
Journal of Interdisciplinary Undergraduate Research
Volume 11 Journal of Interdisciplinary Undergraduate
Research Article 5

2019

UI-SPEED: Uniquely Identifiable Self-Contained
Pass-Through Enhanced Encryption Device
Alexander Ennis
alecennis@southern.edu

Follow this and additional works at: https://knowledge.e.southern.edu/jiur

Part of the Education Commons

This Article is brought to you for free and open access by the Peer Reviewed Journals at KnowledgeExchange@Southern. It has been accepted for
inclusion in Journal of Interdisciplinary Undergraduate Research by an authorized editor of KnowledgeExchange@Southern. For more information,
please contact jspears@southern.edu.

Recommended Citation
Ennis, Alexander (2019) "UI-SPEED: Uniquely Identifiable Self-Contained Pass-Through Enhanced Encryption Device," Journal of
Interdisciplinary Undergraduate Research: Vol. 11 , Article 5.
Available at: https://knowledge.e.southern.edu/jiur/vol11/iss1/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Southern Adventist University

https://core.ac.uk/display/232791095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://knowledge.e.southern.edu/jiur?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/jiur/vol11?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/jiur/vol11?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/jiur/vol11/iss1/5?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/jiur?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/jiur/vol11/iss1/5?utm_source=knowledge.e.southern.edu%2Fjiur%2Fvol11%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

73

Alexander Ennis

UI-SPEED: Uniquely Identifiable Self-
Contained Pass-Through Enhanced

Encryption Device

Alexander Ennis

Abstract: USB encryption is an effective method for securing data. Current
available solutions are limited to host-side, drive-side, and neither-side
encryption. Host-side encryption must be downloaded on every host, and
drive-side encryption is expensive. Current neither-side implementations
either provide weak protection or provide it at the cost of unneeded
multi-step processes. For USB encryption to be portable, inexpensive,
and secure, it must have a straightforward locking mechanism, be able
to encrypt any drive, and be distinguishable from the encryption of every
other drive. The solution proposed here adds an identifiable aspect to
each drive that is encrypted, isolates the encryption from the host and the
drive, and adds an on-board locking mechanism.

I. INTRODUCTION

 The USB flash drive market is expected to exceed 64 billion dollars by 2021 [1].
The information held in these small devices for thousands of users can be personal
or sensitive and needs to be protected. There are some encryption options to choose
from: host-side software encryption, drive-side hardware encryption, or neither-side
hardware encryption (also known as a pass-through adapter). All of the current options
for drive-side encryption require the purchase of a specialized USB drive that encrypts
itself, while the options for host-side encryption are limited to software on the possibly
“untrusted operating system” [2].
 Some users may need to use computers that do not have cryptographic software
available. A self-encrypted USB drive solves this problem, but it is more expensive
because of its encryption capabilities. A pass-through adapter solves both of these
problems by allowing any computer to use the device and by encrypting the device
without having to use more expensive on-board encryption hardware for each drive.
Unfortunately, there are not currently any pass-through adapters that do not rely on
inputted information from the host. Also, all of the current pass-through adapters
use the same key to encrypt the data from each drive, which can lead to faults in the
encryption reliability, as shown in Section II-B.
 To solve this problem, there needs to be a uniquely identifiable self-contained pass-
through enhanced encryption device (UI-SPEED). It should be uniquely identifiable,
meaning it should encrypt every drive with a unique key that distinguishes it from
others encrypted with the same device. It must also be self-contained so that it does not
rely on information from the host for its encryption.

74

UI-SPEED

 This scheme allows the user to only worry about one PIN number for all of their
drives, while still maintaining the uniquely identifiable aspect of each separate drive
due to each being encrypted with a different key.

II. BACKGROUND

A. Competitive Analysis
 The current solutions to USB flash data encryption come from three main sources:
the host, the drive, or a device in between them. These are host-side, drive-side, and
neitherside, respectively. The host relies on encryption software that is usually run by
an operating system to secure the data, while drive-side and neither-side encryption rely
on an embedded processor running a cryptographic algorithm on either the drive itself
or a device in between.

Host-Side

Fig. 1. Encryption with the host holding the cryptographic function isolates

the encryption from the drive.

 1) Host-Side: Encryption software is only as good as the operating system or processor
that it runs on, as shown with the problems with Windows XP [8] and the Spectre/
Meltdown processor vulnerability [13]. Because most host-side encryption options are
limited to either on-board operating system based encryption or downloaded software,
both of these options are insecure simply by the nature of them being run by a host
[14], [15]. Since not all operating systems have on-board encryption, every host without
it must download encryption software to have USB security.

Drive-Side

Fig.2. Encryption on the drive-side isolates the encryption from the host.

 2) Drive-Side: There are many products for drive-side encryption,, with most offering
encryption with AES-256. These
drives allow for both on-board and host-side key input. For example, the Kingston
Datatraveler 2000, uses an on-board key input, while the PNY Sentry uses host-side
key input. Driveside key input is usually done with a PIN-pad or some biometric, like
a fingerprint. Fingerprints, due to their nature and continued use on the device, are
easily spoofed [9], [10].

75

Alexander Ennis

 One of the simplest, though, time-consuming, attacks on a PIN-based locking
mechanism is brute force (trying all possible combinations). To mitigate this problem,
some products, like Apple’s iPhone, put a restriction on the number of incorrect PINs
a user can enter. This incorrect PIN lockout will lock the device when a certain number
of incorrect PINs have been entered. Though most products account for it, some drives
do allow wear on their PIN-pad button. This can help an attacker infer information
about what the PIN is, making it easier to brute force. Another downside to on-board
PIN-pads is that because of the small size of USB drives, individual buttons can lead to
mistaken buttons presses [10]. These problems, combined with a lack of PIN display,
allow for wrong input of PINs. If a USB drive does incorporate incorrect PIN lockout
this can be disastrous for the user.
 Furthermore, one of the most glaring detriments to using drive-side encryption is
the cost. Some companies that produce USB drives also produce drives with on-board
encryption. However, with a price difference of at least $120, as shown in Table I, it
is more cost effective to use a universal method to encrypt all USB drives, even those
without on-board encryption.

TABLE I
PRICES FOR 16GB USB DRIVES

Neither-Side

Fig. 3. Encryption with neither-side having the cryptographic function isolates both the host and the
drive from cryptographic responsibility.

 3) Neither-Side: There are only two products on the market for pass-through adapters:
Enigma made by Enova and CipherUSB made by Addonics. Both of these are so
similar in look and function that we will be treating them as the same product made
by different companies and will refer only to Enigma. The steps to use this product
are as follows: plug the USB drive into the Enigma module, insert both into the host,
execute the enigma.exe code utility, then go through two-step initialization process.

76

UI-SPEED

That sets a recovery password. Then unplug and replug the pair [22]. When that is
done the device encrypts and decrypts as long as it is plugged in. The product can
encrypt any number of drives [22], and because of that, each is encrypted with the same
recovery key. This product utilizes AES-256 to encrypt and decrypt data flowing to
and from the connected USB drive. Because the device does not have an onboard key
input method, it is not suitable for secure traveling, except by setting and resetting the
recovery password through the host.
 The current solution to the problem of neither-side encryption does not take into
account the fact that for a drive to be useful it must continue to stay with the adapter.
Because there is no locking mechanism on the device, any security gained from AES
256 is nullified because if an attacker can get to the drive it is not unlikely that they
can also get to the device. For Enigma there is, however, a somewhat lengthy process by
which a user can clear the recovery password before removing the drive and resetting
it to the original recovery password after connecting the drive. This process takes more
steps than necessary and still uses the host to initiate the encryption.

B. Encryption Algorithms
 This section describes the encryption algorithms: DES, 3DES, Blowfish, RSA, ECC,
AES, and OTP. These algorithms are, or have been, the standards in the cryptographic
world. Some variations are more secure than others — one of which is provably secure,
but impracticable in reality.
 1) OTP: A One Time Pad (OTP) is the only, to date, perfect cryptographically secure
encryption algorithm. Unlike all other algorithms, which are only computationally
secure, the OTP is “information-theoretically secure” [16], which means, given the
ciphertext and any amount of time and computing power, the correct plaintext cannot
be known. To use an OTP, one must generate a string of truly random bits for a key.
The key must be as long as the message. The key is then XOR’ed withthe plain text to
produce the ciphertext.
 Any violation of the conditions in [14] means that the cipher is no longer an OTP
cipher [7]. Though the algorithm is proven to be secure in [4], there are some real-world
problems with it. First, the encryption scheme must generate truly unpredictable keys.
This can be mitigated through the use of pseudorandom number generators, but even
then, those are not truly random. The next problem is that the key must be as long
as the plaintext, which requires the generator to produce the keys without stretching
a smaller key. The last problem stem from the first, in that the key cannot be reused.
Although a random generator can, in theory, generate two of the same key, the key still
cannot be used more than once, because it violates rule 3 in [14]. This aspect of random
generation limits the number of plaintexts of a certain size that can be sent.
 Key Reuse: With all encryption algorithms, especially OTP, there rises the problem
of key reuse. If a key is reused over many plaintexts, it can lead to information leakage
[21]. When these multiple ciphertexts are compared, information about the underlying
structure of the key can be gleaned. Though the time to decipher the ciphertext is still
greater than having the key beforehand, with enough similarly encrypted ciphertexts,
security starts to fail [14], [21].
 2) DES: Data Encryption Standard (DES) was the first mainstream Feistel Network-
based encryption algorithm. It uses a key of 56 bits to interleave, permute, and

77

Alexander Ennis

substitute the plaintext in blocks of 64 bits. This is done for a total of 16 rounds to
obtain the cipher text. Because of the low key length the algorithm is now obsolete [3].
For this reason, it is no longer recommended by the Federal Information Processing
Standards publication (FIPS) 140-2, the standards publication for recommended and
proven methods for encryption.
 3) 3DES: 3DES is the continuation of DES. Once DES was found faulty the creators
added a 3-key system that changed the bit count from 56 to 168. Because of the 3 keys,
the average time to encrypt is also multiplied by 3 [3]. Even though it is still one of the
recommended algorithms in FIPS 140-2, because it takes three times as long as other
block-based algorithms, it is not as suitable for most encryption needs as others.
 4) Blowfish: The Blowfish algorithm is another algorithm in the same category as
DES and 3DES. It also operates in 64 bit blocks and 16 rounds. The difference lies in
the substitutions that the algorithm performs. With three sets of substitution boxes,
Blowfish has been shown to be cryptographically secure. Another benefit to Blowfish is
that because of the nature of the rounds that it performs, it is fast, only taking 26 clock
cycles for one byte on some proposed systems [5]. For this reason it is well adept at
hardware encryption. The algorithm was developed as an non-proprietary project by
Bruce Schneier, and as such, it is not a recommended standard with FIPS 140-2 [17].
 5) RSA: RSA, unlike the previous three algorithms, is a publickey cryptography
scheme; meaning it uses a public key to encrypt and a private key to decrypt. It uses the
idea of the intractability of factoring large prime numbers. Though it is theoretically
more secure than most of the other algorithms, because of the computational overhead
for generating prime numbers and the large key size required to be secure, it is not
suitable for use in many encryption scenarios [23]. Furthermore, because RSA is a
public/private key cryptosystem, it is not necessary for singleuser applications.
 6) ECC: Elliptic Curve Cryptography (ECC) is another public/private key scheme
for cryptography. It also uses a hard mathematical problem, the elliptic curve discrete
logarithm problem, as its basis for encryption. Because the algorithm relies on
calculating discrete logarithms, the computational overhead is only minimally smaller
than that for RSA, even though the key size is much smaller [23]. This algorithm is also
not needed for single-user applications because it uses public/private key cryptography.
 7) AES: Advanced Encryption Standard (AES) is the primary standard for fast,
reliable encryption. There are three versions: AES-128, AES-192, and AES-256. Each
version refers to the key size. Like DES, 3DES, and Blowfish, it uses Feistel networks
and combinations of permutations and substitutions for its encryption. Though it
has the same basis, because of the larger key size it is much more secure. It was first
introduced in FIPS 197 [18] and has replaced DES and another lesser-used algorithm,
Skipjack, in FIPS 140-2 for both the public and private sectors [17].

III. PROPOSED PROJECT

A. Overall Functionality
 User Stories: When a user enters the correct PIN, the Key-generator will generate the
key and give it to both the encryption and decryption algorithms. The host will then
enumerate with the drive, asking it for various identifiers and data. Once enumeration
is complete, data can be transferred back and forth from host to drive.

78

UI-SPEED

 When a user enters three incorrect PINs the Key-erase will clear the on-board key
register and all other information registers. This will lock the device to prevent further
brute force attacks.
 When a user wishes to change the PIN, they will enter the old PIN then press and
hold the Enter button. This will clear the previous PIN and allows the user to enter a
new one.

B. System: software implementation
 The proposed project will consist of the eight modules shown in Fig. 4: Host
protocol, Drive-protocol, Encryptionalgorithm, Decryption-algorithm, Key-generation,
PIN-input, Key-erase, and PIN-change. The Host-protocol and Driveprotocol modules
deal with the transfer of data and commands back and forth from host to drive. The
Encryption-algorithm, Decryption-algorithm, and Key-generation modules deal with
securing the data. The PIN-input, Key-erase, and PIN-change modules deal with user
periphery and additional functions of the device.

System Diagram

Fig. 4. The system diagram showing the flow of data and commands between the host, drive, on-board

periphery, and modules for the pass-through adapter.

 Modules: All modules will use a PCB board and the
Beaglebone as their platform.
 1) Host-protocol: The Host-protocol module will use the BeagleBone for its
operations. The module will receive commands from the host and will transfer them
to the Driveprotocol module. The module will receive data from the host, and that
data will be given to the Encryption-algorithm module contained in the same device.
The module will also receive decrypted data from the Drive-protocol module and will
transfer that to the host.
 2) Drive-protocol: The Drive-protocol will use the AT90USB162 microcontroller for

79

Alexander Ennis

its operations. The module will receive responses from the drive and transfer them to
the Host-protocol module. The module will receive data from the drive, which will be
given to the Decryption-algorithm module contained in the BeagleBone. The module
will also receive encrypted data from the Host-protocol module and will transfer that to
the drive.
 3) Encryption-algorithm: The Encryption-algorithm will use the BeagleBone for
its operations. The module will receive data to be encrypted from the Host-protocol
module. The module will encrypt the data using AES-256 with the key from the Key-
generation module. The data will then be transfered to the Drive-protocol module.
 4) Decryption-algorithm: The Decryption-algorithm will use the BeagleBone for its
operations. The module will receive data to be decrypted from the Drive-protocol
module. The module will decrypt the data using the inverse AES-256 with the key
from the Key-generation module. The data will then be transfered to the Host-protocol
module.
 5) Key-generation: The Key-generation module shown in Fig. 5 will use the BeagleBone
for its operations. The module will receive the PIN from the PIN-input module and the
device identifier from the Drive-protocol module. The module will then combine and
hash them with TupleHash function from the SHA-3 specification [19] to produce
the key. Then the module will transfer the key to the Encryption-algorithm and the
Decryption-algorithm.

Key Generation

Fig. 5. Key-generation diagram showing the integration and hashing of the
three parts of the cryptographic key.

 6) PIN-input: The PIN-input module will use the BeagleBone, the 7-Segment display,
and the Click Wheel for its operations. The module will start in the Locked state as
shown in Fig. 6. When the device is plugged in, the state will be changed to Ready and
the digit selection on the 7-Segment display will be set to 0. The user will scroll with the
Click Wheel through the digits until the correct one is displayed. Each increment of the
scroll portion of the Click Wheel increments the digit count by one.
 When the correct digit is displayed, the user enters the digit by pressing Select Digit

80

UI-SPEED

on the Click Wheel, this returns the state to Ready with the digit selection set to 0. This
process is repeated until all of the digits are entered, then the user presses the Enter
button and the state is changed to Unlocked.
 If the Enter button is pressed, and the PIN is incorrect, the PIN-input module
updates the Key-erase module with the current Incorrect Count and the state returns to
Locked.
 7) Key-erase: The Key-erase module will use the Beagle-Bone for its operations. The
module will start with an incorrect count of zero. As shown in Fig. 6, each time the
PIN-input

State Diagram: PIN-input

Fig. 6. The state diagram showing the possible states of the PIN-input module and the transitions

between.

module sends it an update, the Key-erase module will add one to the current incorrect
count and the state will return to Locked. When the incorrect count reaches three, the
Keyerase module will clear the on-board key register and the PIN comparison register.
 8) PIN-change: The PIN-change module will use the BeagleBone for its operations.
The module will give and receive communication from the PIN-input module about
the state of the periphery (the 7-Segment and the Click Wheel).
 The module will start in the Locked state as shown in Fig. 7. When the user enters
the correct PIN, the state will change to Unlocked. When the user holds the Input
button for one second, the state will change to Ready, the PIN comparison register will
be cleared, and the digit count will be set to zero. While the module is in the Ready state
the user can enter a new PIN. The state will follow the same sequence as the one for
entering a regular PIN. When the user holds the Enter button again, the state will be
changed to Unlocked, and the new PIN will replace the old PIN in the PIN comparison
register.

81

Alexander Ennis

State Diagram: PIN-change

Fig. 7. The state diagram showing the possible states of the PIN-change module and the transitions

between.

 Distinguishability: The Drive-protocol - Decryptionalgorithm- Key-generation - PIN-
input integration handles the acquisition and decryption of the drive identifier so it
can be used by the Key-generation module. This is done while the drive is enumerating
with the host. While the enumeration happens, the Drive-protocol will capture the
drive identifier and give it to the Decryption-module, which will decrypt

TABLE II
PRELIMINARY PARTS LIST (SOME QUANTITIES ARE IN BULK)

it with the PIN received from the PIN-input module. Once the drive identifier has been
decrypted, it will be given to the Key-generation module, which will hash it to produce
the key.

C. System: hardware implementation
 The hardware side of this project, shown in Fig. 8, will utilize the BeagleBone
development platform for a proof of concept implementation of our solution to neither-
side encryption. Using this allows us to focus on the building the system, rather than
building the host USB stack from the ground up. To facilitate the device side of the
system we will use an AT90USB162 microcontroller. This is because, from our research,
the BeagleBone is not able to perform host and device functions simultaneously. The
AT90USB162 microcontroller, along with all of the added peripherals, will be mounted

82

UI-SPEED

on the BeagleBone using a cape for easy access and debugging.

Schematic Diagram

Fig. 8. The schematic diagram showing the BeagleBone development board and its added cape for
peripherals.

IV. TESTING/EVALUATION PLAN

A. Acceptance
 1) Correctness Survey: We will survey 10 people from the Southern Adventist
University population. They will be given a drive and an adapter with the PIN already
entered. They will be asked to perform a range of tasks: create a text file, modify the
text file, read the text file, and delete the text file. Then they will be asked to plug in
the drive without the adapter. After that they will report in the rubric from Table V
whether or not each task was successful. We expect at least eight of

TABLE III
PROJECT PROPOSAL: SPRINTS 1-5

83

Alexander Ennis

 TABLE IV
USB TIMING SPECIFICATIONS

the people to answer yes to all five questions. The remaining two people should answer
yes to at least four of the questions.

B. System
 Unless otherwise stated, all system testing will be done ten times, and nine out of
ten are expected to pass.
 1) Speed (Drive USB protocol - Encryption algorithm - Decryption algorithm - Host USB
protocol): To test the speed of the cryptographic algorithm an oscilloscope will be
connected to the host and drive side of the data path. We will measure the time for
some specific data to propagate between the two sides through the Encryption algorithm
and Decryption-algorithm. The time measured should be within 5 seconds as per the
specifications from Table IV.

TABLE V
RUBRIC OF CORRECTNESS FOR THE USER

2) Key erasure (Key erasure - PIN-input - Key-generation): To test for key erasure, we will
enter three incorrect PINs, then read the on-board key and PIN comparison registers
and verify that they have been cleared. This will be done 10 times, and we expect that
all of them should be cleared.

C. Integrations
 Unless otherwise specified, all integrations testing will be done ten times, and nine
out of ten are expected to pass.
 1) Host-protocol - Drive-protocol: This integration will be tested by simulating the 17
requests from the Host-protocol to the Drive-protocol, and from the Drive-protocol to
the Hostprotocol. After each request, we will evaluate how the other protocol responds.
 We will simulate the back and forth communication for enumerating USB. The

84

UI-SPEED

requests will be made in the same order and speed as normally is required for drive
enumeration.
 2) Key-generation - Encryption-algorithm - Decryptionalgorithm: To test this integration,
we will arbitrarily conjure a PIN that will be hashed with the key and drive identifier to
produce a key. We will feed this key to the Encryption-algorithmand the Decryption-
algorithm modules. The modules should generate the appropriate key expansion for
the given PIN.
 3) PIN-input - Key-erase - PIN-change: This integration will be done in two parts: PIN-
input - Key-erase and PINinput- PIN-change. For the first portion of the testing we
will enter three incorrect PINs. We will then verify that the onboard key and PIN
comparison registers have been cleared. The second part will be tested by changing ten
different PINs to new PINs.
 4) Drive-protocol - Decryption-algorithm - Key-generation- PIN-input: This integration
will be tested by enumerating a number of drives and verifying that the correct drive
identifier is decrypted and sent to the Key-generation module for hashing.

D. Module/Unit
 Unless otherwise specified, all module and unit testing will be done ten times, and
ten out of ten are expected to pass. All units will be tested for specific data pertaining to
their module. These tests will be performed with the μCUnit testing framework from
Section IV-E and should cover all function that give and/or receive data.
 1) Host-protocol: This module will be tested by having it collect and transfer
various commands and data. We will pay special attention to the time that it takes
the module to accomplish the transfer of commands. Because of the time sensitivity
of enumeration, all timing requirements must be met. However, only the “time for
Standard Device requests without a data stage” will be specifically tested, in accordance
with the specifications mentioned in Table IV.
 2) Drive-protocol: This module will be tested by having it receive all of the commands
and responses required for enumeration and some arbitrary data. The module must be
able to transfer all of the appropriate commands and data within the time specifications
in Table IV, but only the “time for Standard Device requests without a data stage” will
be specifically tested.
 3) Key-generation: This module will be tested by sending it 30 combinations of
PIN, on-board key, and device identifier. We expect the internal hashing function to
generate the correct key 30 out of the 30 times.
 4) Encryption-algorithm: This module will be tested by giving it the initialization
from [18] and verifying that, for each of the rounds and sub-functions, the values
presented match the values given in [18].
 5) Decryption-algorithm: This module will be tested similarly by giving it the
initialization from [18] and verifying that the values presented both match the values
given in [18] and are the inverse of the values from the previous test.
 6) PIN-input: This module will be tested by inputting 10 different PINs and verifying
that, for each, the module
changes its state to Unlocked. While being inputted, each of the PINs inputted will be
”backspaced” at least halfway and then retyped to show the backspace functionality.
 7) Key-erase: To test this module we will simulate 10 sets of 3 incorrect keys. We will

85

Alexander Ennis

verify that the on-board key and PIN comparison registers have been cleared.
 8) PIN-change: This module will be tested by entering the old PIN then changing
the old PIN to the new PIN. We will then lock the device and verify that the new PIN
unlocks the device.

E. Testing Frameworks
 1) Oscilloscope: An oscilloscope will be used to test the physical connections
between the modules such as Driveprotocol and Host-protocol. In particular, this will
be used to test the speed at which the pass-through adapter operates.
 2) μCUnit: μCUnit is a unit test framework for microcontrollers. It will be used
to test the workings of the other modules, submodules, and units, such as parts of the
Encryptionalgorithm, Decryption-algorithm, and Key-generation modules.

V. CONCLUSION
 Because USB drives are so prevalent, easy encryption and security are in high
demand. Since host-side encryption is not viably portable and drive-side encryption
is expensive, we look to neither-side encryption. To solve the problems with current
neither-side implementations of USB encryption, this paper proposes a proof of
concept for a device that will allow a user to distinguishably secure their data with an
on-board PIN. This effectively removes security responsibilities from both the host and
the drive

86

UI-SPEED

REFERENCES

[1] ”Globalflash memory market 2013-2021 — Statistic,” Statista, 2018. [Online].
 Available: https://www.statista.com/statistics/553556/worldwideflash-
 memory-market-size/.
[2] M. Henson and S. Taylor, “Memory Encryption - A Survey of Existing Techniques”
 ACM Computing Surveys, vol. 46, no. 4, pp. 1–26, Mar. 2014
[3] G. Singh and Supriya, “A Study of Encryption Algorithms (RSA, DES, 3DES and
 AES) for Information Security,” International Journal of Computer Applications, vol.
 67, no. 19, pp. 33–38, Apr. 2013.
[4] M. Rosulek, The Joy of Cryptography. Corvallis, OR: Drafted, 2018.
[5] N. Valmik and V. K. Kshirsagar, “Blowfish Algorithm,” IOSR Journal of Computer
 Engineering, vol. 16, no. 2, pp. 80–83, 2014.
[6] S. Manku and K. V. Vasanth, “BLOWFISH ENCRYPTION ALGORITHM FOR
 INFORMATION SECURITY,” ARPN Journal of Engineering and Applied Sciences,
 vol. 10, no. 10, pp. 4717–4719, Jun. 2015.
[7] C. E. Shannon, “Communication Theory of Secrecy Systems*,” Bell System Technical
 Journal, vol. 28, no. 4, pp. 656–715, Oct. 1949.
[8] O. Alhazmi, Y. Malaiya, and I. Ray, “Security Vulnerabilities in Software Systems:
 A Quantitative Perspective,” Data and Applications Security XIX, S. Jajodia and D.
 Wijesekera, Eds. 2005, pp. 281–294.
[9] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar, “Interdiction in
 practice—Hardware Trojan against a high-security USB flash drive,” Journal of
 Cryptographic Engineering, vol. 7, no. 3, pp. 199–211, Jun. 2016.
[10] D. Jagos, “Security analysis of USB drive,” M.S. thesis, Department of Digital
 Design, Prague, 2018.
[11] N. Tihanyi, “Fault-injection based backdoors in Pseudo Random Number
 Generators*,” Studia Scientiarum Mathematicarum Hungarica, vol. 52,
 no. 2, pp. 233–245, Jun. 2015.
[12] A. Muffett, et al. “RSA-155 Is Factored!” RSA Laboratories,1999, web.archive.org/
 web/20061230233723/http://www.rsasecurity.com/rsalabs/node.asp?id=2098.
[13] A. A. Chien, “Computer architecture: Disruption from above,” Communications of
 the ACM, vol. 61, no. 9, pp. 5–5, Sep. 2018.
[14] D. Rijmenants, “THE COMPLETE GUIDE TO SECURE COMMUNICATIONS
 WITH THE ONE TIME PAD CIPHER,” Cipher Machines & Cryptology, ed. 7.5,
 Jun. 2018, pp. 1–27.
[15] K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitras¸, “Some Vulnerabilities
 Are Different Than Others,” in Research in Attacks, Intrusions and Defenses, 2014, pp.
 426–446.
[16] Christian Matt and Ueli Maurer, “The One Time Pad Revisited,” ETH Zurich: Swiss
 National Science Foundation, pp. 1–5. Elliptic Curves and Cryptography
[17] SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES, FIPS
 PUB 140-2, 2001.
[18] Announcing the ADVANCED ENCRYPTION STANDARD (AES), FIPS PUB
 197, 2001.

87

Alexander Ennis

[19] SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and Parallel-Hash, NIST
 SPEC PUB 800-185, 2016.
[20] Recommendation for Block Cipher Modes of Operation, NIST SPEC PUB 800-38A,
 2001.
[21] Using AEC CCM Mode with IPsec ESP, RFC 4309, 2005.
[22] “Securing Data at Rest Safely and Easily,” Enova Technology Corporation, 2012
 [Online]. Available: http://www.enovatech.net/support/download Enigma%2
 White%20Paper%2008032012.pdf
[23] “Elliptic Curve Cryptosystems,” RSA Laboratories T, 1997. [Online]. Available:
 http://networkdls.com/Articles/elliptic curve.pdf
[24] ”Elliptic Curve Cryptography,” Auto-ID Labs, The University of Adelaide, 2014
 [Online].Available:http://cocoa.ethz.ch/downloads/2014/06/None
 AUTOIDLABS-WPHARDWARE-026.pdf White:ECC

88

UI-SPEED

APPENDIX A
REQUIREMENTS

Functional

1) As a drive holder, I want to have a transparent interaction between host and drive (2).
2) As a drive holder, I want to be able to interact with my files (2).
3) As a drive holder, when I plug in a device and drive without the PIN it will not
enumerate (2).
4) As a drive holder, When I plug in the device and drive with the PIN it will enumerate
(2).
5) As a drive holder, I want the Encryption-algorithm to only encrypt data (4).
6) As a drive holder, I do not want the Encryption-algorithm to encrypt commands (4).
7) As a drive holder, I want the whole drive encrypted, not just the files (4).
8) As a drive holder, I want my data to be decrypted before getting to the host (4).
9) As a drive holder, I want the system to clear any relevant data from buffers/RAM
etc. (5).
10) As a drive holder, I want to be able to input a PIN on the device (5).
11) As a drive holder, I want my PIN to be outputted (5).
12) As a drive holder, I want the on-board key to be deleted when too many incorrect
PINs are entered into the device (5).
13) As a drive holder, I want to be able to change my PIN (5).

Nonfunctional

1) The system shall have a Click Wheel selection system for scrolling through digits
and selecting them (1).
2) The system shall output the current digit selection (1).
3) The system shall output the previous digits (1). 32
4) The system shall allow for 4 to 32 digits for a PIN (5).
5) The system shall use one LCD display to output the current digit selection (1).
6) The system shall allow the user to scroll back through the previous selected digits (5).
7) The system shall generate the encryption key from three sources and hash it (4).
8) The system shall get the name of the USB drive from the drive (4).
9) The system shall use AES-256 for encryption (4).
10) The system shall encrypt data going from host (4).
11) The system shall not encrypt USB commands going to the drive (4).
12) The system shall use AES-256 for decryption (4).
13) The system shall decrypt data going from drive (4).
14) The system shall not decrypt USB responses going to the host (4).
15) The system shall utilize USB 2.0 protocols (2).
16) The system shall be totally self-contained, requiring no unnecessary host interaction
(1).

89

Alexander Ennis

Tyson Hall, Ph.D, Professor of Computing, acted as
supervisor and consultant for this undergraduate research

project and provided guidance to the student author.

	Journal of Interdisciplinary Undergraduate Research
	2019

	UI-SPEED: Uniquely Identifiable Self-Contained Pass-Through Enhanced Encryption Device
	Alexander Ennis
	Recommended Citation

	JIUR V11 2019.indd

