchmarking tests were performed with the objective to test Node and Apache Servers

running PHP with increasing levels of concurrency and requests. These tests were intended to

measure how well each framework handled varying server loads. Therefore, the purpose of the

test was to compare Node with one of its competitor Apache-PHP combinations. Throughout this

paper, we asserted that Node is able to attain higher levels of concurrency and is efficient at

handling I/O while failing to repeat that trait when heavy computation is involved. Our

experiments described in this section validate those statements with test results and analysis. For

performing our tests, two test environments were set up inside a virtual machine, one running on

Windows 7 and the other on Ubuntu. The detailed server configuration for our testing

environment is shown in Table 1.

42

Table 1

Test Environment Server Configuration

Windows 7 Environment

Hardware Configuration Software Configuration

OS: Windows 7 Enterprise Service Pack 1,

64 Bit

CPU: Intel (R) Xeon (R) CPU E5-2680 v2

@ 2.80 GHz 2.79 GHz

RAM: 4 GB

Node: 0.12.7

PHP: 5.5.30

Apache: 2.4.17

Apache Bench: 2.3

Ubuntu Environment

Hardware Configuration Software Configuration

OS: Ubuntu 14.04.2 LTS

CPU: Intel (R) Xeon (R) CPU E5-2680 v2

@ 2.80 GHz 2.80 GHz

RAM: 2 GB

Linux Kernel: Linux 3.13.0-65-generic

x86_64

Node: 0.12.7

PHP: 5.5.9

Apache: 2.4.7

Apache Bench: 2.3

43

For gathering the hardware configuration info in Ubuntu, the following commands were used:

$ cat /proc/meminfo

$ cat /proc/cpuinfo

$ lsb_release –a

$ uname -mrs

Our experiments were conducted by running the Node and Apache web server locally,

hosting 2 sample programs. For installing Apache-PHP in the Windows environment, the third-

party tool named XAMP was used. For emulating the concurrent connections and multiple

requests, a tool named Apache Bench was used (a command line utility that comes with default

installation of Apache Server in XAMP). Apache Bench offers an array of configurations. For

these experiments, the total number of server requests and number of concurrent requests were

varied. Below is a sample command for benchmarking a server running locally on port 8080 with

10,000 total requests and 1,000 concurrent requests [28].

ab -n 10000 -c 1000 http://localhost:8080/

For installing Apache-PHP in Ubuntu following commands were used:

sudo apt-get install apache2

sudo apt-get install php5

sudo apt-get install libapache2-mod-php5

sudo /etc/init.d/apache2 restart

For installing Apache Bench in Ubuntu following command was issued:

sudo apt-get install apache2-utils

http://sourceforge.net/projects/xampp/
https://httpd.apache.org/docs/2.2/programs/ab.html

44

Test 1: Fibonacci number calculation [29]

The calculation of Fibonacci numbers is a common programming problem in teaching

computer science and mathematics. Formally, the Fibonacci number Fn is the nth term of the

series formed by the following recurrence relation:

𝐹𝑛 = 𝐹𝑛 − 1 + 𝐹𝑛 − 2

for 𝑛 = 3, 4, . . . , with 𝐹1 = 𝐹2 = 1

There are many iterative recursive solutions for calculating Fibonacci numbers. Among

them the popular one is recursive version, the pseudo code of which is shown in Figure 27.

Figure 27

Recursive function to calculate Fibonacci number

The recursive Fibonacci function’s main disadvantage, however, is its exponential time

complexity (because of growing number of intermediate values) compared to the linear time

complexity of the iterative versions. The Fibonacci calculation was chosen because it involves

heavy computation and the objective was to test how Node performs doing heavy computation as

compared to Apache-PHP. Both the Node program and the PHP program were coded to calculate

the 20th Fibonacci number.

45

Test 2: Reading large text file with concurrent requests

File reading is an I/O operation. We discussed that Node is proficient at handling I/O

requests. In order to test this, we coded in both Node and PHP to read a large text file having two

column data delimited by a tab and with 500,000 lines. An excerpt of the text file is shown

below:

//Dfile.dat

23279854 9

23215908 8

24666448 11

For monitoring, the CPU and the memory usage in the Windows environment during

execution of 2 sample programs, Windows Task Manager was used. Likewise for Ubuntu, the

command line tools named htop and mpstat were used. htop and mpstat were installed in Ubuntu

by issuing the following commands:

sudo apt-get install htop

sudo apt-get install sysstat

Benchmarking Results and Findings

Node was quite fast in terms of execution time for Test 1 in the Windows environment as

verified by the comparison between the response time readings in Table 3 and Table 2. Even

with a significant increase in concurrent requests and number of requests, the response time was

not as high for Node as it was for Apache-PHP. However, Node accomplished this task with a

peak CPU utilization time of 100% (in a single thread) as compared to max 76% for Apache-

https://en.wikipedia.org/wiki/Task_Manager_(Windows)
https://apps.ubuntu.com/cat/applications/precise/htop/
https://en.wikipedia.org/wiki/Mpstat

46

PHP. This has been shown in Figure 29 and Figures 28 for Apache-PHP and Node in Windows

respectively.

Table 2

Test 1: Windows 7 Environment (Apache-PHP)

Execution Time in Seconds

Concurrency\Requests 500 1,000 5,000 10,000

10 1.805 3.463 17.753 36.582

100 2.075 4.303 21.295 46.351

200 1.919 3.760 24.632 47.252

Figure 28

Test 1: CPU Utilization Windows7 Environment (Apache-PHP)

47

Table 3

Test 1: Windows 7 Environment (Node.js)

Execution Time in Seconds

Concurrency\Requests 500 1,000 5,000 10,000

10 0.577 0.796 4.524 7.472

100 0.532 0.739 3.432 7.363

200 0.421 0.827 3.276 6.536

Figure 29

Test 1: CPU Utilization Windows7 Environment (Node.js)

48

Table 4

Test 1: Ubuntu Environment (Apache-PHP)

Execution Time in Seconds/CPU Utilization in %

Concurrency/Requests 500 1,000 5,000 10,000

10 0.876

/

9.2%

1.777

/

21.2%

8.783

/

19.7%

17.459

/

17.9%

100 0.886

/

12.4%

 1.740

/

19.7%

9.018

/

19.1%

18.041

/

5.2%

200 0.932

/

6.6%

1.762

/

17.1%

9.138

/

20.5%

17.946

/

37.9%

Figure 30

 Test 1: CPU Utilization Ubuntu Environment (Apache-PHP)

Surprisingly, the execution time of the 20th Fibonacci number in Apache-PHP was quite

low in the Ubuntu environment but so was the case for Node. The measurements of response

49

time along with CPU utilization time of Apache-PHP and Node in Ubuntu is listed in Table 4

and Table 5. The CPU activity was logged using the htop command as shown in Figure 30 and

Figure 31. The peak CPU utilization ratio using Apache-PHP was 37.9% whereas Node had

97.6% (in a single thread). The comparative graph in Figure 33 shows that Node falls short in

terms of CPU Utilization ratio but its response time performance is remarkably good for both the

Windows and Ubuntu environments as shown in Figure 32. Hence, when heavy computation is

involved Node is probably not the good choice for application development as it consumes way

too much of CPU time in contrast to a conventional model.

Table 5

 Test 1: Ubuntu Environment (Node.js)

Execution Time in Seconds/CPU Utilization in %

(Single Thread)

Concurrency/Requests 500 1,000 5,000 10,000

10 0.271

/

21.2%

0.457

/

25.3%

2.420

/

74.8%

3.934

/

98.6%

100 0.229

/

19.5%

0.443

/

24.5%

2.018

/

95.7%

3.787

/

98.0%

200 0.351

/

14.0%

0.509

/

21.3%

2.121

/

94.4%

4.337

/

99.7%

50

Figure 31

Test 1: CPU Utilization Ubuntu Environment (Node.js)

Figure 32

Test 1: Response Time Graph with HTTP Requests & 200 Concurrent

51

Figure 33

Test 1: CPU Utilization ratio with HTTP Requests & 200 Concurrent (Single Thread)

Test 2 is the test for I/O operations and as discussed, Node was expected to perform very

well in this experiment and the results were as good as expected. The measurements of response

time for Apache-PHP and Node in the Windows environment are shown in Table 6 and Table 7.

From these two tables we observe that Node was almost twice as fast for several sets of metrics

in the Windows environment. We observe that if sets of 100, 1000 and 200, 1000 combinations

of concurrency, and requests are compared then Node is twice as much as fast as Apache-PHP.

52

Table 6

Test 2: Windows 7 Environment (Apache-PHP)

Execution Time in Seconds

Concurrency\Requests 500 1,000 5,000 10,000

10 18.542 43.646 163.940 342.763

100 24.726 49.577 241.738 485.893

200 21.824 44.382 208.962 422.542

Table 7

Test 2: Windows 7 Environment (Node.js)

Execution Time in Seconds

Concurrency\Requests 500 1,000 5,000 10,000

10 12.043 31.903 119.573 306.478

100 12.745 25.771 112.694 264.592

200 11.918 21.403 130.790 245.263

53

Table 8

Test 2: Ubuntu Environment (Apache-PHP)

Execution Time in Seconds

Concurrency\Requests 500 1,000 5,000 10,000

10 1.999 3.838 19.796 38.426

100 2.003 4.169 22.190 39.922

200 1.990 6.823 21.134 42.091

Table 9

Test 2: Ubuntu Environment (Node.js)

Execution Time in Seconds

Concurrency\Requests 500 1,000 5,000 10,000

10 1.379 2.601 13.066 20.235

100 1.531 3.201 12.988 22.346

200 1.533 3.065 14.253 29.648

The measurements of response time for both the Node and Apache-PHP for Test 2 in the

Ubuntu environment is shown in Table 8 and Table 9. The results are quite similar to what it was

in the Windows environment. For several instances such as for 100, 10000 and 100, 5000

54

combination of concurrency and requests, Node is essentially two times faster than Apache-PHP.

The comparative graph for both environments for both Node and Apache-PHP is shown in

Figure 34. From these results we assert that Node is a high performer for any I/O operations.

Test 2 involved experiments on the I/O operation task for reading content from a large text file

but this can be emulated for other I/O operation tasks as well such as data fetching from a

database.

Figure 34

Test 2: Response Time Graph with HTTP Requests & 200 Concurrent

55

Chapter 7: Limitations of Node.js

We established Node’s benefits in terms of performance and scalability. In this paper, we

established Node as the superior and neat platform for application development. Our

benchmarking results in Chapter 6 clearly shows Node’s true potential in handling concurrency

with limited resources. However, some of Node’s benefits have become the reasons for its

weaknesses. Part of the utility of Node is that there are limited weaknesses in the typical sense

of the word [12]. Having been developed only in 2009, Node is currently still in the development

life cycle. Perhaps the largest problem with the platform at its current state of development is the

lesser developed ecosystem [12]. Comparatively, Node is at infancy stage with small

development community and support.

Poor handling of heavy server-side computation

In general, any CPU intensive operation nullifies any of the throughput benefits Node

offers with its event-driven, non-blocking I/O model because any incoming requests will be

blocked, while the thread is occupied serving requests [12]. Node struggles in handling of very

high computationally intensive tasks, because whenever it executes long-running task, Node will

queue all remaining incoming requests, because it implements single-threaded architecture with

an event loop [36]. As illustrated in Test1 of our benchmarking tests, Node utilized almost 100%

of CPU (in a single thread) for calculating the 20th Fibonacci number. Practically, the load ratio

scales up higher than that, and undoubtedly Node will not be able to cope with it. For Node to be

an effective programming language, it should be able to handle any sort of applications including

heavy computation tasks. Node is single-threaded and uses only a single CPU core which limits

56

that possibility. This can probably be resolved by adding concurrency on a multicore server, in

the form of a cluster module. A cluster module creates child processes (workers) which share all

the server ports with the main Node process (master). Thus, the elegant solution for Node to

deal with heavy computation and for scaling up the applications would be to split a single

process into multiple processes or workers [33].

Server-side application with relational database

Node integrates quite well with NoSQL databases which are non-relational in nature.

However, relational database tools for Node are still in their early stages and are rather immature

[12]. Node is very popular with NoSQL databases but is seldom used in combination with

relational databases. The integration of Node with relational databases is still at an early stage

and is not so solidly established. While NoSQL is becoming more popular, relational databases

are not going to be phased out anytime soon. Considering that, it becomes necessary for Node to

become well-integrated with the relational databases.

Complexity with callback function

Asynchronous I/O combined with a callback function is the salient feature of Node that

allows it to handle multiple concurrencies. A callback function in Node is an anonymous

function that is usually nested together with some other factory methods. When the logic of the

code becomes complex, Node might suffer from the problem termed callback hell [34]. Callback

hell is the occurrence of an ugly nesting of multiple asynchronous JavaScript functions that go to

multiple level of nesting in depth. The extensive use of asynchronous threading can make

complicated logic very difficult to write. Anything requiring interaction between more than three

http://nosql-database.org/

57

external APIs ends up causing code to nest many levels deep; also making the code very difficult

to read and document [35].

Ecosystem in Development

Node’s ecosystem is currently in its development stage. Although, the number of public

libraries or modules in Node online repository (See Chapter 1) is increasing, and the community

and support is expanding, there is still a long way to go, before its ecosystem is sufficiently

established. Most of the APIs provided by Node may not be stable and they cannot be assumed

to be ready in production. However, the Node ecosystem is expected to expand and become

solid.

Adherence to JavaScript

JavaScript is the core of Node. Node is a JavaScript language with additional

functionalities and features with both the client-side and the server-side scripting capability. It is

discussed in previous section (See Chapter 4) how Node is benefited with its base on JavaScript

and how Node suffers in terms of the security aspects (See Chapter 5) that it inherited from

JavaScript. Additionally, JavaScript has not been developed for use on servers until recently.

JavaScript is still very new in the server-side environment. Many solutions that would be

otherwise easy to code in JAVA or .NET are far more difficult or even impossible in Node (or

JavaScript in general). One specific example is with XML schema validation and XML

transformations. There are not any modules with more than a basic level of support for XML

schema validation, missing functionality for namespaces, and modularized schemas. Likewise,

there is not any suitable module for transforming XML [35].

https://www.java.com/en/
https://www.microsoft.com/net

58

Chapter 8: Limitations and recommendations for further Study

Node is a very new application platform. Node’s features and benefits have attracted many

developers worldwide. As a result, the scope of Node has increased significantly. Due to the

wide scope of Node issues, we covered a limited number of aspects of Node in this paper that

includes, what Node is, how it is installed, how it works, what a Node Module and NPM is, how

Node is different from JavaScript and AJAX, what security holes it has, and what its limitations

are.

There are some limitations and shortcomings in our study. First of all, we don’t provide

detailed information on popular in-built Node modules available in NPM repository. There are

many popular Node modules that are used in Node application development. For instance,

modular frameworks such as Express.js and Jade are not discussed in this paper. Apart from

that, application development has not been the prime focus. Therefore, Node application

development is not discussed. Node is the significant part of the modern all JavaScript based

web application development framework termed the MEAN stack. A further investigation of

Node application development using MEAN would provide a better understanding of the

application development process in Node. The differences and similarities described between

JavaScript and Node in this paper is at a very high level. More emphasis on conventional

JavaScript can illustrate those differences more clearly. Node is more similar to the JavaScript

library termed jQuery than to conventional JavaScript. An emphasis on the jQuery library, in

addition to classical JavaScript, will help in understanding Node and its syntax. Additionally, the

real-time application development module of Node: Socket.io is only explained by us briefly.

Socket.io is very powerful and can be used to develop several sorts of real-time applications

http://expressjs.com/
http://jade-lang.com/
http://mean.io/#!/

59

including real-time analytics, instant messaging, binary streaming, and document collaboration.

A further study of Socket.io would reveal the power of Node to facilitate real-time application

development that is not possible with AJAX. Lastly, the benchmarking results in this paper are

based on the comparison of Node with Apache-PHP. A fair benchmarking trial would be to

compare Node with the measurements made using the asynchronous programming feature

available in other programming languages such as the SignalR library available in C# which has

similar functionalities to Node.

http://signalr.net/
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

60

Chapter 9: Conclusion

In this paper we showed that Node has transformed the usability of JavaScript, making

Node a complete programming language. From browsers to server-side scripting outside of

browsers, Node has made possible the availability of a runtime environment, a library full of free

useful modules that can be imported by using an in-built tool named NPM. Node uses non-

blocking, event-driven I/O asynchronous programming to be lightweight and be efficient. We

showed that setting up a Node environment is simple, and Node is available to all major

operating systems.

Node is based on the familiar syntax of JavaScript, but differences do exist. Node can be

confused with AJAX, but both of them are completely different tools with both using JavaScript

as the base. Although AJAX was introduced to provide real-time interaction in the web

application, AJAX failed to do so while exhibiting a significant wastage of bandwidth and

resources. Node, via its socket.io module was shown to overcome that deficiency in AJAX by

introducing an efficient real-time interaction in the application. Node’s performance with respect

to another server-side scripting language PHP is quite remarkable as shown by our

benchmarking test results. Apart from its benefits, Node does have some security holes. If Node

applications are not programmed with good error handling and input validation then those

applications can be vulnerable to attacks. Therefore, it becomes the responsibility of Node

developers to make Node applications secure.

With all of its advantages, Node plays a critical role in the technology stack of many high-

profile companies who depend on its unique benefits. Node was created to solve the I/O scaling

61

problem. So, if a use case does not contain CPU intensive operations nor access any blocking

resources, one can exploit the benefits of Node while experiencing fast and scalable applications

development with the power of Node.

62

References

[1] Kurniawan, A. (2014). Node.js Succinctly. Synfusion Inc.

[2] Govett, D. (2010, March). Learning Server-Side JavaScript with Node.js. Retrieved

from Envato Tuts+: http://www.webcitation.org/6ePoNkZwD

[3] Teixeira, P. (2013). Hands-on Node.js. In P. Teixeira, Hands-on Node.js. Lean

Publishing.

[4] Young, A. (2012, May). Windows and Node: Getting Started. Retrieved from Dailyjs:

http://www.webcitation.org/6ePozY7jz

[5] Tom Hughes-Croucher, M. W. (2012). Node: Up and Running. In M. W. Tom

Hughes-Croucher, Node: Up and Running. O'Reilly Media Inc.

[6] Ortiz, A. (2013, March). Server-side Web Development with JavaScript and Node.js.

Retrieved from http://webcem01.cem.itesm.mx:8005/node/node.html

[7] Mike Cantelon, T. H. (2013). Node.js in Action. Manning Publications.

[8] Rauch, G. (2012). Smashing Node.JS JavaScript Everywhere. John Wiley & Sons

Inc.

[9] Teixeira, P. (2013). Professional NodeJs: Building JavaScript-Based Scalable

Software. John Wiley & Sons Inc.

[10] Wandschneider, M. (2013). Learning Node.js A Hands-On Guide to Builiding Web

Applications in JavaScript. Pearson Education.

[11] Capan, T. (n.d.). Toplal. Retrieved from Why The Hell Would I Use Node.js? A

Case-by-Case Introduction: http://www.webcitation.org/6ePpS09lg

[12] Joseph Delaney, C. G. (n.d.). Node.js at a glance. Whale Path Inc.

[13] Cois, C. A. (2013, June). Why You Should Learn Node.js Today. Retrieved from

Udemy Blog: http://www.webcitation.org/6ePpd1ib8

[14] Wilson, J. R. (2013). Node.js The Right Way Practical, Server-Side JavaScript That

Sales. The Pragmatic Programmers LLC.

[15] Node.js. (n.d.). Retrieved from Node.js: http://www.webcitation.org/6eRYp2n8a

[16] Ajax Basics. (2015, August). Retrieved from Webucator:

http://www.webcitation.org/6ePpmPP3W

http://www.webcitation.org/6ePoNkZwD
http://www.webcitation.org/6ePozY7jz
http://webcem01.cem.itesm.mx:8005/node/node.html
http://www.webcitation.org/6ePpS09lg
http://www.webcitation.org/6ePpd1ib8
http://www.webcitation.org/6eRYp2n8a
http://www.webcitation.org/6ePpmPP3W

63

[17] Godde, A. (2015, January). Why AJAX Isn't Enough. Retrieved from Smashing

Magazine: http://www.webcitation.org/6ePptxaNV

[18] Holzner, S. (2009). AJAX A Beginner's Guide. McGraw-Hill Companies.

[19] Anderson/differential.io, D. (2014). How Node.js Can Accelerate Enterprise

Application Development. Modulus.

[20] Endler, D. (2002). The Evolution of Cross-Site Scripting Attacks. iDefense Inc.

[21] Sullivan, B. (2011). Server-Side JavaScript Injection. Adobe Secure Software

Engineering Team.

[22] Barnes, D. (2013). Node.js Security. Packt Publishing.

[23] Subramani Rao, S. R. (2011). Denial of Service Attacks And Mitigation Techniques:

Real Time Implementation With Detailed Analysis. The SANS Institute.

[24] Baldwin, A. (2014, November). Regular Expression DoS and Node.js. Retrieved from

Lift Security: https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-

node.js?utm_source=nodeweekly&utm_medium=email

[25] Regular expression Denial of Service - ReDoS. (2015, November). Retrieved from

OWASP: http://www.webcitation.org/6ePqK8gbl

[26] OWASP Validation Regex Repository. (2014, July). Retrieved from OWASP

Validation Project: http://www.webcitation.org/6ePqRiV4I

[27] Node.js v5.1.0 Documentation. (n.d.). Retrieved from Node.js:

http://www.webcitation.org/6ePqYdtwX

[28] McCune, R. R. (2011). Node.js Paradigms and Benchmarks. University of Notre

Dame.

[29] Rubio, M. (n.d.). Fibonacci numbers using mutual recursion. Rey Juan Carlos

University, Department of Computer Science.

[30] Martonca, E. (2015, June). Why all the hype about Node.js? Retrieved from

http://www.webcitation.org/6ePrX7R2R

[31] Using a package.json. (n.d.). Retrieved from npm:

http://www.webcitation.org/6eaIdaR9F

[32] Pasquali, S. (2013). Mastering Node.js. Packt Publishing.

[33] Kamali, B. (2015, July). How to Create a Node.js Cluster for Speeding Up Your

Apps. Retrieved from Sitepoint: http://www.webcitation.org/6ew832ZZA

[34] Callback Hell (n.d.). Retrieved from Callback Hell:

http://www.webcitation.org/6ew8DXVK0

http://www.webcitation.org/6ePptxaNV
https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js?utm_source=nodeweekly&utm_medium=email
https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js?utm_source=nodeweekly&utm_medium=email
http://www.webcitation.org/6ePqK8gbl
http://www.webcitation.org/6ePqRiV4I
http://www.webcitation.org/6ePqYdtwX
http://www.webcitation.org/6ePrX7R2R
http://www.webcitation.org/6eaIdaR9F
http://www.webcitation.org/6ew832ZZA
http://www.webcitation.org/6ew8DXVK0

64

[35] McIlvenna, S. (January, 2014). Retrieved from Evolving Software:

http://www.webcitation.org/6ew8PX8Dh

[36] Posa, R. (March, 2015). Retrieved from JournalDev:

http://www.webcitation.org/6ew9SMBVa

[37] Flanagan, D. (2006). JavaScript The Definitive Guide. O'Reilly Media Inc.

http://www.webcitation.org/6ew8PX8Dh
http://www.webcitation.org/6ew9SMBVa

65

Appendix

Node.js Installation

Node’s installation is fairly simple. It can be downloaded and installed easily and then get

it up-and-running in a matter of minutes. Node can be installed out of the box on Windows,

Linux, Macintosh, and Solaris. Depending upon the platform, a package installer can be

downloaded for Windows or Mac OS that can be executed to install Node. For Linux

distribution, the latest stable source code can be downloaded and built [3].

Installation on Windows

Installing Node in the Windows environment is as easy as installing any other Windows

application. In order to begin the installation, download the Windows Installer (MSI) file from

the official website of Node. Click on the download file to initiate the Windows installer with a

wizard which is pretty easy to follow. It’s just like installing any other Windows program - the

Node binaries will end up in C:\Program Files (x86)\nodejs\ (in 32 bit Windows)

and will be accessible from cmd.exe [4].

Alternatively, Node can be installed using package instead of installer. For that, a

command line installer for Windows such as the scoop or the chocolatey should be installed. In

order to install scoop, Powershell 3 should be installed in the machine and ensure to change the

execution policy (i.e. enable Powershell) with set-executionpolicy

unrestricted -s cu. Then from the command line, Node can be installed directly using

this command:

http://scoop.sh/
https://chocolatey.org/
https://technet.microsoft.com/en-us/library/hh847837.aspx

66

scoop install nodejs

After the installation, Node executable can be run from the command line to check if it is

installed successfully by typing node –v. The command should show the version of the Node,

if the installation is successful [5].

A Node shell or REPL (read-eval-print loop) can be run to interactively test the JavaScript

code. Node REPL is an interactive Node programming environment great for testing out and

learning about it [5]. At the terminal window type: node and that will allow entering any

JavaScript expression after the shell prompt “>”.Type .exit followed by Enter to quit the

shell or press Ctrl-C twice [6]. For the production development, any text editor can be chosen to

write a Node program, save it with a .js extension anywhere in the machine. Then, in order to

execute the program from the command line type [5]:

node program_name.js

Installation on Ubuntu

Installation of Node in Linux is fairly simple. In this paper, we used the Ubuntu for Linux.

Therefore, this part discusses the steps involved in setting up the Node in the Ubuntu that

requires following 2 primary tasks. At first is the installation of pre-requisite packages and then

the compilation of Node [7].

There are some pre-requisite packages that need to be installed in the Ubuntu before

installing Node. This can be done by executing the single line command given below:

sudo apt-get install build-essential libssl-dev

67

After compiling the Node, some more steps are required. First, create a temporary folder by

entering the following command from the command line:

mkdir tmp

Then, navigate into the directory and enter the following commands to get the tar of Node

setup files:

cd tmp

curl –O http://nodejs.org/dist/node-latest.tar.gz

Once the download is complete, enter the following command to extract the tar:

tar zxvf node-latest.tar.gz

Next, enter the following command in sequence to move inside the extracted directory, to

run a configuration script and finally to compile Node respectively:

cd node-v*

./configure

make

Once the text stops scrolling, and after the command prompt comes in, enter the final

command in the installation process:

sudo make install

68

This will install Node in the Ubuntu. The successful installation of the Node can be verified

by issuing the following command to show the version of Node in the terminal like it was shown

in the Windows installation:

 node –v

Source Code

The following script was used for calculating the 20th Fibonacci number using Apache-PHP.

<?php

ini_set("precision",50);

$fibnum = 20;

function fibonacci($number) {

 if ($number < 2) {

 return 1;

 } else {

 return (fibonacci($number-2) + fibonacci($number-1));

 }

}

echo $fibnum.'th Fibonacci Number is: ';

echo fibonacci($fibnum);

?>

The following script was used for calculating the 20th Fibonacci number using Node.js.

//fibonacci.js

var fibnum = 20;

var resFibNum;

'use strict';

var http = require('http');

var port = 8000;

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/plain'});

 //print the result of the function

 resFibNum = fibonacci(fibnum);

 console.log(fibnum+'th Fibonacci number is: ' + resFibNum);

 res.end(fibnum+'th Fibonacci number is: ' + resFibNum);

}).listen(port);

console.log('Listening at port ' + port);

// function for calculating fibonacci number recursively

function fibonacci(n) {

 if (n < 2)

 return 1;

 else

 return fibonacci(n-2) + fibonacci(n-1);

}

69

The following script was used for reading the large data file content using Apache-PHP.

<?php

$fname = 'DFile.dat';

$result = file_get_contents($fname);

echo $result;

?>

The following script was used for reading the large data file content using Node.js

//filereader.js

var http = require('http');

var server = http.createServer(handler);

var fs = require('fs');

function handler(request, response) {

 response.writeHead(200, {'Content-Type': 'text/plain'});

 fname = 'DFile.dat'

 //read from the file

 fs.readFile(fname, function (err, data) {

 if (err) throw err;

 result = data;

 response.end(result);

 });

}

server.listen(8124);

console.log('Server running at http://127.0.0.1:8124/');

	St. Cloud State University
	theRepository at St. Cloud State
	3-2016

	A Comparative Analysis of Node.js (Server-Side JavaScript)
	Nimesh Chhetri
	Recommended Citation

	tmp.1456004405.pdf.80frj

