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1. Introduction 

Studies have found that shear moduli, having the dynamic range of several orders of 
magnitude for various biological tissues [1], are highly correlated with the pathological 
statues of human tissue such as livers [2, 3]. The shear moduli can be investigated by 
measuring the attenuation and velocity of the shear wave propagation in a tissue region. 
Many efforts have been made to measure shear wave propagations induced by different 
types of force, which include the motion force of human organs, external applied force [4], 
and ultrasound radiation force [5].  

In past 15 years, ultrasound radiation force has been successfully used to induce tissue motion 
for imaging tissue elasticity. Vibroacoustography (VA) uses bifocal beams to remotely induce 
vibration in a tissue region and detect the vibration using a hydrophone [5]. The vibration 
center is sequentially moved in the tissue region to form a two-dimensional image. Acoustic 
Radiation Force Imaging (ARFI) uses focused ultrasound to apply localized radiation force to 
small volumes of tissue for short durations and the resulting tissue displacements are mapped 
using ultrasonic correlation based methods [6]. Supersonic shear image remotely vibrates 
tissue and sequentially moves vibration center along the beam axis to create intense shear plan 
wave that is imaged at a high frame rate (5000 frames per second) [7]. These image methods 
provide measurements of tissue elasticity, but not the viscosity.  

Because of the dispersive property of biological tissue, the induced tissue displacement and 
the shear wave propagation are frequency dependent. Tissue shear property can be 
modeled by several models including Kelvin-Voigt (Voigt) model, Maxwell model, and 
Zener model [8]. Voigt model effectively describes the creep behavior of tissue, Maxwell 
model effectively describes the relaxation process, and the Zener model effectively describes 
both creep and relaxation but it requires one extra parameter. Voigt model is often used by 
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many researchers because of its simplicity and the effectiveness of modeling soft tissue. 
Voigt model consists of a purely viscous damper and a purely elastic spring connected in 
parallel. For Voigt tissue, the tissue motion at a very low frequency largely depends on the 
elasticity, while the motion at a very high frequency largely depends on the viscosity [8]. In 
general, the tissue motion depends on both elasticity and viscosity, and estimates of 
elasticity by ignoring viscosity are biased or erroneous.  

Back to the year of 1951, Dr. Oestreicher published his work to solve the wave equation for 
the Voigt soft tissue with harmonic motions [9]. With assumptions of isotropic tissue and 
plane wave, he derived equations that relate the shear wave attenuation and speed to the 
elasticity and viscosity of soft tissue. However, Oestreicher’s method was not realized for 
applications until the half century later. 

In the past ten years, Oestreicher’s method was utilized to quantitatively measure both 
tissue elasticity and viscosity. Ultrasound vibrometry has been developed to noninvasively 
and quantitatively measure tissue shear moduli [10-16]. It induces shear waves using 
ultrasound radiation force [5, 6] and estimates the shear moduli using shear wave phase 
velocities at several frequencies by measuring the phase shifts of the propagating shear 
wave over a short distance using pulse echo ultrasound [10-16]. Applications of the 
ultrasound vibrometry were conducted for viscoelasticities of liver [16], bovine and porcine 
striated muscles [17, 18], blood vessels [12, 19-21], and hearts [22]. A recent in vivo liver 
study shows that the ultrasound vibrometry can be implemented on a clinical ultrasound 
scanner of using an array transducer [23].  

One of potential applications of the ultrasound vibrometry is to characterize shear moduli of 
livers. The shear moduli of liver are highly correlated with liver pathology status [24, 25]. 
Recently, the shear viscoelasticity of liver tissue has been investigated by several research 
groups [23, 26-28]. The most of these studies applied ultrasound radiation force in liver 
tissue regions, measured the phase velocities of shear wave in a limited frequency range, 
and inversely solved the Voigt model with an assumption that liver local tissue is isotropic 
without considering boundary conditions. Because of the boundary conditions, shear wave 
propagations are impacted by the limited physical dimensions of tissue. Studies shows that 
considerations of boundary conditions should be taken for characterizing tissue that have 
limited physical dimensions such as heart [22], blood vessels [19-21], and liver [8], when 
ultrasound vibrometry is used.  

2. Shear wave propagation in soft tissue and shear viscoelasticity 

The shear wave propagation in soft tissue is a complicated process. When the tissue is 
isotropic and modeled by the Voigt model, the phase velocity and attenuation of the shear 
wave propagation in the tissue are associated with tissue viscoelasticity. Oesteicher 
documented the detailed derivations of the solution of the sound wave equation for Voigt 
tissue [9]. We extended the solution to other models [8] for the applications of ultrasound 
vibrometry [8]. In this section, we provide the simplified descriptions of the shear wave 
propagation in tissue modeled by Voigt model, Maxwell model, and Zener model.  
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Assuming that a harmonic motion produces the shear wave that propagates in a tissue 
region, the phase velocity cs(ω) of the wave can be estimated by measuring the phase shift 
Δϕ over a distance Δz: 

 ( ) /sc z      (1) 

The phase velocity is associated with the tissue property, which can be found by solving the 
wave equation with a tissue viscoelasticity model. For a small local region, the wave is 
approximated as a uniform plane wave, which has a simple form in isotropic medium: 

 
2

2
2 0d k

dz
 

S S           (2) 

where S is the phasor notation of the displacement of the time-harmonic field of the shear 
wave, z is the wave propagation distance which is perpendicular to the direction of the 
displacement of the shear wave, and the complex wave number is 

 r ik k ik   (3) 

The solution of (2) is a standard solution of a homogeneous wave equation: 

 0ˆ ikzxS eS  (4) 

where S0 is the displacement at z = 0, ݔො is an unit vector in x direction. The plane wave is 
independent in y direction. The real time time-harmonic shear wave is: 

   0ˆ ˆ( , , ) Re cos( )ik zi t
rS z t x e xS e t k z   S   (5) 

Although attenuation coefficient α = –ki carries information of the complex modulus of 
tissue, the phase measurement is often more reliable because it is relatively independent to 
transducers and measurement systems. The phase velocity is the speed of the wave 
propagating at a constant phase, which is a solution of ( ) / 0rd t k z dt   : 

 ( ) /s r
dzc k
dt

    (6) 

The complex wave number k of the plane shear wave is a function of the frequency and the 
complex modulus of the medium [9]: 

 2 /k     (7) 

where ρ is the density of the tissue and the complex modulus that connects stress σ and 
strain ε: 

 1 2/ i        (8) 
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which describes the relationship between stress and strain in the Voigt tissue. The Voigt 
model consists of an elastic spring μ1 and a viscous damper μ2 connected in parallel, which 
represents the same strain in each component as shown in Figure 1.  

 
Figure 1. Voigt model consists of an elastic spring μ1 and a viscous damper μ2 connected in parallel. 

The relation between stress σ and strain ε of the Maxwell tissue is:  

 1 2
d
dt
      (9) 

For a harmonic motion, (9) becomes: 

 1 2( )i      (10) 

which is the same as (8). Substituting (8) into (7) and finding the real part of the wave 
number, the phase velocity of the shear wave in Voigt tissue can be obtained from (6):  

 
2 2 2
1 2

2 2 2
1 1 2

2( )
( )

(
sc

  


    




 
  (11) 

The elasticity μ1 and viscosity μ2 are two constants and independent to the frequency.  

A numerical example of phase velocity of Voigt tissue is shown in Figure 2. Equation (11) 
shows that cs(ω) increases at the rate of square  root of the frequency and there is no the 
upper limit for cs(ω). As shown in the Figure 2, the phase velocity is determined by both 
elasticity and viscosity. Ignoring the viscosity introduces errors and biases for elasticity 
estimates. However, examining the velocities at the extreme frequencies is useful for 
understanding the model and obtaining initial values for numerical solutions of μ1 and μ2. 
In tissue characterization applications, μ1 is often in the order of a few thousands and μ2 is 
often less than 10. Thus, when the wave frequency is very low (less than a few Hz),  

 2
1 ( )            very low .sc      (12) 

When the frequency is very high (higher than a few tens of kHz),  

 2
2 ( ) / 2             very high .sc       (13) 
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Figure 2. Plot of phase velocity of shear wave having μ1=3 kpa and μ2=1 pa.s in Voigt tissue 

A broad frequency range is needed to accurately estimate both μ1 and μ2. (12) and (13) are 
only useful for estimating initial values for the numerical solutions of (11) with measured 
velocities, and they should not be used for final estimates.  

Equation (7) can be used for other models for the plane shear wave having a single frequency. 
The Maxwell model consists of a viscous damper η and an elastic spring E connected in series, 
which represents the same stress in each component, as shown in Figure 3.  

 
Figure 3. Maxwell model consists of a viscous damper η and an elastic spring E connected in series. 

The relation between stress σ and strain ε of the Maxwell tissue is: 

 1 d d
E dt dt

  


   (14) 

For a harmonic motion, (14) becomes: 

 
2 2 2

2 2 2 2 2 2
i E E Ei

E i E E
    
     
   

  
  (15) 

which is the complex shear modulus of the Maxwell model. Unlike the Voigt model, real 
and imaginary components of (15) are functions of the frequency. When the frequency is 
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fixed, the complex modulus is a function of ߟ and E. Substituting (15) into (7), the shear 
wave speed in Maxwell medium can be found from (6): 

 
2 2 2

2( )
(1 1

s
Ec
E


  


 

 (16) 

Equation (16) can be also obtained by replacing μ1 and μ2 of (8) with the real and imaginary 
terms of (15).  

A numerical example of phase velocity of Maxwell tissue is shown in Figure 4. Note that 
cs(ω) gradually increases to a limit that is proportional to the square  root of the elasticity. As 
shown in the Figure 4, the phase velocity is determined by both elasticity and viscosity. 
However, examining the velocities at the extreme frequencies is useful for understanding 
the model and obtaining initial values for numerical solutions of E and η. 2( )sE C  for a 
very large ω, 2( ) / 2sC     for a very small ω,  cs(ω) is zero for ω=0, and cs(ω) approaches 

/E   when ω is very high.  

 
Figure 4. Plot of phase velocity of shear wave having E = 7.5 kpa and η = 6 pa.s in Voigt tissue 

 
Figure 5. Zener model adds an elastic spring E1 to the Maxwell model (η, E2) in parallel. 
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The Zener model adds an additional elastic spring, having the elasticity of E1, to the Maxwell 
model (η, E2) in parallel. The Zener model combines the features of the Voigt model and the 
Maxwell models and describes both creep and relaxation. Based on the Maxwell model, the 
complex shear modulus of the Zener model can be readily obtained: 

 
2 2 2

2 2 2
1 1 2 2 2 2 2 2

2 2 2

i E E E
E E i

E i E E
   


    

    
  

  (17) 

Substituting (17) into (7), the shear wave speed in Zener medium can be found from (6): 

 
2 2 2 2 2

1 2 1 2
2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 2

2( ( ) )
( )

( ( ) ( ( ) )( )
s

E E E E
c

E E E E E E E E E

 


      

 


     
         (18) 

Equation (18) shows that 2
1 2 ( )sE E C    for a very large ω, 2

1 ( )sE C   for a very small 
ω, η is proportional to the slop of the speed curve, and cs(ω) approaches  1 2 /E E   when 
ω is very high. A numerical example of phase velocity of Zener tissue is shown in Figure 6. 

 
Figure 6. Plot of phase velocity of shear wave having E1 = 4.5 kpa, η = 1.5 pa.s, and E2 =7.5 ka in Zener 
tissue 

3. Ultrasound vibrometry 

Ultrasound vibrometry has been developed to induce shear wave in a tissue region, 
measure phase velocity of the shear wave, and calculate the tissue viscoelasticity based on 
(11), or (16), or (18). The basics of the ultrasound vibrometry are described in details in 
references [11-17, 32]. Ultrasound vibrometry induces tissue vibrations and shear waves 
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using ultrasound radiation force and detects the phase velocity of the shear wave 
propagation using pulse-echo ultrasound. 

From the solution of the wave equation, equation (5) can be represented by a harmonic 
motion at a location, 

 ( ) sin( )s sd t D t    (19)  

where s=2fs is the vibration angular frequency, the vibration displacement amplitude D  and 
phase s depend on the radiation force and tissue property. (19) is another representation of 
(5). Applying detection pulses to the motion that causes the travel time changes of detection 
pulses and phase shift changes of the return echoes, the received echo becomes [11]: 

  0 0( , ) ( , ) cos sin( ( ) )s sr t k g t k t t kT               (20) 

where T is the period of the push pulses shown in Figure 9 and the modulation index is: 

 02 cos( ) /D c     (21) 

where c is the sound propagation speed in the tissue, 0 is the angular modulation frequency 
of detection tone bursts, g(t,k) is the complex envelope of r(t,k), 0 is a transmitting phase 
constant and   is an angle between the ultrasound beam and the tissue vibration direction.  

Received echo r(t,k) is a two-dimensional signal. When one detection pulse is transmitted, its 
echo from the different depth of tissue is received as t changes. In medical ultrasound field, 
variable t is called fast time. When multiple detection pulses are transmitted, the multiple 
echo sequences are received as k changes. Variable k is called as slow time. r(t,k) in fast-time 
t is called as fast-time signal to represent the echo signal in beam axial direction or the depth 
location in the tissue. Its variation in slow-time k is called slow-time signal to represent the 
signals from one echo to another echo. If there is no tissue motion, r(t,k)  will be the same for 
different k values. The tissue motion information is carried by modulation index β and 
phase s. A quadrature demodulator is used to obtain β and phase s. 

As shown in Figure 7, a quadrature demodulator is applied to extract the motion information 
from r(t,k). The complex envelop consists of the in-phase and quadrature term [29]: 

,ݐ)݃  ݇) = ,ݐ)ܫ ݇) + ,ݐ)݆ܳ ݇) (22) 

Operating on the in-phase and quadrature components I and Q with input r(t,k), we obtain 
the tissue motion in slow time [11]: 

  1 1( , ) tan ( / ) mean of tan ( / ) sin ( )A s ss t k Q I Q I t kT                         (23) 

A phase constant can be added to the local oscillator of the demodulator [11] to avoid zeros 
in I. The signal extracted by (23) is proportional to the displacement of a harmonic motion 
induced by the push pulses.  
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Figure 7. Block diagram of quadrature demodulator 

Another motion detection method [14] uses a complex vector that is a multiplication 
between two successive complex envelops [29] 

        *,   i ,  , 1 ,X t k Y t k g t k g t k    (24) 

Thus, the motion velocity in slow time can be obtained, 

  1 ( , )( , ) tan 2 sin( / 2)cos ( ) / 2
( , )B s s s s

Y t ks t k T t kT T
X t k

      
      

 
   (25)  

which is proportional to the velocity of the tissue harmonic motion for ωsT/2 << 1. Thus, 
sin(ωsT/2) ≈ ωsT/2 and the velocity amplitude is sT  , which is also 0/ 2 cos( )s sD c     
because of the derivative relation between (19) and (25).. 

The slow-time signal s(t,k) represents the tissue motion at a particular location, its 
amplitudes and phases change over distances are described by (5). The measurements of 
amplitudes and phases at two locations are used to calculate attenuation and phase velocity. 
As shown in (1), the phase velocity is related to the frequency and inversely related to the 
phase difference Δϕ over a short distance Δd. Thus, estimating the phase differences is the 
key step of the ultrasound vibrometry. The phase difference can be obtained by comparing 
phases ϕs of the slow-time signals s(t,k) at two locations z and z+Δz: 

ϕ߂  = 	ϕୱ(z) − 	ϕୱ(z + Δz) (26) 

There are several methods to estimate the phases of slow-time signals: Fourier transform, 
correlation method, and Kalman filter [14]. The estimated phase of the slow-time signal at a 
location include some phase constants due to the tissue location t and different pulse k, and 
phase ϕs = -krz. Given a tissue location (axial location) in fast time, all constant phases are 
removed by (26) except the phase shift ߂ϕ in the lateral location. 

Ultrasound vibrometry is developed to induce the shear wave described by (19) and detect 
the phase shift ߂ϕ described by (26) for characterizing the tissue shear property using (1) 
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and (11), (14), and (16). Ultrasound virbometry uses interleaved periodic pulses to induce 
shear wave and detects the phase velocity of shear wave propagation using pulse-echo 
ultrasound. Figure 8 shows an application setup of the ultrasound vibrometry. An 
ultrasound transducer transmits push beams to a tissue region to induce vibrations and 
shear waves. The push beams are periodic pulses that have a fundamental frequency fv and 
harmonics nfv. During the off period of the push pulses, the detection pulses are transmitted 
and echoes are received by the transducer at lateral locations that are away from the center 
of the radiation force applied, as shown in Figure 9. In some of our applications, 
fundamental frequency fv of the push pulses is in the order of 100 Hz, and pulse repetition 
frequency fPRF of the detection pulses is in the order of 2 kHz. 

 
Figure 8. Array transducer for transmitting ultrasound radiation force and detecting shear wave 
propagation 

 
Figure 9. Interleaved push pulses for ultrasound radiation force and detection pulses 

There are different variations of the excitation pulses beside the on-off binary pulses: 
continuous waves [11], non-uniform binary pulses [15], and composed pulses or Orthogonal 
Frequency Ultrasound Vibrometry (OFUV) pulses [30, 31]. The OFUV pulses can be 
designed to enhance higher harmonics to compensate the high attenuations of high 
harmonics. The OFUV pulses have multiple binary pulses in one period of the fundamental 



 
Shear Wave Propagation in Soft Tissue and Ultrasound Vibrometry 11 

period [30, 31]. Other variations of the ultrasound vibrometry include consideration of 
background motion and boundary conditions that require more complicated models of 
tissue motions [13] and wave propagations [22]. 

4. Finite element simulation of shear wave propagation 

Simulations using Finite Element Method (FEM) were conducted to understand the shear 
wave propagation in tissue. The simulation tool is COMSOL 4.2. The simulated tissue region 
is a two-dimensional axisymmetric finite element model of a viscoelastic solid with a 
dimension of 100 mm × 100 mm, as shown in Figure 10. The size of domain Ω1 is 100 mm × 
80 mm. The domain is divided to 25,371 mesh elements and the average distance between 
adjacent nodes is 0.95 mm. The schematic diagram shown in Figure 10 includes simulation 
domains (Ω1, Ω2, Ω3) and boundaries (B1,B2). A line source (with a length of 60 mm) in the 
left of the solid represents as an excitation source of the shear wave.  

 
Figure 10. Schematic diagram of simulated tissue region (domain) and  

All domains had the same material property of the Voigt tissue and all boundaries were set 
free to avoid reflections. The material parameters were: density of 1055 kg/m3, Poisson’s ratio 
of 0.499, and Voigt rheological model of the viscoelasticity model. The Voigt model was 
converted and represented in the form of Prony series. The store modulus and loss modulus 
were calculated using frequency response analysis for demonstrating the conversion of the 
Prony series. The complex shear modulus of the Voigt model is the same as (8): μ(߱) = ଵߤ	 + ݅߱μଶ 

where elasticity modulus µ1 and viscosity modulus µ2  were set to be 2 kPa and 2 Pa*s, 
respectively, in this simulation.  

Transient analysis was used and the time step for solver was one eightieth of the time period 
of the shear wave. Uniform plane shear wave was produced by oscillating the line source 
with ten cycles of harmonic vibrations in the frequency range from 100 Hz to 400 Hz with a 
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maximal displacement in the order of tens of micrometers. The displacements of the shear 
wave were recorded for post-processing at 8 locations, 1 mm apart, along a straight line that 
is normal to the line source. The phases of the wave were estimated by the Kalman filter and 
the average phase shifts were estimated using a linear fitting method [14]. The estimates of 
shear wave velocity and viscoelasticity are shown in Table 1.  
 

 
 

Shear Wave Velocity (m/s) Viscoelasitcity Estimation 

100Hz 200Hz 300Hz 400Hz µ1(kPa) µ2(Pa*s) 
Reference value 1.5574 1.9372 2.3470 2.7362 2 2 
Measurement 1 1.46238 1.91972 2.37439 2.66872 1.69 1.90 
Measurement 2 1.50648 1.94791 2.42833 2.86637 1.63 2.10 
Measurement 3 1.52748 1.92955 2.46275 2.81089 1.74 2.10 

Average 1.49479 1.9216 2.44359 2.77296
1.69±0.056 2.03±0.11 Std 0.02828 0.02455 0.05672 0.08517

Table 1. Estimated Viscoelasticity of Voigt tissue having µ1 = 2 kPa and µ2 = 2 Pa*s 

The shear wave velocities in red represent the theoretical values of wave speeds in Voigt 
tissue. The estimates of the speeds and viscoelasticity moduli of three simulations are shown 
by three sets of the measurement. Their average values are close to the theoretical values  
as shown in Figure 11, except the elasticity µ1. Note that the differences between the average 
velocities and the reference velocities are less than 9% but the estimate error of µ1 is 15.5%. It  
is due to the fact that viscoelasticity moduli are proportional to the square of the phase 
velocity. Any small estimation errors of phase introduce large biases in the estimates of 
viscoelasticity, which is an intrinsic weakness of the ultrasound vibrometry, demonstrated by 
this example.  
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Figure 11. Estimated shear phase velocities and set reference values 
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5. Experiment system and results 
Experiments were conducted for evaluating ultrasound vibrometry. The diagram of an 
experiment system is shown in Figure 12. This system mainly consists of a transmitter to 
produce the ultrasound radiation force and a receiver unit using a SonixRP system. Two 
arbitrary signal generators were utilized to generate the system timing and excitation 
waveform. The waveform was amplified by a power amplifier having a gain of 50 dB to drive 
an excitation transducer for inducing vibrations in a tissue region. The SonixRP system was 
applied to detect the vibration using pulse-echo mode with a linear array probe. The SonixRP 
is a diagnostic ultrasound system packaged with an Ultrasound Research Interface (URI). It 
has some special research tools which allow users to perform flexible tasks such as low-level 
ultrasound beam sequencing and control. The center frequency of the excitation transducer 
was 1 MHz. The center frequency of the linear array probe was 5 MHz and the sampling 
frequency of SonixRP was 40 MHz. The excitation transducer and detection transducer were 
fixed on multi-degree adjustable brackets and were controlled by three-axis motion stages.  

 
Figure 12. Block diagram of the experiment system 

The picture of experiment system setup is shown in Figure 13. The left lobe of a SD rat liver 
was embedded in gel phantom and placed in water tank. Before experiment, the SonixRP 
URI was run first to preview the internal structure of the liver. In the interface shown in 
Figure 14, the B-mode image and RF signal of a selected scan line were displayed together to 
help users selecting test points inside the liver tissue. The positions of the excitation 
transducer and the detection probe were adjusted to focus on two locations in the liver at 
the same vertical depth.  
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Figure 13. Experiment setup with SonixRP. 

 
Figure 14. Ultrasound Research Interface (URI) of SonixRP 
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Computer programs based on the software development kit (SDK) of SonixRP were 
developed for detecting the vibrations and shear wave propagation. The programs defined a 
specific detection sequencing and timing that repeatedly transmit pulses to a single scan line 
and repeatedly receive the echoes with a PRF of 2 KHz. The timing of the excitation and 
detection pulses is shown in Figure 15. The pulse repetition frequency of the excitation 
pulses was 100 Hz. 

 
Figure 15. Timing sequence of the experiment system 

An example of the typical fast-time RF ultrasound signal acquired by the SonixRP is shown 
in Figure 16. Figure 16a shows the echo through the entire liver tissue region, while Figure 
16b shows the echo around the focus point (75 mm in depth) in the liver tissue.  

 
Figure 16. Ultrasound RF echo (a) through the entire liver and (b) around the focus point in the liver 
tissue 

The vibration of shear wave at a location was extracted from I and Q channels using the I/Q 
estimation algorithm described by equation (23). Figure 17a shows the vibration 
displacement and Figure 17b shows the spectral amplitude of the vibration.  
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Figure 17. Displacements of the vibration and its frequency spectrum 

The extracted displacement signal sB(t,k) was processed by the Kalman filter [14] that 
simultaneously estimates phases of the fundamental frequency and all harmonics. Figure 18 
shows estimated vibration phase shifts of the first four harmonics over a distance up to 4 
mm. Linear regression was conducted to calculate the shear wave propagation speed for 
each frequency. 

 
Figure 18. Estimates of phase shifts over distances using vibration displacements and Kalman filter 
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Figure 19 shows the phase velocities at different harmonics and the fitting curves of three 
models: Voigt, Maxwell, and Zener models. The fitting values are shown in Table 2. As 
shown by the figure and table, the Voigt model and Zener model fit the measurements of 
the phase velocity of the liver tissue better than the Maxwell model for this liver. 

 
Figure 19. Curve fittings of three models with the estimates of the phase velocities of the liver tissue 

 

Voigt Model,  μ1,   μ2, fitting error 4.10 kPa 1.51 Pa·s 0.019 m/s 
Maxwell Model, E, η, fitting error 7.18 kPa 4.27 Pa·s 0.143 m/s 
Zener Model, E1, E2, η, fitting error 4.07 kPa, 45.9 kPa 1.47 Pa·s 0.020 m/s 

Table 2. Estimated viscoelasticity moduli of three models 

The second experiment was conducted to demonstrate the impact of boundary conditions. 
Because boundary conditions play very important roles in wave propagation, in vitro 
experiments were also conducted to investigate shear moduli of the superficial tissue of 
livers (0.4 mm below the capsule) and the deep tissue of livers (4.9 mm below the capsule). 
The excitation pulses were tone bursts having a center frequency of 3.37 MHz and a width 
of 200 μs for the binary excitation pulses and 100 μs or less for the OFUV excitation pulses. 
The pulse repetition frequency of the excitation pulses was 100 Hz. The broadband detection 
pulses had a center frequency of 7.5 MHz and pulse repetition frequency (PRF) of 4 kHz. 
Liver phantoms using fresh swine livers were carefully prepared so that the interface 
between the gelatin and the liver was flat. The thicknesses of liver samples were more than 2 
cm and the areas were about 4×4 cm2. The phantom was immersed in a water tank.  
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The shear wave speeds were measured from 100 Hz to 800 Hz over a distance up to 5 mm 
away from the center of the radiation force application. Figure 20 shows the estimates of the 
shear wave speeds. Each error bar was the standard deviation of 30 estimates from five data 
sets of repeated measurements and six distances (1 to 4 mm, 1 to 5 mm, etc). The estimates 
from 100 Hz to 400 Hz were almost identical for the binary excitation pulses and the OFUV 
excitation pulses. Because the estimate errors using binary excitation pulses were too high 
for the frequency beyond 400 Hz, the estimates at 4.9 mm were based on the OFUV method. 
Figure 20 represents the trend of our experiment results that the shear wave speed in the 
superficial liver tissue is generally higher than that in the deep tissue. The results should be 
carefully examined. One of the possibilities is that we think it is caused by the liver capsule 
as we have verified it with Finite Element (FE) simulations, and another possibility is that 
the shear wave speeds of the gelatin are between 3 to 4 m/s from 100 to 800 Hz, higher than 
that in the liver tissue.  

 
Figure 20. Shear wave speeds in superficial and deep liver tissues 

The estimates of shear wave speeds at deep tissue of 4.9 mm and superfical tissue of 0.4 mm 
were used to numerically solve for the shear moduli of the three models. The curves generated 
by the models were compared with the measurements. As shown in Figures 21a and 21b, we 
find that the Voigt model may not always suitable for modeling liver shear viscoelasticity, at 
least for in-vitro applications with increased frequencies of shear waves in some of our studies. 
On the other hand, we find that the Zener models matches the measurements very well with 
very small fitting errors as shown in the Figure 21 and Table 3.  

Table 3 shows the estimated shear moduli of different models with two different frequency 
ranges at two different depths in liver tissues based on our experiment data. Each modulus 
is an average of 30 estimates from 5 data sets and 6 distances. All elasticity has the unit of 
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kPa and all viscosity has the unit of Pa·s. The fitting errors (m/s) are the deifferences 
between the measurements and calculated shear wave speeds using the models. The 
changes represent the variations of the estiamtes from one frequency range to another. The 
statistics are not conclusive because of the small number of samples. But this study indicates 
the variations of estimates and importance of the selection of tissue viscoelasticity models. 

 
Figure 21. Model fittings for shear wave in the deep tissues (a), and superficial tissue (b)  

(a)

(b) 
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Depth=0.4 mm 100 to 400 Hz 100 to 800 Hz Changes 
Voigt,  μ1,   μ2, fitting error 2.48, 2.00, 0.152 3.71, 1.46, 0.204 50%, 27% 
Maxwell, E, η, fitting error 10.7, 2.50, 0.043 11.7, 2.36, 0.048 10%, 6% 
Zener, E1, E2, η, fitting error 0.578, 9.033, 2.85, 0.028 1.34, 9.843, 2.56, 0.0569 132%, 9%, 10% 

Depth=4.9 mm  
Voigt,  μ1,   μ2, fitting error 2.74, 1.35, 0.108 3.59,   0.791, 0.151 31%, 41% 
Maxwell, E, η, fitting error 5.68, 2.82, 0.016 5.90,   2.70, 0.021 4%, 4% 
Zener, E1, E2, η, fitting error 1.49, 4.20, 2.44, 0.015 1.70, 4.25, 2.19, 0.018 14%, 1%, 10% 

Table 3. Estimates of Shear Moduli (elasticity in kPa, viscosity in Pa·s) 

The third experiment was conducted to demonstrate the effectiveness of the ultrasound 
vibrometry to characterize the injury of liver tissue. Table 4 shows that the measured shear 
moduli of the livers thermally damaged by a microwave oven using different amount of 
cooking time (3, 6, 9, and 12 seconds). All estimates were from the superficial tissue region. 
It shows that the shear wave speeds estimated in the superficial tissue region are effective 
for indicating the damage levels of the livers. The errors are the standard deviations of the 
differences between the measurements and calculated speeds of the models. The Zener 
model provides the best curve fitting with the minimum fitting error.  
 

 3 sec. 6 sec. 9 sec. 12 sec. 

Voigt Model 
μ1 9.23 9.67 11.2 13.0 
μ2 1.60 1.72 2.54 3.01 

Error, (m/s) 0.103 0.114 0.114 0.121 

Maxwell Model 
E 18.3 19.6 32.3 39.2 
η 3.60 3.73 3.93 4.48 

Error, (m/s) 0.117 0.173 0.172 0.231 

Zener Model 

E1 7.68 8.40 9.60 11.9 
E2 15.0 18.0 35.0 63.3 
η 1.90 1.91 2.81 3.10 

Error, (m/s) 0.029 0.034 0.0344 0.102 

Table 4. Shear Moduli of thermally damaged livers 

6. Discussion 

Shear moduli have very high dynamic ranges and are highly correlated with the 
pathological statues of human tissue. The solutions of the wave equation with constitutional 
models of tissue viscoelasticity show that the shear moduli of tissue can be estimated by 
measuring the phase velocity and attenuation of shear wave propagation in the tissue. 
However, it is a challenge to effectively and remotely generate vibrations and shear waves 
in a tissue region. It is also a challenge to measure shear wave because shear wave 
attenuates very fast as the propagation distance increases.  

In the past fifteen years, the use of pulsed and focused ultrasound beams has been 
demonstrated as an effective method to remotely induce localized vibrations and shear waves 
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in a tissue region. Several useful technologies have been developed for characterizing tissue 
viscoelasticity: Vibroacoutography, ARFI, Supersonic imaging, and ultrasound vibrometry, etc.  

The ultrasound vibrometry is only technique that quantitatively estimates both tissue elasticity 
and viscosity. We found that the estimates of tissue elasticity by ignoring the viscosity are 
erroneous. Shear phase velocity are frequency dependent because the dispersive property of 
the biological tissue. Therefore, regardless of the usefulness of the viscosity, accurate estimates 
of tissue elasticity require the inclusion of the viscosity in the tissue models, as indicated by the 
solutions of the wave equation with three viscoelasticity models. 

The ultrasound vibrometry transmits periodic push pulses to induce vibrations and shear 
waves in a tissue region, and detects the shear wave propagation using the pulse-echo 
ultrasound. The push pulses and detection pulses are interleaved so that one array 
transducer can be used for the applications of both pulses. The application of the array 
transducer allows the detection over a distance so that the phase velocities of several 
harmonics can be measured for calculating shear moduli.  

Accurate estimates of shear moduli require an extended frequency range over an extended 
distance. The current technology is only effective for a few hundred Hertz in the frequency 
and a few mm in the distance away from the center of the radiation force applied. Shear 
wave having a high frequency attenuates very quickly as distance increases. Other vibration 
methods such as OFUV may be worth to explore.  

We found that the shear wave speeds of livers are location dependent or dispersive in 
locations. Our experiment results indicate that the shear moduli estimated from a superficial 
tissue region and from a deep tissue region can be significantly different. Boundary 
conditions play a very important role in shear wave propagation and its phase velocity. The 
solution of the wave equation with boundary conditions should be considered for a tissue 
region that has a limited physical size. Some studies in this area have been done for 
myocardium and blood vessel walls.  

The measurements of the ultrasound vibrometry are based on the assumption that tissue 
under the test is isotropic, which is not true for most tissues. Nevertheless, the 
measurements may be useful in clinical practices, which need to be evaluated in vivo 
experiments and clinical studies. On the other hand, the solutions of the wave equation with 
anisotropic tissue are needed. 

Limited by the extensive contents in this chapter, we do not discuss the application of the 
Kalman filter in this work. The Kalman filter has great potential to include more complicated 
tissue models and motion models that are not fully explored yet, at least are not publically 
reported yet. On the other hand, Fourier transform and correlation method are also effective 
tools to calculate phases of the slow-time signals, if the motion model is simply sinusoidal.  

Our experiments demonstrate that the ultrasound vibrometry can be readily implemented 
by using commercial medical ultrasound scanners with minimum alterations. Our 
experiment results also demonstrate that the ultrasound vibrometry is effective to 
characterize the stiffness and injury levels of livers.  
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We find that the Zener model fit the shear wave speeds of the livers better than the Voigt 
model and Maxwell model in almost all cases that include different frequency ranges, 
different locations, and different tissue conditions. Our study also indicates that the Voigt 
model is sensitive to the change of the observation frequency. Measurements at higher 
frequencies should be included when the Voigt model is used. In this case, the OFUV is 
useful to enhance the higher frequency components of the shear waves. The Zener model 
and Maxwell model appear to be less impacted by the frequency changes with our 
experiment data.  

7. Conclusion 
Tissue pathological statues are related to tissue shear moduli, which can be estimated by 
measuring the phase velocity of shear wave propagation in a tissue region. Ultrasound 
vibrometry is an effective tool to quantitatively measure tissue elasticity and viscosity. 
Ultrasound vibrometry induces vibrations in a tissue region using pulsed and focused 
ultrasound radiation force and detects the shear wave propagation using pulse-echo 
ultrasound. Experiment results demonstrate the effectiveness of the ultrasound vibrometry 
for characterizing tissue stiffness and liver damages.  
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