
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

6-2015

Reducing Software Testing Time with
Combinatorial Testing and Test Automation
Akalanka Bandara Mailewa
St. Cloud State University

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

Part of the Computer Sciences Commons

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Mailewa, Akalanka Bandara, "Reducing Software Testing Time with Combinatorial Testing and Test Automation" (2015). Culminating
Projects in Computer Science and Information Technology. 3.
https://repository.stcloudstate.edu/csit_etds/3

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/3?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

1

Reducing Software Testing Time with Combinatorial Testing and Test Automation

by

Akalanka Bandara Mailewa

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

 Master of Science in

Computer Science

June, 2015

Starred Paper Committee:

Jayantha Herath, Chairperson

Andrew Anda

Susantha Herath

2

Abstract

The development of large software systems is a complex and error prone process.

Errors may occur at any stage of software development. These errors, sometimes referred to

as bugs, can cause great losses in terms of both time and money if not identified and removed

as early as possible. Testing a software product is costly, since it takes much time and need to

test many combinations of its functions, integrity, performance etc., which can be called as

test cases. The company's goal is to reduce the testing time, so that they can save money and

deliver the product much faster to the customer. Testing time can be reduced in two main

ways, first by reducing number of test cases and second by automating repeatedly testing

areas. This paper will discuss fundamentals of testing such as importance and difference of

verification and validation, testing throughout the software development life cycle and testing

methods, levels and types. Then it will discuss the possibility of reducing the time spent on

testing by reducing number of test cases with combinatorial testing and automating repeatedly

tested areas with test automation using Selenium tool. Finally it will also shed some light on a

real world test automation project with selenium and two integrated develop environments.

3

Table of Contents

 Page

List of Tables ... 5

List of Figures ... 6

Chapter

 1. Introduction .. 8

 Software Verification and Validation ... 9

 Problem Statement .. 9

 First Solution .. 10

 Second Solution .. 11

 2. Basics of Software Testing ... 15

 Manual Testing vs. Automated Testing .. 16

 Agile Software Development and Testing ... 19

 Agile QA Process ... 20

 Agile Testing Methodologies ... 21

 Software Testing Life Cycle ... 23

 Testing Methods, Levels and Types ... 26

 Testing Methods ... 26

 Testing Levels .. 27

 Testing Types ... 29

 3. Combinatorial Testing .. 33

 Forms of Combinatorial Testing .. 36

4

Chapter Page

 Averages of Combinatorial Testing .. 40

 Disadvantages of Combinatorial Testing ... 40

 When to Use Combinatorial Testing .. 40

 When Not to Use Combinatorial Testing ... 40

 Test Tools Incorporating Combinatorial Testing ... 41

 4. Test Automation with Selenium and JAVA ... 43

 Selenium Tool .. 43

 Selenium IDE ... 43

 Selenium Client API ... 48

 Selenium Remote Control .. 48

 Selenium Grid ... 50

 Selenium WebDriver .. 50

 Sample Test Cases Automation Using Selenium IDE 53

 Sample Test Cases Automation Using Selenium WebDriver 56

 5. Conclusion .. 63

References .. 66

Appendix .. 69

5

List of Tables

Table Page

 2.1 The difference between manual testing and automated testing 18

 2.2 Comparison between different scripting techniques .. 19

 2.3 Different phases of STLC ... 25

 4.1 Steps of test case execution and expected outcomes .. 61

6

List of Figures

Figure Page

 1.1 Pairwise combinatorial test case selection versus manual test case selection

(a) Testing efficiency and (b) testing quality ... 11

 1.2 Manual versus automated tests cost comparison .. 13

 2.1 The Agile QA process .. 20

 2.2 Phases of SCRUM .. 22

 2.3 Phases of extreme programming .. 23

 2.4 Software Testing Life Cycle ... 24

 3.1 Cumulative percent of faults vs. the number of parameters 34

 3.2 A dialog box with 10 options ... 36

 3.3 A single test case containing many triplets .. 37

 3.4 Arrangement of test cases ... 37

 3.5 Arrangement of a single triplet ... 38

 3.6 Arrangement of two triplets .. 38

 3.7 Arrangement of three triplets .. 39

 4.1 Selenium-IDE ... 44

 4.2 Test case runs against a URL ... 46

 4.3 Test case runs against a second URL ... 46

 4.4 Outline of Selenium RC’s architecture ... 50

 4.5 An auto-generated directory structure by Maven ... 52

 4.6 Login with valid username and password .. 53

 4.7 Login with invalid username and valid password .. 54

7

Figure Page

 4.8 Login with valid username and invalid password .. 55

 4.9 Open Eclipse IDE ... 56

 4.10 Eclipse IDE with JAVA, Selenium and Maven ... 57

 4.11 Configurations of Apache Mavern POM file to install dependencies 58

 4.12 When actual outcome is equal to the predicted outcome 59

 4.13 When actual outcome is unequal to the predicted outcome 60

 4.14 Automation of purchase a book from a web site to illustrate locating

 elements .. 62

8

Chapter 1: Introduction

Software testing is a process of executing a program or application with the intent of

finding the software bugs. It can also be stated as the process of validating and verifying that a

software program or application or product meets the business and technical requirements,

works as expected and can be implemented with the same characteristics [1], in other words

testing means comparing the actual outcome and expected outcome.

Testing is a never ending process, i.e., it cannot be said that the particular software is

100% error free. Therefore we have to define when to start and when to stop testing. In order

to maintain and manage entire testing process it is always better to have a Software Testing

Life Cycle (STLC) inside the Software Development Life Cycle (SDLC).

According to ANSI/IEEE 1059 standard, testing is defined as a process of analyzing

software item to detect the differences between existing and required conditions and to

evaluate the features of the software item [2]. Testing can also be defined as a process of

evaluating a system or its component(s) in order to find whether it satisfies the specified

requirements. Finally testing comes down to finding the difference between expected outcome

and actual outcome. Software testing can also provide an objective, independent view of the

software to identify and highlight the risks of software implementation.

The main objective of software testing is to find software bugs, i.e., errors or other

defects. The word 'bug' came into use with a real bug, an insect causing a computer program

to malfunction. Removing the bug in order to correct the problems was called debugging, a

word that is commonly used today but has nothing to do with real insects. Software testing

9

ensures that; software meets the specified requirements, works as expected, can be

implemented as expected, and produces the expected outcome [3].

One of the major advantages of software testing is that it eliminates or reduces errors,

leading to faster development time and less cost. Thus theoretically, the final product can be

delivered on time with a reasonable price tag. Therefore testing is beneficial for the client as

well as the developer.

Software Verification and Validation

Software testing methods can broadly be classified as verification and validation. In a

nut shell, while verification answers the question 'Are we building the right thing?’ validation

focuses on the question 'Are we building the thing right?'. Verification is the process of

evaluating products in development phase to determine whether they meet the specified

requirements for that phase. Plans, requirement specs, design specs, code, test cases, etc. are

used for verification. Reviews, Walkthroughs and Inspections are the methods employed for

verification. Validation is the process of evaluating software during or at the end of the

development process to determine whether it satisfies specified business requirements. The

actual software is used for validation.

Problem Statement

Effectiveness and Efficiency plays a major role in software testing. Test effectiveness

is the relative ability of testing strategy to find bugs in the software. Test efficiency is the

relative cost of finding a bug in the software under test. One of the major problems in

software industry is testing time. Time means money and hence the entire process is costly.

As stated earlier, software testing eliminates or reduces errors leading to faster development

10

time and lower cost. Unfortunately as mentioned above testing itself can be time consuming

and hence costly. Combined with frequent modifications, comprehensive testing can be never

ending for large-scale software. Valuable time that could be used for programming has to be

allocated for testing. Therefore, to enjoy the benefits of testing, it is important to reduce the

time spent on testing without sacrificing the quality of the testing process. There are two

major approaches to this end: one is to reduce time spent on testing by reducing the number of

test cases, and the other, to automate repetitive test steps thereby increasing testing speed

leading to reduced testing times.

First Solution

In order to reduce number of test cases it is used combinatorial testing as a solution to

first problem. Combinatorial testing allows you to minimize the number of test cases but yet

give a result close to comprehensive testing. The minimal set of test cases is called the

covering array. The covering array is selected based on the maximum number of interactions

between different inputs that can lead to errors. Interaction of two inputs (or configurations) is

often considered when testing which is known as pairwise testing. Figure 1.1 (below) shows

summary of results from 10 projects, a comparison between manual and pairwise testing in

terms of speed and effectiveness.

11

Figure 1.1

Pairwise combinatorial test case selection versus manual test case selection: (a) testing

efficiency and (b) testing quality [4]

Although pairwise testing is commonly employed it did not shed much light on the

concept of combinatorial testing. Here we use 3-way interactions and show how the covering

array reduces hundreds of apparently required test cases to a mere handful enabling us to

conduct testing in a fraction of the expected time. Combinatorial testing can detect hard-to-

find software faults more efficiently than manual test case selection methods. While the most

basic form of combinatorial testing-pairwise-is well established, and adoption by software

testing practitioners continues to increase, industry usage of these methods remains patchy at

best. However, the additional training required is well worth the effort [4]. By using this

method number of test cases can be minimized and hence can be reduced the testing time.

This paper discus combinatorial testing with more detail in Chapter 3 and this is the first way

of achieving author’s goal.

Second Solution

Another method to cut testing costs is to increase the speed of testing in a different

manner and this will give a solution to the second problem. If similar parts of code are to be

12

tested repetitively, the process can be automated. Test automation plays a very important role

in the software testing process due to time, cost and other circumstances, exhaustive testing is

not feasible that's why there is a need to automate the testing process to faster the testing of

repeatedly testing areas [5]. In Chapter 4 the paper focuses on functional testing of web based

applications with browser integrated tool. Finally by automating commonly and mostly

testing areas of web based application, it will be able to reduce testing time and so that can be

saved testing cost. This is the second way of archiving author’s goal. There are several test

automation methods and tools available for different automation purposes. This paper will

consider about functional test automation of web based applications by using Selenium tool

with Java in Eclipse and IntelliJ-IDEA integrated development environments.

Researchers found that tests which are executed a few number of times only during the

entire lifetime of the product are usually not worth spending automation resources on. On the

other hand, it may be well worth automating the tests that are executed many times as shown

in Figure 1.2, for example, tests used for extensive regression testing of areas of high-risk. Of

course it is more practical to have a mix of manual and automated tests.

13

Figure 1.2

Manual versus automated tests cost comparison [6]

The cost associated with selection, implementation, and maintenance of the software

testing tool is quite significant. It generally includes expenses incurred on: selection of tool,

procurement of tool (use open source, buy or develop internally), licenses, customization,

implementation, training of personnel, tool usage, maintenance of automated test ware and

tool maintenance. Some of these expenses are measured directly in terms of money; while

others come from time spent by the team members [6].

This chapter introduced software testing by discussing the aims and importance of

software testing. Then it addressed the two main problems of software testing and suggested

two solutions in order to reduce the number of test cases and testing time using combinatorial

testing and test automation accordingly. Chapter 2 will discuss basics of software testing.

Chapter 3 presents the solution to first problem using combinatorial testing while Chapter 4

14

providing solution to second problem with the art of the test automation in detail with some

examples.

15

Chapter 2: Basics of Software Testing

It is described in Chapter 1 about brief introduction to the software testing, in this

chapter it is explained in detail the process of software testing start by answering three main

questions in software testing; 1) who does testing, 2) when to start testing, and 3) when to

stop testing. Rest of the chapter describes concepts used in testing.

While large IT companies have a test team, their smaller counterparts may have only a

single tester. Some organizations hire software testers from outside or outsource testing

process. The testers' responsibility is to evaluate the software with the given requirements.

Sometimes developers and testers may conduct unit testing where they may separately test

each individual component. Unit testing can take place before the whole system has been

developed and is discussed in detail later in this chapter. People involved in testing of a

system are software testers, software developers, project lead/manager and end users.

Different companies have difference designations for the testers such as software tester,

software quality assurance (QA) engineer, and QA analyst, etc. [2]. This is on the basis of

their experience and knowledge and this paragraph answered the first question.

As an answer to the second question, it is mentioned that an early start to testing

reduces the cost and time of rework. In SDLC, testing can start from the requirements

gathering phase and lasts till the deployment of the software. However it also depends on the

development model that is being used. For example in waterfall model formal testing is

conducted in the testing phase, but in incremental model, testing is performed at the end of

every increment/iteration and at the end the whole application is tested [2]. Testing is done in

different forms at every phase of SDLC and following situations can also be considered as

testing.

16

 Analysis and verifications of requirements during requirement gathering phase.

 Reviewing the design in the design stage.

 Testing performed by a developer on completion of each section of code.

 Indirect testing by the end user after implementation.

As an answer to the third question, it is difficult to determine when to stop testing as

software cannot be tested 100%. Therefore testing is a never-ending process. Even when the

end user is working with the software, it is being tested. Following are the aspects which

should be considered to stop the testing [2].

 Deadlines set forth for testing.

 Completion of execution of test cases.

 When testing costs are so high that testing is not financially viable.

 Completion of functional and code coverage to a certain point.

 No high priority bugs identified and overall bug rate is below a predefined level.

 Management decision.

The remainder of the chapter will present; first the difference of manual testing vs.

automated testing, second about agile software testing, next about the STLC and finally

testing methods, levels and types in the STLC.

Manual Testing vs. Automated Testing

Software testing can be divided into two main categories, manual testing, and

automated software testing. Both categories have their individual strengths and weaknesses.

In this section, paper will present in detail about these two testing techniques and comparison

of each other.

17

With a manual testing, the more traditional approach, tester initiates each test, interacts

with system, reports and evaluate the test results. To satisfy the test results manually, testers

should prepare and execute test cases on system under test (SUT). These test cases will best

test the system using defined processes trying to find bugs. So, they can be fixed before

releasing the product to the public [7].

Automation is one of the more popular and available strategies to reduce testing effort.

It develops test scripts that will be used later to execute test cases instead of human [8]. The

idea behind automation is to let computer simulate what the tester is doing in reality when

running test cases manually on SUT. Automated software testing (AST) is more suitable for

repetitive tasks during different testing levels such as regression testing, where test cases are

executed several times whenever the source code of SUT is modified or updated [9].

Manual testing is more appropriate for finding new and unexpected bugs. Automated

software testing is more suitable to prevent new errors in the already tested working modules.

Automated testing can perform a large number of test cases in little time, whereas manual

testing uses the knowledge of the tester to target testing to the parts of the system that are

assumed to be more error-prone. In this sense the two approaches are complementary to each

other. [7].

Test scripts are the basic element of automation. Test script is a series of commands or

events stored in a script language file to execute a test case and report the results. It may

contain logical decisions that affect the execution of the script, creating multiple possible

pathways, constant values, variables whose values change during playback. The advantage of

test scripts development process is that scripts can repeat the same instruction many times in

18

loops, each time with different data. There are many types of scripting techniques that can be

used in automation such as linear, structured, shared, data-driven and keyword-driven.

Table 2.2 shows a comparison between these scripting techniques.

Executing the test cases manually without any tool support is known as manual

testing. Taking tool support and executing the test cases by using automation tool(s) is known

as automated testing. Table 2.1 (below) shows the brief but comprehensive explanation of

deference between manual testing and automated testing with their advantages and

disadvantages.

Table 2.1

The difference between manual testing and automated testing

Manual Testing Automated Testing

Time consuming and tedious: Since test

cases are executed by human resources it is

slow and tedious.

Fast execution: Automation runs test cases

significantly faster than human testers.

Huge investment in human resources: Test

cases need to be executed manually so more

testers are required in manual testing.

Less investment in human resources: Test cases

are executed by using automation tool(s) so lesser

numbers of testers are required in automation

testing.

Less reliable: Manual testing is less reliable

as tests may not be performed with precision

each time because of human errors.

More reliable: Automation tests perform precisely

same operation each time they are run.

Non-programmable: No programming can

be done to write sophisticated tests which

fetch hidden information.

Programmable: Testers can program sophisticated

tests to bring out hidden information.

The results are late: programmers cannot see

the result until the tester note down, type,

print and copy the results.

Quick results: the programmers can see the result

real-time in a networked environment.

Might catch more of the errors occurring due

to human nature as the testers are human

beings themselves.

Might skip errors occurring due to human nature as

software cannot 'think' as human beings.

Can be cheaper for small software than

automated testing.

Can be costly for smaller projects but cost-

effective for larger projects.

Much better at visual testing. Weak at visual testing. Software doesn’t think like

humans so it cannot decide a GUI is attractive,

distractive or dull.

19

Table 2.2

Comparison between different scripting techniques [10]

Agile Software Development and Testing

The word agile more commonly suggests a focused yet rapidly iterative software

process adhering to principles that were first outlined in the Agile Manifesto first laid down in

2001. The manifesto aimed to promote a more efficient way of developing computer

programs and IT systems through a collaborative system of various teams. Today, the agile

method has become widely accepted as an effective approach to project management within

the mainstream software development and testing community [11]. Agile testing refers to the

practice of testing software for bugs or performance issues within the context of an agile

workflow [11], [12].

20

Agile QA Process

Agile testing comes from the same philosophy as agile methodology and stresses on

testing practices which emphasizes individuals and actions over processes and tools. Software

products become more valuable than the documentation. Clients become included in the

process of creating and testing software [13]. Figure 2.1 shows the process of agile software

quality assurance.

Figure 2.1

The Agile QA process [13]

In the Agile methods, the work cycle becomes abbreviated. Instead of phases and

schedules, it has cadence points which result in completed product increments. Less

21

documentation is required with a focus on code and whether the product piece works.

Specification becomes by example with tests for software products based on real examples–a

product piece in hand functioning. Every two weeks, the direction of a project receives a

review making it easy to steer in other directions as conditions change. Quality becomes part

of development and becomes everyone‘s responsibility. By incrementing, inspecting and

adapting development cost and time to market becomes reduced. Continual planning of the

release optimizes value and maximizes team ability to compete in the marketplace. Included

in the process are business people who have a sense of what users need and want. Change

becomes welcomed, constant necessary cooperation fosters communication between differing

disciplines and adaptability becomes the norm [12], [13].

Agile Testing Methodologies

Agile Testing has flavors. The method for a particular route of software development

must be chosen carefully. Two flavors frequently used by companies are SCRUM, and

Extreme programming. A SCRUM framework emphasizes holistic, flexible strategies where

development teams work as units on a common goal. Planning and managing a project is

decided by a project’s operation properties and certainties [13]. Product owner is responsible

for the delivery and functionality of three core components, in each iteration development

team manages and organizes work in a cycle and Scrum Master who removes all obstacles to

progress, sets up Sprint meetings, and sets up the teams. Figure 2.2 shows the Phases of

SCRUM.

22

Figure 2.2

Phases of SCRUM [13]

Extreme programming advocate short development cycles on products that focus on

improving the product itself or increasing productivity. It works well in environments where

clients have constant change [12], [13]. Figure 2.3 shows the phases of extreme programming.

23

Figure 2.3

Phases of extreme programming [13]

Software Testing Life Cycle

Successful software testing projects depends on a standard testing process, good

testing objectives and the right team roles, skills and tools. The automation test team needs to

have knowledge of testing, programming, and automation tool as well. In today’s system,

rapid deployments and quick responses to the customers are essential. Software development

and test processes during a product life cycle are adapted to these requirements [14]. To

maintain all mentioned above, software testing has its own life cycle by which it follows and

checks the software at various stages of SDLC and is known as software testing life cycle

(STLC). It is decided by management based on the requirements and development model and

24

hence there is no any specific universal STLC which applicable to all the development

projects. Figure 2.4 show the one of such a STLC diagram and table 2.1 describes all the

phases with activities and deliverables.

Figure 2.4

Software Testing Life Cycle [15]

25

Table 2.3

Different phases of STLC [15]

Phase Activity Deliverables Necessity

Requirements/

Design Review

You review the software

requirements/ design

(Well, if they exist.)

 Review Defect

Reports

Curiosity

Test Planning Once you have gathered

a general idea of what

needs to be tested, you

‘plan’ for the tests.

 Test Plan

 Test Estimation

 Test Schedule

Farsightedne

ss

Test Designing You design/ detail your

tests on the basis of

detailed

requirements/design of

the software (sometimes,

on the basis of your

imagination).

 Test Cases / Test

Scripts /Test Data

 Requirements

Traceability

Matrix

Creativity

Test

Environment

Setup

You setup the test

environment (server/

client/ network, etc.)

with the goal of

replicating the end-users’

environment.

 Test Environment Rich

company

Test Execution You execute your Test

Cases/ Scripts in the Test

Environment to see

whether they pass.

 Test Results

(Incremental)

 Defect Reports

Patience

Test Reporting You prepare various

reports for various

stakeholders.

 Test Results

(Final)

 Test/ Defect

Metrics

 Test Closure

Report

 Who Worked Late

& over time

Diplomacy

http://softwaretestingfundamentals.com/test-plan/
http://softwaretestingfundamentals.com/defect-report/

26

The STLC phases mentioned above do not necessarily have to be in the order listed;

some phases can sometimes run in parallel (For instance, Test Designing and Test Execution).

And, in extreme cases, the phases might also be reversed (For instance, when there is Cursing

prior to Testing). Interestingly, no matter how well-defined a Software Testing Life Cycle you

have in your project or organization, there are chances that you will invariably witness the

widely-popular cycle called Testing and Cursing. In this type of STLC, you skip phases like

design review, test planning, etc. In the hope that the skipping will save you some time

and/or cost. But, it never does in the real world [15].

Software testing can be implemented at any stage of the Software Development Life

Cycle. Testing after the coding has been completed was the traditional method, but in the

agile approaches, testing is an ongoing process. There are several test methodologies and

which one to choose will depend on the software development methodology chosen [16].

Testing Methods, Levels and Types

In this section the paper will discuss about different testing methods, levels and types

which are applicable throughout the software testing life cycle. First discuss briefly about five

standard testing methods, second presents seven generally recognized levels of tests with

some examples and finally talk about general testing types in two main categories, one is

functional testing types and the other is non-functional testing types as a high level overview.

Testing Methods

There are several approaches / techniques of Software Testing. Although there are

many software testing methods currently available, this paper will only include the following

five methods for the simplicity and to give the basic idea.

27

Static testing. Involves verification and it usually asks or checks "Are you building

the thing right?” It is primarily syntax checking of the code or manually reviewing the code,

requirements documents, design documents etc. to find errors [17], [18].

Dynamic testing. Involves validation and it usually asks or checks "Are you building

the right thing?” The software should be compiled and executed and input values are given

and output values are checked with the expected output [17], [18].

Black-box testing. Treats the software as a "black box" with inputs and outputs [18].

The tester is only aware of what the software is supposed to do, not how it does it. Therefore

it is also known as Specification-based testing technique or input/output driven testing

techniques.

White-box testing or ‘glass-box’ testing. Internal structures or workings of a

program are tested. It is also known as Structure-based technique because here the testers

require knowledge of how the software is implemented.

GUI testing. This is the process of testing a product's graphical user interface to

ensure it meets its written specifications. This type of testing is common when designing web

pages where sizes and alignments of images and buttons are checked [19].

Testing Levels

Each phase of SDLC goes through the testing hence there are various levels of testing.

Although there are many levels of software testing currently available, this paper will only

include the following seven main levels for the simplicity and to give the basic idea.

Unit testing. This is a method by which individual units of source code are tested

together with associated control data. A unit is the smallest testable part of an application.

28

Unit tests are typically written and run by software developers to ensure that code meets its

design and behaves as intended [20].

Component testing. Individual software modules are tested in order to find defects

and to verify their proper functionality. Component testing is also known as module and

program testing. Component testing may be done in isolation from rest of the system

depending on development life cycle model chosen for that particular application [21].

Integration testing. Individual software modules are combined and tested as a group

to verify they work together without errors. Integration testing is done after unit testing and

prior to validation testing. It is done by a specific integration tester or a test team [21].

System testing. Conducted on a complete, integrated system to evaluate the system's

compliance with its specified requirements. System testing falls within the scope of black box

testing, and no knowledge of the inner design of the code or logic is required. System testing

investigates both functional and non-functional requirements of the software [22].

Acceptance testing. Once all or most of the defects have been corrected after the

system test, the system will be delivered to the user or customer for acceptance testing. It is

conducted to determine if the specified requirements are met prior to its delivery. Acceptance

testing is basically done by the user or customer although other stakeholders may be involved

as well [20].

Alpha testing. Simulated or actual operational testing by potential users/customers or

an independent test team at the developers' site. Alpha testing is often used for off-the-shelf

software as a form of internal acceptance testing, before the software goes to beta testing. It

takes place at the developer’s site [23].

29

Beta testing or field testing. Takes place at customer’s site. The software is installed

and tested under real-world working conditions. Versions of the software, known as beta

versions, are released to a limited audience outside of the programming team [23]. This is

very common in game development.

Testing Types

A test type is focused on a particular test objective. Although there are many types of

software testing currently available, according to the scope and organization of this paper, the

paper will discuss only the following types. Testing types are mainly divided into two

categories as functional and non-functional testing.

Functional testing refers to activities that verify a specific action or function of the

code. These are usually found in the code requirements documentation, although some

development methodologies work from use cases or user stories. Functional tests tend to

answer the question of "can the user do this" or "does this particular feature work." Some

functional testing types are described below [18], [20]. This paper explains only Installation

testing, Development Testing, Destructive testing, Recovery testing, User acceptance testing

types in detail but there are some other types of functional tests are available which are not

discussed in detail such as; Usability, Sanity, Smoke, Regression and Automated.

Installation testing. Assures that the system is installed correctly and working at

actual customer's hardware.

Development testing. Software development process that involves synchronized

application of a broad spectrum of defect prevention and detection strategies in order to

reduce software development risks, time, and costs. It is performed by the software developer

30

or engineer during the construction phase of the software development lifecycle. Rather than

replace traditional QA focuses, it augments it. Development testing aims to eliminate

construction errors before code is promoted to QA; this strategy is intended to increase the

quality of the resulting software as well as the efficiency of the overall development and QA

process.

Destructive testing. Attempts to cause the software or a sub-system to fail. It verifies

that the software functions properly even when it receives invalid or unexpected inputs,

thereby establishing the robustness of input validation and error-management routines [2].

Software fault injection, in the form of fuzzing, is an example of failure testing. Various

commercial non-functional testing tools are linked from the software fault injection page;

there are also numerous open-source and free software tools available that perform destructive

testing.

Recovery testing. Ability of software to recover from crashes and errors due to

hardware problems, timeouts or unavailability of resources.

User acceptance testing. Performed by the customer, often in their lab environment

on their own hardware, is known as user acceptance testing (UAT). Acceptance testing may

be performed as part of the hand-off process between any two phases of development.

Non-functional testing is tests below refer to aspects of the software that may not be

related to a specific function or user action, such as scalability or other performance, behavior

under certain constraints, or security. Testing will determine the breaking point, the point at

which extremes of scalability or performance leads to unstable execution. Non-functional

31

requirements tend to be those that reflect the quality of the product, particularly in the context

of the suitability perspective of its users [18], [20].

Compatibility testing. Conducted to evaluate the application's compatibility with the

computing environment. It ensures there will be no conflicts with various hardware of

software once the product is implemented. This may include compatibility with hardware,

operating systems, other linked application software, network system, web browser(s), linked

database(s) etc.

Performance testing. Generally executed to determine how a system or sub-system

performs in terms of responsiveness and stability under a particular workload. It can also

serve to investigate measure, validate or verify other quality attributes of the system, such as

scalability, reliability and resource usage.

Security testing. This is essential for software that processes confidential data to

prevent system intrusion by hackers.

Accessibility testing. Include testing the compliance with standards such as

Americans with Disabilities Act of 1990, Section 508 Amendment to the Rehabilitation Act

of 1973 and/or Web Accessibility Initiative (WAI) of the World Wide Web Consortium

(W3C).

Internationalization and localization. General ability of software to be

internationalized and localized can be automatically tested without actual translation, by using

pseudo-localization. It will verify that the application still works, even after it has been

translated into a new language or adapted for a new culture (such as different currencies or

time zones) [24].

32

This chapter presented the basics of software testing with some important points such

as when to start and when to stop testing in the industry standard projects, showed the

difference between manual and automated testing, gave an introduction to agile software

methodologies and testing. Finally this chapter discussed importance of software testing in

software development life cycle, the basics of software testing and different stages of STLC

by introducing various methods, levels and types used in software testing. Chapter 3 will

discuss combinatorial testing in detail and Chapter 4 will discuss test automation with

Selenium and Java.

33

Chapter 3: Combinatorial Testing

Combinatorial testing is a relatively new form of software testing. It is based on

simple principles such as interaction rule, pairwise testing, t-way interaction testing, etc.

Combinatorial testing can drastically reduce testing times and costs by reducing the number of

tests (i.e., reducing number of test cases) to be performed.

Sometimes even reliable software might fail when certain unusual combination of

inputs are entered. This could have been avoided if all the inputs had been tested previously.

But this is a tedious task when the number of possible inputs is high. This kind of exhaustive

testing is no longer viable in many situations as modern day software may require hundreds of

inputs.

Empirical research shows that majority of bugs occur due to interaction of a few

inputs. Combinatorial testing allows us to select two or three parameters at a time, be it

configurations or inputs, and test the combinations in such a way that majority of the faults

will come to light with minimum number of tests [25].

Interaction rule. Most software failures occur due to faults of a single parameter or

interaction of two. Progressively fewer faults occur by interaction of higher number of

parameters [25], as can be seen below.

34

Figure 3.1

Cumulative percent of faults vs. the number of parameters [26]

Figure 3.1 shows empirical research data of cumulative percent of faults vs. the

number of parameters involved in faults. The five graphs represent data on medical devices,

web browser tests, HTTP server tests, NASA database and Network security tests. The

topmost graph is based on 15 years of data gathered on FDA medical device recall data by

NIST. When the data from medical devices are considered, it can be seen that approximately

66% of faults occur due to a single factor while around 97% of faults are resulted from single

factors or combination of two factors [25].

 Pairwise testing. Experimental data shows that about 60-95% of faults occur due to

interaction of two parameters. So if all 2-way combinations are tested, a high percentage of

errors could be detected. Testing 2-way combinations of configurations and/or inputs is

known as pairwise testing [26].

35

Three-way interactions and higher. However pairwise testing might not be

sufficient depending on the application of the software. For example, nobody would want 3%

of the patients attached to medical devices to die just because the software was tested only

using pairwise testing. In such critical cases, interaction between a higher numbers of factors

should be considered. Empirical research shows consideration of a maximum of 6 factors (i.e.,

6-way interactions) is enough to identify 100% of faults in almost all cases. This is evident in

the above figure too. In certain cases, considering 4-way interactions of input/configuration

parameters is sufficient to cover all faults. For non-critical software, testing of 3-way

interactions would suffice. The number of interactions taken into account is called the

strength of the test.

Difficulties related with higher number of interactions. Pairwise testing is fairly

easy and there are also test tools that generate inputs for such testing. Many testers are

familiar with pairwise testing. But tests with higher number of interactions, known as higher

strength tests, are difficult to perform. The number of combinations to be tested can be fairly

high, and there were no reliable testing tools up until recently.

Methodology used in combinatorial testing. In combinatorial testing, a minimum

number test for t-way interactions, where “t” is the number of parameters that might generate

faults with interacting with each other, is calculated. This number of tests should cover all

possibilities of t-way parameter interactions [27].

36

Forms of Combinatorial Testing

In combinatorial testing, both configurations and/or inputs can be taken as parameters.

The two methods are known as configuration testing, and input parameter testing see the

combinatorial testing example given bellow to have a better idea how does it work.

Figure 3.2

A dialog box with 10 options [25]

Figure 3.2 shows a font formatting dialog of word processing software. There are 10

(many of them mutually independent) effects that can be switched on or off. Therefore there

are 2
10

 (=1024) combinations. Testing all these combinations is costly. As discussed earlier,

the strategy employed in combinatorial testing is to reduce the number of tests to be

performed. Assuming 3-way interactions will reveal all the faults, let us decide the number of

tests.

 Number of tests = = 120 tests.

 Each triplet (three parameters selected for a test) can be on/off producing 2
3

possibilities. That is 120 x 2
3
 = 960 tests.

37

 Since three triplets can be used in one test (when 10 inputs are selected), the

maximum number of tests is 320.

 But in practice, many triplets can be packed into one test [28].

 A B C D E F G H I J

Figure 3.3

A single test case containing many triplets [25]

Consider Figure 3.3. The test case apparently contains three triplets—ABC, DEF and

GHI. But actually there are many more triplets contained in this set of inputs. For example

BCD, EFG and HIJ can be considered as another three triplets. So are ABD, ABE and ABF.

Let us look at this phenomenon in more detail with a sample test array consisting of 13 test

cases.

 A B C D E F G H I J

Figure 3.4

Arrangement of test cases [25]

38

Let us find the minimum number of tests required for the arrangement of test cases

given in Figure 3.4.

 A B C D E F G H I J

Figure 3.5

Arrangement of a single triplet [25]

Consider Figure 3.5. The first three columns (A, B, C) show three effects. All of the

eight combinations possible with these three inputs are present in the above table.

 A B C D E F G H I J

Figure 3.6

Arrangement of two triplets [25]

39

Now consider Figure 3.6. Here, three columns D, E, G have been selected randomly

(light gray circles). The eight combinations possible with those three inputs are also included.

 A B C D E F G H I J

Figure 3.7

Arrangement of three triplets [25]

Consider Figure 3.7. Here each column represents a parameter and each row a test

case. When observed closely we can see there is not only three, but many triplets are there. In

fact, all possible combinations of the 10 parameters are included in these 13 rows. Hence we

can deduce that the minimum number of tests required is only 13. Compare this with the

number of exhaustive tests, 1024, or presumed number of 120 tests [27].

Covering array. Designing the proper array of test cases is the tricky part in

combinatorial testing. By properly arranging the test cases we can find the minimum number

of tests that cover all t-way combinations (3-way, in the above example). This arrangement of

parameters and test cases is known as covering array. Automated testing tools that employ

combinatorial testing can quickly create the covering array [28].

40

Advantages of Combinatorial Testing

Combinatorial testing offers several advantages. First of all it decreases the testing

costs by reducing the number of tests needed. It allows faster fault detection as the number of

test cases is minimal. By both means it saves considerable amount of time. With

combinatorial testing rare conditions can be tested, that might be omitted in conventional

testing methods. Combinatorial testing is highly efficient with higher strength tests. Recent

developments in automated testing tools provide solutions for problems that need testing the

interaction of 4 or more variables which would have been next to impossible several years

ago.

Disadvantages of Combinatorial Testing

Combinatorial testing can be costly at higher strength interactions (>4-way) when

done manually. It can be time consuming even when automated (especially with very high

strength tests). Manual form of combinatorial testing requires high skill levels, e.g., for

developing the covering array.

When to Use Combinatorial Testing

Combinatorial testing is the best choice when there are many parameters

(inputs/configurations) are present and errors occur due to interactions between these

parameters. It could be employed when the system concerned is a critical system but

exhaustive testing is impossible due to certain circumstances.

When Not to Use Combinatorial Testing

Combinatorial testing will not be useful when there are very few number of

parameters where exhaustive testing is possible. It is also useless when there are no

41

interactions between parameters. Similarly combinatorial testing should not be employed

when interactions among different inputs/configurations do not lead to additional errors.

Test Tools Incorporating Combinatorial Testing

A combinatorial test design (CTD) algorithm finds a small test plan that covers 100%

of a given interaction level [27]. Five tools have been introduced by National Institute of

Standards and Technology (NIST) for combinatorial testing.

1. Advanced Combinatorial Testing System (ACTS)—generates test sets that ensure

t-way coverage of input parameter values; includes support for constraints and

variable-strength tests.

2. Combinatorial coverage measurement—computes a number of coverage measures

of an existing test set.

3. Access Control Policy Test (ACPT)—uses combinatorial testing with model

checking to produce tests for access control policies.

4. .NET Configuration test file generator—provide combinatorial coverage for .NET

systems that have a large number of configuration options.

5. Combinatorial sequence test generator—generates sequence covering arrays,

useful for event driven systems including GUIs, protocols, hardware testing.

In addition, IBM has developed a software named Functional Coverage Unified

Solution (FoCus) for combinatorial testing purposes.

This chapter discussed combinatorial testing and software tools that use combinatorial

testing. How combinatorial testing reduces thousands of test cases to a few is interesting and

42

it might be the future of software testing. Chapter 4 will be on test automation with Selenium

and Java by using some other software tools.

43

Chapter 4: Test Automation with Selenium and JAVA

In software testing, test automation is the use of special software (separate from the

software being tested) to control the execution of tests and the comparison of actual outcomes

with predicted outcomes [29]. Test automation can automate some repetitive but necessary

tasks in a formalized testing process already in place, or add additional testing that would be

difficult to perform manually. This chapter will discuss in detail the functional and interface

(GUI) automation using the selenium IDE and WebDriver tools with JUNIT, Java, Eclipse

IDE and FireBug.

Selenium Tool

Selenium is a portable software testing framework for web applications. Selenium

provides a record/playback tool for authoring tests without learning a test scripting language

(Selenium IDE). It also provides a test domain-specific language (Selenese) to write tests in a

number of popular programming languages, including Java, C#, Groovy, Perl, PHP, Python

and Ruby. The tests can then be run against most modern web browsers. Selenium deploys on

Windows, Linux, and Macintosh platforms. It is open-source software, released under the

Apache 2.0 license, and can be downloaded and used free of charge [30].

Selenium IDE

Selenium IDE (Figure 4.1) is a complete integrated development environment (IDE)

for Selenium tests. It is implemented as a Firefox Add-On, and allows recording, editing, and

debugging tests. It was previously known as Selenium Recorder [31].

44

Figure 4.1

Selenium-IDE

Recording. Many first-time users begin by recording a test case from their

interactions with a website. When Selenium-IDE is first opened, the record button is ON by

default. If you do not want Selenium-IDE to begin recording automatically, turn it off under

Options > Options... and deselecting “Start recording immediately on open” [32]. During

recording, Selenium-IDE will automatically insert commands into your test case based on

your actions. Typically, this will include:

45

 clicking a link - click or clickAndWait commands

 entering values - type command

 selecting options from a drop-down listbox - select command

 clicking checkboxes or radio buttons - click command

Here are some tricky situations to be aware of:

 The type command may require clicking on some other area of the web page for it

to record.

 Following a link usually records a click command. You will often need to change

this to clickAndWait to ensure your test case pauses until the new page is

completely loaded. Otherwise, your test case will continue running commands

before the page has loaded all its UI elements. This will cause unexpected test case

failures.

Using base URL to run test cases in different domains. The Base URL field at the

top of the Selenium-IDE window is very useful for allowing test cases to be run across

different domains. Suppose that a site named http://news.portal.com has an in-house beta site

named http://beta.news.portal.com. Any test cases for these sites that begin with an open

statement should specify a relative URL as the argument to open rather than an absolute URL

(e.g., starting with http: or https:). Selenium-IDE will then create an absolute URL by

appending the open command’s argument onto the end of the value of Base URL [32]. For

example, the test case below would be run against http://news.portal.com/about.html

(Figure 4.2):

46

Figure 4.2

Test case runs against a URL

This same test case with a modified Base URL setting would be run against

http://beta.news.portal.com/about.html (Figure 4.3):

Figure 4.3

Test case runs against a second URL

For many Selenium commands, a target is required. This target identifies an element

in the content of the web application, and consists of the location strategy followed by the

location in the format “locatorType=location”. The locator type can be omitted in many cases.

The various locator types are explained below with examples for each [32].

47

 Locating by Id. This type of locator is more limited than the identifier locator

type, but also more explicit. Use this when you know an element’s id attribute.

 Locating by Name. The name locator type will locate the first element with a

matching name attribute. If multiple elements have the same value for a name

attribute, then you can use filters to further refine your location strategy. The

default filter type is value (matching the value attribute).

 Locating by XPath. XPath is the language used for locating nodes in an XML

document. As HTML can be an implementation of XML (XHTML), Selenium

users can leverage this powerful language to target elements in their web

applications. XPath extends beyond (as well as supporting) the simple methods of

locating by id or name attributes, and opens up all sorts of new possibilities such

as locating the third checkbox on the page.

One of the main reasons for using XPath is when you don’t have a suitable id

or name attribute for the element you wish to locate. You can use XPath to either

locate the element in absolute terms (not advised), or relative to an element that

does have an id or name attribute. XPath locators can also be used to specify

elements via attributes other than id and name. Absolute XPaths contain the

location of all elements from the root (html) and as a result are likely to fail with

only the slightest adjustment to the application. By finding a nearby element with

an id or name attribute (ideally a parent element) you can locate your target

element based on the relationship. This is much less likely to change and can make

your tests more robust.

48

 Locating Hyperlinks by Link Text. This is a simple method of locating a

hyperlink in your web page by using the text of the link. If two links with the same

text are present, then the first match will be used.

 Locating by CSS. CSS (Cascading Style Sheets) is a language for describing the

rendering of HTML and XML documents. CSS uses Selectors for binding style

properties to elements in the document. These Selectors can be used by Selenium

as another locating strategy.

Selenium Client API

As an alternative to writing tests in Selenese, tests can also be written in various

programming languages. These tests then communicate with Selenium by calling methods in

the Selenium Client API. Selenium currently provides client APIs for Java, C#, Ruby and

Python. With Selenium 2, a new Client API was introduced (with WebDriver as its central

component). However, the old API (using class Selenium) is still supported [32].

Selenium Remote Control

Selenium Remote Control (RC) is a server that accepts commands for the browser via

HTTP. It is written in Java. RC makes it possible to write automated tests for a web

application in any programming language, which allows for better integration of Selenium in

existing unit test frameworks. To make writing tests easier, Selenium project currently

provides client drivers for PHP, Python, Ruby, .NET, Perl and Java. The Java driver can also

be used with JavaScript (via the Rhino engine). A new instance of selenium RC server is

needed to launch html test case—which means that the port should be different for each

49

parallel run. However, for Java/PHP test case only one Selenium RC instance needs to be

running continuously [33]. Selenium RC components are shown below.

 The Selenium Server which launches and kills browsers, interprets and runs the

Selenese commands passed from the test program, and acts as an HTTP proxy,

intercepting and verifying HTTP messages passed between the browser and the

AUT.

 Client libraries which provide the interface between each programming language

and the Selenium RC Server.

Figure 4.4 shows the client libraries communicate with the Server passing each

Selenium command for execution. Then the server passes the Selenium command to the

browser using Selenium-Core JavaScript commands. The browser, using its JavaScript

interpreter, executes the Selenium command. This runs the Selenese action or verification you

specified in your test script [34].

50

Figure 4.4

Outline of Selenium RC's architecture [30]

Selenium Grid

Selenium Grid is a server that allows tests to use web browser instances running on

remote machines. With Selenium Grid, one server acts as the hub. Tests contact the hub to

obtain access to browser instances. The hub has a list of servers that provide access to browser

instances (WebDriver nodes), and lets tests use these instances. Selenium Grid allows running

tests in parallel on multiple machines, and to manage different browser versions and browser

configurations centrally (instead of in each individual test) [35].

Selenium WebDriver

Selenium WebDriver is the successor to Selenium RC. Selenium WebDriver accepts

commands (sent in Selenese, or via a Client API) and sends them to a browser. This is

51

implemented through a browser-specific browser driver, which sends commands to a browser,

and retrieves results. Most browser drivers actually launch and access a browser application

(such as Firefox or Internet Explorer); there is also an HtmlUnit browser driver, which

simulates a browser using HtmlUnit [35].

Unlike in Selenium 1, where the Selenium server was necessary to run tests, Selenium

WebDriver does not need a special server to execute tests. Instead, the WebDriver directly

starts a browser instance and controls it. However, Selenium Grid can be used with

WebDriver to execute tests on remote systems.

Locating elements can be done as it is described with Selenium IDE such as Locating

by Id, Locating by Name, Locating by XPath, Locating Hyperlinks by Link Text andLocating

by CSS. In order to find XPath and CSS location it is used FirePath tool in FireBug software

which comes as add-on to Mozilla Firefox web browser.

Junit. The unit testing tool Junit mainly deals with fundamental class testing and

compounding class testing. However, it cannot conveniently test private methods and

domains, neither cannot support testing the method, whose type of parameters is a class, in a

fundamental class or a compounding class. In addition, it even cannot efficiently support

some special Java class testing, such as the inherited class, abstract class and interface. This

paper discusses how to introduce new testing principles and a new plug-in to Junit, and how

to extend the source code of Junit to improve the testing effectiveness [36].

FireBug. Firebug is a web development tool that facilitates the debugging, editing,

and monitoring of any website's CSS, HTML, DOM, XHR, and JavaScript; it also provides

52

other web development tools. In this chapter it is used to identify object elements using

FirePath tool. It helps in providing the selected object property information [37].

Apache Maven. Apache Maven is a software project management and comprehension

tool. Based on the concept of a project object model (POM), Maven can manage a project's

build, reporting and documentation from a central piece of information. Maven provides

developers a complete build lifecycle framework. Development team can automate the

project's build infrastructure in almost no time as Maven uses a standard directory layout and

a default build lifecycle [38].

In case of multiple development teams environment, Maven can set-up the way to

work as per standards in a very short time. As most of the project setups are simple and

reusable, Maven makes life of developer easy while creating reports, checks, build and testing

automation setups [38]. Figure 4.5 shows an auto-generated directory structure by Maven.

Figure 4.5

An auto-generated directory structure by Maven [38]

53

Sample Test Cases Automation Using Selenium IDE

TestCase 1. Login with a valid username and a valid password (Figure 4.6).

Figure 4.6

Login with valid username and password

54

TestCase 2. Login with an invalid username and a valid password (Figure 4.7)

Figure 4.7

Login with invalid username and valid password

55

TestCase 3. Login with a valid username and an invalid password (figure 4.8)

Figure 4.8

Login with valid username and invalid password

56

Sample Test Cases Automation Using Selenium WebDriver

In order to automate a test case with Selenium WebDriver it is used some additional

software such as Java, FireBug, Maven and Eclipse IDE.

Step 1: Open Eclipse IDE When Eclipse IDE is opened, need to set the workspace

path (Figure 4.9).

Figure 4.9

Open Eclipse IDE

57

Step 2: Setup Eclipse environment to use Java, JUNIT, Selenium and Maven

(Figure 4.10).

Figure 4.10

Eclipse IDE with JAVA, Selenium and Maven

58

Step 3: After configuring POM file the framework is ready to automate test cases

(Figure 4.11).

Figure 4.11

Configurations of Apache Maven POM file to install dependencies

59

Step 4: Sample automated test cases

Test case 1. Go to www.yahoo.comon Mozilla Firefox web browser and check

whether the title of the page is 'Yahoo'. If the response is yes (Figure 4.12) then the test is

passed. Otherwise the test is failed.

Figure 4.12

When actual outcome is equal to the predicted outcome

Test case 2. Go to www.yahoo.com on Mozilla Firefox web browser and check

whether the title of the page is 'Google'. If it is yes test is passed. Otherwise test is failed

(Figure 4.13).

60

Figure 4.13

When actual outcome is unequal to the predicted outcome

Test case 3. Automate the scenario of purchasing a book from particular online store

(http://www.soastastore.com/?page_id=4).

http://www.soastastore.com/?page_id=4

61

Table 4.1

Steps of test case execution and expected outcomes

Steps: Expected Outcome

1. Navigate to Soastore.com User directed to Soastore.com. Page display store.

2. Verify book name 'Vegas Moon' The book name 'Vegas Moon' is displayed

3. Click Add To Cart Product Vegas Moon added to cart

4 Verify Total Price is $14.99 Total Price is $14.99

In order to automate this test case it is required to find 'Vegas Moon', 'Add to Cart' and

'Total Price' objects on the web page. This example is uses three different locating elements to

add above three objects (Figure 4.14).

 Locating Hyperlinks by Link Text to find 'Vegas Moon'

 Locating by XPath to find 'Add to Cart' button click

 Locating by CSS to find 'Total Price'

62

Figure 4.14

Automation of purchase a book from a web site to illustrate locating elements

This chapter discussed about some software testing tools manly Selenium as a

functional automation tool of web based applications. The automated software tools ease the

operations of testing. With such tools, software testing can be done much faster than

traditional testing methods. APENDIX will show further extension of web based application

automation with Selenim tool and other resources.

63

Chapter 5: Conclusion

Every software developer knows the importance of software testing. It ensures the

software product does what it is supposed to do. One of the major advantages of software

testing is that it eliminates or reduces errors leading to faster development time and less cost.

Thus theoretically, the final product can be delivered on time with a reasonable price tag.

Therefore testing is beneficial for the client as well as the developer.

Recent software project requirements and specifications rapidly change, in order to

satisfy the customer it is necessary to deliver an error free product on time. To find at least all

required functional errors the final product need to be tested properly. To maintain all of these

in a given project, there have to have a great project management and to test the project

properly, it is mandatory to have a STLC. There are so many methods, levels and types of

software testing applied throughout the STLC. The main methods include static testing and

dynamic testing. In static testing the code itself is tested without running the software whereas

dynamic testing is done by executing the software itself. Both these methods can be applied

for better results. White-box and black-box methodologies are another two different methods

used for testing. White-box testing is applied when the internal procedures and operations of

the software are known and black-box testing is when those are unknown. A combination of

these two methods is known as gray-box testing and can be better than the other two

methodologies alone under many circumstances. Software testing methods can broadly be

classified as verification and validation. While verification answers the question 'Are we

building the right thing?', validation focuses on the question 'Are we building the thing right?'.

Main testing levels include unit testing, integration testing, system testing and acceptance

64

testing. These can be used at different stages of STLC. But all these levels of testing cannot be

employed at all stages of the STLC. There are many test types that can be used for testing

software. A set of these test types can be incorporated to test software. The types of tests used

may depend of the software, the knowledge and experience of the testers, test schedules and

deadlines etc. but theoretically no software can be tested 100%.

As stated earlier software testing eliminates or reduces errors leading to faster

development time and lower cost. Unfortunately testing itself can be time consuming and

hence costly. Valuable time that could be used for some other important thing has to be

allocated for testing. Therefore, to enjoy the benefits of testing, it is important to reduce the

time spent on testing without sacrificing the quality of the testing process. There are two

major approaches to this end: one is to reduce time spent on testing by reducing the number of

test cases, and the other, to automated repetitive test steps thereby increasing testing speed

leading to reduced testing times.

Combinatorial testing aims at reducing the testing times. It achieves this by selecting a

minimum number of test cases known as covering array depending on the number of test

inputs. A reduction of test cases sometimes in the ranges of 100:1 leads to much less testing

times and testing overheads. But the practical difficulty with combinatorial testing is

preparing the covering array for systems with higher number of inputs. For this reason little

attention was paid to combinatorial testing by the testers for almost a decade.

With the advent of new automated testing tools, software testing has become less

arduous. Different automated software testing tools have emerged for testing different types

of software. These have radically improved testing speeds and accuracy. For example here we

65

have demonstrated the Selenium tool. This wave of automated software testing tools has

helped combinatorial testing too. Now the most difficult part in combinatorial testing -

building the covering array - can be handed over to an automated tool. With this development,

combinatorial testing should receive more attention as an efficient testing method.

Finally, this paper basically discussed and gave an introduction to the software testing

with the aims and importance of software testing. Then it addressed two main problems of

software testing and suggested two solutions in order to reduce the number of test cases and

testing time using combinatorial testing and test automation accordingly. It is presented the

solution to first problem using combinatorial testing while test automation providing solution

to second problem in detail with some examples. In the Appendix it will be discussed,

implementation of a framework for functional automation of an industrial standard web based

software project by using basically Selenium and Java.

66

References

[1] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley & Sons, 2011.

[2] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University

Press, 2008.

[3] C. Kaner, “Exploratory testing,” in Quality Assurance Institute Worldwide Annual

Software Testing Conference, 2006.

[4] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter, “Combinatorial software testing,” Computer

(Long. Beach. Calif)., vol. 42, no. 8, pp. 94–96, 2009.

[5] P. R. Srivastava and K. Baby, “Automated software testing using metahurestic

technique based on an ant colony optimization,” Electron. Syst. Des. (ISED), 2010 Int.

Symp., 2010.

[6] Softwaretestinggenius.com, “Software testing genius,” 2012. [Online]. Available:

http://www.softwaretestinggenius.com/. [Accessed: 19-May-2014].

[7] K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical observations on software

testing automation,” in 2009 International Conference on Software Testing Verification

and Validation, 2009, pp. 201–209.

[8] T. Wissink and C. Amaro, “Successful test automation for software maintenance,” in

2006 22nd IEEE International Conference on Software Maintenance, 2006, pp. 265–

266.

[9] A. Zylberman and A. Shotten, “Test language - Introduction to keyword-driven

testing,” Methods & Tools, 01-Jan-2010.

[10] M. S. Milad Hanna Nahla El-Haggar, “A review of scripting techniques used in

automated software testing,” Int. J. Adv. Comput. Sci. Appl., vol. 5, no. 1, pp. 194–202,

2014.

[11] Smartbear.com, “What is agile testing? | SmartBear software,” 2013. [Online].

Available: http://smartbear.com/all-resources/articles/what-is-agile-testing/. [Accessed:

24-May-2014].

[12] E. Collins, A. Dias-Neto, and V. F. de Lucena Jr., “Strategies for agile software testing

automation: An industrial experience,” in 2012 IEEE 36th Annual Computer Software

and Applications Conference Workshops, 2012, pp. 440–445.

67

[13] Netsolutionsindia.com, “How AGILE testing helps in building better software products

|,” 2013. [Online]. Available: http://www.netsolutionsindia.com/blog/agile-testing-for-

software-products/. [Accessed: 24-May-2014].

[14] O. Tekin and G. B. Cetin, “Application test process in product life cycle,” in 2012 6th

International Conference on Application of Information and Communication

Technologies (AICT), 2012, pp. 1–6.

[15] Softwaretestingfundamentals.com, “Software Testing life cycle (STLC) | software

testing fundamentals,” 2012. [Online]. Available: http://softwaretestingfundamentals.

com/software-testing-life-cycle/. [Accessed: 23-May-2014].

[16] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” in

Proceedings of the Future of Software Engineering at ICSE 2007, 2007, pp. 85–103.

[17] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and dynamic automated

test generation,” Proc. 2011 Int. Symp. Softw. Test. Anal. - ISSTA ’11, no. 2, p. 353,

2011.

[18] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G.

Vigna, “Saner: Composing static and dynamic analysis to validate sanitization in web

applications,” in Proceedings - IEEE Symposium on Security and Privacy, 2008, pp.

387–401.

[19] J. Lönnberg, A. Korhonen, and L. Malmi, “MVT,” in Proceedings of the Working

Conference on Advanced Visual Interfaces - AVI ’04, 2004, p. 385.

[20] K. M. Mustafa, R. E. Al-Qutaish, and M. I. Muhairat, “Classification of software

testing tools based on the software testing methods,” in 2009 Second International

Conference on Computer and Electrical Engineering, 2009, pp. 229–233.

[21] A. Sawant, P. H. Bari, and P. M. Chawan, “Software testing techniques and strategies,”

J. Eng. Res. Appl., vol. 2, no. 3, pp. 980–986, 2012.

[22] A. Arcuri, M. Z. Iqbal, and B. Lionel, “Black-box system testing of real-time

embedded systems using random and search-based testing,” Test. Softw. Syst., vol.

6435, pp. 95–110, 2010.

[23] A. MacCormack, “Product-development practices that work: How internet companies

build software | MIT Sloan management review,” MIT Sloan Management Review,

2001.

[24] E. V Veenendaal, “Standard glossary of terms used in software testing, Version 1.2,”

Int. Softw. Test. Qualif. Board, vol. 1, pp. 1–51, 2010.

68

[25] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to Combinatorial Testing. CRC

Press, 2013.

[26] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life techniques to generate test

cases for combinatorial testing,” in Proceedings of the 28th Annual International

Computer Software and Applications Conference, 2004. COMPSAC 2004., 2004.

[27] D. Blue, I. Segall, R. Tzoref-brill, and A. Zlotnick, “Interaction-based test-suite

minimization,” in Proceedings of the 2013 International Conference on Software

Engineering, 2013, pp. 182–191.

[28] D. Kuhn, R. Kacker, and Y. Lei, “Practical combinatorial testing,” NIST Spec. Publ.,

2010.

[29] D. Huizinga and A. Kolawa, Automated Defect Prevention: Best Practices in Software

Management. John Wiley & Sons, 2007.

[30] A. Holmes and M. Kellogg, “Automating functional tests using selenium,” in AGILE

2006 (AGILE’06), pp. 270–275.

[31] N. Uppal and V. Chopra, “Design and implementation in selenium IDE with web

driver,” Int. J. Comput. Appl., vol. 46, no. 12, pp. 8–11.

[32] D. Burns, Selenium 2 Testing Tools: Beginner’s Guide. Packt Publishing, Ltd, 2012.

[33] A. Bruns, A. Kornstadt, and D. Wichmann, “Web application tests with selenium,”

IEEE Softw., vol. 26, no. 5, pp. 88–91, Sep. 2009.

[34] R. A. Razak and F. R. Fahrurazi, “Agile testing with selenium,” in 2011 Malaysian

Conference in Software Engineering, 2011, pp. 217–219.

[35] F. Wang and W. Du, “A test automation framework based on WEB,” in Proceedings -

2012 IEEE/ACIS 11th International Conference on Computer and Information Science,

ICIS 2012, 2012, pp. 683–687.

[36] L. Kong and Z. Yin, “The extension of the unit testing tool junit for special testings,” in

First International Multi-Symposiums on Computer and Computational Sciences

(IMSCCS’06), 2006, vol. 2, pp. 410–415.

[37] N. Javvaji, A. Sathiyaseelan, and U. Selvan, “Data driven automation testing of web

application using selenium,” isqtinternational.com.

[38] S. Company, Maven: The Definitive Guide: The Definitive Guide, vol. 4. O’Reilly

Media, Inc., 2008.

69

Appendix

Test Automation Project with Eclipse and Intellij-Idea IDEs

Setup the environment to implement the project

Step-1: Install the Mozilla Firefox web browser (if required).

Step-2: Open Firefox and go to Tools menu Add-ons, install Firebug and FirePath and then

restart the browser.

Step-3: Go to http://www.seleniumhq.org/download/ and install latest version of Selenium

IDE as plug-in to Firefox web browser and restart it.

Step-4: Install the Java development kit and setup the environment variables.

Project implementation with the Eclipse IDE

Step-1: Download and install eclipse IDE

Step-2: Install maven build tool (In eclipse IDE go to Help Install New Software…)

70

Figure 1

Installation ofMaven build tool with the Eclipse IDE

Step-3: Install TestNG testing framework (In eclipse IDE go to Help Install New

Software…)

71

Figure 2

Installation ofTestNG testing frameworkwith the Eclipse IDE

Step-4: Write java code and add the properties, resources, test data files to the project

Figure 3

Project implementation with the Eclipse IDE

72

Step-5: Configure Maven POM file by adding required dependencies

Figure 4

Project package explorerwindow with the Eclipse IDE

Step-6: Execute the project and see the results

Figure 5

Test result of LoginTest.java class with the Eclipse IDE

73

Project implementation with the IntelliJ-IDEA IDE

Step-1: Download and install IntelliJ IDEA IDE

Step-2: Maven build toolandTestNG framework are pre-installed with IDEA IDE

Step-3: Write java code and add properties, resources, test data files to the project

Figure 6

Implementation with the IDEA IDE

74

Figure 7

Project package explorer window with the IDEA IDE

Step-4: Configure Maven POM file by adding required dependencies

Figure 8

Maven projectwindow with the IDEA IDE

75

Step-5: Execute the project and see the results.

Figure 9

Test result of LoginTest.java class with the IDEA IDE generated by HTML

Figure 10

Test result of LoginTestsWithExcelCredentials.jave class with the IDEA IDE

76

Figure 11

Test result of UserCreation.Java class with the IDEA IDE generated by HTML

77

Java Source Code of Multiple Test Classes

To implement all the comment calls: Base.Java

packagecom.DataDrivenExcellTestNG;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;
importorg.openqa.selenium.By;
importorg.openqa.selenium.InvalidElementStateException;
importorg.openqa.selenium.WebDriver;
importorg.openqa.selenium.WebElement;
importorg.openqa.selenium.chrome.ChromeDriver;
importorg.openqa.selenium.firefox.FirefoxDriver;
importorg.openqa.selenium.htmlunit.HtmlUnitDriver;
importorg.openqa.selenium.ie.InternetExplorerDriver;
importorg.testng.annotations.AfterSuite;
importorg.testng.annotations.BeforeSuite;

importjava.io.FileInputStream;
importjava.io.IOException;
importjava.util.Properties;
importjava.util.concurrent.TimeUnit;

publicclass Base {

protectedstatic String url;
protectedstaticWebDriverdriver;
protectedstatic Properties properties;
protectedbooleanacceptNextAlert = true;
protectedstaticStringBufferverificationErrors = newStringBuffer();

protectedstatic String BROWSER_TYPE;
protectedstaticintTIME_OUT;
protectedstatic String FIELD_DELIMITER;
protectedstatic String DATA_DELIMITER;

protectedstatic String BASE_URL;
protectedstatic String USERNAME;
protectedstatic String PASSWORD;
staticfinal Logger logger = Logger.getLogger(Base.class);

@BeforeSuite
publicvoidbeforeSuite() throws Exception {
properties = new Properties();
try {

78

properties.load(new
FileInputStream("C:/Users/Akalanka/TestAutomation/DataDrivenExcellTestNG/src/test/
java/com/DataDrivenExcellTestNG/test.properties"));
PropertyConfigurator.configure("C:/Users/Akalanka/TestAutomation/DataDrivenExcellT
estNG/src/test/java/com/DataDrivenExcellTestNG/log.properties");

BROWSER_TYPE = properties.getProperty("BROWSER_TYPE");
TIME_OUT = Integer.parseInt(properties.getProperty("TIME_OUT"));
FIELD_DELIMITER = properties.getProperty("FIELD_DELIMITER");
DATA_DELIMITER = properties.getProperty("DATA_DELIMITER");

BASE_URL = properties.getProperty("BASE_URL");
USERNAME = properties.getProperty("USERNAME");
PASSWORD = properties.getProperty("PASSWORD");

driver = getWebDriver();

 } catch (IOException e) {
logger.fatal(e);
System.exit(0);
 }
 }

@AfterSuite
publicvoidafterSuite() throws Exception {
driver.quit();
 }
protectedWebDrivergetWebDriver() throws Exception {

if (BROWSER_TYPE == null) {
logger.info("BROWSER_TYPE not set. Starting default type");
driver = newHtmlUnitDriver();
 } elseif (BROWSER_TYPE.equalsIgnoreCase("Firefox")) {
driver = newFirefoxDriver();
 } elseif (BROWSER_TYPE.equalsIgnoreCase("Chrome")) {
 System.setProperty("webdriver.chrome.driver","C:/Users/Akalanka/TestAutomat
ion/DataDrivenExcellTestNG/src/test/resources/chromedriver.exe");
driver = newChromeDriver();
 } elseif (BROWSER_TYPE.equalsIgnoreCase("InternetExplorer")) {
 System.setProperty("webdriver.ie.driver","C:/Users/Akalanka/TestAutomation/
DataDrivenExcellTestNG/src/test/resources/IEDriverServer.exe");
driver = newInternetExplorerDriver();
 } elseif (BROWSER_TYPE.equalsIgnoreCase("HtmlUnit")) {
driver = newHtmlUnitDriver();
 } else {
logger.info("BROWSER_TYPE not identified. Starting default type");
driver = newHtmlUnitDriver();
 }

logger.info("BROWSER_TYPE=" + BROWSER_TYPE);
driver.manage().window().maximize();
driver.manage().timeouts().implicitlyWait(TIME_OUT, TimeUnit.SECONDS);
returndriver;

79

 }

protectedvoidclearAndType(By by, String text) throws Exception {
WebElement field = driver.findElement(by);
try {
field.clear();
field.sendKeys(text);
 } catch (InvalidElementStateException e) {
logger.info(e.toString());
 }
 }

protectedvoid click(By by) throws Exception {
driver.findElement(by).click();
 }

protectedvoidreadAndCompare(By by, String text) throws Exception {
WebElement field = driver.findElement(by);
if (!field.getText().equals(text)) {
verificationErrors.append("\nElement: ");
verificationErrors.append(by.toString());
verificationErrors.append("\nExpected Text: ");
verificationErrors.append(text);
verificationErrors.append("\nActual Text: ");
verificationErrors.append(field.getAttribute("value"));
 }
 }
}

TEST-1: LoginTests.Java

packagecom.DataDrivenExcellTestNG;

importorg.openqa.selenium.By;
importorg.testng.Assert;
importorg.testng.annotations.Test;

publicclassLoginTestsextends Base{

 By userName = By.id("txtUsername");
 By password = By.id("txtPassword");
 By subButton =By.id("btnLogin");
 By welcomeId = By.id("welcome");

@Test
publicvoid test1ValidLogin() throws Exception {

driver.get(BASE_URL + "symfony/web/index.php/auth/login");

80

clearAndType(userName, "Admin");
clearAndType(password, "admin");
click(subButton);
readAndCompare(welcomeId ,"Welcome Admin");
 }

@Test
publicvoid test2InvalidUsernameLogin() throws Exception {
driver.get(BASE_URL + "symfony/web/index.php/auth/login");
 String userName = "abc123";
driver.findElement(By.cssSelector("span.form-hint")).click();
driver.findElement(By.id("txtUsername")).clear();
driver.findElement(By.id("txtUsername")).sendKeys(userName);
driver.findElement(By.id("txtPassword")).clear();
driver.findElement(By.id("txtPassword")).sendKeys("admin");
driver.findElement(By.id("btnLogin")).click();
try {
Assert.assertEquals("Retry Login",
driver.findElement(By.cssSelector("h1")).getText());
 } catch (Error e) {
verificationErrors.append(e.toString());
 }
Assert.assertEquals("OrangeHRM", driver.getTitle());
 }

@Test
publicvoid test3InvalidPasswordLogin() throws Exception {
driver.get(BASE_URL + "symfony/web/index.php/auth/login");
 String userPassword = "abc123";
driver.findElement(By.id("txtUsername")).clear();
driver.findElement(By.id("txtUsername")).sendKeys("Admin");
driver.findElement(By.id("txtPassword")).clear();
driver.findElement(By.id("txtPassword")).sendKeys(userPassword);
try {
Assert.assertEquals("(Username : Admin | Password : admin)",
driver.findElement(By.cssSelector("font")).getText());
 } catch (Error e) {
verificationErrors.append(e.toString());
 }
try {
Assert.assertEquals("LOGIN Panel",
driver.findElement(By.id("logInPanelHeading")).getText());
 } catch (Error e) {
verificationErrors.append(e.toString());
 }
driver.findElement(By.id("btnLogin")).click();
 }
@Test
publicvoid test4SampleLogin() {
driver.get(BASE_URL + "symfony/web/index.php/auth/login");
driver.findElement(By.xpath("//div[@id='divUsername']/input")).clear();
driver.findElement(By.xpath("//div[@id='divUsername']/input")).sendKeys("Admin");
driver.findElement(By.xpath("//div[@id='divPassword']/input")).clear();

81

driver.findElement(By.xpath("//div[@id='divPassword']/input")).sendKeys("admin");
driver.findElement(By.xpath("//div[@id='divLoginButton']/input")).click();
driver.findElement(By.xpath("//div[@id='branding']/a[2]")).click();
try {
Assert.assertEquals("Welcome Catherina",
driver.findElement(By.xpath("//div[@id='branding']/a[2]")).getText());

 } catch (Error e) {
System.out.println(e.getMessage());
 }
driver.findElement(By.xpath("//div[@id='welcome-menu']/ul/li/a")).click();

 }
}

To read data from MS-Excel files: ReadXLS.Java

packagecom.DataDrivenExcellTestNG;

importorg.apache.poi.xssf.usermodel.XSSFCell;
importorg.apache.poi.xssf.usermodel.XSSFRow;
importorg.apache.poi.xssf.usermodel.XSSFSheet;
importorg.apache.poi.xssf.usermodel.XSSFWorkbook;

importjava.io.File;
importjava.io.FileInputStream;
importjava.util.ArrayList;
importjava.util.Iterator;
importjava.util.List;

publicclassReadXLS {

 String excelPath;

publicReadXLS(String path){
excelPath = path;
 }
publicListgetData() {

ListdataList = newArrayList();
FileInputStreamfis = null;
try {
fis = newFileInputStream(new File(excelPath));
XSSFWorkbook workbook = newXSSFWorkbook(fis);
XSSFSheet sheet = workbook.getSheet("TestData");

82

java.util.Iterator rows = sheet.rowIterator();

while (rows.hasNext()) {
XSSFRow row = ((XSSFRow) rows.next());
// int r=row.getRowNum();
java.util.Iterator cells = row.cellIterator();
int i = 0;
String[] testData= new String[3];
while (cells.hasNext()) {

XSSFCell cell = (XSSFCell) cells.next();
String value = cell.getStringCellValue();
if (!value.equals(null)) {
testData [i] = value;
i++;
 }
 }
dataList.add(testData);
 }
 }
catch (Exception e) {
e.printStackTrace();
 }
returndataList;
 }

publicListgetDataFromAdminTest(intnumberOfColumns) {

ListdataList = newArrayList();
FileInputStreamfis = null;
try {
fis = newFileInputStream(new File(excelPath));
XSSFWorkbook workbook = newXSSFWorkbook(fis);
//get data from Test Data sheet of work book
XSSFSheet sheet = workbook.getSheet("Test Data");
Iterator rows = sheet.rowIterator();

while (rows.hasNext()) {
XSSFRow row = ((XSSFRow) rows.next());
Iterator cells = row.cellIterator();
int i = 0;
String[] testData= new String[numberOfColumns];
while (cells.hasNext()) {

XSSFCell cell = (XSSFCell) cells.next();
String value = cell.getStringCellValue();
if (!value.equals(null)) {
testData [i] = value;
i++;
 }
 }
dataList.add(testData);
 }

83

 }
catch (Exception e) {
e.printStackTrace();
 }
returndataList;
 }
}

TEST-2: LoginTestsWithExcelCredentials.Java

packagecom.DataDrivenExcellTestNG;

importorg.openqa.selenium.By;
importorg.testng.annotations.DataProvider;
importorg.testng.annotations.Test;

importjava.util.List;

publicclassLoginTestsWithExcelCredentialsextends Base{

 By userName = By.id("txtUsername");
 By password = By.id("txtPassword");
 By subButton =By.id("btnLogin");
 By welcomeId = By.id("welcome");

@Test(dataProvider = "myTest")
publicvoidtestOrangeHRMLogin(String un, String pwd) throws Exception {

driver.get(BASE_URL + "symfony/web/index.php/auth/login");
clearAndType(userName, un);
clearAndType(password, pwd);
click(subButton);
readAndCompare(welcomeId ,"Welcome Admin");
 }

@DataProvider(name = "myTest")
public Object[][] getDataFromExcell() {
 String path =
"C:/Users/Akalanka/TestAutomation/DataDrivenExcellTestNG/testData/LoginCredentials
.xlsx";
ReadXLSreadXls = newReadXLS(path);
ListdataList = readXls.getData();
 Object obj[][] = new Object[dataList.size()][2];
for (int i = 0; i <dataList.size(); i++) {
String[] test = (String[]) dataList.get(i);

84

 String un = test[0];
 String pwd = test[1];
obj[i][0] = un;
obj[i][1] = pwd;
 }
returnobj;
 }
}

TEST-3: UserCreation.Java

packagecom.DataDrivenExcellTestNG;

importcom.thoughtworks.selenium.Selenium;

importorg.apache.commons.io.FileUtils;
importorg.openqa.selenium.*;
importorg.openqa.selenium.chrome.ChromeDriver;
importorg.openqa.selenium.firefox.FirefoxDriver;
importorg.openqa.selenium.ie.InternetExplorerDriver;
importorg.openqa.selenium.support.ui.Select;
importorg.testng.annotations.AfterTest;
importorg.testng.annotations.BeforeTest;
importorg.testng.annotations.DataProvider;
importorg.testng.annotations.Test;

importjava.io.File;
importjava.util.List;
importjava.util.concurrent.TimeUnit;

importstaticorg.testng.AssertJUnit.assertEquals;
importstaticorg.testng.AssertJUnit.assertTrue;

publicclassUserCreation{

private Selenium selenium;
privateWebDriverdriver;

@BeforeTest
publicvoidsetUp() throws Exception {

driver = newFirefoxDriver();
//System.setProperty("webdriver.chrome.driver","C:/Users/Akalanka/TestAutomation/D
ataDrivenExcellTestNG/src/test/resources/chromedriver.exe");
//driver = new ChromeDriver();

85

//System.setProperty("webdriver.ie.driver","C:/Users/Akalanka/TestAutomation/DataD
rivenExcellTestNG/src/test/resources/IEDriverServer.exe");
//driver = new InternetExplorerDriver();

 String baseUrl = "http://admin.netexam.com/";
selenium = newWebDriverBackedSelenium(driver, baseUrl);
driver.manage().window().maximize();
driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);
siteLogin();
 }

@Test (priority = 0 ,dataProvider = "myTest")
publicvoidnetexamCreateNewUser(String runMode,StringfirstName ,String lastName
,String txtUserName ,String email) throws Exception {

createNewUser(runMode,firstName,lastName,txtUserName,email);
 }

privatevoidsiteLogin() {
driver.get("http://admin.netexam.com/login.asp");
driver.findElement(By.id("email")).clear();
driver.findElement(By.id("email")).sendKeys("testing@netexam.com");
driver.findElement(By.id("password")).clear();
driver.findElement(By.id("password")).sendKeys("y7efhuh84t");
driver.findElement(By.cssSelector("input[type=\"submit\"]")).click();
selenium.waitForPageToLoad("30000");

assertTrue(driver.findElement(By.cssSelector("BODY")).getText().matches("^[\\s\\S]
Welcome netexam testing[\\s\\S]$"));
System.out.println("Site Login Successful ");
 }

privatevoidcreateNewUser(String runMode,StringfirstName ,String lastName ,String
txtUserName ,String email) throwsInterruptedException {

selenium.open("http://admin.netexam.com/user-addedit.asp");
selenium.waitForPageToLoad("90000");

Thread.sleep(500);
driver.findElement(By.id("firstname")).clear();
driver.findElement(By.id("firstname")).sendKeys(firstName);
driver.findElement(By.id("lastname")).clear();
driver.findElement(By.id("lastname")).sendKeys(lastName);
driver.findElement(By.id("txtUsername")).clear();
driver.findElement(By.id("txtUsername")).sendKeys(txtUserName);
driver.findElement(By.id("businessemail")).clear();
driver.findElement(By.id("businessemail")).sendKeys(email);

Thread.sleep(500);
new
Select(driver.findElement(By.id("cmbTimeZone"))).selectByVisibleText("(GMT+06:00)
Astrana, Dhaka");

86

new Select(driver.findElement(By.id("Select3"))).selectByVisibleText("United
States");
new Select(driver.findElement(By.id("Select4"))).selectByVisibleText("English");

Thread.sleep(500);
driver.findElement(By.cssSelector("#show-btn-Courses")).click();
driver.findElement(By.xpath("//div/table/tbody/tr/td/table/tbody/tr/td/div/input")
).sendKeys("v6Testgroup");
driver.findElement(By.xpath("//img[2]")).click();
Thread.sleep(500);
driver.findElement(By.xpath("//div[2]/div/div/div[2]/div/div/table/tbody/tr/td[3]/
div")).click();
driver.findElement(By.xpath("//td[2]/table/tbody/tr/td/table/tbody/tr/td/table/tbo
dy/tr[2]/td[2]/em/button")).click();

Thread.sleep(500);
new Select(driver.findElement(By.id("Select5"))).selectByVisibleText("Default");
new Select(driver.findElement(By.id("Select7"))).selectByVisibleText("Default");

Thread.sleep(500);
driver.findElement(By.cssSelector("#Submit2")).click();

selenium.waitForPageToLoad("30000");

try {
 File scrFile =
((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);
FileUtils.copyFile(scrFile, new
 File("C:\\Automation\\Netexam\\screenshots\\user_profile_new.png"));
 }
catch (Exception e) {
e.printStackTrace();
 }

assertEquals("Add/Edit a User: Akalanka Mailewa",
driver.findElement(By.cssSelector("td.ArialBlack15")).getText());

System.out.println("User Creation Successful");
 }

privatevoidcreateDuplicateUser() throwsInterruptedException {
selenium.open("http://admin.netexam.com/user-addedit.asp");
selenium.waitForPageToLoad("90000");

Thread.sleep(500);
driver.findElement(By.id("firstname")).clear();
driver.findElement(By.id("firstname")).sendKeys("Akalanka1");
driver.findElement(By.id("lastname")).clear();
driver.findElement(By.id("lastname")).sendKeys("Mailewa");
driver.findElement(By.id("txtUsername")).clear();
driver.findElement(By.id("txtUsername")).sendKeys("Akalanka002");
driver.findElement(By.id("businessemail")).clear();
driver.findElement(By.id("businessemail")).sendKeys("Akalanka002@yahoo.com");

87

Thread.sleep(500);
new
Select(driver.findElement(By.id("cmbTimeZone"))).selectByVisibleText("(GMT+06:00)
Astrana, Dhaka");
new Select(driver.findElement(By.id("Select3"))).selectByVisibleText("United
States");
new Select(driver.findElement(By.id("Select4"))).selectByVisibleText("English");

Thread.sleep(500);
driver.findElement(By.cssSelector("#show-btn-Courses")).click();
driver.findElement(By.xpath("//div/table/tbody/tr/td/table/tbody/tr/td/div/input")
).sendKeys("v6Testgroup");
driver.findElement(By.xpath("//img[2]")).click();
Thread.sleep(500);
driver.findElement(By.xpath("//div[2]/div/div/div[2]/div/div/table/tbody/tr/td[3]/
div")).click();
driver.findElement(By.xpath("//td[2]/table/tbody/tr/td/table/tbody/tr/td/table/tbo
dy/tr[2]/td[2]/em/button")).click();

Thread.sleep(500);
new Select(driver.findElement(By.id("Select5"))).selectByVisibleText("Default");
new Select(driver.findElement(By.id("Select7"))).selectByVisibleText("Default");

Thread.sleep(500);
driver.findElement(By.cssSelector("#Submit2")).click();

selenium.waitForPageToLoad("30000");

try {
 File scrFile =
((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);
FileUtils.copyFile(scrFile, new
 File("C:\\Automation\\Netexam\\screenshots\\user_profile_duplicate.png"));
 }
catch (Exception e) {
e.printStackTrace();
 }

assertEquals("The new Username you entered already exists.\nThe email you entered
already exists.", driver.findElement(By.cssSelector("span.wrong")).getText());
System.out.println("Duplicate User Detection Successful");
 }

@AfterTest
publicvoidtearDown() throws Exception {
selenium.stop();
 }

//--------------------------------get data from Admin Test Cases Excel file

88

@DataProvider(name = "myTest")
public Object[][] getDataFromExcell() {
 String path =
"C:/Users/Akalanka/TestAutomation/DataDrivenExcellTestNG/testData/UserList.xlsx";
intnumberOfColumns = 5 ; // number of columns in excel sheet
ReadXLSreadXls = newReadXLS(path);
ListdataList = readXls.getDataFromAdminTest(numberOfColumns);
 Object obj[][] = new Object[dataList.size()][numberOfColumns];
for (int i = 0; i <dataList.size(); i++) {
String[] test = (String[]) dataList.get(i);
 String runMode = test[0];
 String firstName = test[1];
 String lastName = test[2];
 String txtUserName = test[3];
 String email = test[4];

obj[i][0] = runMode;
obj[i][1] = firstName;
obj[i][2] = lastName;
obj[i][3] = txtUserName;
obj[i][4] = email;
 }
returnobj;
 }

}

Project properties files

1. test.properties

#Firefox, Chrome, InternetExplorer, HtmlUnit
BROWSER_TYPE=Firefox
TIME_OUT=10
FIELD_DELIMITER =,
DATA_DELIMITER =#

BASE_URL=http://demo.orangehrmlive.com/
USERNAME=Admin
PASSWORD=admin

2. log.properties

Rolling File Appender
log4j.appender.R=org.apache.log4j.RollingFileAppender
Path and file name to store the log file.
log4j.appender.R.File=C:/Users/Akalanka/workspace/HRMLogin/Log/AllSave.log

89

log4j.appender.R.MaxFileSize=500KB

Define the root logger with file appender
log4j.rootLogger= DEBUG,FILE
Console appender configuration
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
Pattern to output the caller\u2019s file name and line number.
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p[%t](%F:%L)\u2013%m%n

Define the file appender
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=./Log/application.log

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern= %d{yyyy-MM-dd}-%t-%x-%-5p-%-10c:%m%n

Define the root logger with file appender
##log4j.rootLogger = DEBUG, HTML

#Define the file appender
##log4j.appender.HTML=org.apache.log4j.FileAppender
##log4j.appender.HTML.File=./Log/application.html

Define the html layout for file appender
##log4j.appender.HTML.layout=org.apache.log4j.HTMLLayout
##log4j.appender.HTML.layout.Title=Application logs
##log4j.appender.HTML.layout.LocationInfo=true
##log4j.appender.HTML.Threshold=DEBUG

Define the root logger with file appender
##log4j.rootLogger = DEBUG, XML

#Define the file appender
##log4j.appender.XML =org.apache.log4j.FileAppender
##log4j.appender.XML.File=./Log/application.xml

Define the html layout for file appender
##log4j.appender.XML.layout =org.apache.log4j.xml.XMLLayout

Project resources

 chromedriver.exe

 IEDriverServer.exe

90

Project log files

 AllSave.log

 application.log

 application.html

 application.xml

Project test data files

 LoginCredentials.xlsx

 UserList.xlsx

Test result files generated in IDEA IDE

 Test Results - LoginTestsWithExcelCredentials.html

 Test Results - LoginTests.html

 Test Results - UserCreation.html

Apache maven project object model (POM) file

<projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001
/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>edu.SCSU.abm</groupId>
<artifactId>DataDrivenExcellTestNG</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>DataDrivenExcellTestNG</name>
<description>DataDrivenExcellTestNG</description>

 <dependencies>
<dependency>
<groupId>org.seleniumhq.selenium</groupId>
<artifactId>selenium-server</artifactId>
<version>2.42.2</version>
</dependency>
<dependency>
<groupId>org.seleniumhq.selenium</groupId>
<artifactId>selenium-java</artifactId>
<version>2.39.0</version>
</dependency>
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi-ooxml</artifactId>
<version>3.9</version>
</dependency>
<dependency>
<groupId>xml-apis</groupId>
<artifactId>xml-apis</artifactId>
<version>1.4.01</version>
</dependency>
<dependency>
<groupId>log4j</groupId>

91

<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>6.1.1</version>
</dependency>
</dependencies>

</project>

Sample test data files created with MS-Excel

Figure 12

Login information stored with a MS-Excel file

92

Figure 13

User creation information stored with a MS-Excel file

93

Log file generated by the project

Figure 14

Application log file generated by the project

Finally it can be concluded that the APENDIX discussed in detail the implementation

of a framework for functional automation of a real world industrial standard web based

software project by using basically Selenium and Java with some other software tools and

IDEs for different web browsers.

	St. Cloud State University
	theRepository at St. Cloud State
	6-2015

	Reducing Software Testing Time with Combinatorial Testing and Test Automation
	Akalanka Bandara Mailewa
	Recommended Citation

	Software Testing and Test Automation

