
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2015

Puredata Systems for Analytics: Concurrency and
Workload Management
Sai Mohit Muddu
St. Cloud State University, musa1203@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Muddu, Sai Mohit, "Puredata Systems for Analytics: Concurrency and Workload Management" (2015). Culminating Projects in
Information Assurance. 3.
https://repository.stcloudstate.edu/msia_etds/3

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/3?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Puredata Systems for Analytics: Concurrency and Workload Management

by

Sai Mohit Muddu

A Starred Paper

Submitted to the Graduate Faculty

of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in

Information Assurance

December, 2015

Starred Paper Committee:

Dr. Jim Q Chen

Dr. Susantha Herath

Dr. Changsoo Sohn

2

Abstract

PureData
TM

 System for Analytics also called as Netezza is a data warehouse server

handling analytic operations capable of providing throughput 1000 times greater and faster than

traditional database servers. Impressively, it requires minimal system tuning thereby providing

high-end performance as well as requiring a low total cost of ownership (TCO). Database

performance is directly linked to the allocation of system resources on a database management

system. The heart of the Netezza appliance, Field-Programmable Gate Array (FPGA) plays a key

role in boosting the overall performance of a server. I/O operations are always a bottleneck in

any database server and it is the FPGA that eradicates the I/O problem in Netezza by filtering the

data across each snippet processing unit (SPU), processing and running the queries faster thereby

pumping server’s performance greatly.

This paper describes the current problems the companies face in a “big data”

environment which includes concurrency handling and query performance. There are various

factors which affect a query's performance, which includes bad data distribution, stale statistics,

server load and uneven system resources. Since this paper is restricted to only the system

resources, an in-depth analysis of system resources and its components will be analyzed in this

research. A database server’s performance is directly related to its underlying allocation of

system resources. Work Load Management (WLM) and each of its features are described in this

paper which gives the reader a clear notion of how a query's performance is altered using various

mechanisms. The paper describes the current performance problems that exist on the traditional

database servers and how the Work Load Management components can be tweaked along with

the predefined system configurations to process a query to run faster on a Netezza machine.

3

Acknowledgement

Though the following paper is an individual work, I could have never reached the heights

without the support, efforts and guidance of certain people.

 First and foremost, I would like to thank my advisor and mentor Dr. Jim Q Chen for

providing me endless guidance throughout the project tenure.

 I would like to thank and express my deepest gratitude to my mentors Dr. Susantha

Herath, Dr. Jim Q Chen, Dr. Dennis Guster, and Dr. Tirthankar Ghosh for all their support,

encouragement and guidance throughout my tenure at St. Cloud State University.

 This project could not have been completed without tremendous support from my

colleagues at workplace who have come across a long way in supporting and assisting me at

every step. It is with their strong knowledge, motivation and vast experience I have acquired

enough notion to explore the overall scope of the project.

 Finally, I would like to thank my family and all my friends for the continuous support

and encouragement without whom I could not have come this long way.

4

Table of Contents

 Page

List of Tables .. 6

List of Figures ... 7

List of Acronyms .. 9

Chapter

I. INTRODUCTION .. 10

 Overview ... 10

 Problem Statement .. 11

 Nature and Significance of the Problem ... 12

 Objective of Paper... 12

 Study Questions .. 13

 Limitations of the Study.. 13

 Summary ... 13

II. BACKGROUND AND REVIEW OF LITERATURE .. 15

 Introduction ... 15

 Background ... 15

 Literature Review.. 16

 Literature Review Related to Methodology .. 18

 Summary ... 29

III. METHODOLOGY ... 31

 Introduction ... 31

5

Chapter Page

 Design of the Study ... 31

 Concurrency .. 40

 Workload Management (WLM) ... 41

IV. DATA PRESENTATION AND ANALYSIS .. 62

 Introduction ... 62

 Data Presentation and Analysis .. 62

V. IMPLICATIONS, CONCLUSION, AND RECOMMENDATIONS 81

 Introduction ... 81

 Implications... 81

 Conclusion .. 85

 Future Work .. 86

References ... 88

Appendix ... 90

6

List of Tables

Table Page

1. Netezza SQL Commands for Displaying Privileges ... 37

2. Query Priority Levels .. 45

3. Netezza Machine Models .. 58

4. GRA Compliance Settings .. 69

5. Short Query Bias System Configuration Parameters .. 77

7

List of Figures

Figure Page

1. IBM’s massively parallel processing architecture .. 19

2. Netezza Software Components ... 20

3. Software Architecture ... 21

4. Concurrent Query Resource Allocation .. 21

5. Workload Management Structure ... 27

6. Netezza TwinFin Architecture ... 31

7. NzAdmin Tool Interface – Query Explain Plan ... 39

8. “nzsqa schedqueues”–1 .. 51

9. “nzsqa schedqueues”–2 .. 52

10. NzAdmin Tool Interface ... 53

11. NzAdmin – Netezza Hardware Specifications ... 53

12. NzAdmin – Netezza SPU Specifications .. 54

13. NzAdmin – Netezza SPU Details ... 55

14. Netezza Web Interface ... 56

15. Aginity Workbench .. 57

16. User and User Group Information .. 64

17. “resource_misc_grp” Group Information ... 64

18. Resource Groups ... 64

19. “nzsqa schedqueues” Output.. 65

20. “nzsqa schedqueues” GRA Output .. 66

8

21. Job Max Information... 67

22. User Groups Priorities... 68

23. GRA System Registry Configurations .. 69

24. NzAdmin Resource Allocation Performance .. 71

25. Resource Allocation Performance History ... 71

26. Resource Performance Graph ... 72

27. Resource Group Priorities ... 74

28. Short Query Bias System Registry Configuration .. 77

29. Create Scheduler Rule... 78

30. Current Scheduler Rules ... 78

31. Query Pending State ... 79

32. Drop Scheduler Rule ... 80

33. GRA Performance Summary .. 83

34. GRA Performance History .. 83

35. Short Query Bias System Registry Configuration .. 84

9

List of Acronyms

BI.. Business Intelligence

DBA ... Database Administrator

DBMS ... Database Management System

FPGA ... Field Programmable Gate Arrays

GRA ... Guaranteed Resource Allocation

NPS .. Netezza performance Server

OLTP.. Online Transaction Processing

PQE .. Priority Query Execution

SLA .. Service Level Agreement

SPA .. Snippet Processing Array

SPU ... Snippet Processing Unit

SQB ... Short Query Bias

SQL ... Structured Query Language

WLM ... Workload Management

10

Chapter I

INTRODUCTION

Overview

The challenge for any data warehouse environment is to access and process large

volumes of data in a very short span of time. Apart from leveraging hardware components there

is always a need to tweak the system resources in order to have the database groups and users

achieve the edge to gain more performance. There are a few traditional databases which provide

good support in handling large amount of data. But the question is how much volume can these

databases accommodate and how well does the query optimization and execution is carried out.

Healthcare and banking industries often come across hassle situations where in the database

freezes or corrupts because of the large volumes of data being processed at the same time.

Database Administrators are required to work round the clock to tune system configurations and

resources. In order to address these issues, Netezza was developed in the year 1999 by Foster

Hinshaw and Jit Saxena. International Business Machines Corporation (IBM) acquired the

product in the year 2010 for $1.7 billion (IBM, 2010a).Netezza is now a part of IBM’s

PureDataSystems
TM

 family (IBM, 2010b). Netezza is also known as PureData
TM

System for

Analytics. Netezza provides faster response to business users compared to the current traditional

databases in the market. With simple deployment, no additional tuning, minimal maintenance

and creative optimization technique, Netezza stands out among other competitors. Netezza

supports Hadoop, Java, C++, Python and MapReduce programming models. Netezza’s customer

base is widely spread across the globe which is estimated to be about 500+ clients. It is estimated

11

that Netezza provides 10-100 times greater throughput compared to Oracle with minimal amount

of tuning required when compared to Oracle.

Improper utilization of system resources can lead to significant problems. It is always a

challenging task for a database administrator to allocate and adjust the numerous system

resources to a job or a user group with a strong justification. In this paper, the features of

workload management are reviewed along with the various methods to address the performance

issues by implementing more than one workload features in parallel.

Problem Statement

 With the growing size of users and data there is always a need to address and adjust the

resource management of a database server. Companies are thriving to achieve a better

performance each day with minimal amount of tweaking and monitoring. Inefficient workload

management is the biggest concern the conventional databases servers face today. Database

Administrators are required to put in extra efforts due to the change in system catalogs and

database size. Performance of a database server is directly related to the allocation of system

resources. The better the resources are allocated the better the database server performs yielding

faster run time of a query. Netezza comes with a handful amount of enriched workload

management features which provides throughput incredibly faster than current conventional

DBMS. One needs to know the right combination of implementing the workload features. This is

based on several factors ranging from application teams, data volume, number of users and

resource groups, performance factors etc.

12

Nature and Significance of the Problem

Inadequate planning of utilization and allocation of system resources leads to a disaster in

a database server. Queries submitted to the server are of various sizes and complexity. With no

workload management configured each query obtains same share of system resources, termed as

‘fair-sharing model’ (IBM, n.d.b). System resources are divided equally based on the number of

active jobs running given that each job has equal priority. However, the drawback in having such

a model arises when there is no predefined feature to set priorities. With no priorities set each

query gets the same share of resources. This can cause a huge drawback to any data warehouse

environment when you have analytic operations running concurrently along with the user

submitted jobs. Higher priority queries should grasp an extra edge in performance and system

resources. Conventional database system fails to produce that extra edge in performance due to

the lack of workload management features and an inadequate variety of system configurations.

This can cause a delay in missing business SLA’s. This is a huge loss in terms of time and

money for a company, where additional efforts are required to put in to achieve a performance

gain.

Objective of Paper

The objective is to lay out the role of Netezza’s workload management features along

with the predefined system configurations it comes with. In this paper, a brief explanation is

provided on how the performance of a query can be improvised by tweaking and mixing the

system configurations along with the work load management parameters to make a complex

query run faster.

13

Study Questions

Upon completion of this paper, the following questions can be answered and explained

on how the workload management feature can leverage the performance of a query.

1. How can the workload management feature enhance the Netezza system to handle

concurrent queries of various complexities without hassle?

2. The tools and bash scripts required to configure the workload management and how

the predefined system configurations can be tweaked on the lines of workload

management to achieve improvised performance?

3. On what basis the workload management features needs to be assigned and allocated

to? How the workload management is configured based upon the role of a database

user or a database group?

Limitations of the Study

 This paper is limited to only the design and study of workload management features

along with server performance, though a brief explanation will be covered on data design and

maintenance. The project results and conclusions cannot be generalized to all kinds of data

warehouse environments since the factors and attributes vary for different companies.

Summary

Companies are thriving to adapt and set up “big data” environment but fail to reach the

end users expectation. This could be either due to bad data architectural planning or bad

configurations on their database servers. Inadequate features and lack of predefined system

configurations are the biggest drawbacks in the current conventional DBMS models. The

14

following chapter explains the problems and drawbacks of the current conventional database

servers.

15

Chapter II

BACKGROUND AND REVIEW OF LITERATURE

Introduction

Database servers are expected to meet the needs of the business, market and end users by

providing tremendous performance. Since, companies are moving towards “big data” technology

to support larger audience there is always a need to have a performance enriched data warehouse

server running behind to accommodate the needs of end clients. A traditional database server is

capable of handling gigabytes of data, providing a minimal amount of performance. This is due

to the restricted amount of predefined configurations and parameters the servers are equipped

with. A traditional database server cannot match up the performance of a data warehouse server

running on a massively parallel asymmetrical engine.

Background

A data warehouse environment needs to be configured with high end hardware

components and high performance software programs to make it run faster and also capable of

handling large volumes of data with no repeated problems. Netezza is capable of handling

concurrent queries of various complexities. Current traditional database servers lack the ability to

handle large number of concurrent queries at any given time, resulting in a server crash, loss in

time, value and money. Businesses today are shifting more and more towards data warehouses

providing multiple parallel processing (MPP) architecture because of the multiple jobs being run

on the data warehouse appliance concurrently.

 Current traditional database servers lack the ability to produce potential performance.

Inefficient and limited workload management features and lack of system configuration

16

parameters are the biggest reasons. With no workload management enabled, and having

concurrent queries running, there is always a possibility of network congestion resulting in loss

of time. This is a very big drawback and loss to any company wherein activities and jobs are run

round the clock against a data warehouse system. Netezza, unlike other conventional database

servers provides 10-100 times faster query response by providing 5 level workload management,

which includes the gate keeper, the guaranteed resource allocation, the snippet scheduler,

scheduling rules and the resource allocation scheduler. In addition, there are other features and

configurations – priority query execution, and short query bias, which IBM provides to enhance

the workload management of a Netezza server much more effectively.

Literature Review

Most researchers have considered dealing performance issues through resource tweaking

which involves tuning the memory and swab space on a disk or a storage unit. Performance

issues were dealt manually rather relying on the workload management policies. Benoit (2000)

proposed a model which illustrates how the performance of a database system can be impacted

by tuning the available resources. Tweaking system resources based on the business needs and

priorities can largely impact the SLA’s. The model also states the interdependency relationship

among various resources in a database system. The aim of demonstrating such a model is to

enhance the overall functionality and performance of a database system by tweaking the system

configurations and resource parameters.

Various attributes contribute to the overall performance of a database system which

includes both software and hardware. A database administrator is responsible to track the

performance of a system by tuning system configurations and resource parameters at various

17

levels. Weikum, Hasse, M¨onkeberg, and Zabback (1994) described the factors which contribute

to the performance of a system and how they can be measured. The research paper describes

tweaking the parameters at various levels of a database system including system configurations,

workload management policies, resource parameters adjustments, database level configurations,

application configurations and operational parameters.

Concurrent queries on any database system are limited in number. It is critical to

hardcode the number of concurrent sessions that can run on a database system in order to avoid

congestion, thereby, affecting performance and throughput. Since each concurrent query shares

the available amount of resources while running, it is always important to set priorities to a query

wherein the higher priority query is allocated more resources than the other active queries.

Schroeder, Harchol-Balter, Iyengar, and Nahum (2006) built a model which states each SLA

designed for a business requires having a query response time criteria to be specified. For a large

data warehouse environment, there is large number of users connected at any given time running

concurrent queries of various complexities. With no dynamic allocation and continuous

tweaking, performance can be impacted slowing the query runtime eventually affecting the

business. To achieve performance and throughput, Schroeder et al. (2006) stated that a feedback

control loop is designed to dynamically tweak the number of active concurrent sessions by re-

allocating the available system resources and re-assigning the priorities.

The problem with such theories and research is that only the resource management is

considered as a factor for performance. There are other factors which need to be considered such

as killing bad queries which abuses databases and system resources. Such queries need to be

addressed and re-written. Apart from this, the above works are restricted only up to OLTP. We

18

do need to consider SAS and BI if we are illustrating the same research from a data warehouse

environment point of view.

Literature Review Related to Methodology

Databases servers have come along a long way over the years due to the increase in the

volume of data, concurrent users, business needs, business urgencies, and real time analytics. In

order to meet the success requirements, new workload features have been implemented and the

existing ones were carved repeatedly to make the database servers perform more efficiently.

Workload is the concept of running the daily scheduled jobs such as SQL queries, data loads, and

maintenance jobs along with a few system triggered action jobs. Assessing a workload is called

workload management. In the below sections, a brief explanation is covered about the workload

management aspects on traditional DBMS followed by workload management and resource

management on a netezza appliance, illustrating each workload management feature. The last

section summarizes the entire scenario of workload management and how it has evolved over the

years and the best practices to implement it.

PureData System for Analytics: Design

 Data loaded into a netezza machine is run through multiple snippets before finally

settling on the storage disks. Data stored in a netezza machine is of compressed format. Resultant

data retrieved from tables on a regular basis are usually stored in a cache memory using a smart

algorithm. This is to boost the performance of the netezza machine by returning results directly

from the cache memory instead of requiring disk storage access. Field Programmable Gate

Arrays (FPGAs) are known as the core components of a netezza machine. Netezza is designed on

the lines of Asymmetric Massively Parallel Processing™ (AMPP™) architecture consisting of

19

multi-core CPUs. These CPUs combined with FPGA Accelerated Stream Technology (FAST
TM

)

boosts the system to run 10-1000 times faster than the traditional DBMS machines. FAST

engines’ running in parallel uncompresses and filters the data which is irrelevant to the query.

The relevant data is served through the multiple CPU cores which run in parallel.

Figure 1. IBM’s Massively Parallel Processing Architecture (IBM, n.d.a)

 FPGA is considered as the heart of the netezza system due to its ability to produce

tremendous performance. FPGA acts as an auxiliary CPU to a netezza system. Similarly, there

are multiple FPGA engines which process data at a very high speed thereby providing

throughput incredibly faster. FPGAs can be (re)configured dynamically. Each FPGA engine

performs filter and transformation mechanisms which assist in performance boost. FPGA engine

consists of three components–Direct Memory Access (DMA), Compress Engine (CRC check),

and filter and transformation functions.

Filter and Transformation Functions. The filter and transformation functions

compromise of the following components.

20

 Compress Engine: Responsible in compressing and decompressing the data during

processing to and fro disks. Due to this, the performance of a netezza system is

boosted further by four to eight times the average performance.

 Filter Function—Project and Restrict Engine: Filters out irrelevant data based on the

“select” and “where” clauses in an executed query.

 Visibility Engine: Plays a key role in maintaining ACID properties at faster speeds.

Filters out the irrelevant data. Data relevant to the query is only visible.

Figure 2. Netezza Software Components (IBM, n.d.a)

Software components of a Netezza system include:

 Multiple optimizers running in parallel to ensure queries are running efficiently and

that each node is fully occupied with a task.

 A smart scheduler which is capable of providing maximum throughput irrespective of

how busy the system is.

 Snippet processors which are responsible to analyze and run queries.

 A network channel to move the data across the appliance at streaming speeds.

21

Figure 3. Software Architecture (IBM, n.d.a)

Figure 4. Concurrent Query Resource Allocation (IBM, n.d.a)

22

PureData System for Analytics: Workload Management

 In a data warehouse environment where there are concurrent jobs running round the

clock, there is always a need to have smart configured workload settings which is capable of

providing real time analytics with no hindrance to user jobs. In implementing the workload

management on a DBMS server, e.g., Oracle Database Resource Manager, Microsoft SQL

Server Resource and Query Governor, IBM DB2 Workload Manager, Teradata Active System

Management, there are certain key factors one needs to consider.

 Performance criteria based on business requirements.

 Segregate and identify user initiated jobs.

 Implications of workload management over queries.

Performance criteria and business compliance. Jobs submitted to a Netezza system are

assigned with a minimum amount of system resource along with other attributes pertaining to

performance and business needs. There is a wide range of queries submitted to a database server

ranging from user initiated jobs, application initiated jobs, business priority jobs, and system

initiated jobs. The performance of each query is generated based on the implications of

workload features it needs to run through along with the priorities set by the business. Based on

the SLA’s set by the business and end-clients, the workload needs to be tweaked to adjust the

runtime of a query. Performance of a query can be asserted through the following metrics: (a)

query runtime, (b) throughput, and (c) query runtime velocity.

Runtime of a query is the elapsed time duration from query submission to query

completion. Throughput is defined as the number of requests completed in a defined unit of time.

Query Runtime Velocity is defined as the execution speed of the query irrespective of server

23

status (idle or busy). This is calculated as a ratio of average query runtime to the actual time the

query ran in the system. Based on the result outcome, the delay factor can be calculated for a

respective query. If the ratio is closer to 0, it indicates a drastic delay in performance. Various

factors contribute to a delay in performance levels–high priority queries running concurrently,

bad workload management, disk storage space issues, poor memory allocation design etc.

Based on the priorities set by the business, higher priority queries generating business

revenue are allocated with large amount of memory resources. These queries take precedence

over the rest of the queries running concurrently in the system. Queries submitted to the system

are allocated with the available system memory resources and a priority factor based on the

importance it has for the business. The workload parameters and system configurations defined

on a database server contribute towards the performance of each query submitted to the system.

These parameters control the behavior of a query from the point it gets submitted to the system

until the result execution time. Workload rules defines the amount of available resources a query

needs to be allocated when it is submitted on a system along with the priority of a query.

 Each query or job submitted to a system is defined as work and a group of such is termed

as workload. Performance of a query or a workload is usually calculated in terms of percentiles

or ratios. In simple terms, it is defined as the x% percent of queries in a workload running in y

units of time. Queries submitted by the business are usually of high priority and are expected to

attain a higher value of x% with respect to smaller y value in time metrics. Apart, other non-

business/non-critical queries are usually not set with any performance policies since they do not

implicate any business needs. Hence, they do not need to be tagged with a higher priority.

24

Furthermore, scheduling rules comes into place to set restriction on the allocation of memory

resources for non-critical queries or workloads (Chen et al., 2008).

Identify and segregate user initiated jobs. Jobs submitted to a system needs to be

identified and segregated based on the nature of the query as well as its impact on business or

end-user. Queries with higher priority needs to be addressed at first place since they are the one

generating revenues for business. Any factors causing hindrance to such high priority queries can

cause a huge negative impact on business. Workload rules are configured to identify the jobs

submitted to the system. Based on the query attributes workload management policies kicks in

(Chen et al., 2008). Various attributes of a query contributing towards the priority assignment

depends on the user who submitted the query, group name the user belongs to, against which

database and objects the query is running against, rowset return, and impact on business. Any

query submitted to the system will need to be identified and assigned a priority based on the

business needs and SLA’s set by the business. Queries prioritized based on business needs are

supposed to be run at schedule times and in a stipulated amount of time. Non-critical queries are

supposed to be run during the times the system is idle or little busy.

 Queries submitted to the system are supposed to be grouped into workloads based on

priority levels and attributes of a query. This gives a clear picture with the amount of system

resources an entire workload is running on a system, thereby providing visibility (Chen et al.,

2008; Microsoft Corp., 2015). Using user-defined rules and policies, similar queries can be

grouped together to run under a single workload. Query commencement and query type

contributes towards the key factors in deciding if they come under a single workload. This

depends on who is initiating and running the query such as user name, application name,

25

application type, and session ID. Apart, it also depends on the query characteristics. Query

characteristics include the type of SQL query a user is running, estimated costs, skew factor.

Implications of workload management over queries. A query submitted to a database

system undergoes through the workload policies before the execution phase begins. A query

submitted to the system is allocated system memory out of the available resources followed by a

priority level (low, medium, high, critical) tagged to it. Workload management involves three

different types of controls – admission control, scheduling control, and execution control

(Krompass, Kuno, Dayal, & Kemper, n.d.; Krompass et al., 2008). Each of the workload controls

have system configurations pertained to it. These system configurations can be modified based

on the business needs and criteria.

Admission control acts as a gatekeeper to a database system which determines if a submitted

query needs to be passed on to next phase or not. This is to avoid the network and database

congestion. A query submitted to a database system undergoes through the workload

management policies before moving into the execution phase. Optimizer plays a key role is

calculating the estimated cost of a query. The workload management determines if the given

query submitted is a long running or a short query (<2s runtime). Short queries are assigned with

a reserved amount of memory resources when it is run in concurrency with large complex

queries.

 The next set of workload management control, scheduling control, determines the similar

requests of queries and bundles them into a single workload. Based on the priority levels,

workloads are created and queued. The workload management policies decide which queries or

jobs needs to be sent for execution. It is the responsibility of the database server’s workload

26

management to keep the system in optimal state and meet the business SLA’s. In order to meet

this requirement, the scheduling mechanism needs to determine the attributes of a query such as

query characteristics, query priority, estimated cost of a query, resource allocated to the query. A

database system’s threshold is responsible in maintaining the overall health of a system. If the

threshold is too high, the system is over utilized and underutilized if the threshold is too low. The

number of concurrent sessions needs to be defined in order to gain control over the queries that

can run in parallel. The maximum value on a Netezza system for this is 48.

 Execution phase controls the runtime attributes of a query. The workload management

policy under this phase dynamically controls the running query to restrict its impact on the

system and other concurrent queries. It is the primary responsibility of the execution phase to

determine the availability of system resources to allocate the newly submitted queries. Re-

allocation of memory resources occurs when an existing running query completes.

Workload Management Structure

 Over the years’, workload management has come along a long way in adding new

parameters and reconfiguring the existing ones to enhance the overall functionality and

performance of a database system. This section covers the brief illustration of the components of

a workload management.

27

Figure 5. Workload Management Structure (Zhang, 2014)

 Workload Characterization–Provides vital information about workload (queries and

jobs) to its controllers and sub-ordinates. Information related to costs, resources,

demands, business priorities, business SLA’s, and performance metrics are passed on

to controllers.

o Static Characterization–This type of workload is usually observed in

traditional database systems where in the system resources are allocated

before the requests are arrived.

o Dynamic Characterization–Dynamically identifies the arriving workloads and

allocates shared system memory based on the arriving loads.

 Admission Control–Restricts the number of concurrent sessions running against a

database system. This helps in maintaining ideal throughput and adequate allocation

of available resources. If more number of connections are accepted, beyond the

defined threshold value, the throughput of a system decreases marginally.

o Threshold Based Admission Control–Defines the threshold parameter above

which no query is allowed to submit and execute on a database system. The

28

threshold parameters can be defined in terms of estimated query cost, query

runtime, session runtime, and concurrent sessions.

o Prediction Based Admission Control–Predicts the behavior of a query before

it is submitted to a database system. Based on a query’s behavior – type of the

query, estimated cost of the query, query runtime, performance of a query can

be calculated.

 Scheduling–Scheduling mechanisms acts as a gatekeeper to a database system. It is

responsible to schedule the order in which the new requests are supposed to be

arrived. Based on the priority of new requests, higher priority queries are scheduled to

be submitted first followed by the medium and low priority requests.

o Query Management–Execution order of a query is based on the attributes of a

query that is submitted on a database system. After passing through the

admission control mechanism, the similar queries are piled together into a

single workload based on the attributes.

o Query Restructuring–Breaks down a large complex query into smaller pieces

and executes them in a scheduled order. In this way, large queries will not

have to rely on shorter queries and vice versa.

 Execution Control–Places control mechanisms on different workloads to execute

concurrent requests without being biased to any of the active requests.

o Query Cancellation–Process of killing an active query that is currently

running on a database system. Killing an active query releases the system

resources allocated to the query.

29

o Request Suspension–Slows down or suspends an active request’s execution.

 Query Suspend and Resume–Any active query can be suspended or

killed, and the intermediate results are stored in a cache memory. The

suspended query can be scheduled to run at a later time during off

business hours. In this way the resource is reallocated to higher

priority queries.

 Request Throttling techniques–holds the same functionality as the

previous subclass mechanism except that this functionality does not

suspend an active request rather it pauses it there by releasing network

bandwidth. CPU usage and I/O bottlenecks can be diagnosed using

this subclass functionality.

o Query Re-prioritization–Dynamically adjusts the priority of a query in the

middle of running state thereby resulting in resource reallocation of system

memory. High priority gets higher amount of shared available system

resources compared to low priority requests. Business requests submitted to a

system can be dynamically tweaked to alter the priority based on the SLA.

Summary

 In this chapter, some brief concepts were introduced about the workload management and

its background. This chapter also covered the critical components of workload management

policies including Performance criteria based on business requirements, Segregate and identify

user initiated jobs, and Implications of workload management over queries. The existing (and

previous) research works are still insufficient in diagnosing a performance issue on a database

30

system. The previous works are limited to resource management and priority execution and does

not talk about how a bad query abusing a database is supposed to be dealt. Despite having

dynamically changing resource management and priority optimization, it is often the bad queries

that affect the performance of a system. Troubleshooting a bad query, either re-writing or killing

it can cause adverse effects on a database system.

31

Chapter III

METHODOLOGY

Introduction

A Netezza server is bundled with server, database and storage unit into a single

architectural system. Netezza is upgraded by leveraging its hardware unlike other traditional

databases wherein software is upgraded. It is capable of providing rapid results claiming to be

10-100 times faster than Oracle and this is because of the server’s asymmetric massively parallel

processing (AMPP) architecture along with the efficient use of five level workload management

features it offers. Going through the paper an in-depth description is explained about the

workload management along with an introduction to netezza’s concepts and theories in addition

to the usage of various syntaxes and tools the server supports.

Figure 6. Netezza TwinFin Architecture

Design of the Study

 In this section, a brief explanation is driven about the core components of a netezza’s

TwinFin architecture. Netezza’s released its TwinFin model in the year 2009 as an advanced

32

model of its previous machine, Mustang. In the following year, 2010, Netezza released a new

model, skimmer, as a trimmed down version of TwinFin. Since the TwinFin release Netezza has

opened up about supporting programming languages such as JAVA, C, C++, Hadoop and R.

Netezza: TwinFin Architecture

TwinFin model architecture of a Netezza system is displayed in Figure 6 (IBM, n.d.b).

Following described are the core components of a Netezza system.

Host: Netezza host acts as an interface cum mediator between the appliance system and

the application tools external to the environment. A Netezza system comes with two red hat

Linux operating system wherein one act as primary and the other secondary which is usually a

backup. The backup comes into the role when the primary OS fails or corrupts. An end user will

not notice any difference in the performance when the primary disk fails in the middle of query

execution or any job operations. Backup OS immediately takes over the processing of queries or

any other jobs. External tools load data into the appliance through data loading tools such as ETL

or any other supporting data loader tool. Also, NzLoad is a feature in Netezza where in the data

can be loaded from external sources into the appliance. The queries submitted to the appliance

through the external tools are converted into the code called snippets, which is read by the

Netezza system. Each query submitted to the Netezza system, host creates a plan to optimize it to

pace up the performance. The snippets and the query plan are created by the host and sent to the

multiple parallel processing units where in the data is processed in parallel by multiple disks.

Snippet Blades (S – Blades):Snippet blades consists the core components of a Netezza

system. Each S-Blade comes with a multi-engine FPGA, high processing CPU, which is

designed to provide complex algorithms to handle large volumes of data, and a RAM memory.

33

Overall, snippets are the processing nodes where in the query optimization takes place and the

jobs are split into multiple lines and processed by each of the MPP engines. On a TwinFin

appliance, there are eight MPP nodes. Each MPP node consists of 2GB RAM, one FPGA core,

and one CPU processor core. Query processing and optimization takes place on each of these

snippets by the FPGA. Queries received by the Host are forwarded to these snippet processing

units (SPU) for query execution and optimization. A SPU is a combination of the memory units

ALONG with the FPGA. Unification of all the SPU’s on the appliance is called Snippet

processing Array (SPA).

Disk Enclosures: Large volumes of data loaded into the appliance finally end up in to

disk storage. Each disk is RAID protected and is connected to the S-Blades through a network

stream. Each SPU has a hard drive storage space to accommodate data, which is otherwise called

as data slice. Data is split on these data slices based upon the distribution key. A distribution key

is a column in the table definition. The data loaded on to the primary disk is copied on to the

mirror (aka secondary) disk. Replication of data ensures that if the primary disk fails, then the

secondary disk can act as primary until the primary is resolved.

Network Fabric: The Netezza appliance comes up with a Network fabric which connects

all the components in the appliance. The bandwidth of the network is high enough to

accommodate a thousand nodes with no difference in performance drop even when each and

every node is communicating and transferring data among themselves. Network fabric runs a

customized IP based protocol.

34

Netezza: Features and Benefits

 Following described are the features and benefits of the Netezza system over other

current conventional data warehouse appliances.

Speed: The Netezza System for Analytics, is said to provide 10-100 times faster response

to query execution and other performance aspects, with about 128 gigabytes per second scan

rate. This is because of netezza’s asymmetric massively parallel processing (AMPP) architecture

which is capable of running multiple jobs concurrently, thereby providing rapid response to the

end clients without any hassle. Field Programmable Gate Arrays (FPGA) is the heart and brain of

Netezza system which filters the data apart from making sensible and smart decisions to improve

the overall performance of the system. Over the years, Netezza has come up with various models

with much rapid growth in performance. Of late, IBM has come up with a new algorithm –

Directed Data Processing algorithm, integrating it with the Netezza system, thereby achieving a

throughput of about 20 times greater than the previous Netezza models.

Simplicity. Netezza provides faster performance with no indexing or tablespaces

required. Also, Netezza does not rely on the key constraints. As said earlier, Netezza system in

ready-to-go state can be immediately started with taking up jobs and query execution thereby

providing instant responses to the clients’ right away. Netezza system easily integrates with the

BI tools and other data loading tools such as ETL through netezza’s supporting interfaces, JDBC,

ODBC and OLE. Netezza supports redundancy of data, wherein failures of one of the nodes or

disk will not impact system’s performance. Netezza does not require any additional tuning to the

hardware components.

35

Scalable. Based on the size of the environment required to build a database to store large

amounts of data, Netezza is capable of providing great response irrespective of the volume of

data being loaded or stored on the appliance. A Netezza appliance holds server storage space

ranging from 8 terabytes to 300 terabytes. Also, additional system can be deployed without any

hassle if data volume increases beyond the initially installed server. As said earlier, minimal

amount of administrative tasks are required to maintain a Netezza system, therefore loading large

amount of data into the storage unit will not affect the performance nor will require any

additional tasks to be performed.

Netezza: Users and Objects

Netezza system by default has a database user and a group – ADMIN and PUBLIC

Administrator, also, is the super user of a database who has all the privileges right from creating

databases to granting/revoking object privileges on a user. Admin has access to all the objects on

a database server. An administrator has several responsibilities for carrying out various tasks and

managing them altogether efficiently like managing databases, backing up/restoring databases,

providing access control.

Always advisable to create a service account for the database administrators who have all

the admin level privileges. Usage of the ADMIN account for database object deployment is not

permissible unless the job activity is critical which involves system related activities. Any object

deployed by the database administrators on a database should be under the ADMIN account.

Once the object is deployed, ALTER the owner to admin. Queries run by admin occupy at least

50% of system resources.

36

By default, user is allocated to the PUBLIC resource group. The name and attributes of a

PUBLIC group cannot be altered. ADMIN owns the group PUBLIC. Each user has a limited set

of permissions. Database groups are created and permissions are granted to the group and the

users who require a similar set of permissions are added on to a single group rather than granting

permissions to each user explicitly. In Netezza, the users are usually authenticated using LDAP.

Admin user always uses local authentication.

➢ Create User using LDAP authentication

CREATE USER MMUDDU;
CREATE USER MMUDDU WITH PASSWORD ‘MMUDDU’;

➢ Create User using LOCAL authentication

CREATE USER MMUDDU WITH PASSWORD ‘MMUDDUNYBOY’ AUTH LOCAL;

User or group attributes can be altered using the ‘ALTER’ syntax; also the admin can drop a

group or a user using a simple ‘DROP’ command.

Netezza: Security Model

The security model illustrates the level of privileges a user is assigned to. Typically, there are

two types of privileges—administrative level privileges and objects level privileges.

Administrative level privileges include creating database objects and execute global

objects. Object level privileges are restricted only up to a particular object like a database, a table

and so on. A database user inherits the access level privileges from a database group they are

assigned to, provided the group has been granted the necessary privileges. In simple terms,

permissions granted to a group are allocated to the users belonging to the group. It is not a good

practice to grant/revoke permissions to a user explicitly when the user belongs to a database

group.

37

Table 1

Netezza SQL Commands for Displaying Privileges

Authenticating using LDAP. User authentication is either ‘local’ or LDAP

authentication. Under local authentication, password needs to be defined while creating a user.

CREATE USER MMUDDU with PASSWORD ‘Bikerboy’ AUTH LOCAL;

Netezza admin has the privileges to alter the login credentials of any ‘local’ authenticated

user. In LDAP authentication, Netezza admin need not define any user password while creating a

database user.

CREATE USER MMUDDU;

Netezza has an inbuilt centralized LDAP server that authenticates any newly created

database user. Netezza system adopts Pluggable Authentication Module (PAM) to authenticate

users on an LDAP name server. LDAP assigned credentials differ from the UNIX account.

Command Description

\du
Displays database users.

\dU
Displays database users and the groups in which they belong to.

\dpU
Displays all the privileges pertaining to a database user.

\dg
Displays the database groups.

\dG
Displays database groups and the users belonging to each group.

\dpg
Displays all the privileges pertaining to a database group.

\dp
Displays all the privileges of a database user through direct assigning

or through inheriting privileges from a database group the user

belongs to.

38

In LDAP authentication, the system looks up the system catalog to check the LDAP

authenticated user and returns an error if a user does not exist. Every successful and failed login

attempts on a Netezza appliance is recorded on to a log file which can be found on the UNIX

host machine under /nz/kit/log/postgres/pg.log. The end user sees no difference between local

and LDAP authentication.

There are extensive aspects which include parameter tweaking as well as writing

additional parameters to a LDAP configuration file, but, this is beyond our project scope.

Netezza: Optimizer and Query Plans

Netezza appliance is designed with an inbuilt optimizer which elects the best scenario for

query join operation, the order of join operations and most importantly the regulation of data

between SPUs which in turn decides the best way to distribute data over the SPUs either through

redistribution(HASH or RANDOM) or broadcast. The Netezza planner indicates the criteria the

data is distributed on the SPUs. Netezza planner optimizes a query in a way the larger tables are

not redistributed. This could make an impact on performance. When two or more tables are used

in a join condition, the Netezza optimizer and planner initially checks the validity of the join

conditions inside a given query. A smaller table has to precede a larger table in any join

statement. During data distribution, larger tables are distributed initially followed by smaller

tables. Vice versa would result in a bad skew, which could impact performance and also

improper utilization of available SPU resources.

Planner and optimizer decide the order of tables that needs to be redistributed initially,

although this is based on the size of a table. Optimizer plays a key role in improving the system’s

performance by rewriting queries without any database administrator intervention. A database

39

administrator can do an ‘EXPLAIN VERBOSE’ command on an active running query to check

the criteria planner has chosen to redistribute the data. An admin can check this either through a

query plan file or query explain plan.

Figure 7. NzAdmin Tool Interface–Query Explain Plan

Performance of an optimizer relies on the table statistics. Optimizer plans and runs

efficiently if the table statistics are updated on a regular basis. Stale statistics bring down the

performance of an optimizer. Generate the table statistics when data is loaded onto a table, or

when data is deleted from a table, or when a table structure is altered. Statistics are updated using

the command GENERATE STATISTICS. Statistics can not only be generated on a table, but can

also be generated on a database, and a table column(s). Optimizer relies on the last updated

statistics information to optimize a query. Statistics information is stored in the system catalog

table under the system database. Running statistics generates the count of duplicate values in a

40

column, the maximum and minimum values in a column, unique data in a column and also the

null values.

GENERATE STATISTICS ON TABLE_NAME/DATABASE_NAME;

In order to analyze an active running query following plans are generated.

EXPLAIN PLAN syntax

▪ EXPLAIN PLANGRAPH SELECT * FROM TABLE_NAME;

HTML PLAN syntax

▪ SET enable_print_plan_html=1;

SELECT * FROM TABLE_NAME;

‘SET’ command writes the plangraph output to the /tmp directory on the host machine.

The plan.html file represents a query in the form of a tree with each ‘where’ clause represented

as a single node.

The queries are run on the command terminal. Alternatively, a plan file can looked up on

the netezza admin tool.

Concurrency

Often, large numbers of queries run concurrently at the same time on a Netezza

appliance. Netezza has the capability of handling the multiple concurrent queries running at the

same time. But how many queries can run concurrently is the question here. Netezza has a limit

of 48 concurrent queries. That is Netezza can service all the 48 queries which run at the same

time. However, Netezza commits that the limit of the number of concurrent queries can be

increased if only required. It is important that queries submitted or running concurrently must

run efficiently and meet the end user requirements without any hindrance. On the Netezza host

41

machine, the postgres configuration file (postgres.conf) can be modified to alter the number of

queries an appliance can take up concurrently, but this number cannot exceed 48.

Queries are queued up to wait for the initial queries to run. Queries which are queued up

are in the ‘Active’ state but are waiting for the other queries to finish running. Also, when any

operation is going on a specific table, then any other query having that table name will have to

wait until the former query finishes running. No two queries can run simultaneously on a table.

Often when multiple queries try to run on a single table concurrently then the operation would

result in a SPU swap partition error where the appliance says that the temporary work space is

full. There is no solution for this problem rather an alternative way is to reduce the number of

concurrent queries running or the SQL query has to be rewritten.

Workload Management (WLM)

 Queries submitted to a database system will need minimum amount of system resources

to have it run. When you have equally assigned resources to each of the resource groups, priority

needs to be assigned to each user group or to an individual user. This is to give an extra edge in

performance to have the query run faster than the average runtime. Often, there are large

complex queries running round the clock pertained to business needs and criticality. These types

of queries consume large amount of resources and ultimately affects the performance of smaller

(and simpler) queries whose runtime is about a second or less in average. Netezza addresses this

problem with the use of Short Query Bias feature. The following sections drive through the

components of a workload management on a netezza machine.

42

Guaranteed Resource Allocation (GRA) and Resource Sharing Groups (RSG)

Before GRA is introduced, a brief explanation is described on the Resource Sharing

Groups. Resource Sharing Groups unlike access groups have resources allocated to them

disproportionately. Priorities are allocated to the Resource Sharing Groups based on the role the

application is assigned to it. A database user cannot belong to more than one resource group.

Admin possesses several controls over the Resource Sharing Groups such as

● Resource minimum and Resource maximum–Minimum and maximum percentage of

system resources can be granted to a RSG for the queries being run by the users

belonging to a RSG.

● Job Maximum–Number of concurrent queries the users belonging to a RSG can run.

Typically, not more than 48 should be set.

● Querytimeout–Mhe maximum time the queries can run before being kicked out by the

appliance.

● Sessiontimeout–The idle time before session drops.

● Rowsetlimit–Mhe number of rows to be returned on executing a query.

● Defpriority and Maxpriority–Four levels of priority given to a user in a RSG -

critical, high, normal, low.

Often, Resource minimum and Resource maximum are the only options which are set for

the RSGs. Querytimeout should not be set because there are certain queries run by a user which

supposedly return about a billion of rows and this operation will take hours or even days but the

information returned is valuable in some means to the user. Rowsetlimit is also one such option

that is not set by the admin while defining a RSG, because there are certain queries which would

43

return about a million or a billion rows. Job Maximum is left to its default value. And the rest

parameters are used accordingly with respect to the environment the appliance is being used in.

Netezza SQL commands to create a RSG

SYSTEM (ADMIN) => CREATE GROUP DEVELOPERS WITH RESOURCE MINIMUM 50

RESOURCE MAXIMUM 100;

To change the resource minimum of a group to 30% from 50%

 SYSTEM (ADMIN) => ALTER GROUP DEVELOPER WITH RESOURCE MINIMUM 30%;

Add user ‘mmuddu’ to the group DEVELOPERS

 SYSTEM (ADMIN) => ALTER GROUP DEVELOPERS ADD USER MMUDDU;

For a given RSG, say the resource minimum is defined as 30%, then the group get at least

30% of the system resources irrespective of the other groups or users running queries

concurrently. A RSG cannot receive more than the allocated system resources no matter if it is

the only group (or a user belonging to the RSG) running queries on the Netezza appliance. Say, a

RSG, has Resource maximum defined as 60%, then the maximum resources the group gets is not

more than 60% at any given situation.

The resources parameters can be defined on either through the NzAdmin interface or it

can be done through the Netezza SQL commands.

Once the RSGs are defined, it is now the responsibility of the GRA scheduler to schedule

the plans for different RSGs on the Netezza appliance. GRA is enabled by default on a Netezza

server but it does not come into effect until the resource groups are created and defined with their

respective minimum percentage allocations.

44

GRA setting can be found on the Netezza system registry settings. GRA can be

enabled(if disabled) or disabled using the Netezza ‘nzsystem set’ command by changing the

value of host.schedGRAEnabled setting to yes, for enabling and no, for disabling GRA.

On each group, the GRA maintains the list of short and long queries. Every RSG has

priority of queries defined such as short queries having higher priority than the long queries and

priorities of critical to low within a set of queries. GRA scheduler schedules to make sure that the

shorter queries are run before the longer queries and high priority ones before the lower ones.

This is done in order to maintain compliance on the Netezza server.

GRA scheduler computes the allocation of system resources on the fly. Let’s take a

scenario where in there are four RSGs defined on a Netezza server. Group A has 40% resources,

Group B has 30% resources, Group C has 20% resources and Group D has 10% resources. All

the groups are defined with their respective resource minimum and consider each group to be

having Resource maximum as 100%.

Resource allocations for an ADMIN take up at least half of available system resources at

any given time. As the ADMIN consumes lot of resources, it is therefore not advisable to run any

queries or perform any operations as ADMIN unless there is a critical need. An alternate

approach to this is to create a resource group for the administrators.

Priority Query Execution

As said earlier, multiple queries are run concurrently on a Netezza server and there is a

probability that one or more users out the multiple users have critical jobs running along with the

lower priority at the same time. Multiple users belonging to a single resource sharing group runs

queries simultaneously and not necessary that all the users are running equal priority jobs

45

wherein one of the users runs a critical job and the other users running low priority jobs. Though

the GRA is enabled and the resource minimum is being shared among the multiple users of the

group, the high priority jobs cannot finish quicker than the low priority ones. In this situation the

GRA needs to be reallocated among the different users in a group based on the priority of the

jobs. Netezza has a solution to this situation and that is to assign the priorities among the jobs

being run by multiple users belonging to a single resource sharing group. Netezza calls this as

Priority Query Execution (PQE). Priorities are assigned to the jobs based on the level of

criticality. Once the priorities are assigned to the users on a RSG, the GRA gradually reallocates

the system resources based on the priority level of jobs and the higher priority jobs are allocated

with more percentage of resources compared to the lower ones. Also, Netezza schedules to run

the jobs based on the priority level where in high priority is run before the lower one.

Netezza altogether has six different levels of priority for query execution where in four

are at user level and two specifically designed for Netezza system.

Table 2

Query Priority Levels

System Critical Top most system priority operations

Critical Highest user priority

High Priority jobs

Normal Default level jobs

Low Lowest priority job not affecting others

System Background Lowest priority system jobs

Priority Query Execution can be assigned to a single user among multiple users on a

RSG, or even to a RSG. User’s priority overrides the groups’ priority when priorities are defined

46

to both the user (of a group) and the group. Default priority is Normal. Priority levels can be

altered. Apart from allocating the priorities to the users and groups, Netezza also allows the

admin to allocate priority to the entire Netezza system, but this not recommended and left to its

default value, NULL or NONE. Users inherits the priority level from the group and group

inherits from the system settings and in turn the system inherits from the system default priority

setting which is usually set as Normal. The priorities can be assigned using either Netezza SQL

commands or through NzADMIN interface.

The most important point an admin needs to note down is to not assign many jobs as

critical or high because this may lead to a standstill of lower priority jobs (NORMAL and LOW

priority).

Gate Keeper

Gate keeper in Netezza schedules the query for execution. The gate keeper is also called

as Dynamic Cost-Based Queuing. The gateway is a queuing control system. In simple terms, it is

the responsibility of the gate keeper to manage and schedule the number of concurrent queries

that should run on a Netezza system. Gate Keeper can also schedule the number of concurrent

jobs to run for each of the four different user priority levels. Each priority level has its own

schedule of queued queries. By default, the gate keeper is disabled. Any jobs which are

scheduled, goes directly to the GRA if the gate keeper is disabled. Responsibility of the gate

keeper is to manage the jobs by creating queues before passing the jobs on to the GRA scheduler.

When Priority Query Execution (PQE) is enabled, then the gate keeper creates individual queues

for each of the four different priority levels before passing it on to the GRA and then further on

47

to the SPU’s. The gate keeper can control the number of the each priority jobs that can run

concurrently on the Netezza system.

The gate keeper has hardcoded configuration setting which restricts the maximum

number of concurrent critical priority level jobs to 36. At any given time, maximum number of

critical jobs that can run concurrently on the Netezza system is 36 and this value cannot be

changed on the gate keeper registry setting.

Apart from configuring the gate keeper to schedule the number of concurrent queries

based on the priority levels, the gate keeper can also be configured based on the estimated run

time of a query. This impacts the overall performance of the Netezza system wherein the gate

keeper can be configured to run more number of shorter queries than the queries which

comparatively takes more time to run.

Short Query Bias (SQB)

Netezza categorizes the queries into two types–Short and Long. Short queries typically

run very fast and Netezza defines a short query as the one with the run time less than two

seconds. Long queries on the other side takes many seconds, minutes or hours to run depending

upon factors ranging from the amount of data being pulled by the business intelligence team to

complex queries having many joins and conditions. With SQB enabled, users running short

queries are not impacted by the complex queries run by other users.

Netezza favors the shorter queries over the longer queries, with the SQB enabled on the

system. SQB is enabled by default on the Netezza system. With SQB enabled, Netezza reserves

memory and system resources so that the shorter queries are run with no hindrance from the

longer queries. This affect can make a large impact on performance. A short query typically

48

includes a query which does either a quick look up to retrieve data or dimensional data lookups.

The run time duration of a short query can be changed but this change will require a system

pause and resume operation. Long queries a said include multiple join operations which takes

large amount of time for the system to process it.

Netezza is smart enough to differentiate the run of different queries. And this is because

of Netezza’ s internal feature ‘prep’ snippet which analyzes the run time of a query much before

it is run on the system. Not only are the prep snippets but there other factors Netezza system

relies on to distinguish run time of queries–Just-In-Time stats and zone maps. The queries

usually go through the GRA and Snippet scheduler by forming queues. When the queues are

occupied with no more queries being accepted by the scheduler, the scheduler then releases the

additional allocated memory for the shorter queries, which is nothing but a separate queue for the

shorter queries. Each of the schedulers, GRA and Snippet, reserves slots for the shorter queries.

As described earlier that changes made to alter the estimated run time of a query requires

system pause using the nzsystem pause command. After the registry changes are completed,

resume the system using the command nzsystem resume.

Tools and Technology

Following are tools and technology that have been used to design, implement and test the

complete research. Performance of a system can be calculated and estimated with the help of

netezza’s graphical user interface tools, NzAdmin, and NZ web portal. Similarly, “nzsqa

schedqueues” is a powerful inbuilt script on a Netezza machine which tends to provide the

current running queries along with the consumption of resources.

49

Netezza Inbuilt tool–‘nzsqa schedqueues’. An inbuilt command tool which displays the

current running queries along with the amount of resources the query is running with.

The nzsqa schedqueues command displays the following parameters.

 Displays the current system date and time.

SCHED TIME: 2015-12-04 01:17:35.887 EST

 Displays the scheduler policy, which includes the parameters defined for each of the

workload management settings.

SCHEDULER POLICY:
 Gatekeeper Disabled max slots = 2048
 GRA Enabled max slots = 48 SQB slots = 10
 Snippet Enabled max slots = 40 SQB slots = 10
 SQB (< 2s) Enabled
 SN Limiting Enabled baseline = 8
 GRALoad Enabled
 Null I/O -> Ceilings:on Available:on Expected:on SNLimit:on

 Displays the respective resource groups on a system along with the defined minimum

and maximum resource group attributes. This section illustrates ‘JobMax’ parameter,

which is nothing but the maximum number of jobs a resource group can run

concurrently.

KNOWN RESOURCE GROUPS:
 OID= 4900 Min 100 Max 100% JobMax 0 (off) "ADMIN"
 OID= 4901 Min 5 Max 100% JobMax 0 (off) "PUBLIC"
 OID= 203683 Min 60 Max 100% JobMax 0 (off) "resource_batch_grp"
 OID=27433791 Min 20 Max 100% JobMax 0 (off) "resource_app_grp"
 OID=27433792 Min 15 Max 100% JobMax 0 (off) "resource_misc_grp"

 Next is the GRA scheduler parameter. This section displays the number of queries in

“waiting” and “running” state along with the level of activity for each resource group

on the system.

50

GRA SCHED:

 Short Long | Resource |
 Waiting 0 0 | Horizon 300s |
 Running 0 1 | Interval 5s | Activity 0.0%

GroupOID= 4900 Allowed:Exp 1: 0%h 33: 9%i Used 0%h 0%i

Exempt "ADMIN"
GroupOID= 4901 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i

Balanced "PUBLIC"
GroupOID=27433792 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i

Balanced "resource_misc_grp"
GroupOID=27433791 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i

Balanced "resource_app_grp"
GroupOID= 203683 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i

Balanced "resource_batch_grp"

 Following section, snippet scheduler, displays the host memory, blade memory,

channels, distributes, spu2hosts, broadcasts. This section displays each of the above

parameters for short and long queries. This section concludes with a wide range of

information which includes the attributes of a query–Plan-ID, type of SQL, current

data slice number the query is running on, snippet number, resource memory etc.

SNIPPET SCHED: Avail Avail
 Short Long InUse Max Delta Reserved
 Host Memory 16084 15572 300 16384 0 512
 Blade Memory 10437 10037 13 10450 0 400
 Channels 99 99 1 100
 Distributes 50 49 0 50 0 1
 Spu2Hosts 99 99 1 100 0 0
 Broadcasts 99 99 0 100 0 0

 Short Long | Resource |
 Waiting 0 0 | Horizon 600s |
 SPU Running 0.0/0 1.0/1 | Interval 10s | Activity 0.0%
 Host Running 0 0

 GroupOID= 4900 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i
Exempt "ADMIN" no work
 RUNNING (count 1)
 planid cmd slice est:plan/sched p snip c mem:h/s/s_act temp
wt/req age:snip/plan/nullio scan % client sd rules flags

51

 --------- --- ------ ------- ------- - --- --- - ----- ---- ---- -------
---- ---- ------ ------ ------ -- -- --- ----------------- -- ------ --------
 56118 SEL #92 208.3 49.1 N 2 2 1 300 13 3 0
100%/100% 5.4 5.4 1 1 0 446/140549/353391 Rnj

 GroupOID= 4901 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i
Balanced "PUBLIC" no work
 GroupOID=27433792 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i
Balanced "resource_misc_grp" no work
 GroupOID=27433791 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i
Balanced "resource_app_grp" no work
 GroupOID= 203683 Allowed:Exp 0: 0%h 0: 0%i Used 0%h 0%i
Balanced "resource_batch_grp" no work

Figure 8. “nzsqa schedqueues”–1

52

Figure 9. “nzsqa schedqueues”–2

Netezza Admin Graphical User Interface

 NzAdmin is a windows client tool for the netezza machine. It provides an interface to

easily manage the interactions of database objects. It is through this interface hardware

information about a netezza machine can be gathered and diagnosed along with other aspects

such as active sessions, active queries, database users, database objects, database groups, backup

and restore information.

53

Figure 10. NzAdmin Tool Interface

The hardware section on the NzAdmin interface displays the server’s hardware

components including number of racks, memory modules, SPU count and failure hardware

components if any.

Figure 11. NzAdmin–Netezza Hardware Specifications

54

Figure 12. NzAdmin – Netezza SPU Specifications

On the SPU hardware information screen, there are various options a user can click on to

get detailed specifications. This includes DAC ID, Status of the SPU, parent SPU, rack ID, slot

number, serial number of the SPU, and other hardware details which includes number of FPGA

engines including its version. Disks associated with respect to each SPU are displayed on

clicking each SPU slot.

55

Figure 13. NzAdmin–Netezza SPU Details

Netezza Web Portal

Netezza web portal is a web based GUI interface to administer and manage the netezza

machine. Database objects and various other technical aspects can be monitored. Web portal runs

through the IP address of a netezza machine.

Following actions can be performed on a netezza web portal.

 Monitor database objects, active queries and active sessions.

 Run SQL queries.

 DML operations can be performed.

 Validate events and configuration rules.

 Diagnosis and troubleshoot workload management.

 Capacity Planning.

 Flexible ability to create custom performance charts based on the needs of business.

56

Figure 14. Netezza Web Interface

57

Aginity Workbench

Figure 15. Aginity Workbench

Netezza’s developer tool Aginity Workbench was developed by Aginity. This tool works

a GUI interface along with a SQL interface to run SQL queries. Other features includes

comparing database object definitions, migrate database objects over databases and servers, load

data from flat files or by using netezza’s data loading feature – NzLoad.

Technology

The entire tests were carried out on a Netezza TwinFin model. Following are the

attributes of a Netezza twinFin model.

 Host Name: testnzaa

Testnza is hostname of the netezza machine on which the research and validations are

carried out. Each netezza machine has two hosts, primary host A and secondary host

B. The tests were carried out on the primary host hence the naming convention

58

testnzaA. Secondary host is up only when the primary host is failed over. There is no

downtime required while the hosts switch to and fro primary and secondary. The end

user will notice no difference regardless of which host is up and running.

 Model Number: IBM PureData System for Analytics N1001-010

This is the model number for a netezza machine. N100X series represents the twinfin

family of machines. N200X represents the next series of netezza machine, striper

model. N300X represents the mako server which is by far the most advanced and

latest netezza model in the market. The number system followed by the model

number represents the number of racks pertained on a server.

Table 3

Netezza Machine Models

Netezza Model Number of Racks

N1001-002

N1001-005 ½ rack

N1001-010 Full rack

N1001-015 1 and ½ rack2

N1001-020 2 racks

N1001-030 3 racks

N1001-040 4 racks

N1001-060 6 racks

N1001-080 8 racks

N1001-100 10 racks

N2001-005 ½ rack

N2001-010 Full rack

N2001-020 2 racks

N2001-040 4 racks

59

 Software Revision: 7.0.4.6p3, 7.2.0.5p1,7.2.0.5p2 and 7.2.0.6

IBM releases a number of upgrades and patches over the time based on the criticality

of the bug and enhancements. The release notes for each NPS version is covered in

the appendices section.

 Snippet Processing Array: 2

Describes the number of snippet processing arrays on a netezza machine. Each SPA

consists of several SPUs. Multiple SPA’s contribute towards the overall functionality

and performance of a netezza system. Losing a SPA can decrease the performance of

system and may crash the NPS server.

 Snippet Processing Unit: 14

Each SPU contributes towards the performance of a system. Losing a SPU can

decrease the throughput and performance of a machine. testnzA has 14 SPUs

altogether caged and split among two SPAs. Each SPU has a FPGA turbo engine,

memory module, a CPU and network cables. Losing a SPU here can decrease the

performance of a system by 7.14%.

 Number of DataSlices: 92

TestnzA has altogether 92 data slices shared among 14 SPUs. If a data slice is

corrupted the mirror information resides on a different data slice on another SPU.

Data loaded on a netezza machine is distributed equally among each data slice to

avoid skew.

60

 Total Storage: 45.608TB

This represents the total size of testnzA server in compressed format where in the

entire displayed size is user usable. Additional racks can be added to the machine to

expand the data storage.

 Power/rack (Max. Watts/rack): 7,635

This denotes the maximum power, in terms of watts, which is generated out of each

rack on a netezza machine. Adding additional racks increases the overall power

consumption of a netezza machine.

 FDT Version: FDT 4.1.0.0, 4.1.1.0, 4.1.2.0

FDT stands for Firmware Diagnostics and Tools. Contains firmware updates about

each hardware component on a netezza machine. The tests were carried out across

three different FDT versions due to new releases scheduled by the product owner.

 Red Hat Version: Red Hat Enterprise Linux Server release – 5.9, 5.10 (Tikanga)

Netezza machine runs on Linux platform – Red Hat. Over the time, new versions

were released to match up with the same level FDT and NPS versions.

 HPF Version: 5.3.4.5, 5.3.5.0

HPF stands for Host Platform. This piece updates the software version of a netezza

machine including kernel version, firmware updates, host versions etc. HPF upgrade

involves error-checking, backups and logging.

 Supported APIs: SQL, OLE DB, ODBC 3.5, JDBC V 3.0 Type 4

Denotes the supported application programming interfaces on a netezza machine.

61

 In-Database Analytics: nzAnalytics, R Analytics, Scientific Analytics

 Programming Languages: Java, Python, R, FORTRAN and C/C++

Netezza supports a few programming languages on its Linux platform which includes

Java, C, C++, R language and FORTRAN. These languages are written and executed

in binary or hexa format and needs to be converted into a readable text format to have

users view it.

 Parallel Analytic Engines: nzMatrix, nzEngine for R, nzEngine for Hadoop

Netezza is compatible to run with other appliances to support additional functionality

and richness in a data warehouse environment.

62

Chapter IV

DATA PRESENTATION AND ANALYSIS

Introduction

In this chapter, a brief introduction is illustrated on how the performance of a query can

be calculated and tweaked to achieve leverage in performance. Each workload management

feature will be illustrated in this chapter. Runtime of a query depends upon various factors from

leveraging the hardware components such as CPU, I/O bandwidth, disk size to toggling the

software pieces of a machine such as system resource management and configuring system

registry parameters. Since this paper is limited to only the components of a workload

management and how the runtime of a query can be excelled; the paper describes on how the

components of netezza’s workload management can be added, tweaked and combined to achieve

best performance.

Data Presentation and Analysis

 The following sections describe and illustrate the impact of each workload feature on a

Netezza database system. Each component of a workload feature consists of a few to several

system configuration parameters pertained to it. Tweaking these parameters can result in a large

variance in terms of query runtime and query performance. This section covers the attributes of a

resource group on database system along with their performance measure using the “nzsqa

schedqueues” inbuilt script. Performance graphs are illustrated depicting the consumption of

memory resources by resource groups over a period of time. With the introduction of a new

workload feature “Scheduler Rules” in the recently released version 7.2.0.5, the gatekeeper

63

feature has been disabled. Custom rules along with the impact are illustrated in the scheduler

rules section.

Each of the below workload features illustrates different scenarios which impacts the

performance of a database system.

Guaranteed Resource Allocation

Resource groups created on a database server are allocated with a certain amount of

system resources for a query to execute with. A resource group is configured to run with a

minimum and maximum percentile of system resources at any given time on a system. The

maximum percentage a resource group can be assigned is 100%. Netezza by default comes with

a default resource group “Public”. By default all the users are added to the Public group.

Multiple resource groups can created based on the role of the application users or groups. To

begin with, following commands are run to create and assign resources to a resource group.

SYSTEM (ADMIN) => CREATE GROUP DEVELOPER WITH RESOURCE MINIMUM 50 RESOURCE

MAXIMUM 100;

To change the resource minimum of a group to 30% from 50%

SYSTEM (ADMIN) => ALTER GROUP DEVELOPER WITH RESOURCE MINIMUM 30%;

Add user ‘mmuddu’ to the group DEVELOPERS

SYSTEM (ADMIN) => ALTER GROUP DEVELOPERS ADD USER MMUDDU;

Following example illustrates the system resources the user ‘mmuddu’ is running with

when there is no active query running on a system.

User mmuddu belongs to resource group ‘resource_misc_grp’. In addition, another user

‘mmudduadm’ with higher resource percentages is assigned to ‘resource_batch_grp’.

64

Figure 16. User and User Group Information

For example, resource_misc_grp is running with a resource minimum of 15% and

maximum of 100%.

Figure 17. “resource_misc_grp” Group Information

Similar to the above resource group, there are other groups defined along with their share

of resource percentages.

Figure 18. Resource Groups

User ‘mmuddu’ runs a sample query to display all the records in a table. The system

resources a query are running with can be captured on another terminal connected to the same

65

server. Netezza’s inbuilt tool “nzsqa schedqueues” is run to calculate the system resource a

query is running with at any given moment.
1

SQL: select * from table_name;

Figure 19. “nzsqa schedqueues” Output

In the above picture, one can see the amount of resources the query is running with when

you have no other active sessions running. The “wt/req” percentage displayed is the amount of

system resources the query is utilizing.

Say, there are two queries running concurrently against the system. User ‘mmuddu’ runs

a sample query to extract all the data from table1 and another user ‘mmudduadm’ with higher

resource percentage runs a similar query to extract data from table2
2
. In order to calculate the

system resources utilized by the two users, a simple inbuilt tool can be run - ‘nzsqa

schedqueues’.

1
 This test is carried out a Netezza TwinFin server running on 7 active SPU’s with a disk storage capacity

of 45.703 TB. The entire testing piece was carried out on a quiet system with no other active queries.
2
Both the users run the same query on two different tables. Table2 is a copy of Table1 having same data.

The users run a query to retrieve the count of records in each table.

66

Figure 20. “nzsqa schedqueues” GRA Output

Apart from assigning min and max resource percentages to a resource group; a database

administrator can place several controls over the Resource Sharing Groups (RSG) such as

● Job Maximum–Total number of concurrent queries a RSG can run. Typically not

more than 48 should be set.

● Querytimeout–Defines max runtime of a query before it gets terminated.

● Sessiontimeout–The idle time before a user session drops.

● Rowsetlimit–The number of rows to be returned on executing a query.

● Defpriority and Maxpriority–Four levels of priority given to a user in a RSG - critical,

high, normal, low.

If Group A has n number of equal priority queries running then each query will get 1/n of

40% of the resources to be shared among the n queries equally. Now, say at a given time Group

C and Group D have queries running concurrently, the GRA scheduler re-computes the

allocation of resources on the fly in such a way that Group C gets 20/30(~67%) and Group D

67

gets 10/30(~33%) of the system resources. If only the Group D has queries running, then it

would get 100% of the available system resources.
3

As described earlier, the JOB MAXIMUM attribute defines the number of concurrent

queries a group can run at any given time. Additional queries running concurrently beyond the

defined JOB MAXMIMUM are queued up until the active queries have finished running. One

can define the JOB MAXIMUM attribute with the values -1, 0 and 1 to 48.

➢ A value of -1 state that the JOB MAXIMUM value is calculated based on the GRA

and the group’s resource minimum in order to decide the number of concurrent

queries a particular group can run. If a group has RESOURCE MINIMUM defined as

30% and the JOB MAXIMUM would be 30% multiplied by 48 (max no of concurrent

queries) which is approximately 14.

➢ A value of 0 states that the group has no restrictions on the number of maximum jobs

runs concurrently.

➢ A value of 1 to 48 sets the count of the number of job maximum value.

Figure 21. Job Max Information

3
 This has been tested on the Netezza model twinfin with four different resource groups running different

queries concurrently. Only the users in group A are assigned with equal priorities.

68

Query priority and GRA can defined on a Resource Sharing Group wherein the queries

are run with priorities ranging from low to critical. Assigning high priority to one query and low

priority to another query in a RSG does not mean that the high priority query runs before the low

priority one. In order to balance the allocation of resources for each job, Netezza has an in built

registry setting to define the weights for each priority query. It is host.snPriorityWeights.

The values of this registry setting are predefined internally by Netezza wherein 1 – Low, 2 –

Normal, 4–High and 8–Critical.

Figure 22. User Group Priorities

To illustrate a scenario on how GRA and query priority works together, consider a

Resource Sharing group ‘DEVELOPERS’ having RESOURCE MINIMUM as 50% and assume

two jobs are being scheduled to run by this group. One is critical priority and the other is low

priority. The ratio is 8:1, which means the resource allocated to the group DEVELOPERS is

shared by the two queries in the ratio of 8:1.

Critical job gets 8/(8+1) share of the resources, which is approximately 89% of the

resources allocated to the DEVELOPERS group 50% allocation which is about 44.5% of the

resources and the Low priority job gets 1/(1+8) share of the resources, which is approximately

69

11% of the resources allocated to the DEVELOPERS group 50% allocation which is about 5.5%

of the resources.
4

Table 4

GRA Compliance Settings

host.schedGRAHorizon

Time range for which GRA scheduler calculates the

compliance of RSG

host.schedGRAVeryUnderLimit

Percentage under which the GRA is said to be much

underserved.

host.schedGRAUnderLimit

Percentage under which the GRA is said to be

underserved.

host.schedGRAOverLimit
Percentage over which the GRA is said to be over served.

host.schedGRAVeryOverLimit

Percentage over which the GRA is said to be very over

served.

Each parameter displayed in the table above illustrates various functionality of a GRA

workload management. Threshold parameter can be set up which provides notification if a

resource group is very underserved, underserved, overserved or very overserved.

Figure 23. GRA System Registry Configurations

There are three ways to monitor GRA Utilization

4
 Two resource groups were created on a Netezza twinfin model. Group A has critical priority assigned to it

and Group B has low priority to it. The priorities were assigned to the resource group unlike to each individual users

in the resource group. Also, both the resource groups were allocated same number of resources.

70

➢ There are Netezza system tables and views which display the information about the

ongoing resource allocation among the groups.

o System views which tracks the GRA :

▪ _v_sched_gra_ext and _v_sched_sn_ext

Displays the GRA historical information about the

allocation among various resource groups.

▪ _v_sched_gra_ext_latest, _v_sched_sn_ext_latest

Displays the GRA allocation among various resource

groups in the past ten minutes.

▪ _v_plan_resource

Supports the WLM by troubleshooting issues. Keeps track

of 2000 records of query plan activity.

▪ _v_system_util

This system view displays information about the system

resources utilization.

➢ Also, NzPortal which is a Netezza performance portal can be used to display

information about the resource allocation.

➢ NzADMIN interface also displays the information about the resource allocation.

Resource Allocation Performance summary can be seen on NzADMIN interface which

displays various stats about the resource allocation among groups. To view the Resource

Allocation Performance, on the NzADMIN interface click on Tools -> Workload Management -

> Performance -> Summary.

71

Figure 24. NzAdmin Resource Allocation Performance

Resource Performance history displays the information about the last one hour track of

utilization of system resources. To view the Resource Performance History, on the NzADMIN

interface click on Tools -> Workload Management -> Performance -> History.

Resource Performance Graph compares and displays the allocation of resources among

different groups on a day to day basis. Up to 14 different groups can be compared and analyzed.

Figure 25. Resource Allocation Performance History

72

Figure 26. Resource Performance Graph

Gate Keeper

As the name states this feature in the workload management is designed to manage

jobs/queries based on their priority. User groups are usually assigned with a priority based on

their role in an environment. Queries run of different priorities are submitted to the gatekeeper

which is responsible to sort out the queries based on their priorities. High priority queries are run

at first place while the other priority queries are queued up unless there are system resources

available for them to jump in.

Gatekeeper is disabled by default. It can always be enabled by toggling the system

registry setting ‘host.gkEnabled’ to yes in the postgresql.conf configuration file
5
. There are up to

four levels of priority a user or a user group can be assigned with ranging from low (normal,

high) to critical. One can set the number of maximum queries a resource group can run at any

given instance. Gatekeeper queues up any additional queries when it has reached its max limit

defined for each prioritized resource group. If a resource group with job priority set to critical

5
 postgresql.conf configuration file can be found under /nz/data/config/ directory. Any changes made to this

file will need a database server restart to have the changes in effect.

73

has been assigned 40 as ‘jobmaximum’, the maximum number of queries it can run is 40 at any

given time. Additional queries lined up from the same resource group will have to wait in queue

until a system resource is available for it to sneak in.

Two registry settings needs to be configured in order to make the gatekeeper settings

affective.

-host.gkMaxPerQueue

This registry setting controls the maximum number of queries that can run concurrently

out of a queue.

-host.gkQueueThreshold

This registry setting is used to define the different estimated run times of a queue.

host.gkQueueThreshold setting is used to set the number of queues as well as the run time of the

queries. In the following example, three query runtime queues are created separated by a comma.

First queue is for the queries with the run time of less than a second. Second queue is for the

queries with the run time between 1-10 seconds and then the last queue is for the queries having

run time 10-60 seconds. The maximum number of gate keepers that can be set is four.

host.gkQueueThreshold=1, 10, 60

Now that the queues have been set up along with the query run times, next step is to set

up the number of concurrent queries that can run through each of the queues and this can be done

with the registry host.gkMaxPerQueue.

host.gkMaxPerQueue=10, 5, 3

The numbers of concurrent queries are 10 for the queries having run time of less than a

second, 5 for the queries having run time of 1-10 seconds, and 3 for the queries having run time

74

of more than 60 seconds. More number of shorter queries is being sent to the SPU for processing

compared to the longer queries. The numbers of queries are being sent to SPU for processing is

controlled by the host.gkMaxPerQueue registry.

Priority Query Execution

A resource group or a user can be assigned to a priority level ranging from Low to

Critical. There is a need to assign priority based on the role of a user or user group in a data

warehouse environment. Jobs with higher priority are assigned with more system resources

compared to other priority level jobs. High priority jobs are allowed to run before the lower

priority jobs when you have multiple jobs on a system with different priority levels. It is always

recommended to enable the Gatekeeper along with the priority query execution workload

management feature.

Netezza SQL command to set system‘s default and maximum priority.

- SET SYSTEM DEFAULT [DEFPRIORITY | MAXPRIORITY] TO [CRITICAL | HIGH |

NORMAL | LOW | NONE]

Figure 27. Resource Group Priorities
6

6
 Priorities are set on resource groups unlike to each individual user. Users in each resource group acquire

the attributes of a resource group they belong to.

75

Following are the Netezza SQL commands to assign a user and a group with a priority

level

-ALTER USER MMUDDU WITH DEFPRIORITY HIGH MAXPRIORITY CRITICAL;

-ALTER GROUP GROUP_NAME WITH DEFPRIORITY NORMAL MAXPRIORITY HIGH;

Apart from assigning priorities to a user or a group, Netezza also supports in assigning

priorities to the user sessions. A user may have multiple high priority jobs to run throughout a

single session. Using the ‘ALTER SESSION’, admin can grant the priority level to the session.

Also, ‘nzsession priority’ can be used to assign the priority levels to a user session. The

‘nzsession’ command displays the current user sessions on a Netezza system along with the idle

sessions. As mentioned earlier, the priority of a session can be altered using the ‘nzsession

priority’.

nzsession priority –CRITICAL –id SESSION_ID;7

SYSTEM(ADMIN) => ALTER SESSION SESSION_ID SET PRIORITY TO CRITICAL;

Short Query Bias

Netezza categorizes the queries into two types – Short and Long. Short queries typically

run very fast and Netezza defines a short query as the one with the run time less than two

seconds. Long queries on the other side takes many seconds, minutes or hours to run depending

upon factors ranging from the amount of data being pulled by the business intelligence team to

complex queries having many joins and conditions. With SQB enabled, users running short

queries are not impacted by the complex queries run by other users.

7
 nzsession is an inbuilt netezza tool which displays the active and idle sessions on a netezza server. For

more usage run “nzsession -?”

76

Netezza favors the shorter queries over the longer queries, with the SQB enabled on the

system. SQB is enabled by default on the Netezza system. With SQB enabled, Netezza reserves

memory and system resources so that the shorter queries are run with no hindrance from the

longer queries. This effect can make a large impact on performance. A short query typically

includes a query which does either a quick look-up to retrieve data or dimensional data lookups.

The run time duration of a short query can be changed but this change will require a system

pause and resume operation. Long queries include multiple join operations across large tables

which takes large amount of time for the system to process it.

Netezza is smart enough to differentiate the run of different queries. And this is because

of Netezza’ s internal feature ‘prep’ snippet which analyzes the run time of a query much before

it is run on the system. Not only are the prep snippets but there are other factors the Netezza

system relies on to distinguish run time of queries–Just-In-Time stats
8
 and zone maps

9
. The

queries usually go through the GRA and Snippet scheduler by forming queues. When the queues

are occupied with no more queries being accepted by the scheduler, the scheduler then releases

the additional allocated memory for the shorter queries, which is nothing but a separate queue for

the shorter queries. Each of the schedulers, GRA and Snippet, reserves slots for the shorter

queries.

8
 Netezza system automatically runs statistics on tables when a user queries against it. This is useful since it

helps the optimizer function more efficiently thereby reducing the query run time.
9
 Zone maps are internal tables built virtually over the base tables. Netezza eliminates the need of having a

query run over a large table by cutting it short to run over the zone maps. A zone map table is built on the table

columns the query is running against more often.

77

Figure 28. Short Query Bias System Registry Configuration

Table 5

Short Query Bias System Configuration Parameters

host.schedSQBEnabled Enables SQB. Set to 1/true to enable.

host.schedSQBNominalSecs Defines the “short” query definition duration. Default

value 2.

host.schedSQBReservedGraSlots Defines the number of GRA slots that are reserved for

short queries. Default value is 10.

host.schedSQBReservedSnSlots Defines the number of snippet scheduler slots that are

reserved for short queries.

host.schedSQBReservedSnMb Memory reserved on SPU for short query execution.

host.schedSQBReservedHostMb Memory reserved on host for short query execution.

78

As described earlier, changes made to alter the estimated run time of a query requires

system pause using the nzsystem pause command. After the registry changes are completed,

resume the system using the command nzsystem resume.

Scheduler Rules

IBM has released a new workload management feature since its new NPS version

release; v7.1
10

. A database administrator can write and set up custom rules which are executed

by the netezza server. Based on the resources allocated through the guaranteed resource

allocation, priorities set through the priority query execution and short query bias system’s

settings defined on a server, the scheduler executes a job. Scheduler rules take the priority over

all the other WLM features defined on a server.

Syntax:

● Create scheduler rule

Figure 29. Create Scheduler Rule

● Show defined scheduler rules

Figure 30. Current Scheduler Rules

10

 IBM released nps7.1 through the package 7.1.0.1-P1-IM-Netezza-NPS-fp78666 on May 15, 2014.

79

In the above example, a rule is defined to limit the number of concurrent queries the user

‘mmuddu’ can run on a system. Any other job run in concurrency will be queued up in pending

state until the active job completes running.
11

Figure 31. Query Pending State

Similarly, a scheduler rule can be modified to change its actions or conditions or both the

action and condition. Using the alter command a scheduler name as well as a tag attached to it

11

 The scheduler rules has been tested on a newer NPS version, 7.1.0.1.

80

can be renamed. Lastly, a scheduler rule can be dropped by running the drop scheduler

command.

Figure 32. Drop Scheduler Rule

Scheduler Rule Syntax:

● One action

● Zero or more conditions to a defined action.

● To which users the action is applicable to.

Every job that is submitted to the system undergoes through the scheduler. Jobs which

satisfy the scheduler rules undergoes through the defined action, else the job executes without

any changes.

Scheduler rule are of two types:

Limitation: This rule limits the number of jobs that can run in parallel. For example the

following rule limits the number jobs to 3 that can run concurrently with the group

resource_misc_grp.

IF GROUP IS resource_misc_grp THEN LIMIT 3;

Any new jobs submitted are queued up until any one of the running job executes.

Modifying: This rule alters the job condition or in simple terms it alters the attributes of a

job submitted to the scheduler. For example, the following rule changes the priority of a job

submitted for the user group resource_misc_grp.

IF GROUP IS resource_misc_grp THEN SET PRIORITY TO HIGH;

81

Chapter V

IMPLICATIONS, CONCLUSION, AND RECOMMENDATIONS

Introduction

A fine mixture and combination of various workload management features needs to be

tweaked and configured to achieve the best possible performance in a data warehouse

environment. Based on the frequency of jobs that are run by the application teams a database

administrator needs to configure the workload management on a server. This section provides the

solutions to the study questions that were imposed in the earlier sections of the paper. A brief

explanation is provided about the recommendations an external user can concur through this

paper.

Implications

By configuring the workload management a database administrator can enforce the way a

query runs on a server. Workload management rules are imposed based on the frequency of jobs

run by the application teams. To conclude this section, each of the study questions imposed

earlier in this paper will answered and justified.

1. How can the workload management feature enhance the Netezza system to handle

concurrent queries of various complexities without much hassle?

Jobs run by the various application teams are in large volume. Netezza is capable of

handling up to 48 concurrent queries submitted to a system at any given instant. Not all the

queries can run with the same complexity level, granularity and importance. One of the most

recommended practices is to place priorities and allocate system resources to the jobs based on

the database groups identified. With no priorities and resources configured, for example, a user

82

running a query against a terabyte sized table can hamper the daily load jobs which run on a

scheduled basis. Assigning system resources can help certain application teams as well as the

batch jobs to utilize most of the available system resources to run the jobs faster. Moreover,

having priorities placed in addition will provide an extra edge of boost in performance by having

the higher priority jobs run before the lower ones.

2. The tools and bash scripts required to configure the workload management and

how the predefined system configurations can be tweaked on the lines of workload

management to achieve improvised performance?

Workload management can be observed using the NzAdmin GUI interface. Three

different ways you can visualize the resource management on a server.

The following figure illustrates the resource allocation summary of the four resource

groups defined on a server. The graph in the figure depicts the system resources with which the

jobs are running. X-axis denotes the time in 2hrs window and Y-axis denoted the number of jobs

that have run during that specific time frame.
12

12

 Resource allocation summary is one of the tools that exist on the netezza NzAdmin GUI interface.

Concurrent queries were run between 2am - 8.15am EDT. The graph displays the percentage of system resources the

queries ran with between 2:00- 8.15 am EDT.

83

Figure 33. GRA Performance Summary

Figure 34. GRA Performance History

84

In order to check the history of the resource allocation, there is an option under the tools

menu in the NzAdmin tool. The output of which can be seen in the Figure 26.

Workload management can be enabled, configured, and disabled through the system

settings. Bash scripts can be designed to code the workload management. Other way around

following are the various system parameters once can tweak under each workload management

features.

Short Query Bias:

Figure 35. Short Query Bias System Configuration Registry

There are two ways one can configure the workload management, temporary and

permanent.

Temporary:

a. Pause the system – nzsystem pause

b. nzsystem set -arg setting=value

c. Resume the system – nzsystem resume

85

Permanent:

Parameter needs to be added, modified or removed in the configuration file in order to have the

changes taking effect. The parameters can be found in the system.cfg configuration file. System

needs to be restarted unlike pause to have the settings take place.

3. On what basis the workload management features needs to be assigned and allocated

to? How the workload management is configured based upon the role of a database

user or a database group?

Workload management needs to be configured based on the role of application teams and

batch jobs. It is always tricky for a database environment to have an ideal and static workload

management setting since it needs to be tweaked often on a certain basis. With the dynamic

change in data and application roles, the configurations are required to be tuned on a regular

basis. User ‘admin’ carry the highest priority with majority of system resources allocated to it.

And, there are user groups and applications teams which run the load jobs followed by the other

user groups.

Conclusion

 Although Netezza server runs on AMPP architecture, workload management needs to be

configured in order to make the server run efficient and faster thereby providing rapid results.

Various factors contribute to a performance of a server, including user data, database changes,

and workload changes on an application level. A database server must be tweaked on a regular

basis to achieve higher levels of performance. A smart mixture of guaranteed resource allocation

(GRA), priority execution (PQE), gatekeeper (GK) configuration, and short query bias (SQB) is

required to run the data warehouse system faster and easier. Improper system configurations can

86

lead to a disaster. Performance of a database server is directly proportional to the performance of

the system resources. The better the allocation of resources the better the server performs.

Workload management parameters and system configuration needs to be assigned based on the

role of users and user groups in a data warehouse environment. It is the responsibility of a Data

modeler and database administrator to design the environment and identify the jobs and

applications which require the higher priority edge over the other jobs. With no workload

management configured jobs that are submitted to the system are going to run with the same

allocation of resources. With resource allocation configured jobs assigned with higher allocation

are going to run faster.

Future Work

The research in this paper can possibly be extended to a point where the entire process

can be automated with minimal activity for a database administrator. Future scope relies on the

number of additional configurations that are released by the product owner and the way it shapes

a data warehouse environment. With a wide variety of workload management features and

system configuration parameters there is a wide variance in configuring a data warehouse

environment. Netezza currently comes with five predefined workload features along with more

than a hundred system configuration parameters linked to each WLM feature. There is always a

tremendous potential in solving numerous performance problems based on the data a company

deals with along with the configurations of a workload management and system configurations.

Automating the workload management reduces the overhead work and high cost of

ownership of maintaining a database administrator. With the newly released feature, Scheduling

Rules, workload management can be automated greatly. Prior to this release, cron job was an

87

option to automate the workload management. With scheduler rules, micro management of

system resources has become possible. Using scheduling rules one can limit or enforce the

number of concurrent queries, allocate system resources, and assign priorities, all this apart from

custom rules that can be created.

88

References

Benoit, D. G. (2000). Automated diagnosis and control of DBMS resources. In EDBT PhD.

Workshop, 2000.

Chen, W. J., Comeau, B., Ichikawa, T., Kumar, S.S., Miskimen, M., . . . Väättänen, T. (2008).

DB2 Workload Manager for Linux, Unix, and Windows.” IBM RedBooks.

IBM. (2010a). IBM to acquire Netezza. Retrieved from

http://www03.ibm.com/press/us/en/pressrelease/32514.wss

IBM. (2010b). IBM completes acquisition of Netezza. Retrieved from

http://www03.ibm.com/press/us/en/pressrelease/32955.wss

IBM. (n.d.a).The IBM Netezza data warehouse appliance architecture. Retrieved from

http://www.mysiriuszone.com/company/sirius-library/webcasts-

videos/doc_download/7762-ibm-netezza-data-warehouse-appliance-architecture-white-

paper

IBM. (n.d.b). IBM Knowledge Center. Retrieved from

http://www01.ibm.com/support/knowledgecenter/SSULQD_7.1.0/com.ibm.nz.adm.doc/c

_sysadm_wlm_nz_appliance.html

Krompass, S., Kuno, H., Dayal, U., & Kemper, A. (n.d.). Dynamic workload management for

very large data warehouses—juggling feathers and bowling balls. In Proc. of 33rd Intl.

Conf. on Very Large Data Bases (VLDB’07). Austria. pp. 1105-1115.

89

Krompass, S., Scholz, A., Albutiu, M. C., Kuno, H., Wiener, J., Dayal, U., & Kemper, A. (2008).

Quality of service-enabled management of database workloads”. In Special Issue of IEEE

Data Engineering Bulletin on Testing and Tuning of Database Systems, IEEE Computer

Society.

Microsoft Corp. (2015). Managing SQL server workloads with resource governor. Retrieved

from http://msdn.microsoft.com/en-us/library/bb933866.aspx

Schroeder, B., Harchol-Balter, M. Iyengar, A., & Nahum, E. M. (2006). Achieving class-based

QoS for transactional workloads. In Proceedings of the 22nd International Conference on

Data Engineering, ICDE 2006, page 153.

Weikum, G., Hasse, C., M¨onkeberg, A., & Zabback, P. (1994). The COMFORT automatic

tuning project. Information Systems, 19(5), 381-432.

Zhang, M. (2014). Autonomic workload management for database management systems.

Retrieved from

https://qspace.library.queensu.ca/bitstream/1974/12181/1/Zhang_Mingyi_201404_PhD.p

df

90

Appendix

Following are the netezza release notes which describes the improvements in the

technical functionality, bug fixes and also the new features that are introduced in each of the

released version,

NPS7.0.4.6p3

87682 - Fixes an issue where an NPS backup operation did not capture changes made by

CREATE TABLE AS transactions that were running at the time of the previous backup

increment.

87771 - Updates the Netezza Platform Software (NPS) and clients to use OpenSSL 0.9.8zb. This

OpenSSL update includes a number of fixes and updates for reported vulnerabilities including

CVE-2014-3505, CVE-2014-3506, CVE-2014-3507, CVE-2014-3508, and CVE-2014-3510.

Refer to http://www.openssl.org/news/vulnerabilities.html for more information about the

OpenSSL vulnerabilities and fixes.

89132 - Corrects an optimization rule to check whether joins between dimension tables and fact

tables have hash joinable restrictions so that the optimizer can take advantage of pre-broadcast

tables for join performance improvements.

NPS7.2.0.5p1

100729 -Fixes an issue where the nzhw command failed with an authentication error when using

a database user account that has a cached password.

91

22907 (40482) - Improves the performance of queries that process large IN-LISTs due to a

problem where runtimes could increase when the system appends values to the end of the list.

This change speeds up the append process for the lists to reduce the query runtime.

71488 - Restores internal view lookup behavior to ensure that NPS uses the object name for

lookups if the initial lookup of the object by internal object ID yields no results.

77183 - Fixes an issue where the runaway query event did not attach the query plan files to the

event email in NPS release 7.0 and later.

86335 - Fixes an issue where NPS hosts showed false alerts that the hosts had exceeded the

average power usage threshold. This nzhealthcheck monitoring has been disabled because it is

not intended for the hosts in NPS appliances.

86472 - Fixes an issue where the query internal code generation calculated an invalid record size

resulting in a SPU reset.

86638 - Fixes an issue where, after a restored database is renamed, backed up, and restored

again, the restore fails to create views that reference other views because the view definitions

reference the old database name. If users in your environment often rename databases between

backup operations, consider running new full backups for those databases after you upgrade to a

version of NPS that contains this fix.

87396 - Fixes an issue where internal routines that process expressions in the query planning did

not record all the column information used in an expression, leading to a database restart.

88350 - Fixes an issue where privileges granted on system objects were failing.

88561 - Fixes an issue where a query that has a restrict operation that involves a join expression

with a boolean equality operator could sometimes result in a database restart.

92

92148 - Fixes an internal query plan optimization that improves the performance of queries

against the system catalog that join on multiple attributes.

92159 - Adds a notice message that can alert users when their queries return a subset of results

because of a configured rowset limit for the user or the user's group. If a query returns a subset of

results, the system writes the message "NOTICE: Rowset limit of <limit> applied" to the pg.log

file. For ODBC/JDBC users, the SQLGetDiagRec()/ getwarning functions can show the notice

when it occurs.

93333 - Adds a new command SHOW TEMP TABLE that lists all the temp tables that exist at

the time the command runs, and size of the tables on the SPUs. The database user must have the

System privilege to execute this command.

93514 - Fixes an issue where the ScanNode object in the plan file did not show the correct

schema name for an object.

94002 - Fixes an issue where query performance for queries on the _v_odbc_columns* or

_v_jdbc_columns* views took longer to complete.

94316 - Adds changes to help reduce query runtimes and memory consumption for queries that

have nested selects and function calls in the projection list, such as select func(select(func(x))).

94656 - Fixes an issue where the nzload command failed with a "reference zone 1" error when

the first column of the record to be loaded is defined as nullable and contains a null value.

94813 - Updates the internal nzdumpschema Support tool to collect more parameters like

enable_simple_jit_avoidance to troubleshoot queries.

93

94886 - Fixes an issue where loads to a versioned table failed with errors such as 'ERROR:

Column reference "rowid" not supported for views.' for special user table attributes referenced in

the load.

95076 - Fixes an issue where the nzrestore command fails with an error "Cross Database Access

not supported for this type of command."

95119/90082 - Adds a series of improvements to the CASE WHEN support to resolve issues

such as pg_atoi errors that stemmed from internal temporary variable initialization problems.

95212 - Fixes an issue for IBM Netezza Replication Services environments where the

subordinate nodes might not have received updated metadata files.

95217 - Fixes an issue where a join to a pre-broadcast table created a negative startup cost and

biased the cost to ignore other more optimal join paths. If you had set the

enable_2phase_cost_adj variable to false as a workaround for this issue, you should change the

variable value back to true after you upgrade to NPS 7.0.4.9.

95251 - Fixed a rare timing issue where a system that had hundreds of concurrent sessions

encountered a lock that prevented Netezza commands from running on the system.

95315 - Fixes an issue where the NzAdmin interface could hang when trying to access a locked

database.

95695 - Fixes an issue where a query failed with the error "ERROR: parsenodes_mutator:

Unexpected node type 103."

95830 - Fixes an issue where a false warning appeared for a backup and restore connector

argument that did not apply for the backup connector specified in the command.

94

96038 - Adds support for Netezza backup and restore operations with a 64-bit Tivoli Storage

Manager 7.1.x client.

96060 - Fixes an out-of-memory issue triggered when the single-slice throughput enhancement

evaluates OR restrictions against a table's distribution key.

96182 - Fixes an issue where the optimizer ignored an additional filtering join to a pre-broadcast

table even though the just-in-time (JIT) scan had identified that the pre-broadcast join was

beneficial.

96338 - Fixes an issue where new database users created on an NPS system that is configured for

LDAP authentication could not log in due to an expired password. The problem was due to an

internal time representation change for password ranges.

96362 - Adds support for a Netezza file system backup connector option,

FSYNC_DEST_BYTES, that throttles the host writes to an external file system by flushing the

modified buffers after a specified number of bytes and waiting for the device to finish. This

option helps to reduce cases where NPS host could restart and failover while writing data to a

slow external file system. You can use the FSYNC_DEST_BYTES option to set a maximum

write size before flushing the buffers, for example:

nzbackup -dir /home/user/backups -u user -pw password -db db1-v -connectorArgs

FSYNC_DEST_BYTES=65536

Note that the option will increase the overall time of the backup process, so you should not use

this option unless file system backups are causing your NPS host to restart.

96545 - Fixes an issue where a database restore with the -nodata option created a view that had a

different definition than the original view in the backup.

95

96614 - Fixes an issue where a query that called an EXISTS condition in a subselect could

encounter a planner loop that caused NPS to restart.

96703 - Fixes an issue where the lastupdate column of _v_restore_history did not show the

completion time of the restore operation.

96705 - In Netezza Replication Services environments, fixes an issue with parsing distribution

keys in a by-value replication process that could cause a subordinate to suspend.

96792 - Fixes an issue where the nztmpwatch script was not cleaning up old dbos and sysmgr log

files. The script was selecting files based on last access time, not last modified time, so older

files were lingering beyond the cleanup date.

96948 - Adds support to verify that extent IDs never exceed the defined limit for their data type.

Data slices which have invalid, large extent IDs could encounter problems that prevent zone

maps from being created for those data slices.

97259 - In a Netezza Replication Services environment, adds the replHeartbeatLatency variable

to control how long the system waits for a heartbeat before considering it a missed hearbeat, and

the replHeartbeatMaxMissedInterval variable to specify how many consecutive heartbeats can be

missed before the system triggers a missed heartbeat event. These settings help to tune the event

notifications for the replication environment.

97330 - Fixes an issue where a GENERATE STATISTICS command failed with the error

"Table size too big for caching."

97350 - Fixes a stored procedure issue where two processes attempt to drop the same transient

table.

96

97472 - Adds a session variable enable_pullup_notexists_sublink that allows a user to disable

ANSI standard behavior for correlated subqueries used in NOT IN/NOT EXISTS anti-join

evaluation. Netezza behavior prior to 46364 (made in 7.0.2.11-P1 and later) did not follow ANSI

standard behavior in terms of evaluating correlated subquery predicates that solely referenced the

"outer" result set. The default for this session variable is true to use the ANSI standard behavior.

To restore the original, non-ANSI, Netezza behavior, set the enable_pullup_notexists_sublink

session variable to false.

97508 - Fixes an issue where a multi-stream restore from Tivoli Storage Manager backup tape

drives could be blocked from completing.

97550 - Fixes an issue where in NzAdmin, displaying the object privileges for a database did not

display any results. The NzAdmin interface now prompts the user for a database and a schema to

display the privileges.

98178 - Fixes an issue where an external table contains an incorrect value INF for numerics and

for cases where float and double data types are empty.

98188 - Fixes an issue where NPS upgrades that include a catalog upgrade (such as between

major releases like 7.0.4.x to 7.1.0.x), the custom settings for system settings such as

QUERYTIMEOUT, SESSIONTIMEOUT, ROWSETLIMIT, MAXPRIORITY or

DEFPRIORITY were reset back to their default values.

98226 - Fixes an issue that caused an NPS restart while the system was reassembling a stored

procedure definition and validating its UTF-8 correctness. This validation occurs when

procedure definitions are stored in segments.

97

98427 - Fixes an issue where table statistics are not reset after a TRUNCATE table command. In

7.2.0.5 and later, NPS automatically resets table statistics after a TRUNCATE command. You

can set the value to false to maintain the current 7.2.0.4 behavior to retain the table statistics and

rowcount of the table before the TRUNCATE, which increase over time as new rows are inserted

to the table. For more information, see http://www-

01.ibm.com/support/docview.wss?uid=swg21959596.

98491 - Fixes an issue where the SPU kernel scheduler process checked the wrong task for a

possible restart operation. This problem typically occurred on SPUs that were running many

concurrent processes.

98691 - Fixes an issue where several system tables returned a "did not find any relation" error

when used with the nzsql \d (describe) option.

98763 - Fixes an issue where the command to create a materialized view incorrectly returned the

error "CTAS not permitted because of conflicting backup transaction."

98916 - Fixes system catalog performance for queries that directly or indirectly reference the

system _v_obj_relation, _v_obj_relation_xdb, and _v_object_data views.

99210 - In Netezza Replication Services environments, fixes an issue where a delete by value

command failed with an ambiguous column error because a user table column name matched an

internal replication column alias. The change updates the internal alias names with a CSN suffix.

99310 - Fixes an issue in the internal casting of string literals used in SET operations which

could result in invalid string literal values that cause the query to fail and restart the NPS

software

98

99520 - Fixes an issue where TRUNCATE operations on tables did not clean up some internal

resources, resulting in out-of-memory conditions on SPUs.

99533 - Improves call home behavior to ensure that user-initiated events do not cause a PMR to

be opened unless they are specifically test events.

99741 - Changes the default setting to disable the snippet results cache feature on upgrades to

7.1.0.6 because it was optimized for specific types of workloads. For more information, see

http://www-01.ibm.com/support/docview.wss?uid=swg21960526.

99742 - Changes the default setting to disable the single slice optimization feature on upgrades to

7.2.0.5 because the feature was optimized for specific types of workloads. For more information,

see http://www-01.ibm.com/support/docview.wss?uid=swg21960527.

99790 - Fixes an issue where the IBM Netezza Software Support tools were not upgraded along

with the NPS upgrade in a 7.2 patch release.

NPS7.2.0.5p2

95530 - Fixes an issue where all queries fail with the error "storage transaction table is full" and

the user must stop and restart the system.

96684 - Fixes a code generation issue that added multiple nodes for a user-defined function,

resulting in SPU resets.

98709 - Fixes an issue where the change for 85397 prevented the planner from leveraging the

right outer join optimization for queries that join with fact tables. This change adds a variable

enable_setop_dispersion_adj to disable the 85397 join dispersion improvement changes in cases

where the right outer join optimization is more beneficial.

99

100813 - Improves the performance of bridge queries that compare a 32-bit integer data type to

an OID data type.

100977 - Improves the performance of queries against system catalog views that were using a

less efficient index to access the ACL system table.

101046 - Fixes an issue in multi-stream restore operations where a database backup that had

user-defined functions required a long time to load the UDX objects.

101572 - Fixes an issue where a routine that reserves space in a metadata log for data slices was

failing and preventing NPS from starting.

NPS7.2.0.6

92154 - Fixes an issue where a backup operation could fail if a vacuum operation ran

concurrently with the backup. The system now aborts a vacuum operation when there is a backup

already running on the system.

94159 - Adds support for Windows 8 in the NPS clients and drivers.

94868 - For NEC InfoFrame DWH Appliance models ZA25 and ZA50, fixes an issue where the

nznetw command displays an incorrect status for the switch ports.

95530 - Fixes an issue where all queries fail with the error "storage transaction table is full" and

the user must stop and restart the system.

96246 - Improves workload scheduling to check system resource utilization and, when lower

utilization is detected, to schedule more queries to run to increase concurrency and utilization.

96999 - Improves support for the includeHeader feature of CREATE EXTERNAL TABLE to

include alias names in the column names.

100

97067 - Fixes an issue that can help to reduce the time needed to generate a plan for a query.

97621 - Fixes an issue that prevented scheduler rules from supporting the serialization of

INSERT INTO <table> VALUES... commands.

97334 - For IBM Netezza replication services environments, improves transaction management

and queueing algorithms to improve the throughput of queries that are running on subordinate

nodes.

97335 - For Netezza replication service environments, improves an internal troubleshooting tool

to show which plan is in progress when a replapply is waiting to finish.

98232 - For an IBM PureData System for Analytics N3001-001 appliance, fixes an issue where a

SPU could not be activated on the second host after the second host had restarted.

98454 - Fixes an issue where a blade memory check routine failed and caused DBOS to restart.

The memory check failure occurred after a previous system pause/resume operation after which

queries were automatically restarted.

98519 - Fixes an object lookup issue that caused an nzrestore to restart the NPS software when a

user-defined function referenced in a view could not be resolved by the restore logic.

98687 - Fixes a rare timing issue that occurred when an internal routine that tracks SPU resource

usage referenced a plan that was aborted, causing a database restart.

98696 - Fixes an issue where an UPDATE operation to an altered table that references rows by

row ID failed with the error " List error in nth()."

98747 - Fixes an issue where an optimization that transforms qualifying OR lists into a subplan

expression did not correctly handle certain cases where the OR list was enclosed in a NOT

operator.

101

98814 - Fixes an issue where the data skew value shown in the _v_table_only_storage_stat view

did not show the correct skew percentage.

98922 - Fixes an issue where a query that compares nchar or nvarchar data using operators such

as < , <= , > , >=, BETWEEN, or LIKE could result in poor estimates and less efficient join

processing.

98946 - Fixes an issue where a windowing aggregate query failed with a "pqFlush() --

connection not open" error.

99049 - Fixes an issue where the word AUTHORIZATION changed to become a reserved

keyword. It should be a non-reserved keyword available for table or column names.

99055 - Fixes an issue where an nzrestore -incrementlist command unlocked a database.

99291 - Fixes an issue where the nzload command fails on a Windows client with "Error: NULL

delimiter is not allowed for DateStyle : MONDY."

99775 - Fixes an issue where an upgrade to a patch release did not update some system views to

apply changes that provide a performance improvement for queries that use those views.

99865 - Fixes an issue where a query that calls LAST_VALUE and uses a window aggregate

was incorrectly converted to a FIRST_VALUE call for optimization, resulting in a "Partition

rowcount limit exceeded" error.

100152 - Improves the latency based scheduler to apply the algorithms to High priority queries

in addition to Normal priority queries.

100163 - Fixes an nzloader issue where the loader failed because of an unterminated record, but

the failure message referred to an erroneous line feed character that is actually not present.

102

100263 - Fixes an issue where a query that uses a range between typecast values failed with the

error "convert_timevalue_to_scalar: unsupported type 23" because unsupported data types were

not handled correctly by internal casting routines.

100658 - Improves the ODBC and JDBC system views to improve performance. This change

corrects an issue where the system views for version "2" (those named _V_JDBC_FUNCTION2,

for example) were returning cross-database results; the views now return results for only the

database where the query is running.

100866 - Fixes an issue where the NPS Linux ODBC driver manager did not set the client

information fields for query connections, causing client information to be unavailable in the

query history database.

100980 - Fixes an issue where a table is considered for pre-broadcasting but at the stage of

consideration not all information is present to identify all columns that need projection. In such

cases the table will not be considered as a pre-broadcast candidate.

101309 - Fixes an issue where a cross-database query run from a user database and which

referenced a fully qualified SYSTEM view name used a view defined in the user database.

101348 - Fixes a timing issue in the SPU Linux kernel that could cause the SPU to lock up and

require a SPU restart.

101535 - Fixes an issue in a SQL UPDATE command where the updated relation has an alias

and the alias is used to reference a column in the target list.

101980 - Fixes an issue where queries on the system catalog run by a non-admin user account

were not completing as quickly as for the admin user.

	St. Cloud State University
	theRepository at St. Cloud State
	12-2015

	Puredata Systems for Analytics: Concurrency and Workload Management
	Sai Mohit Muddu
	Recommended Citation

	tmp.1450380385.pdf.9rjGZ

