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Abstract 

 

            Model selection is a challenging issue in high dimensional statistical analysis, and 

many approaches have been proposed in recent years. In this thesis, we compare the 

performance of three penalized logistic regression approaches (Ridge, Lasso, and Elastic Net) 

and three information criteria (AIC, BIC, and EBIC) on binary response variable in high 

dimensional situation through extensive simulation study. The models are built and selected 

on the training datasets, and their performance are evaluated through AUC on the validation 

datasets. We also display the comparison results on two real datasets (Arcene Data and 

University Retention Data). The performance differences among those approaches are 

discussed at the end. 
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Chapter 1: Introduction 

           Various regression methods have been used to build models to predict future results 

for decades, the ordinary least squares method is one of them that has been widely applied.  

The analysis procedure of this approach is mathematically easy and the results it produces are 

easily interpretable. However in some areas, like gene expression data analysis and medical 

studies, data with small number of observations and large number of variables is a typical 

situation. Least squares regression algorithm will fail to implement. Having too many 

variables in a model may cause the overfitting problem, and it may affect the accuracy of the 

prediction. So model selection becomes crucial. The traditional model selection methods such 

as subset selection, Akaike’s information criterion, cross-validation, generalized cross 

validation and ordinary Bayesian information criterion tend to choose too many variables 

(Chen & Chen, 2008). Several penalized regression methods were invented to fix the 

drawbacks of the least squares method. We compare several variable selection approaches 

like Ridge, Lasso, and Elastic Net on binary response data, and I am also going to apply these 

methods to medical data obtained from The National Cancer Institute and the education data 

from St. Cloud State University. 
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Chapter 2: Penalized Least Squares Regression Approaches  

           In the most recent years, technologies have greatly change the traditional ways of 

collecting data, it is very common to collect a data with numerous variables, however the 

number of observations may be small due to the cost. Data sets with more variables than 

observations are known as high-dimensional. Classical statistical methods for regression and 

classification are developed for the data with less variables than observations, when the 

number of features is greater than the number of observations, the traditional classical 

methods, like ordinary least square method, tend to over fit the model. 

          By the Gauss-Markov theorem, the estimators of the linear regression coefficients 

produced by ordinary least square procedure are the best linear unbiased estimators which 

mean the estimators have the smallest variances among all the unbiased estimators. However 

when the collinearity between the explanatory variables presents or the number of predictors 

is much greater than the number of observations, some of the estimates ordinary least squares 

produce have high variance. Trying to reduce the variance in this situation, Horel and 

Kennard (1970) proposed ridge regression which can obtain more accurate prediction in the 

sense of mean squares error by introducing a little bias. Sometimes biased estimators may 

yield better prediction accuracy: Assume 𝛽̂ is an unbiased estimator of β, which has mean 1 

and variance 1. 𝛽 is a biased estimator of  β , and 𝛽 =
𝛽̂

𝑎
, where 𝑎 is a shrinkage factor and 

𝑎 > 1 . We assume β  is 1: Mean squared error: 𝐸(𝛽 − 1)2 = 𝑉𝑎𝑟(𝛽) + (𝐸(𝛽) − 1)2 =

1

𝑎2
+(

1

𝑎
− 1)2 ;  
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 Bias: 𝐵𝑖𝑎𝑠(𝛽) = 𝐸(𝛽) − β = 𝐸(𝛽) − 𝐸(𝛽̂) = 𝐸 (
𝛽̂

𝑎
) − 1 =

1

𝑎
− 1 

Variance: 𝑉𝐴𝑅(𝛽) = 𝑉𝐴𝑅 (
𝛽̂

𝑎
) =

1

𝑎2 

  

 
 

Figure 1. Bias-variance trade-off.  

 

         From Figure 1 above, we can see both of the mean squares error and variance reduced 

by introducing a little bias to the estimator. Consider the model: 

𝒚 =  𝑿𝜷 + 𝜺 

 Where 𝒚 is the response vector; X is the design matrix; the unknown parameters denotes as 𝛃 , 

which represent a vector; 𝜺 is the error term which is distributed as N (0,𝜎𝜀
2𝑰).   For the 

ordinary least square procedure, we define the loss function as: 

‖𝒚 − 𝑿𝜷‖2 

Where ||.||
2
 denotes the squared Euclidean norm. 
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The solution which minimizes the loss function: 

𝜷̂ = (𝑿𝑻𝑿)−1𝑿𝑻𝒚 

Penalty function is an additional term for the ordinary least squares, which is used to control 

the complexity of the model. The most commonly used penalty functions are  𝐿1  and 

𝐿2 penalty: 

𝐿1 = ∑ |β𝑗|

𝑝

𝑗=1

 

𝐿2 = ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

The loss function for ridge regression can be written as the ordinary least squares regression 

loss function with 𝐿2 penalty: 

‖𝒚 − 𝑿𝜷‖2, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝒋
𝟐 ≤ 𝑡

𝑝

𝑗=1

 

It can also be written as a penalized loss functions: 

‖𝒚 − 𝑿𝜷‖𝟐 + 𝝀𝟐𝜷𝑻𝜷 

The solution to minimize the loss function is by taking derivate with respect to. We obtain: 

𝜷̂ = (𝑿𝑻𝑿 + 𝝀𝟐𝑰)−𝟏𝑿𝑻𝒚 

The inclusion of 𝜆2 makes (𝑿𝑻𝑿 + 𝝀𝟐𝑰) non-singular even if 𝑿𝑻𝑿 is not invertible. This was 

the original motivation for ridge regression. Since the solution depends on 𝝀𝟐 we need to find 

the “best” 𝝀𝟐 . In Wahba and Golub’s paper (1979), they showed that generalized cross-
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validation could be used to find the optimal 𝝀𝟐. Which minimizes the estimated prediction 

error.  

       In ridge regression, the coefficients are shrunk towards zero, but will never be zero. 

When we have a very high dimensional sparse data, the model for large sparse data is not easy 

to interpret. To overcome this difficulty, the lasso method (least absolute shrinkage and 

selection operator) was proposed by Robert Tibshirani (1996). The loss function for lasso: 

‖𝒚 − 𝑿𝜷‖2, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ |β𝑗| ≤ 𝑡

𝑝

𝑗=1

 

The regression coefficients are estimated as: 

𝜷̂ =
𝒂𝒓𝒈𝒎𝒊𝒏

𝜷
𝜷𝑻(𝑿𝑻𝑿)𝜷𝑿𝑻𝒚 − 𝟐𝒚𝑻𝑿𝜷 + 𝝀𝟏|𝜷|𝟏 

In the original paper of Lasso, Tibshirani (1996) described three methods to find the 

estimation of lasso parameter  𝝀𝟏 : cross-validation, generalized cross-validation and an 

analytical unbiased estimate of risk. He suggested that in the practical problems, we might 

simply choose the most convenient method. Compared to the ridge regression, Lasso method 

gives us an interpretable model by shrinking some coefficients to exact zero. With a large 

number of independent variables, the lasso method can select a simpler model with the 

strongest effects.  

          Although the Lasso has been used widely and successfully in many situations, it still 

has some drawbacks: (a) in the p≫n case, Lasso algorithms are limited because it can only 

select at most n variables. (b) When we have a group of highly correlated explanatory 

variables, the Lasso tends to choose just one of them. It cannot reveal the group information 
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(c) for usual n>p case, the ridge regression perform better than Lasso regression when we 

have high correlation between independent variables (Zou & Hastie, 2005). Zou and Hastie 

proposed a new regularization technique named Elastic Net. This method is similar to Lasso 

and whenever ridge regression improves the Ordinary least squares, the elastic net will 

improve the lasso, and it also can select groups of variable with high correlation.  Firstly, they 

introduced the naïve elastic net method: The loss function for elastic net: 

‖𝒚 − 𝑿𝜷‖2, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ |β𝑗| ≤ 𝑡1

𝑝

𝑗=1

𝑎𝑛𝑑 ∑ 𝛽𝑗
2 ≤ 𝑡2    

𝑝

𝑗=1

 

The elastic net penalty function is the combination of the lasso and ridge penalty 

functions. So it maintains the characteristics of both lasso and ridge regression. However, 

empirical evidence shows that the naïve elastic net does not perform satisfactorily unless it is 

very close to either ridge regression or the lasso (Zou & Hastie, 2005). In order to improve the 

accuracy of prediction of naïve elastic net, they developed the elastic net method by rescaling 

naïve elastic net coefficients, with a scaling transformation preserves the variable selection 

property of the naïve elastic net and empirically the elastic net performs very well when 

compared with lasso and ridge regression (Zou & Hastie , 2005).  
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Chapter 3: Model Selection Criteria 

The Akaike information criterion is generally considered as the first model selection 

criterion, which was introduced by Hirotugu Akaike in his seminal paper (1973). The 

traditional maximum likelihood paradigm could only estimate the unknown parameters of a 

model with a specified structure. Akaike proposed a new paradigm that could simultaneously 

process model estimation and selection. 

Some Notion used in this section: 

True model:  𝑔(𝑦) 

Candidate models: 𝑓(𝑦|𝛽𝑗)  

Fitted model: 𝑓(𝑦|𝛽̂𝑗) 

Candidate model space: F 

The dimension of 𝛽𝑗: j 

Akaike information criterion is basically a method to measure the difference between the 

fitted model and true model. The best model is the one has smallest difference. The 

measurement is the Kullback-Leibler information. 

For our model selection purpose, we consider Kullback-Leibler information between 

true model g(y) and fitted model  𝑓(𝑦|𝛽̂𝑗) 

𝐼(𝛽𝑗) = 𝐸 {𝐿𝑜𝑔
𝑔(𝑦)

𝑓(𝑦|𝛽𝑗)
} 

Where E denotes the expectation under g(y). 

Kullback discrepancy is defined as 𝑑(𝛽𝑗) = 𝐸{−2𝐿𝑜𝑔𝑓(𝑦|𝛽𝑗)}. 
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 We can write 

2𝐼(𝛽𝑗) = 𝐸{−2𝐿𝑜𝑔𝑓(𝑦|𝛽𝑗)} − (− 𝐸{−2𝐿𝑜𝑔𝑔(𝑦)}) = 𝑑(𝛽𝑗) −  𝐸{−2𝐿𝑜𝑔𝑔(𝑦)}  

Since the true model g(y) does not depend on  𝛽𝑗  , we can use 𝑑(𝛽𝑗) to substitute  𝐼(𝛽𝑗),

𝑑(𝜃𝑗) = 𝐸{−2𝐿𝑜𝑔𝑓(𝑦|𝛽𝑗)}|𝛽𝑗=𝛽̂𝑗
 can also approximately reflect the difference between the 

true model and fitted model. But we cannot evaluate 𝑑(𝛽̂𝑗) directly due to only the relative 

magnitude of AIC is useful in model selection. In Akaike’s paper, he suggested that 

−2𝐿𝑜𝑔𝑓(𝑦|𝛽𝑗) could be used as a biased estimator of 𝑑(𝛽̂𝑗). He also proved that the bias can 

be asymptotically estimated by twice the dimension of  𝜃𝑗 . Then we get  

𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝑓(𝑦|𝛽𝑗) + 2 ∗ 𝑝𝑗 , which is asymptotically unbiased estimator of 𝑑(𝛽̂𝑗) in the 

situation that the simple size n is comparatively larger that the number of variables. 

          Bayesian information criterion is another widely used approach to determine the 

dimensionality of model. Superficially, the only difference between BIC and AIC is the 

second term, but the BIC can be derived as an estimate of the Bayes factor for two models 

(Ghosh, Delampady, & Samanta, 2006). 

Suppose we have two models 𝑚1 with density function 𝑓(𝑦|𝛽1) and 𝑚0 with density 

function |𝑓(𝑦|𝛽0). Let 𝑔(𝛽𝑖) be the prior density of 𝛽 conditional on Mi, i=0, 1. The Bayes 

factor  

                     B01(y) =
𝑚0(𝑦)

𝑚1(𝑦)
 

Where 𝑚𝑖 = ∫ 𝑓(𝑦|𝛽𝑖)𝑔𝑖(𝛽𝑖)𝑑𝛽𝑖, 𝑖 = 0,1 
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Using a second order Taylor series approximation, we expand mi around the maximum 

likelihood estimate 𝛽̂𝑖, here 𝐻𝛽𝑖
is the observed fisher information matrix, if the observations 

are distributed identically and independently, we have that 𝐻𝛽̂𝑖
=n𝐻1,𝛽̂𝑖

. 

𝑙𝑜𝑔(𝑓(𝑦|𝛽𝑖)𝑔𝑖(𝛽𝑖)) ≈ log (𝑓(𝑦|𝛽̂𝑖 )𝑔𝑖(𝛽̂𝑖)) −
1

2
(𝛽𝑖 − 𝛽̂𝑖)

′𝐻𝛽̂𝑖
(𝛽𝑖 − 𝛽̂𝑖) 

Applying this to the Bayes factor: 

𝑚𝑖(𝑦) ≈ 𝑓(𝑦|𝛽̂𝑖)𝑔𝑖(𝛽̂𝑖) ∫ exp ( −
1

2
(𝛽𝑖 − 𝛽̂𝑖)

′

𝐻𝜃𝑖
(𝛽𝑖 − 𝛽̂𝑖))𝑑𝛽𝑖

= 𝑓(𝑦|𝛽̂𝑖)𝑔𝑖(𝛽̂𝑖)(2𝜋)
𝑝𝑖
2 (𝑛)−

𝑝𝑖
2 |𝐻

𝛽̂𝑖

−1|

1
2
 

Where pi is the dimension of the parameter vector. 

  2 ln(B01(y)) = 2log
𝑚0(𝑦)

𝑚1(𝑦)
= 2 ln (

𝑓(𝑦|𝛽̂0)𝑔0(𝛽̂0)(2𝜋)
𝑝0
2 (𝑛)

−
𝑝0
2 |𝐻

𝛽0̂

−1|

1
2

𝑓(𝑦|𝛽̂1)𝑔1(𝛽̂1)(2𝜋)
𝑝1
2 (𝑛)

−
𝑝0
2 |𝐻

𝛽1̂

−1|

1
2

) ≈ 2 ln (
𝑓(𝑦|𝛽̂0)

𝑓(𝑦|𝛽̂1)
) +

𝑙𝑛
𝑔0(𝛽̂0)

𝑔1(𝛽̂1)
− (𝑝0 − 𝑝1) ln (

𝑛

2𝜋
) + 𝑙𝑛

|𝐻
𝛽0̂

−1|

|𝐻
𝛽1̂

−1|
 

Approximately  

 2 log(B01(y)) = 2 log (
𝑓(𝑦|𝛽̂0)

𝑓(𝑦|𝛽̂1)
) − (𝑝0 − 𝑝1) log (

𝑛

2𝜋
) 

We usually compare fitted model with the null model then we get: 

𝐵𝐼𝐶 = 2 log 𝑓(𝑦|𝛽̂) + 𝑝𝑗 ∗ log(𝑛) 

      Bayesian information criteria with uniform prior distribution, which means we assume 

that all the candidate models have equal probability to be true model,  tends to select too 

many variable  in small-N-large-p situation which has been observed by Broman and Speed 
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(2002), Siegmund (2004) and so on. This inspired Chen and Chen (2008) to propose the 

extended Bayesian information criteria, which considered both the complexity of the 

candidate model and the complexity of the model space. In their paper, the new prior 

distribution used in the EBIC paradigm is given by this procedure: partition the model space S 

into Uj=1
p

Sj, and each subspace Sj includes all the models with j variables.  Suppose τ(Sj) is 

the size of Sj, and τ(Sj) = (𝑝
𝑗
) where p is the number of variables in the whole model space.  

If we assign an equal probability to each variable in the subspace: p(s|Sj) = 1/τ(Sj)  which 

means every model in the model space has same probability to be chosen. Unlike in the 

ordinary BIC, we assign (𝑝𝑟(Sj) proportional to τξ(Sj) instead of τ(Sj) for ξ between 0 and 1. 

We get the p(s) for variable in each subspace being the proportional to τ1−γ(Sj), whereγ =

1 − ξ. Then this results the extended Bayesian information criteria: 

𝐵𝐼𝐶𝛾(𝑠) = −2 log 𝐿𝑛{𝛽̂(𝑠)} + 𝑣(𝑠)𝑙𝑜𝑔(𝑛) + 2𝛾𝑙𝑜𝑔τ(𝑆𝑗), 0 ≤ 𝛾 ≤ 1 

Where v(s) denotes the number of parameters in model s, 𝐿𝑛{𝛽̂(𝑠)} is the likelihood of model 

s. The choice of 𝛾 is important issue, one way proposed by Chen and Chen in the normal 

regression for choosing 𝛾 is to solve k from 𝑝 = 𝑛𝑘, and 𝛾 = 1 −
1

2𝑘
. In 2012, Chen and Chen 

proved that EBIC is consistent under generalized linear models. The simulation results in the 

paper support their conclusion. 
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Chapter 4: Penalized Logistic Regression 

Ridge, Lasso and Elastic Net could also applied for the data with binary response.  The 

regular logistic regression model has the form: 

𝑙𝑜𝑔
𝜌

1 − 𝜌
= 𝛽0 + 𝑿𝑻𝜷 

Where X is a vector of predictors.  The coefficients are typically derived by maximizing the 

likelihood.  Similar to the penalized linear regression, the coefficients are estimated by 

maximizing the log-likelihood subject to penalization on L1 or L2 (or the combination of L1 

and L2) norm of the coefficients for penalized logistic regression.  We can write the function 

in the following form: 

𝐿(𝛽0,𝜷, 𝜆1, 𝜆2) = −𝑙(𝛽0, 𝜷) + 𝜆1|𝜷|1 + 𝜆2𝜷𝑻𝜷 

Where 𝑙  indicates the binomial log-likelihood, 𝜆1  and 𝜆2  are the tuning parameter which 

control the amount of shrinkage, when  𝜆1 = 0, the penalized term is in the same manner as in 

ridge regression; when 𝜆2 = 0. 

The coefficients are shrunk like these in lasso regression. When both of the tuning 

parameters are not zero, the combination of Lasso and Ridge penalties, which gives the 

Elastic net regression. 

  Similar to the way of constructing AIC, BIC and EBIC for ordinary least squares 

regression, the formulas for regularized logistic regression are shown below: 

𝐴𝐼𝐶𝑗 = −2 ∗ 𝑙(𝛽0, 𝜷) + 2 ∗ 𝑝𝑗 

 

𝐵𝐼𝐶𝑗 = −2 ∗ 𝑙(𝛽0, 𝜷) + 𝑝𝑗 ∗ log (𝑛) 
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𝐸𝐵𝐼𝐶𝑗 = −2 ∗ 𝑙(𝛽0, 𝜷) + 𝑝𝑗 ∗ log(𝑛) + 2 ∗ 𝛾 ∗ log (𝜏) 

Where 𝑝𝑗 the number of variable in model j, and n is the number of observations in the 

model; 𝛾 = 0.25, which is suggested by Chen and Chen; 𝜏 = ( 𝑝
𝑝𝑗

) and p is the number of 

variables in the full model. 
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Chapter 5: Simulation 

In this paper, simulation study is conducted to examine the performance of the 

regression methods and variable selection criteria described above in 8 different data settings: 

1. 500 observations and 10 explanatory variables; 

2. 500 observations and 10 explanatory variables with collinearity; 

3. 500 observations and 100 explanatory variables; 

4. 500 observations and 100 explanatory variables with collinearity; 

5. 500 observations and 500 explanatory variables; 

6. 500 observations and 500 explanatory variables with collinearity; 

7. 500 observations and 1500 explanatory variables; 

8. 500 observations and 1500 explanatory variables with collinearity; 

The following logistic model is employed in all of these cases to generate the simulation data: 

log (
𝜌

1 − 𝜌
) = 𝛽𝑖 + 𝑿𝑻𝜷 

Where all the explanatory variables are generated from N (0, 1). Then we have  𝜌 =

𝑒𝛽0+𝑿𝑻𝜷

1+𝑒𝛽0+𝑿𝑻𝜷
 , if 𝜌 < 0.5 then y=0, else y=1; All the coefficients are generated from random 

uniform (0, 1), however in order to examine the variable selection criteria, some variables are 

assigned bigger coefficients, which will be dominant: for case 1 and case 2, the coefficient of 

x1 is multiplied by 10 to make x1 significant important;  for the rest of the simulation data, 

the dominant variables that pre-selected for the simulation data are: x1, x2, x3, x22, x23, and 

x24 with coefficients 7.18, 1.62, 5.56, 9.46, 9.06, and 5.43, which are derived by multiplying 
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10 to simulated coefficients. Our expectation is the best variable selection criteria are able to 

identify these variables. In the cases with collinearity, one group of variables are correlated 

with correlation coefficient 0.75; the other group of variables are correlated with correlation 

coefficient 0.95. When we run the regressions on the simulated data, 2/3 randomly selected 

data will be used to train the models, the rest of the data is the validation data which is used to 

test the models performance, Area under curve for the ROC of the validation data is the major 

evaluation of the model performance. For all the cases, Ridge, Lasso and Elastic net models 

will be fitted, and cross-validation, AIC, BIC and EBIC are used to select the best models, 

since regular logistic is applicable in the cases when P<<n, we will also fit logistic models for 

case 1 and case 2. 

We use the R package “glmnet” to fit ridge, lasso and Elastic Net regression, this 

package contains many functions which can fit various kinds of model, the functions we will 

use here are cv.glmnet and glmnet, which have a factor alpha, when alpha = 0, the model is a 

ridge regression; When alpha = 0.5, Elastic Net model is built; when alpha = 1, a lasso model 

will be fitted. Lambda is the tuning parameter which determents the amount of shrinkage, we 

test 1001 different lambdas from 0 to 1, every time we add 0.001 to previous tuning parameter. 

          For Case 1 and Case 2, x1 is the variable which has a significantly bigger coefficient. 

All other coefficients are created from random uniform (0, 1) distribution; In case 2, the 

correlation matrix is shown below: 
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Table 1 

Correlation Matrix for Case 2 Simulation Data 

 

 
          Table 2 below shows the simulation results for case 1 and case 2, it is not surprising 

that AIC, BIC and EBIC selected the model with all the variables for ridge regression. Ridge 

regression keeps all the variables in the model and only shrinks the coefficients towards to 

zero for the variables that are less important. When we apply AIC, BIC and EBIC to ridge 

regression, all the information criteria tend to select the model with least log likelihood, in 

other word, these criteria always select the full model, which also means these selection 

criteria are not applicable for Ridge regression. 

  

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1.0000 0.9638 0.9355 0.0023 0.7506 0.7623 -0.0939 -0.0270 0.0362 0.1073

x2 0.9638 1.0000 0.9701 0.0089 0.7167 0.7524 -0.0987 -0.0378 0.0402 0.1037

x3 0.9355 0.9701 1.0000 0.0174 0.7058 0.7331 -0.1178 -0.0241 0.0323 0.0929

x4 0.0023 0.0089 0.0174 1.0000 0.0161 0.0358 -0.0779 -0.0222 -0.0540 -0.0480

x5 0.7506 0.7167 0.7058 0.0161 1.0000 0.5622 -0.1161 -0.0190 0.0300 0.1176

x6 0.7623 0.7524 0.7331 0.0358 0.5622 1.0000 -0.0264 -0.0530 -0.0007 0.1069

x7 -0.0939 -0.0987 -0.1178 -0.0779 -0.1161 -0.0264 1.0000 0.0300 0.0431 0.0586

x8 -0.0270 -0.0378 -0.0241 -0.0222 -0.0190 -0.0530 0.0300 1.0000 -0.0020 0.0520

x9 0.0362 0.0402 0.0323 -0.0540 0.0300 -0.0007 0.0431 -0.0020 1.0000 -0.0119

x10 0.1073 0.1037 0.0929 -0.0480 0.1176 0.1069 0.0586 0.0520 -0.0119 1.0000
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Table 2  

Simulation Results for Case 1 and Case 2 

 

           
         For logistic regression, information criterion based on stepwise method was applied here. 

In both cases, x1 which is the dominant variable is in all the stepwise models chosen by the 

variable selection criteria. AIC tends to select the candidate models with more variables, 

compared to the models favored by BIC and EBIC. In case 2, the variables (x2 and x3) that 

are highly correlated with x1 are dropped by all the criteria, the models fitted by stepwise 

methods perform similarly in terms of AUC. AUC is an abbreviation of Area Under Curve 

commonly used to determine which of the models predicts the binary response accurately, and 

the curve is called Receiver Operating Characteristic curve which is a plot of the true positive 

rate against the false positive rate for different possible cutoff points. The value of AUC is 

usually less or equal to one, the model with AUC close to 1 is considered as a good model. To 

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Logistic N/A 3 0.8948 Logistic N/A 3 0.9329    

Ridge 0 10 0.9083 Ridge 0 10 0.9275    

Lasso 0.076 2 0.8820 Lasso 0.01 8 0.9249    

Elastic Net 0.032 6 0.9080 Elastic Net 0.014 9 0.9235    

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Logistic N/A 4 0.9041 Logistic N/A 3 0.9329    

Ridge 0 10 0.9083 Ridge 0 10 0.9275    

Lasso 0.018 6 0.9076 Lasso 0.01 8 0.9249    

Elastic Net 0.032 6 0.9080 Elastic Net 0.014 9 0.9235    

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Logistic N/A 6 0.9072 Logistic N/A 4 0.9246    

Ridge 0 10 0.9083 Ridge 0 10 0.9275    

Lasso 0 10 0.9083 Lasso 0 10 0.9275    

Elastic Net 0 10 0.9083 Elastic Net 0 10 0.9275    

Case 1 Case 2

p=10 and n=500 with collinearity

 EBIC

 BIC

AIC

 EBIC

p=10 and n=500 witout collinearity

 BIC

AIC
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compare the variable selection feature for Ridge, Lasso and Elastic Net, we look the variables 

trace plots for these three regression approaches on the case 1 data first. 

 

Figure 2. Variable trace plots for Ridge, Lasso and Elastic net for case 1. The left one is for 

ridge; middle one is the trace plot for lasso; the one on right is Elastic net. 

 

In the plot above, each colored line represents the values of different coefficient, 

lambda is the tuning parameter tested in the selection procedure. As lambda increases, the 

coefficients are pulled towards to zero, with less important parameters being pulled to zero 

earlier. The coefficients of ridge regression could never be zero, when the lambda is big 

enough, the lasso and elastic net will assign zeros to variables which contribute to model very 

little. The Elastic net trace plot looks almost identical with the lasso plot, when there is no 
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collinearity present in the data, Lasso and Elastic net behave similarly.  Now, let us look the 

trace plots for case 2, where the collinearity problem exists. 

 

Figure 3. Variable trace plots for Ridge, Lasso and Elastic net for case 2. The left one is for 

ridge; middle one is the trace plot for lasso; the one on right is Elastic net. 

 

Ridge regression solves the collinearity problem by shrinking the coefficients towards 

to each other. For Lasso, it randomly chooses one from a set of strong but correlated variables, 

however Elastic net has a compromise solution by keeping all the correlated variables in the 

model and assigns similar coefficients to these variables. If we compare the model 

performance on the prediction accuracy by looking the AUC for the validation data, no 

regression method outperform others substantially for the p<<n cases regardless of the 

existence of collinearity. AIC, BIC and EBIC are the model fit assessing method with the 
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penalty terms on the number of parameters that are selected for the models, similar to the 

models fitted by regular logistic regression. AIC has a favor to model with more variables, 

which adequately describe the unknown of the data. BIC has stricter penalty terms on the 

number of parameters, which tend to select models that are simpler and easier to interpret.  

EBIC adds one more penalty term to BIC, which considers the complexity of entire model 

space, however with this new penalty term, EBIC has a favor to models with even fewer 

variables by scarifying some prediction accuracy. From the simulation results above, we see 

that the models chosen by EBIC contains the fewest variables for each regression method for 

case 1. In case 2, BIC and EBIC agree on the models selections, however these models are the 

simplest models. The pairwise correlated variables groups for the simulation data with 

collinearity: Correlation=0.95: x1, x4, x5, x6, x7, x8; Correlation=0.75: x3, x9, x10, x11, x12, 

x13. 

Table 3 

Simulation Results for Case 3 and Case 4 

 

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 100 0.9690    Ridge 0.000 100 0.9608

Lasso 0.047 6 0.9690    Lasso 0.056 8 0.9752

Elastic Net 0.111 6 0.9651    Elastic Net 0.075 16 0.9904

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 100 0.9406    Ridge 0.000 100 0.9608

Lasso 0.047 6 0.9690    Lasso 0.026 19 0.9926

Elastic Net 0.111 6 0.9651    Elastic Net 0.075 16 0.9904

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 100 0.9406    Ridge 0.000 100 0.9608

Lasso 0.001 72 0.9614    Lasso 0.002 60 0.9887

Elastic Net 0.001 84 0.9466    Elastic Net 0.002 71 0.9901

p=100 and n=500 witout collinearity p=100 and n=500 with collinearity

 EBIC  EBIC

Case 3 Case 4

 BIC  BIC

AIC AIC
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Table 4 

Simulation Results for Case 5 and Case 6 

 

 

Table 5 

Simulation Results for Case 7 and Case 8 

 

The ridge regression always keeps all the variables in the model, which results the 

penalty terms in AIC, BIC and EBIC has no effect on it. So we mainly compare Lasso and 

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 500 0.8131 Ridge 0.000 500 0.8812

Lasso 0.076 4 0.8344 Lasso 0.060 7 0.8756

Elastic Net 0.151 4 0.8601 Elastic Net 0.121 9 0.8691

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 500 0.8131 Ridge 0.000 500 0.8812

Lasso 0.076 4 0.8344 Lasso 0.600 7 0.8756

Elastic Net 0.151 4 0.8601 Elastic Net 0.107 11 0.8710

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 500 0.8131 Ridge 0.0000 500 0.8812

Lasso 0.011 130 0.8345 Lasso 0.0380 22 0.8851

Elastic Net 0.078 44 0.8630 Elastic Net 0.0810 24 0.8768

 EBIC  EBIC

Case 5 Case 6

 BIC  BIC

AIC AIC

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 1500 0.7623 Ridge 0.000 1500 0.7697

Lasso 0.112 2 0.6779 Lasso 0.095 3 0.8401

Elastic Net 0.224 2 0.6797 Elastic Net 0.195 6 0.8361

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.000 1500 0.7623 Ridge 0.000 1500 0.7697

Lasso 0.090 3 0.7309 Lasso 0.070 8 0.8429

Elastic Net 0.180 3 0.7302 Elastic Net 0.195 6 0.8361

Model Lambda Number of variables AUC Model Lambda Number of variables AUC

Ridge 0.0000 1500 0.7623 Ridge 0.000 1500 0.7697

Lasso 0.0630 16 0.7415 Lasso 0.054 21 0.8504

Elastic Net 0.1300 15 0.7408 Elastic Net 0.111 24 0.8474

Case 7 Case 8

 BIC  BIC

AIC AIC

 EBIC  EBIC
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Elastic Net, which have automated variable selection feature. Similar to what we see for case 

1 and case 2, these two regression methods would not outperform to each other substantially 

for cases 3, 4, 5 and 6 data by comparing the Area under Curve for validation data; in case 3, 

case 5 and case 7, it turns out that EBIC and BIC agree on the models selection for Lasso and 

Elastic net regression, Lasso and Elastic net also contains same variables for each information 

criteria; in case 3 the models contains 5 out of 6 the pre-selected powerful variables: x1, x3, 

x22, x23, x24; in case 5, the models EBIC  chooses the models with 4 variables: x1, x22, x23 

and x24; in case 7, the models chosen by EBIC correctly select 2 variables: x22 and x23, BIC 

selects the model with 3 variables: x1, x22 and x23; For the data without presence of 

collinearity, EBIC and BIC could effectively identify the dominant variables and both 

information criteria tend to choose the same model in most cases,  the models selected by AIC 

have more variables as we expected, however with more variables in the model, it does not 

improve the performance dramatically. 

When we look case 4, case 6 and case 8, the simulation data with the existence of 

collinearity, the number of variables selected by lasso is quite different with Elastic net. For 

table 6 and 7, regardless of the information criteria, only one of the pairwise correlated 

variables for each correlation group is chosen for lasso model, however Lasso does not always 

choose the strongest variable among all the correlated one, it tends to choose one of them 

randomly and ignore others. Unlike lasso regression, Elastic net has the feature to select group 

effects, the simulation results in table 6 confirm this: in case 4, the models selected by EBIC 

and BIC not only contain all the pre-selected important variables but also the variables 

correlated; in case 6 and case 8, model fitted by Elastic net also contains some of the 
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correlated variables. Now let us compare if EBIC has any advantages over BIC on identifying 

important variables, similar to what we see for the simulation data without collinearity, EBIC 

and BIC favor to the same models for most of the cases. For the cases EBIC and BIC do not 

agree to each other, EBIC tends to simpler model. 

Table 6 

Variables Selection for Lasso and Elastic Net by EBIC (Underline represents correlation 0.75 

group; Bold represents correlation 0.95 group.) 

 

 

 

Table 7 

Variables Selection for Lasso and Elastic Net by BIC. (Underline represents correlation 0.75 

group; Bold represents correlation 0.95 group.) 

 

 

Case 4

Case 6

Case 8

Case 4

Case 6

Case 8

Variables of Lasso models selected by EBIC

x4,x10,x22,x23,x24,x33,x35,x60

x3,x4,x22,x23,x24,x68,x486

x3,x4,x22

Variables of Elastic net models selected by EBIC

x1,x2,x3,x4,x5,x22,x23,x24,x68

x1, x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x22,x23,x24,x96

x4,x5,x22,x23,x98,x242

Case 4

Case 6

Case 8

Case 4

Case 6

Case 8

Variables of Elastic net models selected by BIC

Variables of Lasso models selected by BIC

x1,x2,x3,x4,x5,x22,x23,x24,x46,x68,x486

x4,x5,x22,x23,x98,x242

x1,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x22,x23,x24,x96

x1,x3,x20,x22,x23,x24,x33,x35,x60,x68,x79,x82,x96,x98,x242,x486

x3,x4,x22,x23,x24,x68,x486

x3,x5,x22,x23,x98,x242,x1377,x1421
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From the simulation results above, Ridge, Lasso and Elastic net do not outperform 

each other on prediction accuracy substantially. Ridge regression does not have the automated 

variable selection feature, it always keeps all the variables in the model with shrinking the 

coefficients of the less important variables towards to zero. Lasso and Elastic net behave 

similarly for the data without highly correlated variables, however, when collinearity problem 

presents in the data, Lasso tends to randomly choose one of the correlated variables, 

conversely, Elastic net keeps correlated variables in the model. EBIC is a stricter variable 

selection criteria, which has favor to parsimony model, compare to BIC and AIC. However, 

EBIC does not perform significantly better than BIC in terms of variable selection, in most 

cases EBIC and BIC pick the same models. 
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Chapter 6: Applications 

Arcene Data 

The data were obtained from The National Cancer Institute, which consist of mass-

spectra obtained with the SELDI technique containing the biological information for each 

patient. The sample has 200 observations including patients with cancer and healthy patients. 

The purpose of this data is to distinguish cancer versus normal patterns from these massive 

spectrometric data, to be precise, 10000 features which are all integers ranged from 0 to 700.  

The task here is to see which approach among Ridge, Lasso and Elastic Net chosen by AIC, 

BIC and EBIC could successfully identify important variables. Before we fit models on the 

data, some of the variables which have a lot missing values are removed, we have 9939 

variables left.  The whole sample is split into train (67% of the data) and validation (33% of 

the data). In order to test the effect of the normalization of the data, we will build two sets of 

models: the first set are based on the data with original scale; the other set of models are built 

on the normalized data. 

  



31 
 

 
 

Table 8 

Model Results for Arcene Data in Original Scale 

 

 

Table 9 

Model Results for Normalized Arcene Data 

 
 

 

 

Variables

Model Lambda Number of variables AUC

Ridge 0.000 9939 0.6929  x1-x9939

Lasso 0.248 2 0.6076 x3783,x6594

Elastic Net 0.514 2 0.6151 x3783,x6594

Model Lambda Number of variables AUC

Ridge 0.000 9939 0.6929 x1-x9939

Lasso 0.141 5 0.6449 x1936,x3783,x5982,x6594,x9818

Elastic Net 0.514 2 0.6151 x3783,x6594

Model Lambda Number of variables AUC

Ridge 0.000 9939 0.6929 x1-x9939

Lasso 0.102 12 0.7130 x815,x306,x754,x766,x1748,x1936,x3783,x4684,x6594,x7544,x7891,x9818

Elastic Net 0.514 2 0.6151 x3783,x6594

 EBIC

 BIC

AIC

Variables

Model Lambda Number of variables AUC

Ridge 0.000 9939 0.6929  x1-x9939

Lasso 0.127 5 0.6392 x1936,x3783,x5982,x6594,x9818

Elastic Net 0.477 2 0.6285 x3783,x6594

Model Lambda Number of variables AUC

Ridge 0.000 9939 0.6929 x1-x9939

Lasso 0.127 5 0.6392 x1936,x3783,x5982,x6594,x9818

Elastic Net 0.477 2 0.6285 x3783,x6594

Model Lambda Number of variables AUC

Ridge 0.000 9939 0.6929 x1-x9939

Lasso 0.087 12 0.7115 x815,x306,x754,x766,x1748,x1936,x378+E2x4684,x6594,x7544,x7891,x9818

Elastic Net 0.477 2 0.6285 x3783,x6594

 EBIC

 BIC

AIC
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Normalization does not change the model results dramatically, dominant variables 

could always be picked out. The model results of the standardized data is very close to the 

results on the original data. Like what we observed for the simulation data, Ridge contains all 

variables in the model, it is not surprising the model fitted by Ridge perform fairly well for 

both data sets. However keeping all the variables in the model makes the model nearly 

impossible to interpret. For Elastic net, all three information selection criteria pick the same 

model with two variables (x3783 and x6594) in both cases, the AUC for the validation data 

for these three models are not excellent but acceptable. If we compare this model with the 

model fitted by Lasso under EBIC with same variables, Elastic net model perform slightly 

better. The best model in terms of AUC for validation data is the one fitted by Lasso under 

AIC, this model also contains the most variables. Lasso model picked by BIC has 5 variables, 

however the AUC is not as good as the model chosen by AIC.  

Retention Data 

Retention project is led by Dr.Robinson in St. Cloud State University, which intends 

to research students’ academic information and understand the important variables that have 

strong relationship with the success of students. By analyzing students’ historical patterns, the 

school wants to improve the ability of predicting which student is at high risk of dropping 

school and make necessary intervention to ensure students’ academic success based on the 

needs of students.  For this project, Identifying important variables and building model with 

high prediction accuracy are equally important. We will use the academic data of fall 2010 

cohort to build Ridge, Lasso and Elastic Net model to predict if the student will return to 

school at their third term, and try to select the optimal predicting model that easy to interpret.  
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Exploratory Data Analysis 

 

The data contains 4047 observations, 
2

3
 of the data is used to build the model, and the 

rest of the data serves as validation purpose. Forty-seven variables will be used to build the 

models including 25 nominal variables and 22 continuous variables: 

Table 10 

Distributions of Nominal Variables of Retention Data 

 

1 0 1 0

ACE 22% 78% 28% 72% 0.0002                                         

Honors 7% 93% 2% 98% 0.0000                                         

Dist1 96% 4% 95% 5% 0.0203                                         

Female 54% 46% 52% 48% 0.3585                                         

International 97% 3% 98% 2% 0.0107                                         

StudentOfColor1 11% 89% 12% 88% 0.8810                                         

FirstGeneration1 13% 87% 14% 86% 0.5627                                         

HS_GPA1 97% 3% 97% 3% 0.7985                                         

HS_Rank1 81% 19% 65% 35% 0.0000                                         

HS_Pct1 89% 11% 89% 11% 0.7084                                         

HS_MnSCU_Region7 31% 69% 28% 72% 0.0329                                         

HS_MnSCU_Region11 33% 67% 33% 67% 0.8257                                         

HS_MnSCU_Region_OutofState 10% 90% 14% 86% 0.0011                                         

HS_MnSCU_Region_Unknown 5% 95% 4% 96% 0.1070                                         

ACT1 97% 3% 96% 4% 0.0054                                         

ACT_Math1 97% 3% 94% 6% 0.0001                                         

ACT_English1 97% 3% 94% 6% 0.0001                                         

ACT_Reading1 97% 3% 94% 6% 0.0001                                         

ACT_Science1 97% 3% 94% 6% 0.0000                                         

GrantFlag1 45% 55% 43% 57% 0.1442                                         

ScholarshipFlag1 31% 69% 23% 77% 0.0000                                         

LoanFlag1 66% 34% 73% 27% 0.0001                                         

WorkStudyFlag1 12% 88% 12% 88% 0.9796                                         

EFC_Total1 74% 26% 75% 25% 0.4829                                         

1st_Term_On_Campus1 77% 23% 75% 25% 0.2111                                         

Variable P-value of chi square test

3rd term retention

1 0
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Table 10 above shows the distribution of nominal variables that we will use in the 

model. Dist1 is a missing value indicates for students who do not have an address in file. 

ACT1, ACT_Math1, ACT_English1, ACT_Reading1, ACT_science1, GrantFlag1, 

LoanFlag1, WorkStudyFlag1 and EFC_Total1 serve the same role as missing value indicators 

here. The variables in table 10 above shows the variables with small P-value of Chi-square 

test between the nominal variable and the dependent variables, the small P-values indicate 

these variables have potential to play an important role for the predicting modeling.  

Table 11 below shows the descriptive statistics of all the continuous variables, we also 

conduct the T test to compare if each explanatory variable in each level is significantly 

different. The variables with small P-values could be important in the model we will build. 
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Table 11 

Distributions of Continuous Variables of Retention Data 

 

 
We keep ACT composite score and all the ACT subjects’ scores in the model, which 

are highly correlated. We expect Elastic net could select the group effects, and we also want 

to test how Lasso and Ridge handle the collinearity. 

 

 

3rd Term Retention Variable N Min First quantileMedian Mean Std DevThird Quantile Max P-value of T test

1 1st_Term_TermAttemptedCreditsUgrad 3055 3 14 15 14.53 1.42 16 18

0 1st_Term_TermAttemptedCreditsUgrad 1232 1 13 14 14.28 1.6 15 20

1 1st_Term_TermCompletedCreditsUgrad 3055 0 13 14 13.77 2.33 15 18

0 1st_Term_TermCompletedCreditsUgrad 1232 0 7 12 10.31 5.07 14 20

1 1st_Term_TermGPAUgrad 3055 0 2.37 2.91 2.82 0.73 3.36 4

0 1st_Term_TermGPAUgrad 1232 0 1 2.07 1.96 1.18 2.97 4

1 ACT_English2 3055 0 17 20 19.99 5.66 23 36

0 ACT_English2 1232 0 16 20 19.2 6.49 23 35

1 ACT_Math2 3055 0 18 22 21.14 5.5 24 35

0 ACT_Math2 1232 0 17 21 20.02 6.34 24 34

1 ACT_Reading2 3055 0 18 22 21.14 5.5 24 35

0 ACT_Reading2 1232 0 17 21 20.02 6.34 24 34

1 ACT_Science2 3055 0 20 22 21.25 5.17 24 35

0 ACT_Science2 1232 0 19 21 20.41 6.29 24 35

1 ACT2 3055 0 19 21 21 4.93 24 35

0 ACT2 1232 0 18 21 20.34 5.69 24 33

1 Age 3055 16 18 18 18.13 0.44 18 20

0 Age 1231 16 18 18 18.16 0.49 18 20

1 AppDaysBeforeTerm 3055 -4 181 244 227.21 76.1 285 417

0 AppDaysBeforeTerm 1232 -2 153 223 207.05 81.63 265 417

1 Dist2 3055 0 21.8 48.2 56.86 52.3 72.09 251

0 Dist2 1232 0 24.5 50.7 60.07 52.76 74.59 251

1 EFC_Total2 3055 0 0 6119 11667.96 15845.72 17178 215272

0 EFC_Total2 1232 0 10 6232 11997.03 21885.55 16316.25 322989

1 GrantFlag2 3055 0 0 0 1222.84 1606.49 2735.6 7184.22

0 GrantFlag2 1232 0 0 0 1113.83 1549.96 2525 7413

1 HS_GPA2 3055 0 2.87 3.23 3.12 0.74 3.57 4.76

0 HS_GPA2 1232 0 2.71 3 2.94 0.69 3.34 4.17

1 HS_Pct2 3055 0 37.5 56.58 53.33 27.32 74.64 99.81

0 HS_Pct2 1232 0 31.28 48.19 46.2 25.05 63.53 98.71

1 HS_Rank2 3055 0 11 64 101.94 114.28 154 702

0 HS_Rank2 1232 0 0 45 91.46 118.84 137 739

1 LoanFlag2 3055 0 0 2750 2713.1 2587.39 4750 11518

0 LoanFlag2 1232 0 0 2750 3021.98 2578.51 4750 11811

1 ScholarshipFlag2 3055 0 0 0 347.03 748.44 500 6376

0 ScholarshipFlag2 1232 0 0 0 230.04 624.06 0 5738

1 TransferCredits2 3055 0 0 0 5.4 10.17 7 71

0 TransferCredits2 1232 0 0 0 3.67 8.62 3 71

1 TransferGPA2 3055 0 0 0 0.87 1.41 2.15 4

0 TransferGPA2 1232 0 0 0 0.58 1.19 0 4

1 WorkStudyFlag2 3055 0 0 0 161.15 454.95 0 2250

0 WorkStudyFlag2 1232 0 0 0 161.88 455.94 0 1590

0.63160

0.00000

0.00000

0.00000

0.00019

0.00000

0.00000

0.00003

0.00036

0.06208

0.00000

0.07079

0.00000

0.00000

0.96214

0.03927

0.00000

0.00000

0.00828

0.00040

0.00000
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Table 12 

Correlation Matrix for ACT Scores 

 
 
 

Model Results 

Model results shown below, the logistic model was selected by stepwise procedure. If 

we look at the AUC for the validation data, all the models selected by different information 

criteria perform similarly to each other. EBIC and BIC choose the same model for each 

regression method.  Elastic net models chosen by EBIC and BIC has the least number of 

variables, which contains all the variables that also present in all other models. We also run 

the models on the standardized retention data, we have the same results, which means 

normalization does not have great impact on the model fitting. 

 

  

ACT2 ACT_Math2 Act_English2 ACT_Reading2 ACT_Science2

ACT2 1.0000 0.8512 0.8808 0.8512 0.8640

ACT_Math2 0.8512 1.0000 0.7640 1.0000 0.8365

Act_English2 0.8808 0.7640 1.0000 0.7640 0.7860

ACT_Reading2 0.8512 1.0000 0.7640 1.0000 0.8365

ACT_Science2 0.8648 0.8365 0.7860 0.8365 1.0000
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Table 13 

Model Results for Retention Data 

 

 

 

 

 

  

Model Lambda Number of variables AUC

Logistic N/A 8 0.7642

Ridge 0.001 47 0.7583

Lasso 0.021 6 0.7562

Elastic Net 0.045 5 0.7533

Model Lambda Number of variables AUC

Logistic N/A 8 0.7642

Ridge 0.001 47 0.7583

Lasso 0.021 6 0.7562

Elastic Net 0.011 5 0.7533

Model Lambda Number of variables AUC

Logistc N/A 20 0.7653

Ridge 0.001 47 0.7583

Lasso 0.002 36 0.7653

Elastic Net 0.004 37 0.7662

 EBIC

 BIC

AIC
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Table 14 

Variables Selection for Retention Data 

Logistic Ridge Lasso Elastic Net Logistic Ridge Lasso Elastic Net Logistic Ridge Lasso Elastic Net

ACE1 X X X X X

Honors1 X X X X X X

AppDaysBeforeTerm X X X

Dist1 X X X

Dist2 X X X X X

Female X X X X X X

Age X X X X X X

US Citizen X X X X X

StudentOfColor1 X X X X X X X X X

FirstGeneration1 X X X X X

Veteran1 X X X

HS_GPA1 X X X X X X

HS_GPA2 X X X X

HS_Rank1 X X X X X X X X X X X X

HS_Rank2 X X X X X X

HS_Pct1 X X X X X X X X X X X X

HS_Pct2 X X X X X X

HS_MnSCU_Region7 X X X X X X

HS_MnSCU_Region11 X X X X X X

HS_MnSCU_Region_OutofState X X X X X X X X X X X X

HS_MnSCU_Region_Unknown X X X X X

ACT1 X X X X

ACT2 X X X X X

ACT_Math1 X X X

ACT_Math2 X X X

ACT_English1 X X X

ACT_English2 X X X X X

ACT_Reading1 X X X

ACT_Reading2 X X X

ACT_Science1 X X X X X X X X

ACT_Science2 X X X X X X

TransferCredits2 X X X X X

TransferGPA2 X X X X X

GrantFlag1 X X X X X

GrantFlag2 X X X X X

ScholarshipFlag1 X X X X X

ScholarshipFlag2 X X X

LoanFlag1 X X X X X

LoanFlag2 X X X

WorkStudyFlag1 X X X X X

WorkStudyFlag2 X X X X X

EFC_Total1 X X X X X

EFC_Total2 X X X X X

1st_Term_On_Campus1 X X X X X X X X

1st_Term_TermAttemptedCreditsUgrad X X X X X X X X

1st_Term_TermCompletedCreditsUgrad X X X X X X X X X X

1st_Term_TermGPAUgrad X X X X X X X X X X

EBIC BIC AIC
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Chapter 7: Discussion 

Our results from the simulation data show that Ridge, Lasso and Elastic net regression 

methods behave similarly to each other in terms of prediction accuracy. However, Lasso and 

Elastic net have substantial advantages over Ridge on variable selection; with the L1 

regularization involved, Lasso and Elastic net tends to penalize the absolute size of the 

coefficients to zero, the larger the penalty applied, the further estimates are shrunk towards to 

zero. As the amount of shrinkage increase, the coefficients of less important variables reach 

zero first, which gives Lasso and Elastic net the feature of automatic feature selection and also 

yield a sparse model containing only a subset of the variables in the full model. As a result, 

the models generated from Lasso and Elastic net are much easier to interpret. Elastic net 

perform closely to Lasso regression on both prediction accuracy and variable selection, if 

there is no collinearity in the data. However if multi-collinearity present in the data, Elastic 

net will select group effects, in other words, it will keep the all the variables correlated to each 

other in model if all of contribute to the model significantly, Lasso tends to randomly select 

one of them.  Ridge regression does not have the function of variable selection, no matter how 

big the shrinkage factor is, Ridge keeps all the variables in the model, it only shrinks the 

coefficients of less important variables very close to zero but will never be zero, because of 

the difficulties of variable selection and model interpretation, Ridge regression is not always 

the first choice compared to Lasso and Elastic net regression. 

From the modeling fitting results of simulation data and two applications, EBIC does 

not hold outstanding advantages over BIC on model selection; EBIC tends to select a simple 

model by scarifying the prediction accuracy, which also means EBIC rules some important 
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variables out and only keep the most dominant variables to make the model simpler. BIC has 

a penalty term on the number of parameters which is stricter than the terms of AIC, which 

leads to the simpler model favored by BIC. The simulation results shows the similar 

principles, AIC often risks choosing models with more variables. However for the most of the 

simulation results, the models with more variables chosen by AIC perform slightly better than 

others. If the primary goal is to select a model with high prediction accuracy, AIC is a better 

choice over EBIC and BIC; if the primary goal is to find important factors, BIC is a more 

reliable information criteria over AIC and EBIC, since BIC could effectively identify the 

important variables, and EBIC favors too small a model which risks ruling some important 

variables out. In the cases that a small set of variables are prominent, the variable selection 

outcomes between EBIC and BIC are very close, we observe this in case 7 and case 8 of the 

simulation data and the results of Arcene data. When there is no dominant variables existing 

in the data, EBIC would outperform BIC and it could effectively identify important variables, 

this conclusion is supported by the simulation results in Chen and Chen’s original study 

(Chen & Chen, 2012).  

One thing we did not consider in the simulation study is the impact of the possible 

variations in the explanatory variables since all the data were generated from standard normal.  

However, in the real data analysis, we did consider standardizing the explanatory variables 

first such that each has mean of 0 and standard deviation of 1 and then fitted the models. We 

found that there was no obvious evidence of the normalizing effect. The standardized 

Retention data and the data on original scale share the same model fitting results. The only big 

difference we observed on the standardized Arcene data is that the model selected by EBIC 
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contains 5 variables instead of 2, and as a result, EBIC and BIC agree on the variable 

selection. 

There are some other regularization methods developed, these approaches are not in 

the scope of this paper, we will mention a few of them: Adaptive lasso is proposed by Hui 

Zou (2006), which is developed by assign adaptive weighted coefficients to L1 penalty, in 

Zou’s Paper, the simulation results of Adaptive Lasso shows the advantage of computation 

efficiency over regular Lasso and estimates parameters consistently. SCAD is a variable 

selection method developed by Fan and Li (Fan & Li, 2001), which sets a boundary for the 

penalty function as a result of reducing bias.   It would be interesting to include them in the 

comparison in the future. 
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Appendix A 

Variable Definitions for Retention Data 

ACE:  Academic Collegiate Excellence (ACE) program is designed to help students 

who did not meet the admission requirements but have potential to be successful students.  

We will use this as one of the variable in the model, if the student is in ACE  

program, then ACE=1, otherwise, ACE=0. 

Honors: The University Honors Program provides supportive and challenging learning 

environment for determined students to enhance the skills in analysis, synthesis and 

interpersonal communication, students admitted into this program have an outstanding 

academic background. 

Female: This is the gender indictor, where 1 represents female and 0 is male. 

International: A variable that tells which student is an international student.  

StudentOfColor1: This dummy variable tells which student is not white. 

Firstgeneration1: An indicator tells whether this student is the first college student in 

the family. 

HS_MNSCU_region7,  

HS_MNSCU_Region11,  

HS_MNSCU_Region_outofstate, 

 HS_MNSCU_Region_unknown : 

These four variables indicate the location of the high schools of students. 

1st_term_on_Campus1: If the students live on campus for the 1
st
 semester, the assign 1 to this 

variable, otherwise 0. 
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Appendix B 

R Code 

Case1:  

########simulation data with 10 variables and 1000 observations. 

set.seed(12345679) 

x1=rnorm(500) 

x2=rnorm(500) 

x3=rnorm(500) 

x4=rnorm(500) 

x5=rnorm(500) 

x6=rnorm(500) 

x7=rnorm(500) 

x8=rnorm(500) 

x9=rnorm(500) 

x10=rnorm(500) 

 

########simulate the coefficients of the variables; 

set.seed(12345679) 

b1=10*runif(1) 

b2=runif(1) 

b3=runif(1) 

b4=runif(1) 
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b5=runif(1) 

b6=runif(1) 

b7=runif(1) 

b8=runif(1) 

b9=runif(1) 

b10=runif(1) 

 

#####create function  

z=runif(1)+b1*x1+ 

  b2*x2+ 

  b3*x3+ 

  b4*x4+ 

  b5*x5+ 

  b6*x6+ 

  b7*x7+ 

  b8*x8+ 

  b9*x9+ 

  b10*x10 

######create reverse logit link function 

pr = 1/(1+exp(-z))          

y = rbinom(500,1,pr) 

######create the dataset 
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train=data.frame(x1=x1, 

                 x2=x2, 

                 x3=x3, 

                 x4=x4, 

                 x5=x5, 

                 x6=x6, 

                 x7=x7, 

                 x8=x8, 

                 x9=x9, 

                 x10=x10,y) 

#####create train and validation 

library(caTools) 

sample1=sample.split(train$y,SplitRatio=2/3) 

train1=train[sample1,] 

validation=train[!sample1,] 

t.y=data.matrix(train1$y) 

t.x=data.matrix(train1[,1:10]) 

v.y=data.matrix(validation$y) 

v.x=data.matrix(validation[,1:10]) 

 

 

Case 2: 
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########simulation data with 10 variables and 1000 observations. 

set.seed(12345679) 

x1=rnorm(500) 

x2=jitter(x1,factor=2500) 

x3=jitter(x2,factor=2500) 

x4=rnorm(500) 

x5=jitter(x1,factor=7500) 

x6=jitter(x1,factor=7500) 

x7=rnorm(500) 

x8=rnorm(500) 

x9=rnorm(500) 

x10=rnorm(500) 

 

########simulate the coefficients of the variables; 

set.seed(12345679) 

b1=3*runif(1) 

b2=runif(1) 

b3=runif(1) 

b4=runif(1) 

b5=runif(1) 

b6=runif(1) 

b7=runif(1) 
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b8=runif(1) 

b9=runif(1) 

b10=runif(1) 

 

#####create function z 

z=runif(1)+b1*x1+ 

  b2*x2+ 

  b3*x3+ 

  b4*x4+ 

  b5*x5+ 

  b6*x6+ 

  b7*x7+ 

  b8*x8+ 

  b9*x9+ 

  b10*x10 

######create reverse logit link function 

pr = 1/(1+exp(-z))          

y = rbinom(500,1,pr) 

 

 

######create the dataset 

train=data.frame(x1=x1, 
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                 x2=x2, 

                 x3=x3, 

                 x4=x4, 

                 x5=x5, 

                 x6=x6, 

                 x7=x7, 

                 x8=x8, 

                 x9=x9, 

                 x10=x10,y=y) 

#####create train and validation 

library(caTools) 

sample1=sample.split(train$y,SplitRatio=2/3) 

train1=train[sample1,] 

validation=train[!sample1,] 

 

t.y=data.matrix(train1$y) 

t.x=data.matrix(train1[,1:10]) 

v.y=data.matrix(validation$y) 

v.x=data.matrix(validation[,1:10]) 
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Case 3: 

########simulation data with 10 variables and 1000 observations. 

set.seed(12345679) 

x1=rnorm(500) 

x2=rnorm(500) 

x3=rnorm(500) 

x4=rnorm(500) 

x5=rnorm(500) 

x6=rnorm(500) 

x7=rnorm(500) 

x8=rnorm(500) 

x9=rnorm(500) 

x10=rnorm(500) 

x11=rnorm(500) 

x12=rnorm(500) 

x13=rnorm(500) 

x14=rnorm(500) 

x15=rnorm(500) 

x16=rnorm(500) 

x17=rnorm(500) 

x18=rnorm(500) 

x19=rnorm(500) 
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x20=rnorm(500) 

x21=rnorm(500) 

x22=rnorm(500) 

x23=rnorm(500) 

x24=rnorm(500) 

x25=rnorm(500) 

x26=rnorm(500) 

x27=rnorm(500) 

x28=rnorm(500) 

x29=rnorm(500) 

x30=rnorm(500) 

x31=rnorm(500) 

x32=rnorm(500) 

x33=rnorm(500) 

x34=rnorm(500) 

x35=rnorm(500) 

x36=rnorm(500) 

x37=rnorm(500) 

x38=rnorm(500) 

x39=rnorm(500) 

x40=rnorm(500) 

x41=rnorm(500) 
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x42=rnorm(500) 

x43=rnorm(500) 

x44=rnorm(500) 

x45=rnorm(500) 

x46=rnorm(500) 

x47=rnorm(500) 

x48=rnorm(500) 

x49=rnorm(500) 

x50=rnorm(500) 

x51=rnorm(500) 

x52=rnorm(500) 

x53=rnorm(500) 

x54=rnorm(500) 

x55=rnorm(500) 

x56=rnorm(500) 

x57=rnorm(500) 

x58=rnorm(500) 

x59=rnorm(500) 

x60=rnorm(500) 

x61=rnorm(500) 

x62=rnorm(500) 

x63=rnorm(500) 



54 
 

 
 

x64=rnorm(500) 

x65=rnorm(500) 

x66=rnorm(500) 

x67=rnorm(500) 

x68=rnorm(500) 

x69=rnorm(500) 

x70=rnorm(500) 

x71=rnorm(500) 

x72=rnorm(500) 

x73=rnorm(500) 

x74=rnorm(500) 

x75=rnorm(500) 

x76=rnorm(500) 

x77=rnorm(500) 

x78=rnorm(500) 

x79=rnorm(500) 

x80=rnorm(500) 

x81=rnorm(500) 

x82=rnorm(500) 

x83=rnorm(500) 

x84=rnorm(500) 

x85=rnorm(500) 
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x86=rnorm(500) 

x87=rnorm(500) 

x88=rnorm(500) 

x89=rnorm(500) 

x90=rnorm(500) 

x91=rnorm(500) 

x92=rnorm(500) 

x93=rnorm(500) 

x94=rnorm(500) 

x95=rnorm(500) 

x96=rnorm(500) 

x97=rnorm(500) 

x98=rnorm(500) 

x99=rnorm(500) 

x100=rnorm(500) 

 

########simulate the coefficients of the variables; 

set.seed(12345679) 

b1=10*runif(1) 

b2=10*runif(1) 

b3=10*runif(1) 

b4=runif(1) 
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b5=runif(1) 

b6=runif(1) 

b7=runif(1) 

b8=runif(1) 

b9=runif(1) 

b10=runif(1) 

b11=runif(1) 

b12=runif(1) 

b13=runif(1) 

b14=runif(1) 

b15=runif(1) 

b16=runif(1) 

b17=runif(1) 

b18=runif(1) 

b19=runif(1) 

b20=runif(1) 

b21=runif(1) 

b22=10*runif(1) 

b23=10*runif(1) 

b24=10*runif(1) 

b25=runif(1) 

b26=runif(1) 
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b27=runif(1) 

b28=runif(1) 

b29=runif(1) 

b30=runif(1) 

b31=runif(1) 

b32=runif(1) 

b33=runif(1) 

b34=runif(1) 

b35=runif(1) 

b36=runif(1) 

b37=runif(1) 

b38=runif(1) 

b39=runif(1) 

b40=runif(1) 

b41=runif(1) 

b42=runif(1) 

b43=runif(1) 

b44=runif(1) 

b45=runif(1) 

b46=runif(1) 

b47=runif(1) 

b48=runif(1) 
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b49=runif(1) 

b50=runif(1) 

b51=runif(1) 

b52=runif(1) 

b53=runif(1) 

b54=runif(1) 

b55=runif(1) 

b56=runif(1) 

b57=runif(1) 

b58=runif(1) 

b59=runif(1) 

b60=runif(1) 

b61=runif(1) 

b62=runif(1) 

b63=runif(1) 

b64=runif(1) 

b65=runif(1) 

b66=runif(1) 

b67=runif(1) 

b68=runif(1) 

b69=runif(1) 

b70=runif(1) 
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b71=runif(1) 

b72=runif(1) 

b73=runif(1) 

b74=runif(1) 

b75=runif(1) 

b76=runif(1) 

b77=runif(1) 

b78=runif(1) 

b79=runif(1) 

b80=runif(1) 

b81=runif(1) 

b82=runif(1) 

b83=runif(1) 

b84=runif(1) 

b85=runif(1) 

b86=runif(1) 

b87=runif(1) 

b88=runif(1) 

b89=runif(1) 

b90=runif(1) 

b91=runif(1) 

b92=runif(1) 
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b93=runif(1) 

b94=runif(1) 

b95=runif(1) 

b96=runif(1) 

b97=runif(1) 

b98=runif(1) 

b99=runif(1) 

b100=runif(1) 

 

#####create function z 

set.seed(12345679) 

z=runif(1)+b1*x1+ 

  b2*x2+ 

  b3*x3+ 

  b4*x4+ 

  b5*x5+ 

  b6*x6+ 

  b7*x7+ 

  b8*x8+ 

  b9*x9+ 

  b10*x10+ 

  b11*x11+ 
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  b12*x12+ 

  b13*x13+ 

  b14*x14+ 

  b15*x15+ 

  b16*x16+ 

  b17*x17+ 

  b18*x18+ 

  b19*x19+ 

  b20*x20+ 

  b21*x21+ 

  b22*x22+ 

  b23*x23+ 

  b24*x24+ 

  b25*x25+ 

  b26*x26+ 

  b27*x27+ 

  b28*x28+ 

  b29*x29+ 

  b30*x30+ 

  b31*x31+ 

  b32*x32+ 

  b33*x33+ 
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  b34*x34+ 

  b35*x35+ 

  b36*x36+ 

  b37*x37+ 

  b38*x38+ 

  b39*x39+ 

  b40*x40+ 

  b41*x41+ 

  b42*x42+ 

  b43*x43+ 

  b44*x44+ 

  b45*x45+ 

  b46*x46+ 

  b47*x47+ 

  b48*x48+ 

  b49*x49+ 

  b50*x50+ 

  b51*x51+ 

  b52*x52+ 

  b53*x53+ 

  b54*x54+ 

  b55*x55+ 
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  b56*x56+ 

  b57*x57+ 

  b58*x58+ 

  b59*x59+ 

  b60*x60+ 

  b61*x61+ 

  b62*x62+ 

  b63*x63+ 

  b64*x64+ 

  b65*x65+ 

  b66*x66+ 

  b67*x67+ 

  b68*x68+ 

  b69*x69+ 

  b70*x70+ 

  b71*x71+ 

  b72*x72+ 

  b73*x73+ 

  b74*x74+ 

  b75*x75+ 

  b76*x76+ 

  b77*x77+ 
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  b78*x78+ 

  b79*x79+ 

  b80*x80+ 

  b81*x81+ 

  b82*x82+ 

  b83*x83+ 

  b84*x84+ 

  b85*x85+ 

  b86*x86+ 

  b87*x87+ 

  b88*x88+ 

  b89*x89+ 

  b90*x90+ 

  b91*x91+ 

  b92*x92+ 

  b93*x93+ 

  b94*x94+ 

  b95*x95+ 

  b96*x96+ 

  b97*x97+ 

  b98*x98+ 
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66 
 

 
 

  b99*x99+ 

  b100*x100 

 

 

######create reverse logit link function 

pr = 1/(1+exp(-z))          

y = rbinom(500,1,pr) 

 

 

######create the dataset 

train=data.frame(x1=x1, 

                 x2=x2, 

                 x3=x3, 

                 x4=x4, 

                 x5=x5, 

                 x6=x6, 

                 x7=x7, 

                 x8=x8, 

                 x9=x9, 

                 x10=x10, 

                 x11=x11, 

                 x12=x12, 
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                 x13=x13, 

                 x14=x14, 

                 x15=x15, 

                 x16=x16, 

                 x17=x17, 

                 x18=x18, 

                 x19=x19, 

                 x20=x20, 

                 x21=x21, 

                 x22=x22, 

                 x23=x23, 

                 x24=x24, 

                 x25=x25, 

                 x26=x26, 

                 x27=x27, 

                 x28=x28, 

                 x29=x29, 

                 x30=x30, 

                 x31=x31, 

                 x32=x32, 

                 x33=x33, 

                 x34=x34, 
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                 x35=x35, 

                 x36=x36, 

                 x37=x37, 

                 x38=x38, 

                 x39=x39, 

                 x40=x40, 

                 x41=x41, 

                 x42=x42, 

                 x43=x43, 

                 x44=x44, 

                 x45=x45, 

                 x46=x46, 

                 x47=x47, 

                 x48=x48, 

                 x49=x49, 

                 x50=x50, 

                 x51=x51, 

                 x52=x52, 

                 x53=x53, 

                 x54=x54, 

                 x55=x55, 

                 x56=x56, 
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                 x57=x57, 

                 x58=x58, 

                 x59=x59, 

                 x60=x60, 

                 x61=x61, 

                 x62=x62, 

                 x63=x63, 

                 x64=x64, 

                 x65=x65, 

                 x66=x66, 

                 x67=x67, 

                 x68=x68, 

                 x69=x69, 

                 x70=x70, 

                 x71=x71, 

                 x72=x72, 

                 x73=x73, 

                 x74=x74, 

                 x75=x75, 

                 x76=x76, 

                 x77=x77, 

                 x78=x78, 
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                 x79=x79, 

                 x80=x80, 

                 x81=x81, 

                 x82=x82, 

                 x83=x83, 

                 x84=x84, 

                 x85=x85, 

                 x86=x86, 

                 x87=x87, 

                 x88=x88, 

                 x89=x89, 

                 x90=x90, 

                 x91=x91, 

                 x92=x92, 

                 x93=x93, 

                 x94=x94, 

                 x95=x95, 

                 x96=x96, 

                 x97=x97, 

                 x98=x98, 

                 x99=x99, 

                 x100=x100,y=y) 
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#####create train and validation 

library(caTools) 

sample1=sample.split(train$y,SplitRatio=2/3) 

train1=train[sample1,] 

validation=train[!sample1,] 

t.y=data.matrix(train1$y) 

t.x=data.matrix(train1[,1:100]) 

v.y=data.matrix(validation$y) 

v.x=data.matrix(validation[,1:100]) 

 

Case 4: 

########simulation data with 10 variables and 1000 observations. 

set.seed(12345679) 

x1=rnorm(500) 

x2=rnorm(500) 

x3=rnorm(500) 

x4=jitter(x1,factor=2500) 

x5=jitter(x1,factor=2500) 

x6=jitter(x1,factor=2500) 

x7=jitter(x1,factor=2500) 

x8=jitter(x1,factor=2500) 

x9=jitter(x3,factor=7500) 
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x10=jitter(x3,factor=7500) 

x11=jitter(x3,factor=7500) 

x12=jitter(x3,factor=7500) 

x13=jitter(x3,factor=7500) 

x14=rnorm(500) 

x15=rnorm(500) 

x16=rnorm(500) 

x17=rnorm(500) 

x18=rnorm(500) 

x19=rnorm(500) 

x20=rnorm(500) 

x21=rnorm(500) 

x22=rnorm(500) 

x23=rnorm(500) 

x24=rnorm(500) 

x25=rnorm(500) 

x26=rnorm(500) 

x27=rnorm(500) 

x28=rnorm(500) 

x29=rnorm(500) 

x30=rnorm(500) 

x31=rnorm(500) 
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x32=rnorm(500) 

x33=rnorm(500) 

x34=rnorm(500) 

x35=rnorm(500) 

x36=rnorm(500) 

x37=rnorm(500) 

x38=rnorm(500) 

x39=rnorm(500) 

x40=rnorm(500) 

x41=rnorm(500) 

x42=rnorm(500) 

x43=rnorm(500) 

x44=rnorm(500) 

x45=rnorm(500) 

x46=rnorm(500) 

x47=rnorm(500) 

x48=rnorm(500) 

x49=rnorm(500) 

x50=rnorm(500) 

x51=rnorm(500) 

x52=rnorm(500) 

x53=rnorm(500) 
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x54=rnorm(500) 

x55=rnorm(500) 

x56=rnorm(500) 

x57=rnorm(500) 

x58=rnorm(500) 

x59=rnorm(500) 

x60=rnorm(500) 

x61=rnorm(500) 

x62=rnorm(500) 

x63=rnorm(500) 

x64=rnorm(500) 

x65=rnorm(500) 

x66=rnorm(500) 

x67=rnorm(500) 

x68=rnorm(500) 

x69=rnorm(500) 

x70=rnorm(500) 

x71=rnorm(500) 

x72=rnorm(500) 

x73=rnorm(500) 

x74=rnorm(500) 

x75=rnorm(500) 
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x76=rnorm(500) 

x77=rnorm(500) 

x78=rnorm(500) 

x79=rnorm(500) 

x80=rnorm(500) 

x81=rnorm(500) 

x82=rnorm(500) 

x83=rnorm(500) 

x84=rnorm(500) 

x85=rnorm(500) 

x86=rnorm(500) 

x87=rnorm(500) 

x88=rnorm(500) 

x89=rnorm(500) 

x90=rnorm(500) 

x91=rnorm(500) 

x92=rnorm(500) 

x93=rnorm(500) 

x94=rnorm(500) 

x95=rnorm(500) 

x96=rnorm(500) 

x97=rnorm(500) 
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x98=rnorm(500) 

x99=rnorm(500) 

x100=rnorm(500) 

 

########simulate the coefficients of the variables; 

set.seed(12345679) 

b1=10*runif(1) 

b2=10*runif(1) 

b3=10*runif(1) 

b4=b1 

b5=b1 

b6=b1 

b7=b1 

b8=b1 

b9=b3 

b10=b3 

b11=b3 

b12=b3 

b13=b3 

b14=runif(1) 

b15=runif(1) 

b16=runif(1) 



77 
 

 
 

b17=runif(1) 

b18=runif(1) 

b19=runif(1) 

b20=runif(1) 

b21=runif(1) 

b22=10*runif(1) 

b23=10*runif(1) 

b24=10*runif(1) 

b25=runif(1) 

b26=runif(1) 

b27=runif(1) 

b28=runif(1) 

b29=runif(1) 

b30=runif(1) 

b31=runif(1) 

b32=runif(1) 

b33=runif(1) 

b34=runif(1) 

b35=runif(1) 

b36=runif(1) 

b37=runif(1) 

b38=runif(1) 
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b39=runif(1) 

b40=runif(1) 

b41=runif(1) 

b42=runif(1) 

b43=runif(1) 

b44=runif(1) 

b45=runif(1) 

b46=runif(1) 

b47=runif(1) 

b48=runif(1) 

b49=runif(1) 

b50=runif(1) 

b51=runif(1) 

b52=runif(1) 

b53=runif(1) 

b54=runif(1) 

b55=runif(1) 

b56=runif(1) 

b57=runif(1) 

b58=runif(1) 

b59=runif(1) 

b60=runif(1) 
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b61=runif(1) 

b62=runif(1) 

b63=runif(1) 

b64=runif(1) 

b65=runif(1) 

b66=runif(1) 

b67=runif(1) 

b68=runif(1) 

b69=runif(1) 

b70=runif(1) 

b71=runif(1) 

b72=runif(1) 

b73=runif(1) 

b74=runif(1) 

b75=runif(1) 

b76=runif(1) 

b77=runif(1) 

b78=runif(1) 

b79=runif(1) 

b80=runif(1) 

b81=runif(1) 

b82=runif(1) 
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b83=runif(1) 

b84=runif(1) 

b85=runif(1) 

b86=runif(1) 

b87=runif(1) 

b88=runif(1) 

b89=runif(1) 

b90=runif(1) 

b91=runif(1) 

b92=runif(1) 

b93=runif(1) 

b94=runif(1) 

b95=runif(1) 

b96=runif(1) 

b97=runif(1) 

b98=runif(1) 

b99=runif(1) 

b100=runif(1) 

 

#####create function z 

set.seed(12345679) 

z=runif(1)+b1*x1+ 
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  b2*x2+ 

  b3*x3+ 

  b4*x4+ 

  b5*x5+ 

  b6*x6+ 

  b7*x7+ 

  b8*x8+ 

  b9*x9+ 

  b10*x10+ 

  b11*x11+ 

  b12*x12+ 

  b13*x13+ 

  b14*x14+ 

  b15*x15+ 

  b16*x16+ 

  b17*x17+ 

  b18*x18+ 

  b19*x19+ 

  b20*x20+ 

  b21*x21+ 

  b22*x22+ 

  b23*x23+ 
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  b24*x24+ 

  b25*x25+ 

  b26*x26+ 

  b27*x27+ 

  b28*x28+ 

  b29*x29+ 

  b30*x30+ 

  b31*x31+ 

  b32*x32+ 

  b33*x33+ 

  b34*x34+ 

  b35*x35+ 

  b36*x36+ 

  b37*x37+ 

  b38*x38+ 

  b39*x39+ 

  b40*x40+ 

  b41*x41+ 

  b42*x42+ 

  b43*x43+ 

  b44*x44+ 

  b45*x45+ 
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  b46*x46+ 

  b47*x47+ 

  b48*x48+ 

  b49*x49+ 

  b50*x50+ 

  b51*x51+ 

  b52*x52+ 

  b53*x53+ 

  b54*x54+ 

  b55*x55+ 

  b56*x56+ 

  b57*x57+ 

  b58*x58+ 

  b59*x59+ 

  b60*x60+ 

  b61*x61+ 

  b62*x62+ 

  b63*x63+ 

  b64*x64+ 

  b65*x65+ 

  b66*x66+ 

  b67*x67+ 
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  b68*x68+ 

  b69*x69+ 

  b70*x70+ 

  b71*x71+ 

  b72*x72+ 

  b73*x73+ 

  b74*x74+ 

  b75*x75+ 

  b76*x76+ 

  b77*x77+ 

  b78*x78+ 

  b79*x79+ 

  b80*x80+ 

  b81*x81+ 

  b82*x82+ 

  b83*x83+ 

  b84*x84+ 

  b85*x85+ 

  b86*x86+ 

  b87*x87+ 

  b88*x88+ 

  b89*x89+ 
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  b90*x90+ 

  b91*x91+ 

  b92*x92+ 

  b93*x93+ 

  b94*x94+ 

  b95*x95+ 

  b96*x96+ 

  b97*x97+ 

  b98*x98+ 

  b99*x99+ 

  b100*x100 

 

 

######create reverse logit link function 

pr = 1/(1+exp(-z))          

y = rbinom(500,1,pr) 

 

######create the dataset 

train=data.frame(x1=x1, 

                 x2=x2, 

                 x3=x3, 

                 x4=x4, 
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                 x5=x5, 

                 x6=x6, 

                 x7=x7, 

                 x8=x8, 

                 x9=x9, 

                 x10=x10, 

                 x11=x11, 

                 x12=x12, 

                 x13=x13, 

                 x14=x14, 

                 x15=x15, 

                 x16=x16, 

                 x17=x17, 

                 x18=x18, 

                 x19=x19, 

                 x20=x20, 

                 x21=x21, 

                 x22=x22, 

                 x23=x23, 

                 x24=x24, 

                 x25=x25, 

                 x26=x26, 
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                 x27=x27, 

                 x28=x28, 

                 x29=x29, 

                 x30=x30, 

                 x31=x31, 

                 x32=x32, 

                 x33=x33, 

                 x34=x34, 

                 x35=x35, 

                 x36=x36, 

                 x37=x37, 

                 x38=x38, 

                 x39=x39, 

                 x40=x40, 

                 x41=x41, 

                 x42=x42, 

                 x43=x43, 

                 x44=x44, 

                 x45=x45, 

                 x46=x46, 

                 x47=x47, 

                 x48=x48, 
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                 x49=x49, 

                 x50=x50, 

                 x51=x51, 

                 x52=x52, 

                 x53=x53, 

                 x54=x54, 

                 x55=x55, 

                 x56=x56, 

                 x57=x57, 

                 x58=x58, 

                 x59=x59, 

                 x60=x60, 

                 x61=x61, 

                 x62=x62, 

                 x63=x63, 

                 x64=x64, 

                 x65=x65, 

                 x66=x66, 

                 x67=x67, 

                 x68=x68, 

                 x69=x69, 

                 x70=x70, 
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                 x71=x71, 

                 x72=x72, 

                 x73=x73, 

                 x74=x74, 

                 x75=x75, 

                 x76=x76, 

                 x77=x77, 

                 x78=x78, 

                 x79=x79, 

                 x80=x80, 

                 x81=x81, 

                 x82=x82, 

                 x83=x83, 

                 x84=x84, 

                 x85=x85, 

                 x86=x86, 

                 x87=x87, 

                 x88=x88, 

                 x89=x89, 

                 x90=x90, 

                 x91=x91, 

                 x92=x92, 
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                 x93=x93, 

                 x94=x94, 

                 x95=x95, 

                 x96=x96, 

                 x97=x97, 

                 x98=x98, 

                 x99=x99, 

                 x100=x100,y=y) 

#####create train and validation 

library(caTools) 

sample1=sample.split(train$y,SplitRatio=2/3) 

train1=train[sample1,] 

validation=train[!sample1,] 

t.y=data.matrix(train1$y) 

t.x=data.matrix(train1[,1:100]) 

v.y=data.matrix(validation$y) 

v.x=data.matrix(validation[,1:100]) 

 

          For cases 5, 6, 7, 9, the simulation code is set up in the same way as code for cases 3 

and 4 with increased number of variables. 
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Code for model fitting and information criteria: 

 

#import important packages; 

library(MASS) 

library(gplots) 

library(ROCR) 

library(Matrix) 

library(glmnet) 

library(elasticnet) 

 

 

 

#ridge model 

#########select ridge model tuning  parameter with AIC, BIC and EBIC 

ridge.t=glmnet(t.x,t.y,alpha=0,lambda=seq(0,1,by=0.001),family="binomial") 

 

 

dev=deviance(ridge.t) 

 

nvar=ridge.t$df 

 

lambda=ridge.t$lambda 



92 
 

 
 

#lasso model 

#########select lasso model tuning  parameter with AIC, BIC and EBIC 

lasso.t=glmnet(t.x,t.y,alpha=1,lambda=seq(0,1,by=0.001),family="binomial") 

dev=deviance(lasso.t) 

 

nvar=lasso.t$df 

 

lambda=lasso.t$lambda 

 

#elastic net model 

#########select ridge model tuning  parameter with AIC, BIC and EBIC 

enet.t=glmnet(t.x,t.y,alpha=0.5,lambda=seq(0,1,by=0.001),family="binomial") 

 

dev=deviance(enet.t) 

 

nvar=enet.t$df 

 

lambda=enet.t$lambda 

 

 

#Calcualte AIC, BIC and EBIC 

#p is the total number of variables for each simulation data. 



93 
 

 
 

p=10 

#n is the number of observations in each simulation data 

n=100 

 

dat=data.frame(deviance=dev,lambda=lambda,nvar=nvar) 

 

dat$aic=dat$deviance+2*dat$nvar 

 

dat$bic=dat$deviance+dat$nvar*log(0.333*n) 

 

 

dat$ebic=dat$bic+2*0.25**log(choose(p,dat$nvar)) 

 

dat1=subset(dat,nvar!=0) 

 

 

 

 

#EBIC 

ebic1=subset(dat1,ebic!="-Inf") 

ebic=subset(ebic1,ebic==min(ebic1$ebic)) 

ebic 
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#BIC 

bic=subset(dat1,bic==min(dat1$bic)) 

bic 

 

#AIC 

aic=subset(dat1,aic==min(dat1$aic)) 

aic 

 

 

#Calcualte AIC, BIC and EBIC 

dat=data.frame(deviance=dev,lambda=lambda,nvar=nvar) 

 

dat$aic=dat$deviance+2*dat$nvar 

 

dat$bic=dat$deviance+dat$nvar*log(2858) 

 

dat$k=log((dat$nvar),base=2858) 

 

dat$theta=1-1/(2*(dat$k)) 

 

dat$ebic=dat$bic+2*(dat$theta)*log(choose(2858,dat$nvar)) 
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dat1=subset(dat,nvar!=0) 

 

#EBIC 

ebic1=subset(dat1,ebic!="-Inf") 

ebic=subset(ebic1,ebic==min(ebic1$ebic)) 

ebic 

 

#BIC 

bic=subset(dat1,bic==min(dat1$bic)) 

bic 

 

#AIC 

aic=subset(dat1,aic==min(dat1$aic)) 

aic 

 

Calculate AUC for validation data: 

###########fit ridge model with selected tuning  parameter  

ridge.t=cv.glmnet(t.x,t.y,alpha=0,lambda=seq(0,1,by=0.001),nfolds=5,family="binomial",typ

e.measure="class") 

 

coeft=coef(ridge.t$glmnet.fit,s=bic$lambda) 

coeft 
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#Plot the ROC curve  

predictridget=predict(ridge.t,newx=v.x,type="response",s=bic$lambda) 

write.csv(predictridget,file="F:\\Thesis\\predictridget.csv") 

 

pred <- prediction(predictridget[,1], v.y) 

 

perf <- performance(pred, measure = "tpr", x.measure = "fpr")  

title(main="ROC curve for ridge regression") 

plot(perf, col=rainbow(10)) 

 

auc.tmp <- performance(pred,"auc") 

 

auc <- as.numeric(auc.tmp@y.values) 

 

auc  

 

###########fit ridge model with selected tuning  parameter  

lasso.t=cv.glmnet(t.x,t.y,alpha=1,lambda=seq(0,1,by=0.001),nfolds=5,family="binomial",typ

e.measure="class") 

 

#export the coef 

coeft.lasso=coef(lasso.t$glmnet.fit,s=bic$lambda) 
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coeft.lasso<-data.matrix(coeft.lasso) 

write.csv(coeft.lasso,file="F:\\Thesis\\coeflasso.csv") 

 

 

 

#Plot the ROC curve  

predictlasso=predict(lasso.t,newx=v.x,type="response",s=bic$lambda) 

write.csv(predictlasso,file="F:\\Thesis\\predictlasso.csv") 

 

pred <- prediction(predictlasso[,1], v.y) 

 

perf <- performance(pred, measure = "tpr", x.measure = "fpr")  

title(main="ROC curve for ridge regression") 

plot(perf, col=rainbow(10)) 

 

auc.tmp <- performance(pred,"auc") 

 

auc <- as.numeric(auc.tmp@y.values) 

 

auc 
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###########fit ridge model with selected tuning  parameter  

enet.t=cv.glmnet(t.x,t.y,alpha=0.5,lambda=seq(0,2,by=0.001),nfolds=5,family="binomial",ty

pe.measure="class") 

 

 

 

#export the coef 

coeft.enet=coef(enet.t$glmnet.fit,s=bic$lambda) 

coeft.enet<-data.matrix(coeft.enet) 

write.csv(coeft.enet,file="F:\\Thesis\\coefenet.csv") 

 

 

 

#Plot the ROC curve  

predictenet=predict(enet.t,newx=v.x,type="response",s=aic$lambda) 

write.csv(predictenet,file="F:\\Thesis\\predictenet.csv") 

 

pred <- prediction(predictenet[,1], v.y) 

 

perf <- performance(pred, measure = "tpr", x.measure = "fpr")  

title(main="ROC curve for ridge regression") 

plot(perf, col=rainbow(10)) 
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auc.tmp <- performance(pred,"auc") 

 

auc <- as.numeric(auc.tmp@y.values) 

 

auc 

 

#code for standardized data 

#ridge model 

#########select ridge model tuning  parameter with AIC, BIC and EBIC 

ridge.t=glmnet(t.x,t.y,alpha=0,lambda=seq(0,1,by=0.001),family="binomial",standardize = 

TRUE) 

 

 

dev=deviance(ridge.t) 

 

nvar=ridge.t$df 

 

lambda=ridge.t$lambda 

 

#lasso model 

#########select lasso model tuning  parameter with AIC, BIC and EBIC 
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lasso.t=glmnet(t.x,t.y,alpha=1,lambda=seq(0,1,by=0.001),family="binomial",standardize = 

TRUE) 

dev=deviance(lasso.t) 

 

nvar=lasso.t$df 

 

lambda=lasso.t$lambda 

 

#elastic net model 

#########select ridge model tuning  parameter with AIC, BIC and EBIC 

enet.t=glmnet(t.x,t.y,alpha=0.5,lambda=seq(0,1,by=0.001),family="binomial",standardize = 

TRUE) 

 

dev=deviance(enet.t) 

 

nvar=enet.t$df 

 

lambda=enet.t$lambda 

 

 

#Calcualte AIC, BIC and EBIC 

#p is the total number of variables for each simulation data. 
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p=47 

#n is the number of observations in each simulation data 

n=4287 

 

dat=data.frame(deviance=dev,lambda=lambda,nvar=nvar) 

 

dat$aic=dat$deviance+2*dat$nvar 

 

dat$bic=dat$deviance+dat$nvar*log(0.667*n) 

 

 

dat$ebic=dat$bic+2*0.25**log(choose(p,dat$nvar)) 

 

dat1=subset(dat,nvar!=0) 

 

#EBIC 

ebic1=subset(dat1,ebic!="-Inf") 

ebic=subset(ebic1,ebic==min(ebic1$ebic)) 

ebic 
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#BIC 

bic=subset(dat1,bic==min(dat1$bic)) 

bic 

 

#AIC 

aic=subset(dat1,aic==min(dat1$aic)) 

aic 
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