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UI-SPEED: Uniquely Identifiable Self-
Contained Pass-Through Enhanced 

Encryption Device

Alexander Ennis

Abstract: USB encryption is an effective method for securing data. Current 
available solutions are limited to host-side, drive-side, and neither-side 
encryption. Host-side encryption must be downloaded on every host, and 
drive-side encryption is expensive. Current neither-side implementations 
either provide weak protection or provide it at the cost of unneeded 
multi-step processes. For USB encryption to be portable, inexpensive, 
and secure, it must have a straightforward locking mechanism, be able 
to encrypt any drive, and be distinguishable from the encryption of every 
other drive. The solution proposed here adds an identifiable aspect to 
each drive that is encrypted, isolates the encryption from the host and the 
drive, and adds an on-board locking mechanism.

I. INTRODUCTION
 
 The USB flash drive market is expected to exceed 64 billion dollars by 2021 [1]. 
The information held in these small devices for thousands of users can be personal 
or sensitive and needs to be protected. There are some encryption options to choose 
from: host-side software encryption, drive-side hardware encryption, or neither-side 
hardware encryption (also known as a pass-through adapter). All of the current options 
for drive-side encryption require the purchase of a specialized USB drive that encrypts 
itself, while the options for host-side encryption are limited to software on the possibly 
“untrusted operating system” [2].
 Some users may need to use computers that do not have cryptographic software 
available. A self-encrypted USB drive solves this problem, but it is more expensive 
because of its encryption capabilities. A pass-through adapter solves both of these 
problems by allowing any computer to use the device and by encrypting the device 
without having to use more expensive on-board encryption hardware for each drive. 
Unfortunately, there are not currently any pass-through adapters that do not rely on 
inputted information from the host. Also, all of the current pass-through adapters 
use the same key to encrypt the data from each drive, which can lead to faults in the 
encryption reliability, as shown in Section II-B.
 To solve this problem, there needs to be a uniquely identifiable self-contained pass-
through enhanced encryption device (UI-SPEED). It should be uniquely identifiable, 
meaning it should encrypt every drive with a unique key that distinguishes it from 
others encrypted with the same device. It must also be self-contained so that it does not 
rely on information from the host for its encryption.
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 This scheme allows the user to only worry about one PIN number for all of their 
drives, while still maintaining the uniquely identifiable aspect of each separate drive 
due to each being encrypted with a different key.

II. BACKGROUND

A. Competitive Analysis
 The current solutions to USB flash data encryption come from three main sources: 
the host, the drive, or a device in between them. These are host-side, drive-side, and 
neitherside, respectively. The host relies on encryption software that is usually run by 
an operating system to secure the data, while drive-side and neither-side encryption rely 
on an embedded processor running a cryptographic algorithm on either the drive itself 
or a device in between.

Host-Side

Fig. 1. Encryption with the host holding the cryptographic function isolates

the encryption from the drive.

 1) Host-Side: Encryption software is only as good as the operating system or processor 
that it runs on, as shown with the problems with Windows XP [8] and the Spectre/
Meltdown processor vulnerability [13]. Because most host-side encryption options are 
limited to either on-board operating system based encryption or downloaded software, 
both of these options are insecure simply by the nature of them being run by a host 
[14], [15]. Since not all operating systems have on-board encryption, every host without 
it must download encryption software to have USB security.

Drive-Side

Fig.2. Encryption on the drive-side isolates the encryption from the host.

 2) Drive-Side: There are many products for drive-side encryption,, with most offering 
encryption with AES-256. These
drives allow for both on-board and host-side key input. For example, the Kingston 
Datatraveler 2000, uses an on-board key input, while the PNY Sentry uses host-side 
key input. Driveside key input is usually done with a PIN-pad or some biometric, like 
a fingerprint. Fingerprints, due to their nature and continued use on the device, are 
easily spoofed [9], [10].
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 One of the simplest, though, time-consuming, attacks on a PIN-based locking 
mechanism is brute force (trying all possible combinations). To mitigate this problem, 
some products, like Apple’s iPhone, put a restriction on the number of incorrect PINs 
a user can enter. This incorrect PIN lockout will lock the device when a certain number 
of incorrect PINs have been entered. Though most products account for it, some drives 
do allow wear on their PIN-pad button. This can help an attacker infer information 
about what the PIN is, making it easier to brute force. Another downside to on-board 
PIN-pads is that because of the small size of USB drives, individual buttons can lead to 
mistaken buttons presses [10]. These problems, combined with a lack of PIN display, 
allow for wrong input of PINs. If a USB drive does incorporate incorrect PIN lockout 
this can be disastrous for the user.
 Furthermore, one of the most glaring detriments to using drive-side encryption is 
the cost. Some companies that produce USB drives also produce drives with on-board 
encryption. However, with a price difference of at least $120, as shown in Table I, it 
is more cost effective to use a universal method to encrypt all USB drives, even those 
without on-board encryption.

TABLE I
PRICES FOR 16GB USB DRIVES

Neither-Side

Fig. 3. Encryption with neither-side having the cryptographic function isolates both the host and the 
drive from cryptographic responsibility.

 3) Neither-Side: There are only two products on the market for pass-through adapters: 
Enigma made by Enova and CipherUSB made by Addonics. Both of these are so 
similar in look and function that we will be treating them as the same product made 
by different companies and will refer only to Enigma. The steps to use this product 
are as follows: plug the USB drive into the Enigma module, insert both into the host, 
execute the enigma.exe code utility, then go through two-step initialization process. 
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That sets a recovery password. Then unplug and replug the pair [22]. When that is 
done the device encrypts and decrypts as long as it is plugged in. The product can 
encrypt any number of drives [22], and because of that, each is encrypted with the same 
recovery key. This product utilizes AES-256 to encrypt and decrypt data flowing to 
and from the connected USB drive. Because the device does not have an onboard key 
input method, it is not suitable for secure traveling, except by setting and resetting the 
recovery password through the host.
 The current solution to the problem of neither-side encryption does not take into 
account the fact that for a drive to be useful it must continue to stay with the adapter. 
Because there is no locking mechanism on the device, any security gained from AES 
256 is nullified because if an attacker can get to the drive it is not unlikely that they 
can also get to the device. For Enigma there is, however, a somewhat lengthy process by 
which a user can clear the recovery password before removing the drive and resetting 
it to the original recovery password after connecting the drive. This process takes more 
steps than necessary and still uses the host to initiate the encryption.

B. Encryption Algorithms
 This section describes the encryption algorithms: DES, 3DES, Blowfish, RSA, ECC, 
AES, and OTP. These algorithms are, or have been, the standards in the cryptographic 
world. Some variations are more secure than others — one of which is provably secure, 
but impracticable in reality.
 1) OTP: A One Time Pad (OTP) is the only, to date, perfect cryptographically secure 
encryption algorithm. Unlike all other algorithms, which are only computationally 
secure, the OTP is “information-theoretically secure” [16], which means, given the 
ciphertext and any amount of time and computing power, the correct plaintext cannot 
be known. To use an OTP, one must generate a string of truly random bits for a key. 
The key must be as long as the message. The key is then XOR’ed withthe plain text to 
produce the ciphertext.
 Any violation of the conditions in [14] means that the cipher is no longer an OTP 
cipher [7]. Though the algorithm is proven to be secure in [4], there are some real-world 
problems with it. First, the encryption scheme must generate truly unpredictable keys. 
This can be mitigated through the use of pseudorandom number generators, but even 
then, those are not truly random. The next problem is that the key must be as long 
as the plaintext, which requires the generator to produce the keys without stretching 
a smaller key. The last problem stem from the first, in that the key cannot be reused. 
Although a random generator can, in theory, generate two of the same key, the key still 
cannot be used more than once, because it violates rule 3 in [14]. This aspect of random 
generation limits the number of plaintexts of a certain size that can be sent.
 Key Reuse: With all encryption algorithms, especially OTP, there rises the problem 
of key reuse. If a key is reused over many plaintexts, it can lead to information leakage 
[21]. When these multiple ciphertexts are compared, information about the underlying 
structure of the key can be gleaned. Though the time to decipher the ciphertext is still 
greater than having the key beforehand, with enough similarly encrypted ciphertexts, 
security starts to fail [14], [21].
 2) DES: Data Encryption Standard (DES) was the first mainstream Feistel Network-
based encryption algorithm. It uses a key of 56 bits to interleave, permute, and 
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substitute the plaintext in blocks of 64 bits. This is done for a total of 16 rounds to 
obtain the cipher text. Because of the low key length the algorithm is now obsolete [3]. 
For this reason, it is no longer recommended by the Federal Information Processing 
Standards publication (FIPS) 140-2, the standards publication for recommended and 
proven methods for encryption.
 3) 3DES: 3DES is the continuation of DES. Once DES was found faulty the creators 
added a 3-key system that changed the bit count from 56 to 168. Because of the 3 keys, 
the average time to encrypt is also multiplied by 3 [3]. Even though it is still one of the 
recommended algorithms in FIPS 140-2, because it takes three times as long as other 
block-based algorithms, it is not as suitable for most encryption needs as others.
 4) Blowfish: The Blowfish algorithm is another algorithm in the same category as 
DES and 3DES. It also operates in 64 bit blocks and 16 rounds. The difference lies in 
the substitutions that the algorithm performs. With three sets of substitution boxes, 
Blowfish has been shown to be cryptographically secure. Another benefit to Blowfish is 
that because of the nature of the rounds that it performs, it is fast, only taking 26 clock
cycles for one byte on some proposed systems [5]. For this reason it is well adept at 
hardware encryption. The algorithm was developed as an non-proprietary project by 
Bruce Schneier, and as such, it is not a recommended standard with FIPS 140-2 [17].
 5) RSA: RSA, unlike the previous three algorithms, is a publickey cryptography 
scheme; meaning it uses a public key to encrypt and a private key to decrypt. It uses the 
idea of the intractability of factoring large prime numbers. Though it is theoretically 
more secure than most of the other algorithms, because of the computational overhead 
for generating prime numbers and the large key size required to be secure, it is not 
suitable for use in many encryption scenarios [23]. Furthermore, because RSA is a 
public/private key cryptosystem, it is not necessary for singleuser applications.
 6) ECC: Elliptic Curve Cryptography (ECC) is another public/private key scheme 
for cryptography. It also uses a hard mathematical problem, the elliptic curve discrete 
logarithm problem, as its basis for encryption. Because the algorithm relies on 
calculating discrete logarithms, the computational overhead is only minimally smaller 
than that for RSA, even though the key size is much smaller [23]. This algorithm is also 
not needed for single-user applications because it uses public/private key cryptography.
 7) AES: Advanced Encryption Standard (AES) is the primary standard for fast, 
reliable encryption. There are three versions: AES-128, AES-192, and AES-256. Each 
version refers to the key size. Like DES, 3DES, and Blowfish, it uses Feistel networks 
and combinations of permutations and substitutions for its encryption. Though it 
has the same basis, because of the larger key size it is much more secure. It was first 
introduced in FIPS 197 [18] and has replaced DES and another lesser-used algorithm, 
Skipjack, in FIPS 140-2 for both the public and private sectors [17].

III. PROPOSED PROJECT

A. Overall Functionality
 User Stories: When a user enters the correct PIN, the Key-generator will generate the 
key and give it to both the encryption and decryption algorithms. The host will then 
enumerate with the drive, asking it for various identifiers and data. Once enumeration 
is complete, data can be transferred back and forth from host to drive.
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 When a user enters three incorrect PINs the Key-erase will clear the on-board key 
register and all other information registers. This will lock the device to prevent further 
brute force attacks.
 When a user wishes to change the PIN, they will enter the old PIN then press and 
hold the Enter button. This will clear the previous PIN and allows the user to enter a 
new one.

B. System: software implementation
 The proposed project will consist of the eight modules shown in Fig. 4: Host 
protocol, Drive-protocol, Encryptionalgorithm, Decryption-algorithm, Key-generation, 
PIN-input, Key-erase, and PIN-change. The Host-protocol and Driveprotocol modules 
deal with the transfer of data and commands back and forth from host to drive. The 
Encryption-algorithm, Decryption-algorithm, and Key-generation modules deal with 
securing the data. The PIN-input, Key-erase, and PIN-change modules deal with user 
periphery and additional functions of the device.

System Diagram

Fig. 4. The system diagram showing the flow of data and commands between the host, drive, on-board 

periphery, and modules for the pass-through adapter.

 Modules: All modules will use a PCB board and the
Beaglebone as their platform.
 1) Host-protocol: The Host-protocol module will use the BeagleBone for its 
operations. The module will receive commands from the host and will transfer them 
to the Driveprotocol module. The module will receive data from the host, and that 
data will be given to the Encryption-algorithm module contained in the same device. 
The module will also receive decrypted data from the Drive-protocol module and will 
transfer that to the host.
 2) Drive-protocol: The Drive-protocol will use the AT90USB162 microcontroller for 
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its operations. The module will receive responses from the drive and transfer them to 
the Host-protocol module. The module will receive data from the drive, which will be 
given to the Decryption-algorithm module contained in the BeagleBone. The module 
will also receive encrypted data from the Host-protocol module and will transfer that to 
the drive.
 3) Encryption-algorithm: The Encryption-algorithm will use the BeagleBone for 
its operations. The module will receive data to be encrypted from the Host-protocol 
module. The module will encrypt the data using AES-256 with the key from the Key-
generation module. The data will then be transfered to the Drive-protocol module.
 4) Decryption-algorithm: The Decryption-algorithm will use the BeagleBone for its 
operations. The module will receive data to be decrypted from the Drive-protocol 
module. The module will decrypt the data using the inverse AES-256 with the key 
from the Key-generation module. The data will then be transfered to the Host-protocol 
module.
 5) Key-generation: The Key-generation module shown in Fig. 5 will use the BeagleBone 
for its operations. The module will receive the PIN from the PIN-input module and the 
device identifier from the Drive-protocol module. The module will then combine and 
hash them with TupleHash function from the SHA-3 specification [19] to produce 
the key. Then the module will transfer the key to the Encryption-algorithm and the 
Decryption-algorithm.

Key Generation

Fig. 5. Key-generation diagram showing the integration and hashing of the
three parts of the cryptographic key.

 6) PIN-input: The PIN-input module will use the BeagleBone, the 7-Segment display, 
and the Click Wheel for its operations. The module will start in the Locked state as 
shown in Fig. 6. When the device is plugged in, the state will be changed to Ready and 
the digit selection on the 7-Segment display will be set to 0. The user will scroll with the 
Click Wheel through the digits until the correct one is displayed. Each increment of the 
scroll portion of the Click Wheel increments the digit count by one.
 When the correct digit is displayed, the user enters the digit by pressing Select Digit 
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on the Click Wheel, this returns the state to Ready with the digit selection set to 0. This 
process is repeated until all of the digits are entered, then the user presses the Enter  
button and the state is changed to Unlocked.
 If the Enter button is pressed, and the PIN is incorrect, the PIN-input module 
updates the Key-erase module with the current Incorrect Count and the state returns to 
Locked.
 7) Key-erase: The Key-erase module will use the Beagle-Bone for its operations. The 
module will start with an incorrect count of zero. As shown in Fig. 6, each time the 
PIN-input

State Diagram: PIN-input

Fig. 6. The state diagram showing the possible states of the PIN-input module and the transitions 

between.

module sends it an update, the Key-erase module will add one to the current incorrect 
count and the state will return to Locked. When the incorrect count reaches three, the 
Keyerase module will clear the on-board key register and the PIN comparison register.
 8) PIN-change: The PIN-change module will use the BeagleBone for its operations. 
The module will give and receive communication from the PIN-input module about 
the state of the periphery (the 7-Segment and the Click Wheel).
 The module will start in the Locked state as shown in Fig. 7. When the user enters 
the correct PIN, the state will change to Unlocked. When the user holds the Input 
button for one second, the state will change to Ready, the PIN comparison register will 
be cleared, and the digit count will be set to zero. While the module is in the Ready state 
the user can enter a new PIN. The state will follow the same sequence as the one for 
entering a regular PIN. When the user holds the Enter button again, the state will be 
changed to Unlocked, and the new PIN will replace the old PIN in the PIN comparison 
register.
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State Diagram: PIN-change

Fig. 7. The state diagram showing the possible states of the PIN-change module and the transitions 

between.

 Distinguishability: The Drive-protocol - Decryptionalgorithm- Key-generation - PIN-
input integration handles the acquisition and decryption of the drive identifier so it 
can be used by the Key-generation module. This is done while the drive is enumerating 
with the host. While the enumeration happens, the Drive-protocol will capture the 
drive identifier and give it to the Decryption-module, which will decrypt

TABLE II
PRELIMINARY PARTS LIST (SOME QUANTITIES ARE IN BULK)

it with the PIN received from the PIN-input module. Once the drive identifier has been 
decrypted, it will be given to the Key-generation module, which will hash it to produce 
the key.

C. System: hardware implementation
 The hardware side of this project, shown in Fig. 8, will utilize the BeagleBone 
development platform for a proof of concept implementation of our solution to neither-
side encryption. Using this allows us to focus on the building the system, rather than 
building the host USB stack from the ground up. To facilitate the device side of the 
system we will use an AT90USB162 microcontroller. This is because, from our research, 
the BeagleBone is not able to perform host and device functions simultaneously. The 
AT90USB162 microcontroller, along with all of the added peripherals, will be mounted 
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on the BeagleBone using a cape for easy access and debugging.

Schematic Diagram

Fig. 8. The schematic diagram showing the BeagleBone development board and its added cape for 
peripherals.

IV. TESTING/EVALUATION PLAN

A. Acceptance
 1) Correctness Survey: We will survey 10 people from the Southern Adventist 
University population. They will be given a drive and an adapter with the PIN already 
entered. They will be asked to perform a range of tasks: create a text file, modify the 
text file, read the text file, and delete the text file. Then they will be asked to plug in 
the drive without the adapter. After that they will report in the rubric from Table V 
whether or not each task was successful. We expect at least eight of

TABLE III
PROJECT PROPOSAL: SPRINTS 1-5
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     TABLE IV  
USB TIMING SPECIFICATIONS

the people to answer yes to all five questions. The remaining two people should answer 
yes to at least four of the questions.

B. System
 Unless otherwise stated, all system testing will be done ten times, and nine out of 
ten are expected to pass. 
 1) Speed (Drive USB protocol - Encryption algorithm - Decryption algorithm - Host USB 
protocol): To test the speed of the cryptographic algorithm an oscilloscope will be 
connected to the host and drive side of the data path. We will measure the time for 
some specific data to propagate between the two sides through the Encryption algorithm 
and Decryption-algorithm. The time measured should be within 5 seconds as per the 
specifications from Table IV.

TABLE V
RUBRIC OF CORRECTNESS FOR THE USER

2) Key erasure (Key erasure - PIN-input - Key-generation): To test for key erasure, we will 
enter three incorrect PINs, then read the on-board key and PIN comparison registers 
and verify that they have been cleared. This will be done 10 times, and we expect that 
all of them should be cleared.

C. Integrations
 Unless otherwise specified, all integrations testing will be done ten times, and nine 
out of ten are expected to pass. 
 1) Host-protocol - Drive-protocol: This integration will be tested by simulating the 17 
requests from the Host-protocol to the Drive-protocol, and from the Drive-protocol to 
the Hostprotocol. After each request, we will evaluate how the other protocol responds.
 We will simulate the back and forth communication for enumerating USB. The 
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requests will be made in the same order and speed as normally is required for drive 
enumeration.
 2) Key-generation - Encryption-algorithm - Decryptionalgorithm: To test this integration, 
we will arbitrarily conjure a PIN that will be hashed with the key and drive identifier to 
produce a key. We will feed this key to the Encryption-algorithmand the Decryption-
algorithm modules. The modules should generate the appropriate key expansion for 
the given PIN.
 3) PIN-input - Key-erase - PIN-change: This integration will be done in two parts: PIN-
input - Key-erase and PINinput- PIN-change. For the first portion of the testing we 
will enter three incorrect PINs. We will then verify that the onboard key and PIN 
comparison registers have been cleared. The second part will be tested by changing ten 
different PINs to new PINs.
 4) Drive-protocol - Decryption-algorithm - Key-generation- PIN-input: This integration 
will be tested by enumerating a number of drives and verifying that the correct drive 
identifier is decrypted and sent to the Key-generation module for hashing.

D. Module/Unit
 Unless otherwise specified, all module and unit testing will be done ten times, and 
ten out of ten are expected to pass. All units will be tested for specific data pertaining to 
their module. These tests will be performed with the μCUnit testing framework from 
Section IV-E and should cover all function that give and/or receive data.
 1) Host-protocol: This module will be tested by having it collect and transfer 
various commands and data. We will pay special attention to the time that it takes 
the module to accomplish the transfer of commands. Because of the time sensitivity 
of enumeration, all timing requirements must be met. However, only the “time for 
Standard Device requests without a data stage” will be specifically tested, in accordance 
with the specifications mentioned in Table IV.
 2) Drive-protocol: This module will be tested by having it receive all of the commands 
and responses required for enumeration and some arbitrary data. The module must be 
able to transfer all of the appropriate commands and data within the time specifications 
in Table IV, but only the “time for Standard Device requests without a data stage” will 
be specifically tested.
 3) Key-generation: This module will be tested by sending it 30 combinations of 
PIN, on-board key, and device identifier. We expect the internal hashing function to 
generate the correct key 30 out of the 30 times.
 4) Encryption-algorithm: This module will be tested by giving it the initialization 
from [18] and verifying that, for each of the rounds and sub-functions, the values 
presented match the values given in [18].
 5) Decryption-algorithm: This module will be tested similarly by giving it the 
initialization from [18] and verifying that the values presented both match the values 
given in [18] and are the inverse of the values from the previous test.
 6) PIN-input: This module will be tested by inputting 10 different PINs and verifying 
that, for each, the module
changes its state to Unlocked. While being inputted, each of the PINs inputted will be 
”backspaced” at least halfway and then retyped to show the backspace functionality.
 7) Key-erase: To test this module we will simulate 10 sets of 3 incorrect keys. We will 
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verify that the on-board key and PIN comparison registers have been cleared.
 8) PIN-change: This module will be tested by entering the old PIN then changing 
the old PIN to the new PIN. We will then lock the device and verify that the new PIN 
unlocks the device.

E. Testing Frameworks
 1) Oscilloscope: An oscilloscope will be used to test the physical connections 
between the modules such as Driveprotocol and Host-protocol. In particular, this will 
be used to test the speed at which the pass-through adapter operates.
 2) μCUnit: μCUnit is a unit test framework for microcontrollers. It will be used 
to test the workings of the other modules, submodules, and units, such as parts of the 
Encryptionalgorithm, Decryption-algorithm, and Key-generation modules.

V. CONCLUSION
 Because USB drives are so prevalent, easy encryption and security are in high 
demand. Since host-side encryption is not viably portable and drive-side encryption 
is expensive, we look to neither-side encryption. To solve the problems with current 
neither-side implementations of USB encryption, this paper proposes a proof of 
concept for a device that will allow a user to distinguishably secure their data with an 
on-board PIN. This effectively removes security responsibilities from both the host and 
the drive
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APPENDIX A
REQUIREMENTS

Functional

1) As a drive holder, I want to have a transparent interaction between host and drive (2).
2) As a drive holder, I want to be able to interact with my files (2).
3) As a drive holder, when I plug in a device and drive without the PIN it will not 
enumerate (2).
4) As a drive holder, When I plug in the device and drive with the PIN it will enumerate 
(2).
5) As a drive holder, I want the Encryption-algorithm to only encrypt data (4).
6) As a drive holder, I do not want the Encryption-algorithm to encrypt commands (4).
7) As a drive holder, I want the whole drive encrypted, not just the files (4).
8) As a drive holder, I want my data to be decrypted before getting to the host (4).
9) As a drive holder, I want the system to clear any relevant data from buffers/RAM 
etc. (5).
10) As a drive holder, I want to be able to input a PIN on the device (5).
11) As a drive holder, I want my PIN to be outputted (5).
12) As a drive holder, I want the on-board key to be deleted when too many incorrect 
PINs are entered into the device (5).
13) As a drive holder, I want to be able to change my PIN (5).

Nonfunctional

1) The system shall have a Click Wheel selection system for scrolling through digits 
and selecting them (1).
2) The system shall output the current digit selection (1).
3) The system shall output the previous digits (1). 32
4) The system shall allow for 4 to 32 digits for a PIN (5).
5) The system shall use one LCD display to output the current digit selection (1).
6) The system shall allow the user to scroll back through the previous selected digits (5).
7) The system shall generate the encryption key from three sources and hash it (4).
8) The system shall get the name of the USB drive from the drive (4).
9) The system shall use AES-256 for encryption (4).
10) The system shall encrypt data going from host (4).
11) The system shall not encrypt USB commands going to the drive (4).
12) The system shall use AES-256 for decryption (4).
13) The system shall decrypt data going from drive (4).
14) The system shall not decrypt USB responses going to the host (4).
15) The system shall utilize USB 2.0 protocols (2).
16) The system shall be totally self-contained, requiring no unnecessary host interaction 
(1).
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