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Evaluation of Agricultural Land Cover Representations
on Regional Climate Model Simulations
in the Brazilian Cerrado
Stephanie A. Spera1,2 , Jonathan M. Winter2 , and Jonathan W. Chipman2

1Neukom Institute for Computational Science, Dartmouth College, Hanover, NH, USA, 2Department of Geography,
Dartmouth College, Hanover, NH, USA

Abstract Examining interactions between large-scale land cover and land use change and regional
climate in areas undergoing dynamic land transformations, like the Brazilian Cerrado, is crucial for
understanding tradeoffs between human needs and ecosystem services. Yet regional climate models often
do not include accurate land cover data of these complex landscapes. We use National Center for
Atmospheric Research’s Weather Research and Forecasting (WRF) model coupled to the Noah-
Multiparameterization (Noah-MP) land surface model to run 10-year climate simulations across Brazil to
assess (1) whether an accurate, regionally validated land cover data set with two, new agricultural land cover
classifications improves model simulation results; (2) the ability of Noah-MP’s dynamic vegetation option to
model vegetation growth; and (3) the sensitivity of the model output to scale. The results of the simulations
with the updated land surface perform better over intensive agricultural areas for precipitation,
evapotranspiration, and temperature, especially during the wet-to-dry season transition months.
Evapotranspiration is overestimated during the start of the rainy season across all model simulations, which is
likely due to the soil moisture model. We also find that using the Noah-MP dynamic vegetation significantly
degrades agricultural leaf area index phenology simulations in Brazilian agricultural regions. Lastly,
improving the model’s resolution did not improve model output when compared to observational data.
Incorporating more accurate representations of the landscape into regional climate models is essential for
quantifying potential changes in climatological seasonality in dynamic, human-modified regions and
making informed land use decisions.

Plain Language Summary Humans are the largest drive of landscape change globally. One region
that exemplifies this change is Brazil’s Cerrado—over half of it has been cleared for agriculture. Farmers in the
region depend on a stable rainy season to cultivate crops like soy and corn, but, clearing Cerrado for
agriculture may disturb regional climate and affect precipitation. The first step to assessing these impacts is
determining whether a more accurate land surface improves simulation results and where the model still
needs to be improved. We use the Weather Research and Forecasting (WRF) model to run 10-year-long
climate simulations across Brazil with both the default U.S. Geological Survey land cover map and an updated
land cover map with two new agricultural categories. Our results show that using an updated map improves
model results over regions of intensive agriculture, especially in the dry-to-wet-season transition months.
All simulation results show an overestimation in evapotranspiration rates and a cold bias during the rainy
season. These biases seem to be the result of WRF’s soil-moisture model. Understanding both these
interactions and how we can use climate models to better study them is essential for making informed land
use decisions.

1. Introduction

Understanding interactions between large-scale land cover and land use change and regional climate in food
exporting countries is essential to creating effective policies that incentivize sustainable agricultural practices,
especially when considering issues such as population growth, food security, and climate change. In new,
dynamic, global breadbaskets like Brazil, where over 20% of the country’s gross domestic product is depen-
dent on the agribusiness sector (Vendemiatti & Berk, 2016), and agricultural commodities are exported world-
wide, the stakes are even higher. Brazil is the top producer and exporter of sugar, coffee, and orange juice;
leads the world in chicken and soy production and is second only to the United States in exports; and is
second in beef production only to India (Simoes & Hidalgo, 2011).
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Here we focus our efforts on the Brazilian Cerrado, the 2 million km2 savannah biome in which more than half
of Brazil’s agriculture is cultivated. The region, a biodiversity hot spot, is characterized by distinct wet and dry
seasons: nearly 90% of the average 1,500 mmof annual precipitation falls during the wet season, which spans
October to April (Klink & Machado, 2005). To date, over half of the biome has been cleared and massive land
cover changes continue to occur, primarily in the form of conversion of natural vegetation and pasture to
export-oriented agriculture like soy. However, because less than 2% of Brazil’s agriculture is irrigated (The
World Bank, 2017), land use-climate feedback may affect the regional water and energy balances and upend
the successful production of large-scale export-oriented agriculture in the region (Coe et al., 2017; Oliveira
et al., 2013).

Land use changes in Brazil affect the water and energy balance through changes in albedo, surface rough-
ness, and latent and sensible heat fluxes. Precipitation in the Amazon and the Amazon-Cerrado transition
region is dependent on evapotranspiration (ET; Lee et al., 2012; Wright et al., 2017), and the deep roots of
the natural vegetation of the Amazon and Cerrado allow for continued deep water access and transpiration
throughout the dry season (Nepstad et al., 1994). Furthermore, land use changes in the Amazon and Cerrado
have resulted in heavily fragmented landscapes (Arima et al., 2016). The atmospheric boundary layer above a
humid forest is less stable than that above a deforested area (Wang et al., 2009). Mesoscale circulations and
greater sensible:latent heat ratio caused by heterogeneous deforested surfaces create a lifting mechanism
that supports shallow convection over deforested areas (Wang et al., 2009). Intact forested areas, however,
both generate more convective available potential energy, and lack that lifting mechanism, which results
in deep cloud formation over forested regions as compared to shallow cloud formation over deforested areas
(Wang et al., 2009). Thus, the conversion of natural forest to pasture and row-crop agriculture have noticeably
affected the regional water and energy balance across the Brazilian Amazon and Cerrado through observed
decreases in precipitation (Butt et al., 2011; Dubreuil et al., 2012; Fu et al., 2013) and evaporation (Lathuillière
et al., 2012; Oliveira et al., 2014; Spera et al., 2016) and increases in fire occurrence (Aragão et al., 2008),
streamflow (Costa et al., 2003; Hayhoe et al., 2011; Panday et al., 2015), and temperature (Dubreuil et al.,
2012; Panday et al., 2015; Silvério et al., 2015).

Climate modeling studies demonstrate both that native vegetation and the land cover replacing that
cleared vegetation play an important role in regulating regional climate. For example, Bagley et al. (2014)
found that deforestation in the Amazon could exacerbate drought conditions (Bagley et al., 2014); Costa
and Pires (2010) showed that a simultaneous deforestation of the Amazon and total deforestation of the
Cerrado increase the length of the dry season from five to six months, and Malhado et al. (2010) and Coe
et al. (2017) demonstrated that the Cerrado itself plays a crucial role in maintaining rainfall over the
Amazon. And, the land cover replacing these cleared areas matters. A modeling experiment demonstrated
that the complete expansion of soybean onto deforested lands in the Amazon led to greater decreases in
precipitation than if that land were cultivated with pasture grasses (Costa et al., 2007). In the Cerrado,
Loarie et al. (2011) concluded that sugarcane transfers water and energy more similarly to the Cerrado’s
natural vegetation than pasture or soybean.

An accurate land cover data set is a crucial component of any climate modeling experiment. However, vege-
tation parameters—such as leaf area index (LAI), vegetation fraction (FVEG), and stomatal resistance (see
Table S3 for complete list of those set in Weather Research and Forecasting, WRF)—are typically set to fixed
values from tables that are not specific to the region or regional flora. This simplification inhibits the ability to
understand both land-atmosphere interactions and projections of land-atmosphere interactions under
historical and future climates. Furthermore, existing land use and land cover data sets —such as the U.S.
Geological Survey (USGS) Global Land Cover Characterization data set, which is based on Advanced Very
High Resolution Radiation (AVHRR) data from 1992 and 1993, or the 2001 Moderate Resolution Imaging
Spectroradiometer (MODIS) International Geosphere-Biosphere Programme Land Cover data—do not cap-
ture the dynamics and complexity of heavily modified landscapes like that of the Brazilian Cerrado. Finally,
as described above, many land cover-change-climate modeling studies of the region focus on the complete
conversion of one land cover type to another rather than dynamic transitions among land cover types.

Here we use the Advanced Research WRF model to run continuous decade-long simulations to assess (1)
whether a highly accurate, regionally validated land cover data set improves model simulation result; (2)
the ability of WRF running the Noah-Multiparameterization land surface model with dynamic vegetation to
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accurately model vegetation growth; and (3) the sensitivity of the model
output to domain resolution. Importantly, this study leverages a novel land
cover data set (Spera et al., 2016) that includes two agricultural rotations
common across Brazil today: soy single cropping and soy-corn double
cropping. Incorporating these land covers into regional climate model
simulations is the first step to being able to provide insights into realistic
land cover-regional-climate feedback and improve future agricultural
planning and management decisions.

2. Methods
2.1. Model Setup

We used the Advanced Research WRF model v3.8.1 (Skamarock et al.,
2008), maintained by the National Center for Atmospheric Research,
coupled to the Noah-Multiparameterization (Noah-MP) land surfacemodel
(Niu et al., 2011; Yang et al., 2011). Our model domain includes the entirety
of the Cerrado and Brazilian Amazon (d01, Figure 1). To assess the sensitiv-
ity of the model to the land cover characterization and the performance of
the dynamic vegetation model, we configured the model using a single
domain at 36 km grid spacing (178 by 122 grid points) with a 120 s time
step and daily output. We also used a two-way nested inner 12 km domain
(d02, Figure 1) to determine the effects of scale/model resolution on
performance. Six-hourly European Centre for Medium-Range Weather
Forecasts Reanalysis-Interim (ERA-I) surface and pressure level data (Dee
et al., 2011) provided the lateral boundary conditions.

To determine which set of parameterization schemes best simulated regional climate over Brazil, we tested
eight possible combinations commonly cited in the literature (Table S1). Our final simulations used the Rapid
Radiative Transfer Model (RRTM) to simulate shortwave and longwave radiation, WRF single-moment 6-class
(WSM6) scheme to simulate microphysics, the Grell 3D scheme for the cumulus parameterization, the revised
MM5 scheme for the surface layer, and the Yonsei University (YSU) scheme for the planetary boundary layer.

Six 10-year (2004–2013) simulations were conducted (Table 1). We allowed the model to spin up from
January 2004 to July 2005 and focus our analysis on the nine growing seasons that occur in our study period
beginning with the 2005 harvest year (August 2004 to July 2005) and ending with the 2013 harvest year.

We used the Noah-MP land surface model in WRF because it provides the user with multiple options to simu-
late land surface interactions (Niu et al., 2011). Specifically, Noah-MP integrates prescribed data and dynamic
modeling to simulate the surface. This flexibility has the advantage of constraining model simulations over
historical time periods for which vegetation input data are available, as well as allowing for dynamic vegeta-
tion, where the vegetation responds climate projections and is thus not constrained by historical vegetation
parameters. The Noah-MP dynamic vegetation representation incorporates a photosynthesis-based stomatal
resistance model and allows the user to define vegetation parameters completely or partly based on look-up

Figure 1. WRF domains and Brazil’s updated land cover map. The black box
indicates our specific area of interest. The land cover basemap is a merger of
the 2002 PROBIO data set (Sano et al., 2010) and Spera et al. (2016) 2008
growing season large-scale agriculture map. Forested areas are green;
Cerrado, pasture, and grasslands are yellow and tan; PROBIO’s agropastoral
lands are purple; and the Spera et al. (2016) row-crop agriculture is pink.
Inset. Brazil and its six biomes are highlighted, the Amazon biome is dark
green, and the Cerrado biome is magenta.

Table 1
Suite of Initial Simulations

Simulation Land cover Dynamic vegetation option Simulation duration Nested domains Output frequency

1: USGS_DVoff USGS LAI table, FVEG prescribed January 2004 to January 2014 No Daily
2: USGS_DVfveg USGS LAI table, FVEG calculated January 2004 to January 2014 No Daily
3: USGS_DVall USGS LAI predicted, FVEG calculated January 2004 to January 2014 No Daily
4: USGS_nest USGS LAI table, FVEG prescribed January 2007 to September 2008 Yes Daily
5: IALU _DVoff Spera et al. (2016) LAI table, FVEG prescribed January 2004 to January 2014 No Daily
6: IALU_DVfveg Spera et al. (2016) LAI table, FVEG calculated January 2004 to January 2014 No Daily
7: IALU_DVall Spera et al. (2016) LAI predicted, FVEG calculated January 2004 to January 2014 No Daily
8: IALU_nest Spera et al. (2016) LAI table, FVEG prescribed January 2007 to September 2008 Yes Daily
9: IALU_3hr Spera et al. (2016) LAI table, FVEG calculated January 2004 to January 2014 No 3-hourly
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tables. When turned completely on, the dynamic vegetation model simulates both LAI and FVEG based on
process-based equations and parameters from fixed land cover categories. The options chosen for our suite
of simulations are provided in Table 1. We employed the Ball-Berry canopy resistance scheme simulations
where we use the dynamic vegetation model to predict LAI and FVEG.

The user can choose from five different vegetation options, which control how themodel treats LAI and FVEG.
The four dynamic vegetation options tested were as follows: (1) dynamic vegetation turned off and both LAI
and FVEG are prescribed; (2) FVEG is calculated from a table of monthly LAIs using equation (1); SAI is a land
category’s monthly stem area index; (3) the dynamic vegetation model turned thus using WRF’s carbon allo-
cation model to predict LAI and FVEG is set to the maximum vegetation fraction; and (4) dynamic vegetation
turned on with LAI predicted from the carbon allocationmodel, and FVEG is calculated based on equation (1).
Results from both simulations where the “dynamic vegetation” option is turned on and LAI is predicted were
similar; thus, we only discuss the results of runs where dynamic vegetation is turned on completely in the
main text. We did not test the fifth vegetation option in Noah-MP, where dynamic vegetation is turned off,
monthly LAI is read from a look-up table, and FVEG is set to a static look-up table value because this option
was not recommended for use by WRF.

FVEG ¼ 1� e �0:52� LAIþSAIð Þð Þ (1)

2.2. Land Cover Data Sets

The WRF model provides two land use and land cover data sets: a 24-category USGS data set and a 21-
category MODIS-based data set, to represent the land surface. The 1 km resolution USGS data set, the
Global Land Cover Characterization, is based on an unsupervised classification of Advanced Very High
Resolution Radiometer (AVHRR) vegetation index data collected between April 1992 and March 1993. The
MODIS Land Cover Type Product (Friedl et al., 2002, 2010) is the result of a supervised classification that relies
on MODIS Land Surface Temperature and Bidirectional Reflection Distribution Function data products.
Although the USGS data set is older, we chose to use the USGS data set for comparison because it more accu-
rately represented Brazilian land cover as classified by Sano et al. (2010) (see Figures S1 and S2). The default
USGS land cover map does not differentiate between row-crop agriculture LAI and pastureland LAI. The two
land cover categories, “dryland cropland and pasture” and “mixed dryland/irrigated cropland and pasture,”
have the same monthly LAIs in the Noah-MP vegetation look-up table.

We created an improved land cover data set inclusive of agricultural land use, hereafter IALU (Figure 1), by
overlaying the mode land classification from the Spera et al. (2016) MODIS-based 250-m 2002–2016 agricul-
tural data set onto the Landsat-based PROBIO Brazilian land cover classification (Sano et al., 2010). The
PROBIO land classifications were mapped to the appropriate USGS land categories (Table S3), with two major
exceptions. We converted the USGS “dryland crop and pasture” category to a single-cropping soy rotation,
and the “irrigated crop and pasture” category to a soy-corn double-cropping rotation, because Brazil
currently has limited irrigated agriculture. We also adjusted the monthly average leaf area indices of these
two land classes according to MODIS LAI data product (MCD15A2H) of these land covers as mapped in
Spera et al. (2016; Table S4).

Our full WRF model domain contained 21,716 grid cells. Our region of interest (black box, Figure 1) contained
2,296 grid cells. Of those grid cells, 61 were categorized as a single-cropping rotation and 149 were charac-
terized by a double-cropping rotation after the IALU land cover was scaled up to a 36 km resolution. Because
average annual rainfall varies between 400 and 2,600 mm/year across our study area, we subset our area into
four different regions: the Mato Grosso Amazon-Cerrado transition, southwestern Mato Grosso and southern
Goiás, Tocantins, and western Bahia, southern Maranhão, and southern Piauí (Figure S3). However, because
results did not vary widely across the different regions, for the sake of brevity and readability, a majority of
the results we present and discuss in the main text have been spatially averaged across our entire region
of interest. All other results are provided in the supporting information.

2.3. Observational Data

Modeled precipitation, and minimum, maximum, and mean temperature were compared to Climate
Research Unit (CRU) v 3.24.01 0.5° gridded precipitation and temperature data (Harris et al., 2014).
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Modeled ET was compared to MODIS (MOD16A2) monthly 1 km ET data (Mu et al., 2007, 2011). The MODIS ET
data are derived from National Aeronautics and Space Administration’s Global Modeling and Assimilation
Office daily meteorological reanalysis data, and MODIS albedo, LAI, the fraction of absorbed photosyntheti-
cally active radiation, and land cover data sets (Mu et al., 2011), and is an estimate of total plant transpiration,
wet canopy evaporation, and soil evaporation based on the Penman-Monteith equation (Mu et al., 2011).

The MODIS and CRU data we compare our modeled results to are not without error. The MODIS ET product is
a derived product based on both static and updated data. Ruhoff et al. (2013) note that eight-day MODIS ET
data often underestimate ET and cite the MODIS land cover input as the largest source of error in the pro-
duct’s creation. However, they also show that when these data are aggregated to the monthly time scale,
the data show good agreement with observations (Ruhoff et al., 2013). Loarie et al. (2011) compare the
eight-day MODIS ET product to measurements from 10 eddy flux tower cites across Brazil over different land
covers. They find that over the Cerrado, themean bias is�0.04mm/day, the root-mean-square error (RMSE) is
0.55 mm/day, and the annual bias is less than 4% (Loarie et al., 2011).

Gridded CRU temperature and precipitation data are based on interpolated monthly data collected at 4,800
stations around the world. Although CRU data have been previously used as the observed data set of com-
parison in regional climate studies over Brazil (Da Rocha et al., 2015; Lee & Berbery, 2012), because there
exists poor station data coverage in the interior of South America our “observed” data set may be biased
and underestimate spatial and interannual variability (Malhi & Wright, 2004; New et al., 1999). In an analysis
comparing various gridded precipitation data sets, including CRU, to Agencia Nacional de Aguas streamflow
data, Levy et al. (2017) demonstrated that over the Brazilian rainforest-savanna transition zone, which over-
laps with our study region, the Precipitation Estimate from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) data set is the best observational data set for the region. In comparing the
CRU data set to the PERSIANN data set, we find that the CRU data set closely aligns with the PERSIANN data
set in Bahia, Piauí, Maranhão region, and Goiás and southwestern Mato Grosso (Figure S4). During the height
of the rainy season, CRU monthly precipitation is slightly underestimated as compared to PERSIANN across
Tocantins and the Mato Grosso Amazon-Cerrado transition zone, but the seasonal cycle is still intact
(Figure S4). These results are expected, as there are likely more temperature and precipitation stations closer
to Brazil’s coast, and fewer within the country’s interior. Thus, we note that CRU data may underestimate aver-
age precipitation across our region and address this in the results and discussion.

2.4. Model Performance

To assess model performance at both model spatial resolutions, we calculated the total error (RMSE), sys-
tematic error (bias), and nonsystematic errors (RMSEdb) according to Ruiz et al. (2010) and Pei et al. (2014)
within our area of interest (black box in Figure 1) for each month in the year.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mi � oið Þ2
N

s
(2)

bias ¼
P

mi � oið Þ
N

(3)

RMSEdb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mi � oi � biasð Þ2
N

s
(4)

We also derived 95% bootstrap confidence intervals around the mean for each output variable of interest for
each month of both observed data and modeled data to assess which simulations best model the seasonal
cycle of the aforementioned variables. We focused on just those grid cells that are predominantly in a single-
cropping or double-cropping rotation as classified by the IALU land cover data set. We used bootstrapping
(1,000 resamples) to estimate these confidence intervals because no assumptions of the underlying data
distributions are required. We then compared the modeled data to the observed data to determine whether
the modeled observations overlap with the 95% confidence intervals of the observed data (Challinor et al.,
2014; Legates & McCabe, 1999).

10.1029/2017JD027989Journal of Geophysical Research: Atmospheres

SPERA ET AL. 5167



We are especially interested in the model’s performance during the dry-to-wet season transition, as a long,
stable rainy season is crucial for double cropping (Spangler et al., 2017); recent work has demonstrated the
importance of regional dry-season transpiration on the creation of a shallow convection moisture pump and
thus the start of the rainy season (Wright et al., 2017), and the biggest differences in ET rates between land cov-
ers occur during the transition and dry seasons (Georgescu et al., 2013; Oliveira et al., 2014; Spera et al., 2016).

As presented and discussed below, all model simulations both overestimated ET during the start of the rainy
season across all model simulations and exhibited a cold bias during the rainy season. Thus, we performed
additional five-year long model runs with daily and three-hourly output using the IALU land cover, LAI table,

and prescribed FVEG prescribed to attempt to determine the sources
of these errors within the model. We tested the sensitivity of the
model temperature output by using the Kain-Fritsch cumulus scheme
(Table 2: IALU_A); we tested the sensitivity of the model ET output by
changing the surface evaporation resistance option (Table 2: IALU_rsf2
and IALU_rsf2), the soil moisture factor for stomatal resistance (Table 2:
IALU_btr2 and IALU_btr3), quadrupling the baseline stomatal resistance
of the agricultural land cover categories (Table 2: IALUS_rsX4), and
halving the maximum and reference soil moisture content parameters
of the soils present in our study region (Table 2: IALU_smc).

3. Results and Discussion
3.1. Regional Evaluation of WRF

As shown in Table 3 and Figure 2 (black box), all the simulations
perform reasonably well over our region of interest. Across the entire
simulation domain, the largest biases in both temperature and preci-
pitation occur along the Andes, which are outside of our area of inter-
est and not surprising given the complex coastline and dramatic
topography. All simulations demonstrate a wet bias across much of
our study area, similar to other studies using WRF in the same region
of interest (Georgescu et al., 2013). However, this slight wet-bias may
also be an artifact of CRU’s underestimation of precipitation during
the rainy season (Figure S4). Simulations with the dynamic vegetation
turned completely on have lower annual precipitation RMSEs than
other runs, but large annual temperature and annual ET RMSEs and
ET biases.

Table 2
Table of Secondary Simulation Run to Determine Sources of Model Error

Simulation
Simulation
duration

Cumulus
scheme

Soil moisture factor for
stomatal resistance

Surface evaporation
resistance option

Stomatal
resistance

Max and field soil
moisture content

IALU_C
(original configuration)

January 2004 to
January 2010

Grell 3D Default Noah Default Sakaguchi
and Zeng (2009)

Default table values Default table values

IALU_ A January 2004 to
January 2010

Kain-
Fritsch

Default Noah Default Sakaguchi
and Zeng (2009)

Default table values Default table values

IALU_ btr2 January 2004 to
January 2010

Grell 3D CLM Default Sakaguchi
and Zeng (2009)

Default table values Default table values

IALU_ btr3 January 2004 to
January 2010

Grell 3D SSiB Default Sakaguchi
and Zeng (2009)

Default table values Default table values

IALU_ rsf2 January 2004 to
January 2010

Grell 3D Default Noah Sellers et al. (1992) Default table values Default table values

IALU_ rsf3 January 2004 to
January 2010

Grell 3D Default Noah Adjusted Sellers et al. (1992)
to account for wet soil

Default table values Default table values

IALU_ rsX4 January 2004 to
January 2010

Grell 3D Default Noah Default Sakaguchi
and Zeng (2009)

Agricultural land cover
values quadrupled

Default table values

IALU_smc January 2004 to
January 2010

Grell 3D Default Noah Default Sakaguchi
and Zeng (2009)

Default table values SMC values halved

Table 3
Total Error (RMSE), Systematic Error (Bias), and Nonsystematic Errors (RMSEdb)
of All Simulations

Precipitation (mm/year)
Annual average:
1,694 mm/year RMSE Bias RMSEdb

IALU_ DVoff 80.66 33.60 68.49
USGS_DVoff 80.50 33.69 68.72
IALU_DVfveg 81.75 35.22 68.79
USGS_DVfveg 78.37 32.17 66.83
IALU_DVon 78.13 31.23 65.74
USGS_DVon 76.66 30.67 64.43
Mean temperature (°C/year)
Annual average: 26.1 °C

RMSE Bias RMSEdb

IALU_ DVoff 1.55 �0.93 1.07
USGS_DVoff 1.53 �0.81 1.10
IALU_DVfveg 1.60 �0.90 1.10
USGS_DVfveg 1.64 �0.81 1.17
IALU_DVon 1.98 �1.52 1.09
USGS_DVon 1.97 �1.57 1.03
Evapotranspiration (mm/year)
Annual average: 1,123.92 mm/year

RMSE Bias RMSEdb

IALU_ DVoff 183.93 2.61 182.01
USGS_DVoff 184.30 2.65 182.21
IALU_DVfveg 183.85 1.72 181.96
USGS_DVfveg 184.17 1.13 182.22
IALU_DVon 183.16 6.89 181.97
USGS_DVon 183.08 7.18 181.96
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3.2. Dynamic Vegetation Model

The USGS agropastoral categories (pink lines, Figure 3) are characterized by one large annual increase in leaf
area that both preempts and overestimates the observed increase in leaf area. The LAIs of the IALU modified
single-cropping and double-cropping categories (blue lines, Figure 3) were based on MODIS LAI phenology.
The IALU modeled LAIs closely match the average observed MODIS LAIs of single- and double-cropped
regions in our study area (green lines, Figure 3). The model runs where Noah-MPs dynamic vegetation driver
predict LAI (dotted lines, Figure 3) simulate the LAI phenology over the growing season poorly.

3.3. Sensitivity of WRF to Land Use Over the Cerrado

The IALU model runs perform similarly to USGS model runs over single-cropped areas (Figures 4a, 4c, and 4e
and Tables S5–S9) but outperform the USGS model runs over double cropped areas (Figures 4b, 4d, and 4f
and Tables S5–S9). As shown in Figures 4b, 4d, and 4f, the bootstrapped 95% ET, precipitation, and

Figure 2. (top) Average annual precipitation in m/year and (bottom) temperature in °C across our model domain from the WRF simulation. IALU_DVfveg output is
shown in the first column panels, and observed CRU data are displayed in the second panels. Biases (WRF-CRU) are shown in the third column. Our region of interest
is outlined in black in the third column.

Figure 3. Observed MODIS LAIs (green) of grid cells characterized by (right) single-cropped land cover and (left) double-cropped land cover. Monthly LAI of the
default WRF USGS table and dynamic vegetation model output are in magenta, and the modified LAI of the IALU land surface is in blue.
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temperature confidence intervals of the IALU model runs overlap with those of the observed data in more
months than the USGS land cover model runs, yet all simulations struggle to accurately reproduce wet season
climate across all variables. The IALUmodel simulations especially perform better compared to those with the
USGS land covers during the dry season and the dry-to-wet-season transition (May—August) for those grid
cells characterized by double-cropping rotations. Of the six model simulations, those with the dynamic vege-
tation turned completely on (USGS_DVall and IALU_DVall) perform the most poorly at accurately capturing
the climatic seasonal cycles (Tables S5–S9).

The DVoff model runs perform comparably to their paired DVfveg simulations (Tables S5–S9). As Pei et al.
(2014) highlight, the WRF model is extremely sensitive to the land surface processes. Because DVoff and
DVfveg model runs both rely on the LAI look-up table, and LAI strongly controls FVEG which, in turn,
controls surface processes including the portioning of the surface energy budget, ET, and temperature, it
follows then that these model runs would have similar output.

Figure 4. (a and b) Box plots of the observed (MODIS) evapotranspiration (dark green), (c and d) (CRU) temperature (dark red), and (e and f) (CRU) precipitation (dark
blue) and WRF modeled temperature, precipitation, and evapotranspiration over the growing season in grid-cells characterized by (a, c, and e) and double-cropping
rotations (b, d, and f) in the IALU land cover. Note that these results are the spatial average across our study area of interest (black box, Figure 1). Shown here are the
results for IALU_DVfveg (green, pink, blue) and USGS_DVfveg (light green, light pink, and light blue). The yellow diamonds signify months where the bootstrapped
95% confidence intervals of observed and modeled IALU results overlap. The yellow circles signify months where the bootstrapped 95% confidence intervals of
observed and modeled USGS results overlap. Results for USGS_DVoff, IALU_DVoff, USGS_DVall, and IALU_DVall are included in the supporting information.
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3.4. Evapotranspiration

The four IALUmodel simulations have more monthly overlapping confidence intervals than the default USGS
land covers over areas that are double-cropped, especially during the dry season and wet-dry season transi-
tions (Figures 4a and 4b and Table S5). Aside from the IALU_DVall simulation output in April and May for
double-cropping grid cells, no other monthly confidence intervals overlap for either DVall simulation for
either cropping rotation (Table S5).

All models overestimate ET during the early part of the rainy season, sometimes twofold or threefold in
September, October, and November (Figures 4a and 4b). Furthermore, unlike the temperature and precipita-
tion biases, this overestimation in ET does not occur homogenously across the domain. ET is overestimated
fourfold during these months in both Mato Grosso and Goiás yet only, at most, twofold during these months
across the drier Matopiba region (Figure S5). Modeled ET is overestimated across two thirds of the year in
Goiás and southwestern Mato Grosso (Figure S5).

As described in detail below, the overestimation of ET during the early part of the rainy season is likely a result
of excessive evaporation from Noah-MP’s soil moisture model. As shown in Figure 5, soil evaporation com-
prises over 75% of the total ET output in these months. Year-long WRF/Noah-MP simulations over the
Southern Great Plains also resulted in an overestimation of summer ET, which was directly caused by a wet
top-soil-moisture layer (Pei et al., 2014). We describe the results of determining the physical mechanisms
behind this overestimation in section 3.8 below.

3.5. Temperature

All models simulate the increase and fall in average temperature at the beginning of the rainy season
(Figures 4c and 4d and Table S6). However, all models then severely underestimate temperature for the next
seven to eight months (Figures 4c and 4d and Table S6). Again, the DVall models perform worst at simulating
temperature, with only the September and October confidence intervals of IALU_DVall overlapping with
those of the CRU data for single- and double-cropped grid cells, and only the October confidence interval
of USGS_DVall overlapping for both cropping rotations (Table S6).

We further explored these biases in average surface temperature by analyzing the simulated and observed sea-
sonal cycles of maximum and minimum surface temperature (Tables S7 and S8). The models perform better at
simulating minimum temperature than maximum temperature (Tables S7 and S8). Monthly confidence inter-
vals of minimum temperature overlap with observed data in 10 months of the year over single-cropped grid
cells for all simulations except USGS_DVall and IALU_DVall, which had five and three months overlap, respec-
tively. Of the double-cropping grid-cells, the IALU simulations havemoremonths overlap than the correspond-
ing USGS simulation, with the DVfveg simulations performing worse (Table S7). When the confidence intervals
of the modeled data do not overlap, the model typically overestimates minimum temperature by about 1 °C.

The model’s ability to reconstruct maximum temperature, then, plays a large role in the cold bias. All of the
models underestimate rainy season (October–April) maximum temperature by 1–3 °C (Table S8). USGS_DVoff

Figure 5. Average monthly evapotranspiration output of IALU_3hr run broken down into soil evaporation (brown), intercepted water evaporation (blue), and tran-
spiration (green).
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performed best at simulating maximum temperature correctly in four
months (May, June, August, and September) over singled-cropped grid
cells and five months (May–September) over double-cropped grid cells
(Table S8).

These temperature biases may be caused by the cumulus scheme, soil
moisture scheme and adjusted vegetation parameters, the ERA-Interim
data used for all simulations’ boundary conditions, or some combination
these variables. Much of the work with WRF in South America is on
short-term weather forecasting, and few studies use Noah-MP or discuss
climatological temperature biases for longer-term simulations. Ruiz et al.
(2010) evaluated WRF model sensitivity to different parameterization
schemes for 48-hr forecasts over South America and found that surface
temperature was sensitive to both cumulus scheme and surface processes,
but the Grell cumulus scheme simulation exhibited a cold bias that
increased over time. This cool bias is particularly evident during the
October–March rainy season, when there are clouds overhead.
Moreover, Massey et al. (2016) demonstrated that an overestimation of soil
moisture was the primary source of cold biases over the United States’
Great Plains. Year-long simulations over the Southern Great Plains that
use both Noah-MP and a Grell-3D cumulus scheme, as in these simula-
tions, also result in a three-degree cold bias (Pei et al., 2014). The Noah-
MP LSM is extremely sensitive to surface dryness factor, saturated hydrau-
lic conductivity, and saturated soil moisture, yet these variables are both
often highly uncertain for different soil types and regions, with arid and
semiarid regions being particularly problematic (Cai et al., 2014; Pei et al.,
2014). ERA-Interim data, which was used for all simulations’ boundary con-
ditions, has been shown to exhibit inherent bias (Gao et al., 2014; Ruiz-
Arias et al., 2016). However, the ERA-Interim data exhibit a warm bias over
our study area (Figure S6). Thus, it is likely that the cold bias across our
results is related to both ET dynamics within the Noah-MP land surface
model and the chosen surface layer and cumulus schemes, and we
describe these results of testing in section 3.8.

3.6. Precipitation

IALU_DVfveg precipitation matches observations for all months over
single-cropped grid cells (Figure 4e) and 11 months over double-cropped
grid cells (Figure 4f): November precipitation is overestimated.
USGS_DVfveg precipitation matches observations over single-cropped
areas in 11 months: July precipitation is underestimated (Figure 4e), and
matches observations in double-cropped areas for just nine months: over-
estimating precipitation in November, and underestimating May and June
precipitation (Figure 4f). All models capture the seasonal cycle in precipita-
tion reasonably well. IALU_DVoff precipitation matches that of observed
precipitation for all months and over single-cropped and double-cropped
grid cells (Table S9). USGS_DVoff precipitation matches observations over
single-cropped and double-cropped areas for 11 months: July precipita-
tion is underestimated (Table S9). IALU_ and USGS_DVall precipitation
confidence intervals overlap with observed for the entire year for single-
cropped areas and 11months for double-cropped areas: May precipitation
is underestimated (Table S9).

3.7. Scale

We hypothesized that a second, higher-resolution (12 km) nested domainmight improve results by capturing
smaller-scale processes because the land cover data set would be used at a higher resolution. However, the

Figure 6. Comparison of observed (CRU black) data to modeled data
(orange, teal, and purple) for (top) average monthly precipitation, (middle)
temperature, and (bottom) absorbed shortwave radiation. The solid lines
represent mean monthly values, while the shaded area represents boot-
strapped 95% confidence intervals. Results for subregions are presented in
the supporting information.
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results from the nested output are not improved compared to the 36 km grid cell output (Figures S7 and S8).
ET in the nested output is similar to the 36 km output, with increases only in November and December.
Precipitation is overestimated in December through March across both land cover types, and the source of
this uncharacteristic overestimation warrants further exploration. Although the shape of the seasonal cycle
of nested average monthly temperature more closely matches that of the observed, the mean monthly
temperature is overestimated by 2–3° during the beginning of the rainy season and underestimated
toward the end of the rainy season. It should be noted that the 12 km simulations used the same
parameterization scheme as the 36 km simulations. Further exploration of parameterization schemes at
the 12 km grid cell resolution might yield better results.

3.8. Determining the Sources of Model Error

Changing the cumulus scheme from Grell 3D to Kain-Fritsch (Model Runs IALU_C and IALU_A in Table 2,
respectively) did not provide a justifiable fix for the temperature bias. Although the temperature bias gener-
ally decreased during the rainy season with the Kain-Fritsch cumulus scheme was used (IALU_A), the result-
ing change in modeled precipitation was overestimated by over 200% in some rainy season months
(Figures 6 and S9). It may seem counterintuitive that both precipitation and temperature increased.
However, as shown in Figure 6, average monthly incoming shortwave radiation also increased when the
Kain-Fritsch scheme was used, which corresponds with the increasing temperature.

Neither the simulations using alternate soil moisture factor for stomatal resistance parameterizations (Table 2:
IALU_rsf2 and IALU_rsf3) nor the simulations using different surface evaporation resistance options (Table 2:
IALU_btr2 and IALU_btr3) affected ET rates (Figure S10). Furthermore, quadrupling the minimum stomatal
resistance parameter of the agricultural land covers also did not affect ET: the averagemonthly stomatal resis-
tance of both IALU_C and IALU_rsX4 are nearly the same (Figure S11). There may be no overall change
because the vegetation parameter that was quadrupled in the static table simply represents the minimum
stomatal resistance. Within the WRFmodel code, ET also depends on a land cover-specific parameter for opti-
mum transpiration temperature, the vapor pressure deficit, a land cover specific parameter used in the radia-
tion stress function, a land cover specific parameter used in the vapor pressure deficit function, surface
temperature, and the amount of photosynthetically active radiation. Thus, the minimum stomatal resistance
value seems to not play a large role in changing overall stomatal resistance.

Only the model run where soil field capacity and maximum soil water content were halved noticeably
affected ET rates at the beginning of the growing season (Figure S10). As highlighted in Figures 4 and 5,
ET is overestimated but precipitation is not, and ground evaporation—not transpiration or the evaporation
of intercepted water—comprises a majority of the overestimated ET between September and December.

Figure 7. (left) Average monthly evapotranspiration (green), precipitation (blue), and runoff (purple) of model results (IALU_C, double cropping across whole study
area) and observed CRU and MODIS data (left axis). MODIS ET data and CRU precipitation data are presented in lighter colors, and modeled results are presented in
lighter colors. Average monthly soil moisture values are also presented (right axis) using circle markers for each soil depth level: 10 cm (pink), 30 cm (red), 60 cm
(orange), and 100 cm (yellow). The soil becomes saturated at the top level in November, and this corresponds with a marked increase in runoff and decrease in
evapotranspiration in December. (right) Results of model runs IALU_C (C, darker colors) and IALUC_SMC (SMC, lighter colors). Again, average monthly evapotran-
spiration is presented in green, precipitation in blue, and runoff in purple. Runoff increases earlier in the growing season in IALU_SMC, where maximum soil moisture
content and reference soil moisture content values were halved, decreasing evapotranspiration in August, September, and October. Results for subregions are
presented in the supporting information.
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Runoff only responds strongly to increased precipitation after the soil has become saturated (Figure 7). By
decreasing the field capacity of soil moisture, the ratio of water allocated to runoff instead of ET changes ear-
lier in the growing season (Figures 7, S12, and S13). This change in maximum soil water storage also increased
the temperature throughout the entire year, which decreased the cold bias during the rainy season, and cre-
ated a warm bias during the dry season (Figure 6).

4. Concluding Remarks

The ability of farmers in rainfed agricultural breadbaskets, such as Brazilian Cerrado, to successfully cultivate
crops is dependent on a long, stable rainy season. Yet extensive land clearing in this region could perturb the
system enough to drastically affect precipitation and temperature during the rainy season. To understand the
mechanistic changes in climatological seasonality of this dynamic region, a major first step is incorporating
the best possible representations of the landscape into a regional climate model and assessing its ability
to accurately simulate the climate of Brazil.

This work, the first to useWRF to run 10-year-long climatological simulations across Brazil, provides important
insights. All simulations reasonably captured observed precipitation across the region. However, the IALU
data set improved model performance across all variables, especially in the dry-to-wet-season transition.
The precipitation and ET with IALU during the dry season and dry-to-wet season transition highlight the inte-
gral role that vegetative cover, specifically LAI phenology, plays in local land-atmosphere interactions, and in
turn, regional climate. Correctly simulating the water and energy budget during these months is especially
important, as moisture in the dry-to-wet season transition is crucial to a rainy-season onset occurring months
before the southward shift of the Intertropical Convergence Zone (Wright et al., 2017).

There remains ample room for improvement and future research. All simulations struggled to accurately
simulate climate during the rainy season. Evaporation and temperature are consistently biased during the
rainy season, yet as highlighted in Figures 5 and 7, it seems that these biases are in large part, due to the
way soil moisture is parameterized in WRF. As demonstrated by this analysis, and studies across the Great
Plains (Massey et al., 2016; Pei et al., 2014), the Noah-MP model has difficulty simulating soil-moisture, which
directly affects ET rates, and indirectly affects temperature. Although an alternate cumulus scheme improved
temperature estimates, it also caused an overestimation of precipitation by more than 200% during some
rainy season months. The reasons for the differences in spatial biases in ET across the region warrants further
study. Using a nested grid to increase model resolution did not improve simulations in this region; however,
using different cumulus, radiation, or surface-layer schemes within the nested domain may improve model
results. Lastly, the dynamic vegetation model embedded within the Noah-MP land surface model did not
accurately predict observed LAI phenology in the heavily modified agricultural areas of Brazil.
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