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Multi-Cause Degradation Path Model: A Case
Study on Rubidium Lamp Degradation
Sun Quana∗† and Paul H. Kvamb

At the core of satellite rubidium standard clocks is the rubidium lamp, which is a critical piece of equipment in a
satellite navigation system. There are many challenges in understanding and improving the reliability of the rubidium
lamp, including the extensive lifetime requirement and the dearth of samples available for destructive life tests.
Experimenters rely on degradation experiments to assess the lifetime distribution of highly reliable products that seem
unlikely to fail under the normal stress conditions, because degradation data can provide extra information about
product reliability. Based on recent research on the rubidium lamp, this article presents a multi-cause degradation
path model, including its application background, model description, modeling method, and parameter estimation
method. Using the available data from degradation tests, we construct point estimates and interval estimates for
rubidium lamp lifetimes using regression techniques. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: multi-cause degradation path model; rubidium lamp; reliability

1. Introduction

Astate-of-the-art global navigation satellite system, such as GPS, GALILEO, GLONASS, can provide highly accurate, guaranteed
global positioning services for industries, governments, and individuals around the world. Atomic clocks represent critical
components of the satellite navigation system. An atomic clock is a sophisticated timekeeping device that uses an atomic

resonance frequency standard as its timekeeping element. They are the most accurate time and frequency standards known, and
are used as primary standards for international time distribution services, to control the frequency of television broadcasts, and in
global navigation satellite systems such as GPS. The Rubidium Atomic Frequency Standard (RAFS) is at present the baseline clock
technology for the global navigation satellite payload. According to this baseline, every satellite will embark at least two RAFSs.
The adoption of a ‘dual technology’ for the on-board clocks is dictated by the need to ensure a sufficient degree of reliability
(technology diversity) and to comply with the Galileo lifetime requirement (12 years) listed in Jeanmaire et al.1 and Rochat et al.2.

1.1. Background

The rubidium lamp is the core of the RAFS and other optically pumped devices. The conventional lamp used in the RAFS consists
of a glass envelope containing a charge of the appropriate metal such as rubidium, and a buffer gas under a pressure of a few
torr. The lamp is usually ignited by a radio frequency (RF) coil that surrounds the glass envelope. The spectral mission properties
of the lamp have long been recognized as extremely important in the operation of optically pumped devices, and have been
thoroughly studied by Cook and Frueholz3. When the rubidium atoms change energy levels for the RF discharge power, electrons
in atoms will emit the precise microwave signal as the source of standard frequencies Figure 1 shows a typical rubidium discharge
lamp. The lamp consists of a glass envelope that contains the excess rubidium metal and a buffer gas. An RF coil (not shown)
surrounds the exposed portion of the glass envelop and sustains a plasma in the lamp.

Only a limited amount of rubidium can be placed in the lamp due to concerns over the stability of its output intensity. If the
amount of rubidium contained in the lamp is depleted past a given threshold, the rubidium lamp will fail to operate. Several
possible lamp failure mechanisms were investigated by Volk et al.4 in response to the failures of the rubidium atomic clocks on
board GPS satellites. These mechanisms included the quenching of the excited rubidium atoms, rubidium reaction with impurities,
and the interaction of rubidium with the glass. Investigations reveal that the interaction of rubidium with the glass and the
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Figure 1. Typical rubidium discharge lamp

rubidium reaction with impurities are the two main reasons for rubidium depletion, and the interaction between the rubidium
and the glass had depleted most of the rubidium5.

1.2. The interaction of rubidium with the glass

Cook and Frueholz3 model the interaction of rubidium with the glass using the formula

Z(t)=2 ·A·C0 ·
( �

D

)
·√t, t>0, (1)

where A is the rubidium lamp surface area, C0 is the density of the penetrating species at the glass surface, D is the diffusion
coefficient of the penetrating species for the particular glass, Z(t) represents the total rubidium interaction amount to time t. The
difficulty with Equation (1) exists in obtaining precise knowledge of both C0 and D in the lamp application. From Volk et al.4,
the density of rubidium at the glass surface certainly depends on the temperature of the rubidium reservoir that controls the
rubidium vapor pressure in the lamp. However, based on a mathematical model of the discharge lamp, the density of rubidium
at the lamp wall is also predicted to be a strong function of the RF drive power applied to the lamp.

Unfortunately, at present it is not possible to model the exact functional dependence of rubidium density on lamp drive
power. Additionally, the diffusion coefficients for rubidium in glasses of interest are not well known. The analyses that we have
performed on various lamps have not provided sufficiently detailed information with regard to the diffusion coefficients. The best
way, to date, to determine the rate of rubidium diffusion into the glass envelope of a lamp is by performing rubidium depletion
measurements under certain lamp conditions of interest as shown in Cook and Frueholz3.

For convenience, we can write

Z(t)=b0 +a0 ·√t, t>0, (2)

where b0 represents the initial interaction amount, a0 is equal to 2AC0� / D in Equation (1).

1.3. Rubidium reaction with impurities

Another postulated mechanism for the failure of the rubidium lamp was the loss of rubidium by reaction with species outgassed
from the envelope to form non-volatile rubidium oxide (Rb2O). The most likely reactions are:

2Rb+H2O→Rb2O+H2,

4Rb+O2 →2Rb2O.

Through these reactions, 30 or more micrograms rubidium will be depleted. Although this amount of depletion is not significant
in terms of the total charge of rubidium (300 �g or more), it should be taken into account to properly analyze the rubidium
lamp’s lifetime and its reliability.

A mathematical model of the rubidium reaction with impurities by Cook and Frueholz3 is given as

W(t)=P ·(1−e−Q·t), t>0, (3)

where P represents the total amount of rubidium lost through reaction, Q is the reaction rate constant (as given in Volk et al.4),
and W(t) represents the total rubidium reaction amount to time t. From Equation (3), we know that W(t) will tend to be infinitely
close to a maximum amount (P) and the reaction with impurities can be considered as stopping when t is long enough; hence,
another mathematical model of the rubidium reaction with impurities can be given by

W(t)=b1 +a1t, t<T1, (4)

where b1 represents the initial reaction amount and a1 is the average reaction rate before the reaction stops by time T1.

2. Rubidium degradation

The lifetime of a rubidium lamp is closely related to the amount of rubidium atoms in the lamp; see Frueholz6 and Bhaskar7. A
rubidium atom’s interaction with the lamp envelope glass (diffusion into the lamp’s glass wall) and its reaction with impurities
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Figure 2. Water tank with leaks at bottom (Leak 0) and middle (Leak 1)

within the lamp will lead to the depletion of rubidium. When the amount of rubidium atom is depleted, the lamp’s optical
pumping will fail and the lamp fails.

Because of the challenges in obtaining lifetime data for rubidium lamps, the ability to analyze degradation measurements is
paramount in accurately estimating lifetime distributions. The rubidium lamp is used only in some highly specialized equipment,
such as satellites. Consequently, the demand for these lamps is low although it serves a critical purpose. In this case, the rubidium
lamp is made in special laboratories, and due to manufacturing and economic constraints, there are few rubidium lamps that
can be used in destructive life tests.

Recently, degradation data have been shown to be a superior alternative to lifetime data in most statistical analyses because
they are potentially more informative. Freitas et al.8 discuss two major aspects of modeling for degradation data. One approach is
to assume that the degradation is a random process in time. Doksum9 used a Wiener process model to analyze degradation data.
Tang and Chang10 modeled non-destructive accelerated degradation data from power supply units as a collection of stochastic
processes. Whitmore and Shenkelberg11 considered that the degradation process in the model is taken to be a Wiener diffusion
process with a time-scale transformation. An alternative approach is to consider more general statistical models. Degradation in
these models is modeled by a function of time and some possibly multidimensional random variables. These models are called
‘general degradation path models’.

Lu and Meeker12 developed statistical methods using degradation measures to estimate a time-to-failure distribution for a
broad class of degradation models. They considered a nonlinear mixed-effects model (NMLE) and used a two-stage method to
obtain point estimates and confidence intervals of percentiles of the failure-time distribution. Lu et al.13 proposed a model with
random regression coefficients and standard-deviation function for analyzing linear degradation data from semiconductors. Su
et al.14 considered a random coefficient degradation model with random sample size and used maximum likelihood (ML) for
parameter estimation. Hamada15 used a Bayesian approach for analyzing a laser degradation data. Bae and Kvam16 proposed a
change-point model for modeling incomplete burn-in during the production of display devices.

This aggregate of previous research has a focus on estimating the parameters in the degradation model along with the
percentiles of the failure-time distribution, and these models all assume that degradation is due to either a single cause, or when
there are multiple causes, they have an additive effect that can be modeled into a single additive model. In some cases, such
assumptions are not suitable.

To illustrate a case in which the regular model assumptions do not hold, consider the water tank pictured in Figure 2. When
there is no water, the tank will fail to operate. From Figure 2, we can see that there are two causes that lead to tank failure,
labeled as Leak 0 (bottom) and Leak 1 (middle). These two different causes can be analyzed using a simple degradation model
that assumes that a single cause exists, based on the water loss data observed from point A or tank water-level falling data
which can be observed from point B. However, the causes for the two leaks are different. Leak 1 will stop when the water level
is lower than a particular level, but Leak 0 will not stop until the water is completely gone.

Let d1(t) and d0(t) be the amount of leaking water leaking at time t corresponding to Leak 1 and Leak 0. Y(t), defined as the
total water leaking amount at time t, can be described as

Y(t)=d1(t)+d0(t), t>0. (5)

Suppose d1(t) and d0(t) are linear functions of t, so that the rate of water leaking from Leak 1 and Leak 0 is constant. Then,

d1(t) = a1t+b1, 0≤ t ≤T1, (6)

d0(t) = a0t+b0, 0≤ t. (7)

T1 is the time at which Leak 1 ceases, when the water level is so low that there will be no water leaking from Leak 1. Then
from Equations (5) to (7), we can get a crooked line as shown in Figure 3.

Copyright © 2010 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011, 27 781--793
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Figure 3. Amount of tank water leakage as a function of time

In fact, the degradation of the rubidium lamp can be compared with the loss of water in tank. In the lamp, there are also
two disparate causes that lead to the depletion of rubidium. One cause is the reaction with impurities, but such a reaction will
stop when the impurities are used up, which occurs long before the lamp fails. The other cause is the interaction with glass
(diffusion), and this kind of diffusion will continue until all rubidium is completely depleted.

Bae and Kvam16 proposed a model with a single change-point, and Sari et al.17 proposed a two-stage model to analyze a
similar problem in light displays. In the change-point model, several causes actually are integrated into one cause (path) and
the degradation process is modeled as two independent phases between the change-point. In accelerated degradation tests, the
degradation rate can be modified by changes in stress levels (such as temperature) and is probably different from cause to cause;
hence, we would study these causes separately.

In this article, such a tank degradation problem or rubidium degradation problem will be called a multi-cause degradation
problem, and we will develop a generalized multi-cause degradation path model to solve the multi-cause degradation problem.

3. Multi-cause degradation path model

For convenience, we will consider two kinds of causes in our generalized multi-cause degradation path model. One cause is
limited degradation. When the limit is reached, the degradation is halted, like the way Leak 1 stops once the water in the tank
goes below a fixed threshold. The other cause is unlimited degradation, meaning that the degradation process will persist until
failure occurs. Leak 0 in the water tank is an example of unlimited degradation. Because of the continuity and similarity of
independent sources of unlimited degradation, we can integrate all unlimited degradation processes into a single process. But
for limited degradation processes, we cannot simply integrate them into one process if the thresholds are not identical.

Assume that there are M+1 causes of degradation, which we will call Cause 0, Cause 1, Cause 2,. . ., Cause M. Cause 0 is
unlimited degradation with degradation process denoted by d0(t), t>0. Cause 1, Cause 2,. . ., Cause M represent limited degradation
and we denote the limit threshold for the ith cause with Df i, i=1,. . ., M, so that

di(t)=
{

fi(t), 0≤ t ≤Ti,

Dfi, t>Ti,
(8)

where Ti(i=1,. . ., M) is the time at which limitation is achieved. If D(t) represents the item’s degradation process, then

D(t)=
M∑

i=0
di(t). (9)

According to the definition by Meeker and Escobar18, we can express performance reliability as

R(t) = Pr{D(t)<Df }=Pr

{
M∑

i=0
di(t)<Df

}
=Pr

{
d0(t)<Df −

M∑
i=1

fi(t)

}
·

M∏
i=1

(1−Fi(t))

+Pr

{
d0(t)<Df −

M−1∑
i=1

fi(t)−DfM

}
·

M−1∏
i=1

(1−Fi(t))·FM(t)

+Pr

{
d0(t)<Df −

M−2∑
i=1

fi(t)−
2∑

i=1
Dfi

}
·

M−2∏
i=1

(1−Fi(t))·
2∏

i=1
FM−i+1(t)
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+·· ·+Pr

{
d0(t)<Df −

M−k∑
i=1

fi(t)−
k∑

i=1
Dfi

}
·

M−k∏
i=1

(1−Fi(t))·
k∏

i=1
FN−i+1(t)

+·· ·+Pr

{
d0(t)<Df −

M∑
i=1

Dfi

}
·

M∏
i=1

FM−i+1(t), (10)

where Fi(t) is the distribution function of Ti , i=1,. . ., M.

4. Rubidium lamp life test

During the past years, in order to figure out the necessary requirements that will ensure reliable operation of the rubidium lamp,
there have been a number of experiments undertaken by the China State Key Laboratory of Magnetic Resonance & Atomic &
Molecular Physics. The lab collected various measurements to quantify the quality of the lamps, including degradation data which
we feature in this article.

In one study, there were six lamps of the same type of glass put into degradation test. The first three lamps were tested
for 28 800 h (3 years and 4 months). Figure 4 shows the measured amount of rubidium in lamps #1–#3. Note that the time
measurement intervals are not identical. The next three lamps were tested with the same operating conditions as the first three,
and testing began at the same date. Only after 1 year and 8 months of regular use, degradation measurements were made for
the second group of lamps, which lasted for another 14 400 h (1 year and 8 months). Figure 5 shows the rubidium amount in
lamps #4–#6, and again the time measurement intervals are not equal. Because these six lamps had worked under similar usage
conditions, and all started work at the same time, we can combine the degradation test data as shown in Figure 6.

0 0.5 1 1.5 2 2.5 3
x 104

140

160

180

200

220

240

260

280

300

Lamp Operation Time (Hours)

La
m

p 
R

ub
id

iu
m

 A
m

ou
nt

 (
ug

)

Figure 4. Rubidium amount of lamps #1–#3 (RF power=2 W)
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Figure 5. Rubidium amount of lamps #4–#6 (RF power=2 W)
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Figure 6. Rubidium amount of lamps #1–#6 (RF power=2 W)

5. Multi-cause degradation path model of rubidium lamp

We know that the amount of rubidium in the rubidium lamp is affected by the initial amount of rubidium that exists in the
lamp, as well as the reaction rate of the impurities and the glass interaction rate. First, in the satellite rubidium atomic clock,
considering the rubidium lamp physical output’s stability, there is a maximal initial fill amount that varies slightly for each lamp.
Although the reaction between the rubidium and the impurities continues until the lamp stops working, this depletion occurs
early in the lamp lifetime, and after a particular time, the rubidium amount depleted by the reaction of rubidium and impurities
becomes negligible. In contrast, degradation due to the glass interaction will continue from the beginning to the end of lamp
life.

5.1. Parameter evaluating method

For the rubidium lamp, there are two causes (M+1=2) leading to the degradation. One major cause is due to interaction with
the glass, and its degradation path can be denoted as follows from Equation (2):

d0(t)=Z(t)=b0 +a0 ·√t, t>0. (11)

The other degradation cause is due to the reaction with impurities, and its degradation path can be denoted as follows from
Equation (4):

d1(t)=
{

W(t), 0≤ t ≤T1

Df1, t>T1
=
{

b1 +a1 ·t, 0≤ t ≤T1,

Df1, t>T1.
(12)

From Equation (9), we obtain (M=1):

D(t) =
M∑

i=0
di(t)=d0(t)+d1(t)=

{
b0 +a0 ·√t+b1 +a1 ·t, 0≤ t ≤T1,

b0 +a0 ·√t+Df1, t>T1,

=
{

(b1 +b0)+a0 ·√t+a1 ·t, 0≤ t ≤T1,

(b0 +Df1)+a0 ·√t, t>T1.
(13)

For convenience, let

Y(t)=Df −D(t), c=Df −b1 −b0, d =Df −b0 −Df1, (14)

then Equation (13) can be written as

Y(t)=
{

c−a1t−a0
√

t, 0≤ t ≤T1,

d−a0
√

t, t>T1,
(15)

where Y(t) is a continuous function of time, c represents the rubidium initial fill amount parameter, a1 represents rubidium and
impurities reaction parameter, a0 represents the rubidium and glass interaction parameter, T1 represents the intersection point
at which limitation cause stops operating, and c, a1, a0, d, T1 are all positive real numbers.
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If [ti−1, ti] represents the ith time interval, i=1,. . ., N (with t0 =0, N is the test time intervals), and Y(ti) is the measured amount
of rubidium in the lamp at time ti , we can get the following equation from Equation (15):

Y(ti)=
{

c−a1ti −a0
√

ti +�1, i=1, 2,. . . ,�,

d−a0
√

ti +�2, t>T1, i=�+1,. . . N,
(16)

where (�1,�2) are the random measurement errors, assumed to be independent and identically distributed (iid) normal random
variables with mean zero and variance �2. The parameter � is the index corresponding to the intersection point T1, with �=1,. . ., N,
and t� ≤T1 ≤ t�+1.

Additionally, under the continuity assumption for the degradation path, we can get

T1 = (c−d) / a1, (17)

where d�[c−a1t�+1, c+a1t�+1], c≥0, a1 ≥0, a0 ≥0, d ≥0. Using the model described in Equation (17), it is possible to derive
maximum likelihood estimators (MLEs) for c, a1, a0, d. The log-likelihood is given by:

L(c, a1, a0, d,�2,�)= ln
1

(
√

2�)N�N
−∑�

i=1
(y(ti)−(c−a1ti −a0

√
ti))

2

�2
−

N∑
i=�+1

(y(ti)−(d−a0
√

ti))
2

�2
. (18)

The procedure to obtain MLEs for the parameters in Equation (18) along with the corresponding estimate of � can be summarized
in a simple constrained optimization:

Find ĉ, â1, â0, d̂, �̂2, and �̂ such that

L(ĉ, â1, â0, d̂, �̂2, �̂)=sup L(c, a1, a0, d,�2,�), (19)

subject to

T̂1 = ĉ− d̂

â1
and d̂∈ [ĉ− â1t�+1, ĉ− â1t�], â1 ≥0, â0 ≥0, d̂ ≥0, ĉ≥0.

Under the constraints above, the MLEs ĉ, â1, â0, d̂, �̂2 can be found in closed form:

ĉ =
{

T ·Y� ·(N−�)+T1/2
N−� ·T1/2

N−� ·Y�+YN−� ·T1/2
N−� ·T1/2

� −T1/2
� ·YT1/2 ·(N−�)

T3/2
� ·T1/2

� ·(N−�)−T ·T� ·(N−�)−T� ·T1/2
N−� ·T1/2

N−�

− 2 ·T ·YT� ·(N−�)+2 ·T1/2
N−� ·T1/2

N−� ·YT�+T1/2
N−� ·T3/2

� ·YN−�−T3/2
� ·YT1/2 ·(N−�)

T3/2
� ·T3/2

� ·(N−�)−T2
� ·T ·(N−�)−T2

� ·T1/2
N−� ·T1/2

N−�

}/
(20)

{
�·T ·(N−�)+�·T1/2

N−� ·T1/2
N−�−T1/2

� ·T1/2
� ·(N−�)

T1/2
� ·T3/2

� ·(N−�)−T ·
�T ·(N−�)−T� ·T1/2

N−� ·T1/2
N−�

− T� ·T ·(N−�)+T� ·T1/2
N−� ·T1/2

N−�−T3/2
� ·T1/2

� ·(N−�)

T3/2
� ·T3/2

� ·(N−�)−T2
� ·T ·(N−�)−T2

� ·T1/2
N−� ·T1/2

N−�

}
,

â1 = 2YT� ·T.(N−�)+2YT� ·T1/2
N−� ·T1/2

N−�+T3/2
� ·YN−� ·T1/2

N−�−T3/2
� ·YT1/2 ·(N−�)

T3/2
� ·T3/2

� ·(N−�)−T2
� ·T ·(N−�)−T2

� ·T1/2
N−� ·T1/2

N−�

− T� ·T.(N−�)+T� ·T1/2
N−� ·T1/2

N−�−T3/2
� ·T1/2

� ·(N−�)

T3/2
� ·T3/2

� ·(N−�)−T2
� ·T ·(N−�)−T2

� ·T1/2
N−� ·T1/2

N−�

·H,

â0 = YN−� ·T1/2
N−�−YT1/2 ·(N−�)+T1/2

� ·(N−�) ·H−T3/2
� ·(N−�) · â1

T ·(N−�)+T1/2
N−� ·T1/2

N−�

,

d̂ = YN−�−T1/2
N−� · â0

(N−�)
,

�̂2 = 2

N

(
�∑

i=1
(y(ti)−(c− â1 ·ti − â0 ·√ti))

2 +
N∑

i=�+1
(y(ti)−(d̂− â0 ·√ti))

2

)
,

where

T =
N∑

i=1
ti, T� =

�∑
i=1

ti, TN−� =
N∑

i=�+1
ti,

T1/2 =
N∑

i=1
t1/2

i , T1/2
� =

�∑
i=1

t1/2
i , T1/2

N−� =
N∑

i=�+1
t1/2

i ,
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T3/2 =
N∑

i=1
t3/2

i , T3/2
� =

�∑
i=1

t3/2
i , T3/2

N−� =
N∑

i=�+1
t3/2

i ,

T2 =
N∑

i=1
t2

i , T2
� =

�∑
i=1

t2
i , T2

N−� =
N∑

i=�+1
t2

i ,

Y =
N∑

i=1
y(ti)

1/2, Y� =
�∑

i=1
y(ti), YN−� =

N∑
i=�+1

y(ti),

YT1/2 =
N∑

i=1
y(ti) ·t1/2

i , YT� =
�∑

i=1
y(ti) ·ti,

H = T ·Y� ·(N−�)+T1/2
N−� ·T1/2

N−� ·Y�−(N−�) ·T1/2
� ·YT1/2 +YN−� ·T1/2

N−� ·T1/2
�

T3/2
� ·T1/2

� ·(N−�)−(N−�) ·T� ·T −T1/2
N−� ·T1/2

N−� ·T�

−2T ·YT� ·(N−�)+2T1/2
N−� ·T1/2

N−� ·YT�−(N−�) ·T3/2
� ·YT1/2 +YN−� ·T1/2

N−� ·T3/2
�

T3/2
� ·T3/2

� ·(N−�)−(N−�) ·T2
� ·T −T1/2

N−� ·T1/2
N−� ·T2

�

.

Using ĉ, â1, â0, d̂, �̂2, and �̂ in Equation (20), from Equation (14), we can also get the estimators for b0, b1 as follows:

b̂0 = Df −Df1
− d̂,

b̂1 = d̂+Df1 − ĉ.
(21)

5.2. Parameter evaluation

With a sample of L lamps, we can obtain MLEs, along with the corresponding estimates their standard errors, for each lamp,
treating the parameters as fixed effects unique to each lamp. From Equations (20) and (21), we would have a set of 5L parameters,
assuming that the jth lamp’s degradation parameters are a0,j , b0,j , a1,j , b1,j , T1,j , j=1, 2,. . ., L.

With the data from the lamp study, using the degradation data shown in Figures 4–6, we obtain the multi-cause degradation
path model parameter estimates and the standard errors for each individual lamp (listed in Table I), where L=6 and Df1 =60�g.
For details about how the standard errors of nonlinear parameters can be efficiently computed; see Bates and Watts19, for
example.

To see if the parameter estimates follow the normal distribution, we used two tests for goodness of fit on the sets of six estimated
coefficients: Lilliefor’s test and the Anderson–Darling test. Treated as a sample data of random coefficients b0 (b0,j , j=1, 2,. . ., 6),
both tests indicate an adequate fit to a normal distribution at the 5% level. The other coefficients (a0,j , j=1, 2,. . ., 6), (a1,j , j=
1, 2,. . ., 6), (b1,j , j=1, 2,. . ., 6), (T1,j , j=1, 2,. . ., 6) also passed this Lilliefor’s test for goodness of fit to a normal distribution at the 5%
level.

Unlike these other coefficients, T1 represents the end (lifetime) of Rubidium reaction with impurities in the multi-cause rubidium
degradation path model. Based on the results of Lilliefor’s test of an exponential distribution, (T1,j , j=1, 2,. . ., 6) is adequately fit

Table I. The MLEs and their standard errors for parameters in the rubidium lamps’ degradation model

b1,j a1,j b0,j a0,j T1,j �2
j

j=1 0.44 0.00456 69.27 0.09779 15270.1 88.8
SE 3.867 0.001334 2.4384 0.01544

j=2 7.09 0.00326 9.58 0.25628 16220.2 99.14
SE 2.5726 0.001401 6.279 0.012928

j=3 5.94 0.00372 37.3 0.23513 14547.5 84.17
SE 3.8502 0.001063 1.3947 0.013793

j=4 2.15 0.00363 18.49 0.44789 15956.9 12.47
SE 0.17275 0.000376 2.7654 0.005813

j=5 22.95 0.00224 26.24 0.40319 16561.6 14.77
SE 0.14349 0.000766 2.8393 0.007648

j=6 2.05 0.00374 0.06 0.57030 15475.6 11.11
SE 0.53403 0.002852 0.64325 0.028464
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Figure 7. The degradation paths of rubidium lamps #1
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Figure 8. The degradation paths of rubidium lamps #2

by the exponential distribution at the 5% level. The resulting model now considers

a0 ∼N(�a0
,�2

a0
), b0 ∼N(�b0

,�2
b0

), a1 ∼N(�a1
,�2

a1
),

b1 ∼N(�b1
,�2

b1
), T1 ∼E(�1),

and we seek to calculate the estimates of �a0
, �2

a0
, �b0

, �2
b0

, �a1
, �2

a1
, �b1

, �2
b1

, �1.

By substituting the parameter estimates in Table I into Equation (13), the model generates the degradation path of each
rubidium lamp, as shown from Figures 7 to 12.

6. Reliability analysis of rubidium lamp

In this section, we will use the degradation data to analyze the reliability of rubidium lamps. From Equation (10), when M=1,
we can obtain the reliability performance of the rubidium lamp as follows:

R(t) = Pr{D(t)<Df }
= Pr{d0(t)+d1(t)<Df }
= Pr{a0

√
t+b0 +a1 ·t+b1<Df }·(1−F1(t))+Pr{a0

√
t+b0<Df −Df1

}·F1(t) (22)

From Equation (22), Df and Df 1 represent relative thresholds. For the rubidium lamp in this study, Cook and Frueholz3 and
Volk et al.4 suggest that Df should be set to 300�g and Df 1 should be set to 60�g. Then the rubidium lamp’s performance
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Figure 9. The degradation paths of rubidium lamps #3
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Figure 10. The degradation paths of rubidium lamps #4
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Figure 11. The degradation paths of rubidium lamps #5

reliability is calculated as:

R(t)=�

⎛
⎝Df −(�a0

√
t+�a1

t+�b0
+�b1

)√
�2

a0 t+�a1 t2 +�2
b0

+�2
b1

⎞
⎠ e−�1t +�

⎛
⎝Df −Df1

−(�a0

√
t+�b0

)√
�2

a0 t+�2
b0

⎞
⎠ (1−e−�1t), (23)

where � is the CDF of the Standard Normal Distribution.
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Figure 12. The degradation paths of rubidium lamps #6
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Figure 13. Rubidium lamp performance reliability’s histogram by bootstrap data samples

Figure 14. Estimated performance reliability of rubidium lamp along with 95% confidence interval

To get the performance reliability point estimation at time t, we first compute estimates of �a0
, �2

a0
, �b0

, �2
b0

, �a1
, �2

a1
, �b1

, �2
b1

,

�1, and then substitute these estimates into Equation (23). When Df =300�g, Df1
=60�g, t =87 600 h (10 years), using a non-

parametric bootstrap resampling method, we draw 10 000 bootstrap samples from the data set of Table I. Next, we compute
statistical estimates for each sample using Equation (23), and return the results, which are illustrated in Figure 13. From the
bootstrap samples, we use the 0.025 and 0.975 quantiles to form the confidence interval for the reliability estimate. For example,
at 10 years (see Figure 14) we compute R0.025 =0.92579 and R0.975 =0.99666.
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Applying this resampling technique at various operating times, R(t) and its 95% bootstrap confidence intervals are plotted in
Figure 14. The intervals are based on 10 000 bootstrap samples, the upper curve is R(t) estimation for quantile=0.025, the lower
curve is R(t) estimation for quantile=0.975, and the middle curve is the reliability estimate.

7. Conclusions and future research

Owing to the previous lack of failure data, reliability estimation for the rubidium lamp has faced great hurdles. Using the data
provided by the China State Key Laboratory, this article presents a multi-cause degradation path model, including its brief
application background, model description, modeling method, and parameter estimation method. Using degradation data from
just six life tests, we analyzed the performance reliability of the rubidium lamp and displayed the performance reliability results
(point estimation and interval estimation).

As a result, this research represents that the first time rubidium lamp reliability has been inferred using degradation data. We
note that the results are not completely reassuring. Previous internal lab studies based on theoretical models were comparatively
optimistic about predicting lamp reliability. The reliability estimates here suggest that the rubidium lamp’s performance reliability
is lacking, with the lower confidence interval bound of 92% for 10 service years, which is over the tolerated failure frequency.
As a matter of fact, from the rubidium lamp’s multi-cause degradation path model and its performance reliability equation, we
know that we need to make improvements in many aspects such as increasing the initial fill amount, decreasing the amount of
impurities, and improving the glass materials, for example.

It is likely that multi-cause degradation is increasingly prevalent in degradation tests of highly complex devices, but mostly
for convenience we integrated all causes into one cause and set up a degradation path that is easier to characterize. For the
rubidium lamp, the high RF power will create different effects for the rubidium interaction with impurities as well as with glass,
and the multi-cause degradation path model can help to recognize the difference between these effects. In future work, when
more refined data become available, we will consider more specialized models of degradation that consider more causes of
degradation.
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