
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

2018

A Probability Model for Strategic Bidding on The
Price is Right
Paul H. Kvam
University of Richmond, pkvam@richmond.edu

Follow this and additional works at: https://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Applied Statistics Commons, and the Mathematics Commons
This is a pre-publication author manuscript of the final, published article.

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Kvam, Paul H., "A Probability Model for Strategic Bidding on The Price is Right" (2018). Math and Computer Science Faculty
Publications. 214.
https://scholarship.richmond.edu/mathcs-faculty-publications/214

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232790234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications/214?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


A Probability Model for Strategic Bidding

on The Price is Right

Paul H. Kvam∗

Department of Mathematics and Computer Science, University of Richmond

Abstract

The TV game show The Price is Right features a bidding auction called

“Contestants’ Row” that rewards the player (out of 4) who bids closest to an

item’s value without overbidding. This paper considers ways in which the play-

ers can maximize their win probability based on their bidding order. We con-

sider marginal strategies in which players assume their opponents are bidding

their perceived value of the merchandise. Each player has available to them the

information provided by the bids that preceded their own. We consider con-

ditional strategies in which players adjust their bids knowing other players are

using strategies. The last bidder has a large advantage in both scenarios due to

receiving the most information from opposing players and being able to bid the

minimal amount over an opponent’s bid without incurring extra risk. Finally,

we measure how a player’s confidence can affect their winning probability.

Keywords: Auction; Marginal strategy; Normal distribution; Order statistics;

Simulation study.

∗Corresponding Author: Dr. Kvam is Professor in the Department of Mathematics and Com-
puter Science. His email address is pkvam@richmond.edu.



1 Introduction

The Price Is Right (TPiR) is a well-known game show that has been running on

American television since 1956. Over the course of 60 years, its hosts have included

Bill Cullen, Bob Barker, and Drew Carey. The show features several games in which

contestants from the audience compete to win prizes by guessing the retail price of

some featured merchandise. In this paper, we concentrate on the “Items up for

bid” segments, the most commonly played game in which four contestants from the

audience guess the value of a piece of merchandise, and the bidder who is closest

without going over the actual value wins the merchandise. This is a particular

bidding scenario that will motivate players to consider underbidding in order to

avoid having their bid invalidated, but also allows them to bid a value immediately

above a previous bid if they feel that bid is under the value of the merchandise.

1.1 Background

Game theory has provided a helpful stochastic framework for auction bidding opti-

mization [9] but studies do not consider settings such as this one where overbidding

eliminates the player in that game. In general, most games are symmetric, where

each player’s chance of winning is determined by strategy. In this case, bid order

imposes a unique asymmetry. Unlike first-price auctions or independent private

value auctions, the information advantage increases from the first bidder to the last,

while the overbid penalty affects all the players, but not equally.

While this article keeps the focus on the probability models that show us how

to characterize and optimize player bids, Berk et al. [3] provided the first compre-

hensive study of bidding behavior on TPiR and considered simple rules for ratio-

nal bidders. Based on basic principles of rational bidding, they found contestants’

strategies appeared to be suboptimal. From bidding data recorded during the 1994

season of TPiR, their research shows unequivocally that it is advantageous to bid

last, which may come at no surprise. Specifically, they found that all four players

ended up overbidding in 13% of games, and in 42% of the games, all four players

bid below the actual value. While the last bidder was the most frequent winner,

they argue that all players failed to bid rationally nearly half the time.
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Prior to this study, Bennett and Hickman [1] investigated data from Berk [2]

and identified rational bids for the fourth player (bidding one dollar more than a

previous bidder or bidding one dollar). They found suboptimal bidding occurred

more frequently in earlier games and postulated that players learned how to bid

optimally through game playing experience.

Estelami [4] expanded on the research of Berk et al. [3], and studied the im-

pact of product-related factors on the players’ understanding of different product

categories. Healy and Noussair [5] conducted an experimental study that showed

similar suboptimal bidding behavior to that found in Berk et al. [9]. Lee et al. [8]

used the bids of the individual players to construct an aggregate bid that is superior

to estimates of individual players. Holbrook [7] considers fundamental relationships

between the bidding behavior of the players and the kinds of merchandise that is

up for auction, and specifically the way television (TPiR in particular) affects that

relationship.

Mendes and Morrison [10] present optimal strategies for symmetric games (each

player has equal footing), including those where overbidding disqualifies the bidder.

Although they consider a game that is similar to TPiR in one of their examples,

it does not reflect the sequential bidding aspect of Contestants’ Row, where more

information is available to players who bid later. In this paper, our interest is solely

on how the auction-winning probability is affected by different strategies of the four

players, where the game is not symmetric.

1.2 Marginal versus Conditional Strategy

In Section 3, we introduce a marginal strategy for bidding. Marginal strategies

assume each player maximizes their chance of winning without consideration of

player bids that follow their own. While this strategy will likely be ineffectual

(except for Player 4), it serves as a building block for more realistic strategies. We

introduce conditional strategies in Section 4 for which players use information from

previous player bids and also seek to maximize winning probability by considering

possible bids by players that follow them. We outline the difference between the

two strategies from Sections 3 and 4 in a simple example.
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1.3 Example

Four players are bidding on Contestants’ Row. The first player bids $820, and the

next player bids $850. Suppose Player 3 believes the value of merchandise up for

bid is $800. What is the best bidding strategy for Player 3? If Player 3 uses a

marginal strategy, they do not consider the potential bids by Player 4 and we will

show the marginal strategy is to bid one dollar because it maximizes their chance of

winning among the three bids, according to Player 3’s belief. Of course, this bid is

not optimal, because Player 4 can eliminate Player 3 from this auction by bidding

two dollars.

The conditional strategy takes this into consideration. Player 3 can increase

their chance of winning (according to their belief) by shrinking their bid below $800.

However, if they bid too far below that value, they increase the risk that Player 4

will bid a dollar more, which will greatly diminish their chance of winning. Player

3 must adopt a defensive strategy knowing Player 4 has this unique advantage. For

this case (see Section 4), we use simulation to find that Player 3 maximizes their

winning probability by bidding 4% below their perceived value. In this example,

Player 3 would bid $768.

1.4 Outline of Paper

Our primary interest is in the TPiR bidding model described above for the game

called “Contestants’ Row”. However, in Section 2 we will first consider a simpler

model with two bidders that will show the ramifications of the overbidding penalty.

Section 3 describes the marginal strategies, and these serve as a foundation for the

more-realistic conditional strategies described in Section 4. Some of the conditional

strategies are determined through Monte Carlo simulation based on simple stochas-

tic models that assume players generate independent merchandise assessments. In

Section 5, we consider the effect of player uncertainty on bidding using a belief

distribution.

We may treat each player’s guess of the merchandise value as a random variable:

let Xi be estimated value for the merchandise by Player i, where i = 1, 2, 3, 4. For

all scenarios, we assume the actual unknown value of the merchandise is η and that
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V (Xi) = σ2 <∞ for i = 1, 2, 3, 4. In scenarios in which Player i will bid some value

that is possibly different from their belief Xi, we will denote the bid as bi.

2 Two-Player Game

Suppose we have two players each with an independent guess at the true price η

that is random, with P (Xi ≤ η) = 0.5 for i = 1, 2. The guess that is closest to

η wins the game (at this stage, we are not yet considering the TPiR penalty for

over-bidding). We assume Player 1, with no extra information outside their own

personal assessment, uses their guess X1 for their bid (b1 = X1). Player 2 bids after

Player 1.

Theorem 1. Let ε > 0 be the closest Player 1 is allowed bid to X1. Then Player

2 maximizes their chance of winning the game by bidding b2 = X1 + ε if X1 < X2,

and will bid b2 = X1 − ε if X2 < X1. This strategy is consistent with “Proposition

1” for the behavior of a rational bidder in [3].

Proof. In the 3! = 6 possible orderings of (X1, X2, η), Player 1 wins in just two

of them: X2 < X1 < η and η < X1 < X2. P (X1 > η,X2 > η) = 1/4 and

given both variables are larger than η, P (X1 > X2) = 1/2. The same holds for

(X1 < η,X2 < η), so that P (X2 < X1 < η) + P (η < X1 < X2) = 1/4.

The theorem does not hold without independence. For example, with η = 1/2

and joint density f(x1, x2) = 4I(x2 < x1 < η) + 4I(η < x1 < x2 < 1), Player 1 wins

every time. Consider the dependent case where X1 and X2 are distributed normally:

X1 ∼ N(η, σ2), X2 ∼ N(η, σ2) and suppose that the bidders have (positively)

correlated evaluations. If Cov(X1, X2) = ρσ2, we can use numeric integration to

evaluate P (X2 < X1 < η) + P (η < X1 < X2). If ρ > 0, the probability Player 1

wins goes from 1/4 up to 1/2 as ρ increases from zero to one. If ρ < 0, then by

symmetry the probability that Player 1 wins decreases down to zero as ρ decreases

to −1.

One may ask if Player 1 can increase the probability of winning by shifting

their bid away from X1 for the normal case. Figure 1 depicts the contours of the
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Figure 1: Two-bidder problem (x = X1, y = X2): what happens if Player 1 bids
X1 + δ (where η = 0 and δ = +0.2 above) instead of X1. Blue lines represent
contours of joint density, and the shaded area shows the regions in which Player 1
wins the auction.

bivariate distribution for X1, X2 with correlation ρ = 1/2. The shaded area showing

the regions in which Player 1 can win the auction are shifted away from the origin

(0.2 units to the right in the figure), which necessarily decreases its probability for

any bivariate normal distribution with positive (finite) variances and |ρ| < 1. That

is, any shift in the bid from X1 to the left or right will necessarily decrease the

probability that is accumulated between the y-axis and the red-dotted line. This

provides a simple graphical proof that there is no potential gain in bidding some

amount either smaller or greater than X1 (without knowledge of Player 2’s bid).

Overbid Disqualification

If we incorporate the constraint that an overbid disqualifies the player, the optimal

bid process is more interesting. We will first consider how to optimize the bid of

Player 2, given that Player 1 bids at the assessed value. Theorem 2 below assumes

players have an independent and identically distributed belief distributions which

are not necessarily normal. In the theorem’s condition, note that if X1 and X2 are
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Figure 2: Joint bids at which Player 1 wins (B,D), Player 2 wins (A,E), or neither
player wins (C,F)

independent, then P (X2 < X1 < η) = 1/8.

Theorem 2. Suppose η is the median value of the belief distribution for both

players, and suppose P (X2 < X1 < η) is bounded above by 1/4. If Player 1 bids the

assessed value of b1 = X1, then the optimal bid for Player 2 depends on whether X1

is larger than X2. If X1 < X2, then Player 2 should bid b2 = X1 + ε. If X2 < X1,

then Player 2 should bid b2 = ε > 0.

Proof. There are 3!=6 possible arrangements of X1, X2, and η. They are labeled

on Figure 2 as

A. X1 < X2 < η B. X1 < η < X2 C. η < X1 < X2

D. X2 < X1 < η E. X2 < η < X1 F. η < X2 < X1

Let P2 be the winning probability for Player 2. It can be shown that if X1 < X2

(cases A,B,C), then P2 will increase (from P(A) to P(A ∪ B)) as Player 2’s bid

decreases from X2 down to X1. Once decreased below X1, P2 is zero, then increases

to P(B) as Player 2’s bid decreases to zero. In case X2 < X1 (cases D,E,F), P2

increases from P(E) to P(E ∪ F ) as Player 2’s bid decreases to zero. On the right,
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it is maximized at X1 + ε, where P2 = P(D), which is strictly less than P(E ∪ F )

by assumption.

Normal Case: Suppose that Player 1 bids b1 = X1, where Xi ∼ N(η, σ2), i = 1, 2

with Corr(X1, X2) = ρ. It is easy to show that if (X1, X2) have a bivariate normal

distribution with zero mean, unit variance, and positive correlation coefficient ρ,

then

α = P (X1 > 0, X2 > 0) =

∫ ∞
0

φ(t)Φ(at)dt,

where a = ρ/
√

1− ρ2, and (φ,Φ) are the density and cumulative distribution (re-

spectively) for the standard normal distribution. If ρ > 0, this probability is

bounded by 1/4 ≤ α ≤ 1/2 as ρ increases from zero to one. At ρ = 1/2, for

example, α = 1/3. If we consider the six possible orderings of X1, X2, and the

actual value η, we see there is only one scenario (D) in where Player 1 can win if

Player 2 uses the optimal strategy. If ρ < 0, then we replace α with α̃ = 1/2 − α.

For example, if ρ = −1/2, then α̃ = 1/6. The inequalities above still hold with

0 ≤ α̃ ≤ 1/4.

3 Marginal Strategies for Four Bidders

The actual TPiR Contestants’ row game involves four players, and in this section

we will consider optimal strategies for each one. There is inherent advantage in

bidding after the other players, but in this section, we focus only on optimizing

each player’s chance of winning under the assumption that the other players are

bidding what they believe is the value of the item up for bid. That is, only one

bidder exhibits strategy. Although this approach may not be directly applicable

to most game show settings, where all four players typically use different strategies

simultaneously, it will illuminate some important effects of strategy for each player.

Players are allowed to bid within one dollar (ε = 1) of a previous bid, and the

smallest possible bid is $1.00.

Theorem 3: Suppose that the player estimates (X1,X2,X3,X4) are independently

generated from the same distribution with median equal to the merchandise value.
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If players bid their perceived value, the most frequent winner of the contest will be

the player with the second-smallest bid.

Proof. This result follows from binomial probabilities; for example, the probability

that all four bids are disqualified is (1/2)4 = 1/16. The probability that the smallest

bid wins the auction is the probability that exactly three bids out of four are over

the true value: 4(1/2)4 = 4/16. The probability that the second, third and fourth-

smallest bids win, then, are 6/16, 4/16, 1/16, respectively.

With only four players, we have 4! = 24 possible orderings for (X1, X2, X3, X4).

We will refer to any specific ordering using the short notation [1234], for example, to

represent the scenario X1 < X2 < X3 < X4. With no other information besides the

observed ordering, this particular scenario would imply Player 1 has a 0.25 chance

to win, Player 2 has a 0.375 chance, and so on.

In this section we examine individual players exhibiting strategy (possibly bid-

ding something other than their believed value based on the observed previous bids)

in order to maximize win probability. Results for all the strategies in this section

are based on changing one variable at a time, considering how the player’s believed

value compares to the other bids that have been observed by that time. For Player

2, there are two cases, three for Player 3, and four for Player 4. In some of the results

that follow, the potential improvement gained by bidding a value other than X will

be dependent on the distribution. In those cases, we treat (X1, X2, X3, X4) as mul-

tivariate normal with identical mean η, constant variance V (Xi) = σ2, i = 1, 2, 3, 4

and Cov(Xi, Xj) = 0 for i 6= j. Later, we consider special models in which the

correlation between Xi and Xj is ρ 6= 0, for i 6= j.

In most cases, we consider scale shifts for a player’s bid because these allow the

player to invoke both the mean and variance of their belief distribution. However,

in some cases (e.g., Xi is below other players’ observed bids) it is more helpful

to consider a location shift that can be optimized in terms of variance alone (i.e.,

without the effect of the normal distribution location parameter).

Because only one player exhibits a strategy in each part of this section, we will

denote a previous player’s bid as xi instead of bi to emphasize this point. For

example, when Player 3 uses strategy to optimize their probability of winning, that
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player observes the previous two bids as x1 and x2.

3.1 Marginal Strategy for Player 1

Player 1 has the least amount of information to use as strategy, so assuming the

players that follow will bid at their assessed value (X2, X3, X4), the only chance

Player 1 has to modify their winning probability is to shift this first bid from their

believed value of X1. Without shifting, if the bids are uncorrelated, the winning

probabilities for all four players are all (15
16)(1

4) ≈ 0.234 (because the chance they all

overbid is 1/16 = 0.0625). However, if Player 1 shrinks their bid to a fraction of what

they believe the item is worth, it turns out they can improve their chances. Because

the effect depends on the underlying distribution, we use the normal assumptions

and consider a location shift.

Without loss of generality, suppose the other three bidders use belief distribution

Xi ∼ N(0, 1), i = 2, 3, 4, and Player 1 considers shrinking the bid by some δ > 0,

so the cumulative distribution function (CDF) of Player 1’s bid is Φ1(t) = Φ(t+ δ).

Given X1 < 0, the conditional probability Player 1 wins by bidding b1 = X1 is equal

to the probability Xi /∈ (b1, 0), i = 2, 3, 4, i.e., [1− (Φ(0)− Φ(b1))]3. By off-setting

the bid by δ, Player 1 can achieve win probability

∫ 0

−∞
[1− (Φ(0)− Φ(y))]3 φ1(y)dy =

∫ 0

−∞

[
Φ(y) +

1

2

]3

φ(y + δ)dy.

It can be shown, numerically, that this win probability is maximized at δ = −0.712,

that is, by Player 1 bidding about 0.7 standard deviations under the believed value.

For Player 1 to implement such a strategy that depends on σ, they need to have

knowledge about their uncertainty in evaluating the merchandise up for bid. Sup-

pose the value of the merchandise is $1000 and the belief distribution has standard

deviation σ = $100. In the optimal case in which the standard deviation is known,

Player 1 will shrink their bid by $71. Ascertaining σ2 may not be straightforward,

as it does not pertain to the player’s uncertainty, but to the natural variability be-

tween independent bidders. Cause and effects regarding bidding uncertainty have

been studied [11], but estimation of variability in a player’s belief distribution is not

investigated in this paper.
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3.2 Marginal Strategy for Player 2

If the other players bid their believed value, it is not immediately clear what the

optimal strategy should be for Player 2. If X2 is just above x1, it would make sense

for Player 2 to bid x1 + 1. If X2 far exceeds x1, this might not seem to be the best

approach. On the other hand, if X2 < x1, it might be better to shrink the bid,

especially if x1 and X2 are close in value. In this setting, compared to the realistic

game show setting, there are fewer potential consequences for bidding one dollar

because Player 3 does not have the option to bid one dollar more than Player 2.

This will change for multi-player strategies in the next section. Here, we consider

these two potential ways of improving the probability Player 2 wins: (a) shrink the

bid toward 0 in the case X2 < x1, and (b) shrink back the bid toward x1 + 1 if

X2 > x1.

In the case x1 < X2, it can be shown that the optimal marginal strategy is to

bid x1 + 1. Given x1 < X2, suppose there exists θ ∈ (0, 1) that maximizes the win

probability for the bid of x1 + θ(X2 − x1). Then the conditional win probability is

strictly decreasing as a function of θ for any belief distribution for which the median

matches the true merchandise value. The proof is relegated to the appendix. Table

1 in the appendix shows how the probability of winning increases from 17
96 = 0.177

to 39
96 = 0.406 if Player 2 bids a dollar over Player 1 in this case.

In the case X2 < x1, the optimal shift depends on the belief distribution, which

we assume is normal. It can be shown that Player 2 can optimize win probability by

shifting their bid 0.439 standard deviations to the left of the perceived value. Win

probability initially increases from 7
48 = 0.146, and then returns back to 3

32 = 0.094

as the bid approaches one dollar. The proof is detailed in the appendix, and relies

on similar numeric integration used to prove the previous result.

3.3 Marginal Strategy for Player 3

Player 3 has more chances to optimize their bid given the available information from

the first two bidders. If we denote those bids according to their order (x1:2 < x2:2),

then there are three cases in which we search for an optimal way to modify their

believed value of X3:
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a. If X3 < x1:2, adjust the bid to θ3X3 for some value of 0 ≤ θ3 ≤ 1.

b. If x1:2 < X3 < x2:2, find the optimal value in between the first two bids:

x1:2 + λ3(X3 − x1:2).

c. If x2:2 < X3, find optimal bid value of the form x2:2 + (X3 − x2:2)γ3 for some

γ3 > 0.

In case (a), if X3 is less than the previous bids, Player 3’s winning probability

is maximized by shrinking to the minimum (one dollar). Naturally, this only makes

sense in the context of the marginal strategy, knowing Player 4 will not bid $2 to

maximize their own chance of winning. In the appendix, we show that leaving the bid

as is, Player 3 wins in four equally likely scenarios (three in which X3 is the smallest

and one in which X4 < X3), so the probability of winning is ( 3
24)( 4

16) + ( 1
24)( 6

16) =

3
32 = 0.047. We show that if Player 3 bids X3−δ, then winning probability increases

with δ, up to 1
8 = 0.125, which is the probability the other three players overbid

(and Player 3 will not overbid by bidding one dollar).

In case (b), when X3 is in between the previous two bids, Player 2 maximizes

the chance of winning by bidding x1:2 +1. It is shown in the appendix that if Player

3 bids x1:2 + λ3(X3− x1:2), then the probability of winning is maximized at λ3 = 0.

At λ3 = 1, the win probability is 0.104, but increases to 0.177 as λ3 decreases to

zero.

In case (c), we want to find the optimal amount to bid above the previous

two bids. It turns out Player 3 will maximize winning probability in this case by

bidding x2:2 + 1, which one might expect. With a bid of X3, there are 2 out of 24

scenarios in which Player 3 will have the second highest bid, and 6 out of 24 with

the highest bid, so the probability of winning would be ( 6
24)( 1

16) + ( 2
24)( 4

16) = 7
192

= 0.036. If Player 3 bids one dollar more than x2:2, the second highest bid now

has a 10/16 chance of winning. Depending on X4, the probabilities of winning with

the highest bid are either 6/16 or 1/4, and the probability of winning increases to

( 2
24)(10

16) + ( 4
24)( 4

16) + ( 2
24)( 6

16) = 1
8 = 0.125. Using the same approach as case (b), it

can be shown that the winning probability increases as Player 3’s bid shrinks toward

x2:2.

12



3.4 Marginal Strategy for Player 4

In the fourth case, we assume the first three contestants bid their believed value

(i.e., there is no strategy exhibited in the first three bids). There are no bids to

follow, so this case is the easiest to directly optimize. Given the bidding behavior of

the contestants, Player 4 might consider bidding just above the highest competitive

bid that the player deems is not overbid (Proposition 1 from [3]). We will call this

Strategy I. For example, if X4 is the second-highest value of the four, then Player

4 will bid just above the third highest. Using this tactic, we can show Player 4 will

win the game with probability 0.470.

Consider alternative näıve Strategy II where Player 4 simply bids just above the

highest bid. Using Strategy II, the winning probability is reduced to 0.130. Note

that Strategy II would be more successful in a setting in which the first three bidders

use strategy. In that case they are likely to underbid more due to the severe penalty

for overbidding. We can show, using the same approach as before, that Strategy I

maximizes the probability of winning for Player 4. The proof follows directly from

the proofs for the other marginal strategies in the appendix.

Figure 3 shows how the winning probabilities change as a function of (positive)

correlation. At some point (near ρ = 0.785), if the contestants’ guesses are correlated

enough, the second strategy is actually better. However, as correlation becomes

more negative, Strategy I winning probability increases (up to 0.5) and Strategy II

probability further decreases.

3.5 Summary of Marginal Strategies

Four players generate independent random evaluations X1, X2, X3, X4 of merchan-

dise valued at η, with P (Xi < η) = 0.5 and V (Xi) = σ2. In each case below, one

player (Player i) exhibits a strategy that allows them to bid a value other than Xi.

1. Assuming Xi ∼ N(η, σ2), Player 1 maximizes winning probability by bidding

x1 − 0.712σ.

2. For Player 2, who observes the first bid as x1, if X2 > x1, win probability

is maximized by bidding x1 + 1. If X2 < x1, Player 2 maximizes winning

probability by bidding x1 − 0.439σ (based on normal assumptions).
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Figure 3: Probability Player 4 wins (as ρ goes from 0 to 1) for two strategies. The
blue line is for Strategy I. The red line is for Strategy II. They have equal probability
at ρ= 0.79.

3. For Player 3, who observes bids ordered x1:2 < x2:2, probability of winning is

maximized by bidding one dollar if X3 < x1:2. If x1:2 < X3 < x2:2, Player 3

should bid x1:2 + 1, and if x2:2 < X3, the bid should be x2:2 + 1.

4. Player 4 maximizes win probability by bidding a dollar more than the largest

bid under X4, and by bidding a dollar if X4 is smaller than the three previous

bids.

4 Conditional Player Strategies

In this section we present a more practical assessment of the “Items up for bid” game

on TPiR in which all players use strategies simultaneously. The marginal strategies

presented in the previous section do not offer promising remedies for players to

exploit, but they serve as a foundation to the more applicable bidding solutions

presented here. In this case, we will use the empirical results from simulations

to suggest the optimal bid for any player, when necessary. Previous bids are not

necessarily the same as that player’s belief, so they will be more correctly labeled

bi rather than xi. For Player 4, the strategy will remain the same because there are

no actions by the other players to follow the last bid. That is, the marginal strategy

of Player 4 in the previous section is identical to the conditional strategy in this

framework.
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For the other players, we will consider different modifications of their believed

value and search to find which bid turns out to be optimal after players that follow

react to that bid. Player 3 will bid based on knowing the bids of Players 1 and 2,

but we will determine their optimal bids based on how the auction turns out after

all four players have bid. For example, we found that if X2 > b1, the best marginal

strategy for Player 2 was to bid b1 + 1. But if we base the bid choice on results in

which all four players use strategy, Player 2 will bid more than b1 + 1, as we might

expect.

We consider the basic conditional strategy for all four players using the following

approach:

(a) Player 4 uses the same marginal strategy that maximizes their winning prob-

ability based on observing the three previous bids.

(b) Player 3 will construct a bid based on observing the first two bids, but also

based on which bid turns out to be most successful given the strategy exhibited

by Player 4.

(c) Player 2 constructs a bid based on observing the first bid and optimizes it by

considering various bids and finding which one maximizes winning probability

given the strategies shown by Player 3 in (b) and Player 4 in (a).

(d) Player 1 adjusts their bid (away from their believed value X1) according to

simulation results that maximize their chance of winning, given the strategies

of the three players that bid subsequently.

Each player’s conditional strategy uses the actual bid of the previous players, so

it does not matter if those other players are bidding their actual belief or if they are

bidding a lesser value in order to avoid the risk of overbidding. We next consider

the conditional strategies for the first three players, based on how modifying their

bid changes winning probability in light of the player decisions that follow their bid.

4.1 Conditional Strategy for Player 3

We return to consider the optimal strategy for Player 3, now based on simulation

results, given that Player 4 uses the optimal strategy described in Section 3. The
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set up is the same as before: there are three cases in which we can find a best way

to modify their believed value of X3 based on the other two ordered bids (b1:2, b2:2)

observed by Player 3:

a. If X3 < b1:2, adjust the bid to θ3X3 for some value of 0 ≤ θ3 ≤ 1.

b. If b1:2 < X3 < b2:2, find the optimal value in between the first two bids:

b1:2 + λ3(X3 − b1:2).

c. If b2:2 < X3, find the optimal bid value of the form b2:2 + (X3 − b2:2)γ3 for

some γ3 > 0.

The previous (marginal) results were based on Player 4 bidding the believed value

X4. In this case, where Player 4 uses an optimal strategy, the results will be different.

The following results are based on 1,000,000 simulations. In case (a), if X3 is

less than the previous bids, then Player 3’s winning probability is maximized at θ3

= 0.963, so their best chance of winning will be to bid b3 = 0.963X3. In case (b),

when X2 is in between the previous two bids, Player 2 maximizes the chance of

winning at λ3 = 0.249, so the bid will be b1:2 + 0.249(X3 − b1:2). In case (c), Player

3 will still maximize winning probability in this case by bidding b2:2 + 1 (winning

probability is a decreasing function of γ3).

4.2 Conditional Strategy for Player 2

Next, we reconsider the optimal bids for Player 2, who will bid based on observing

only the result of the first bidder. If we use the same framework as before, then we

are looking for values of

a. If X2 < b1, change the bid to θ2X2 for some value of 0 ≤ θ2 ≤ 1.

b. If b1 < X2, find the optimal value of γ2 and bid b1 + γ2(X2 − b1)

Results are based on 1,000,000 simulations. For case (a), Player 2 increases the win-

ning probability by shrinking the bid. In this case, simulation shows it is minimized

at θ2 = 0.975, so Player 2 will bid 97.5% of their believed value if it is below the

observed bid by Player 1. In the case b1 < X2, it is now more profitable to bid

more than just over the previous bidder. Player 2 will maximize the overall winning

probability by bidding γ2 = 0.345 standard deviations over the first bidder.
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4.3 Conditional Strategy for Player 1

Finally, when all the other players are using optimal strategies, Player 1 can max-

imize his or her chance of winning by bidding some value b1 = θ1X1. Using the

previous marginal strategy, we determined that the probability of winning was max-

imized by bidding about 0.71 standard deviations under the perceived value. In this

scenario where the bidders following Player 1 will also adjust their bidding behavior,

simulation shows Player 1 will maximize winning probability by bidding 97.5% of

the believed value.

4.4 Simulation Results Based on Conditional Strategies

Given that the four players each produce independent random evaluations X1, X2,

X3, X4 of merchandise valued at η, the best conditional strategies for each player

are as follows:

1. Assuming Xi ∼ N(η, σ2), Player 1 maximizes the win probability by bidding

0.975X1.

2. For Player 2, who observes the first bid as b1, if X2 > b1, then the win

probability is maximized by bidding b1 + 0.345(X2 − b1). If X2 < b1, then

Player 2 maximizes winning probability by bidding 0.975X2.

3. For Player 3, who observes bids ordered b1:2 < b2:2, the probability of winning

is maximized by 0.963X3. If b1:2 < X3 < b2:2, then Player 3 should bid

b1:2 + 0.249(X3 − b1:2), and if b2:2 < X3, the bid should be b2:2 + 1.

4. Player 4 maximizes win probability by bidding a dollar more than the largest

bid under X4, and by bidding a dollar if X4 is smaller than the three previous

bids.

If all four players use conditional strategies, Player 4 still comes out with a

large advantage, winning over half the time (P1 = 0.075, P2 = 0.116, P3 = 0.216,

P4 = 0.569). These results are based on 10,000,000 simulations. We will compare

and contrast the three different strategies discussed thus far in the final discussion

section. In the next section, we consider how player uncertainty changes the strategy

for an optimal bid.
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5 Additional Player Strategies

The models from the last two sections illuminate how any player can aim to im-

prove their probability of winning by modifying their bid according to the past bids

they observe. In this section, we examine how the effect of player uncertainty (or

confidence) affects the outcome of the auction. We first consider a group of four

bidders, each with a distribution that describes their belief about the value of the

item up for auction. If the true value is η, then the ith bidder will value the item

at Xi ∼ N(η, σ2), so σ2 represents the natural variability that reflects error in their

personal assessment of the item up for sale. But the bidder also has a confidence

in their bid which is characterized by another variance component δ2; their belief is

characterized by Yi ∼ N(Xi, δ
2).

For example, if the fourth bidder has observed three bids (b1, b2, b3), they will

attempt to optimize their bid by maximizing their chance of winning using their

belief distribution. That is, they will choose b4 so that they have the best chance of

winning, assuming the true value of the item is X4, but knowing they will not win

the auction if they overbid, which is influenced by δ2.

5.1 Example with Belief Distribution

Suppose there are four bidders, with b1 = 386, b2 = 426, and b3 = 502. The fourth

bidder has a belief distribution Y4 ∼ N(420, 502). That is, X4 = 420 and δ = 50.

Because they are the last bidder, their optimal bid will be 1, 387, 427, or 503.

Recall with the näıve strategy, Player 4 would bid 503, and the optimal marginal or

conditional strategy is a bid of 387.

According to Player 4’s belief uncertainty, if they bid 1 dollar, then the proba-

bility they win is equal to the probability the true value of the item up for bids is

below 418, which they believe is P (Y4 < 386) = 0.25. If they bid 387, then they

believe the probability they will win to be P (386 < Y3 < 426) = 0.30. If they bid

427, P (426 < Y4 < 503) = 0.40, and if they bid 503, P (Y3 > 502) = 0.05. Using

their uncertainty to optimize the bid, Player 4 believes they have the best chance

of winning by bidding 427.

This example shows how the fourth player optimizes strategy according to their
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Figure 4: Win probability for Player 4 as a function of variability and uncertainty.

own belief system. But if that belief was also randomly generated (along with the

beliefs of the other players), the true probability of winning the game might be

different from 0.40 given b4 = 427. Assume for now that the first three bids are

relatively close to each bidder’s evaluation. If η = 510 and σ = 100, then generating

(X1, X2, X3, X4) = (386, 426, 502, 420) is not an unreasonable Monte Carlo outcome,

but despite Player 4’s optimized game plan, Player 3 would be the auction winner.

Figure 4 shows how the information variance (σ2) and belief confidence (with

variance component δ2) affects the probability that Player 4 wins. As σ2 increases,

Player 4’s win probability increases. The less information garnered by the players

allows Player 4 to have increasing leverage by bidding last. However, as the player’s

belief confidence decreases (δ2 increases) the win probability starts to goes down,

but is not strictly decreasing. In this example, Player 4 seems to do best when

the variability between players is some fixed amount larger than the variability that

characterizes player confidence.

The belief distribution could be used by the other players in order to increase

their own win probability, including helping them in anticipating the next player’s

bid. As a simple example, suppose X3 = 420, Y3 ∼ N(X3, 502), and the previous
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bids are b1 = 536 and b2 = 551. In this case, Player 3 need not be concerned

about the previous bids, since they are deemed to grossly overvalue the merchandise

(P (Y4 > 536) = 0.01). Player 3 has the choice to bid one dollar, but at the obvious

risk that Player 4 would bid $2. Player 3 wants to find the optimal bid b3 that

anticipates the bid by Player 4, attempting to ensure Player 4 cannot achieve an

overwhelming win probability by either bidding b4 = 1 or b4 = b3 + 1.

Perhaps the best Player 3 can do is to assume Player 4 has the identical belief

distribution, and therefore find a bid b3 that splits P (0 < Y3 < b3) and P (b3 < Y3 <

b1). Assuming Player 4 is rational, they will choose based on which either one is

maximized, so Player 3 optimizes them by making them close to equal, in this case

around b3 = 420. On the other hand, assumptions about your opponents’ rationality

may be unjustified! Perhaps entering a larger bid would avoid the asymmetric loss

incurred if Player 4 chooses to bid b3 + 1 despite having a higher expected gain

bidding b4 = 1. For example, Player 3 can still secure a 40% chance of winning by

bidding b3 = 433 and inducing Player 4 to bid one dollar.

6 Discussion

In this paper we have outlined optimal strategies for the bidding players on Contes-

tants’ Row during the game show “The Price is Right”. The fundamental two-player

strategies discussed in the introduction set the framework for constructing optimal

marginal and conditional bids for the four-player game. We model player-to-player

uncertainty using a random distribution with median equaling the merchandise

value. Some of the optimal bidding strategies work for all possible distributions,

but some results (e.g., when a player’s bid is lower than a previous bid, but another

player bids after that player) are distribution dependent, and we used the normal

distribution to illustrate.

The asymmetry of the game leads to highly unequal outcome probabilities that

greatly favor the last bidder. Figure 5 aggregates the outcomes for the three bid-

ding schemes we considered: (a) the näıve strategy in which everyone bids their

perceived value, (b) the marginal strategy, in which every player optimizes under

the assumption that other players will bid their perceived value, and (c) the con-
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ditional strategy, in which players try to optimize their bid based on simulation

outcomes that rely on other bidders using strategy. The middle bar in Figure 5

shows what happens if every player uses a marginal strategy, ignoring the fact that

other players are potentially bidding something other than their perceived value.

Such a strategy is catastrophic for every player except the last bidder, as one might

expect. While each player using conditional strategy works to maximize their own

win probability, Figure 5 shows the probability of all players overbidding is also

reduced 2.5 times (from 6.25% down to 2.5%).

In the previous section, we modeled player strategies based on their own ac-

knowledged uncertainty in the value of the merchandise up for bid. It turns out

that this additional uncertainty can significantly alter a player’s bid strategy. This

model framework with two variable components also allows other players to consider

bids that reflect an opponent’s uncertainty.

The asymmetric loss in this study does not represent typical auctions observed in

business and industry, but it does provide further information about how rational

bidders can adapt their bidding behavior to incorporate new auction constraints.

While few studies have investigated the rational decision theory observed in TPiR

21



since Bennett and Hickman [1] and Berk et al.[3], these results can provide a bench-

mark for future studies that study empirical results for asymmetric auctions, such

as Estelami [4], Hendricks and Porter [6], and Perrigne and Vuong [11].

Although most of the results in this paper focus on players that generate inde-

pendent assessments of the merchandise, the TPiR game set up is sure to induce

correlations between bids. While this limits the dominion of our results, it also sug-

gests an avenue for potential research. For example, data from TPiR episodes will

not reveal the bidding intentions of the game-show players. A separate study would

probably be needed to show bias in a player’s perception of merchandise value. How-

ever, data may reveal effects of “anchoring” among player bids. Anchoring refers to

the human tendency to rely too heavily on an initial piece of information, such as

a previous bid, when making decisions. For example, we might conjecture that the

second bidder is more likely to bid below the merchandise value if the first bidder

grossly undervalues the item up for bid.

Overall, results show that significant gains can be won by players who take

advantage of the unique rules of the “Items up for bid” segment on The Price is

Right. It was relatively straightforward to show how the last player can optimize

their chance of winning, but this paper showed that the other three players can also

augment their bids to significantly increase their chance of winning.

Appendix

Player Two Marginal Strategy when X1 < X2

In the case X1 < X2, it can be shown the optimal strategy is to bid X1 + 1. To

prove this we consider the twelve equally likely orderings of the four bidders given

X1 < X2. In half of those scenarios (e.g., [1234]) it is plain to see that the win

probability for Player 2 is maximized if Player 2 bids the minimum amount larger

than X1. For example, with [1234], Player 2 already has a 6/16 chance of winning

(the binomial probability that two of four bids are larger than the target value and

two are less). By shrinking to X1 + 1 (with no exhibited strategy from Player 3

and Player 4), that chance goes up 4/16 (the binomial probability that three bids

are larger than the target and one is smaller), so that the probability of winning
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increases to 10/16.

Given X1 < X2, suppose there exists θ ∈ (0, 1) that minimizes Player 2’s win

probability based on bidding X1 + θ(X2 −X1). If we designate the order statistics

for (X1, X2, X3, X4) as X1:4 < X2:4 < X3:4 < X4:4, the twelve possible orderings are

listed in the table below, along with the conditional win probabilities for Player 2

(P0 = probability of winning with the original bid versus P1 = probability of winning

by bidding at X1 + 1). The final column lists the conditional win probability for

Player 2 as a function of θ, where Player 2’s bid is X1 +θ(X2−X1). Aggregating the

P0 column (and dividing by 12) we find that the conditional probability of Player 2

winning, given X1 < X2, is 0.177. By bidding X1 +1 instead of X2, that conditional

probability increases to 0.406.

Table 1: Conditional win probabilities for Player 2 under the 12 equally likely
orderings in which X1 < X2.

X1:4 X2:4 X3:4 X4:4 P0 P1 P(Win |θ)
1 2 3 4 6

16
10
16 4 + 6(1− θ)

1 2 4 3 6
16

10
16 4 + 6(1− θ)

1 3 2 4 4
16

4
16 4 + 4θ ln(θ)− 6(1− θ) ln(1− θ)

1 3 4 2 1
16

4
16 4− 4θ2 + 8θ ln(θ)

1 4 2 3 4
16

4
16 4 + 4θ ln(θ)− 6(1− θ) ln(1− θ)

1 4 3 2 1
16

4
16 4− 4θ2 + 8θ ln(θ)

3 1 2 4 4
16

10
16 4 + 6(1− θ)

3 1 4 2 1
16

6
16 1 + 5(1− θ) + 6θ ln(θ)− 4(1− θ) ln(1− θ)

3 4 1 2 1
16

5
16 1 + 4(1− θ)

4 1 2 3 4
16

10
16 4 + 6(1− θ)

4 1 3 2 1
16

5
16 1 + 5(1− θ) + 6θ ln(θ)− 4(1− θ) ln(1− θ)

4 3 1 2 1
16

6
16 1 + 4(1− θ)

To compute conditional win probabilities for the bid X1 + θ(X2 − X1) as a

function of θ, we can assume Xi ∼ U(0, 1) without loss of generality, so that the

probability change is linear between X1 and X2. In the case X3 and/or X4 are

between X1 and X2, we average over one uniform variable, or (in the case [1342], for

example) we average over two order statistics (U1:2, U2:2). For example, in the case

[1324], we first condition on X3 = t and find P (Win|X3 = t) = 4(1− θ/t) if θ < t,

and P (Win|X3 = t) = 4 + 6(1− θ)/(1− t) if t < θ < 1. Adding up the conditional

probabilities in the last column (each weighted with 1/12 probability), we have
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P (Win|θ) =
78− 44θ − 5θ2 − 2(1− θ)(17− 3θ) ln(1− θ) + 6θ(6 + θ) ln(θ)

192
.

This probability is strictly less than 39/96 for θ > 0 and converges to the original

win probability (0.177) as θ increases to one.

Player Two Marginal Strategy when X2 < X1

Without loss of generality, suppose players use belief distribution Xi ∼ N(0, 1),

i = 1, 2, 3, 4, and Player 2 considers shrinking the bid by some δ > 0, so the CDF

of Player 2’s bid is Φ2(t) = Φ(t+ δ). Given X2 < X1, for Player 2 to win, we need

X2 < δ, X1 > 0, and both X3 and X4 not in the interval (X2− δ, 0). These last two

conditional probabilities are denoted

Q21(x2) = 1− [Φ(0)− Φ(x2 − δ)] = Φ(x2 − δ) +
1

2

when x2 < δ, otherwise Q21(x2) = 0. Including only the scenarios in which X2 < X1,

the probability of Player 2 winning is

∫ δ

−∞

∫ ∞
δ

Q21(x2)2φ(x2)φ(x1)dx2dx1 +

∫ δ

0

∫ x1

−∞
Q21(x2)2φ(x2)φ(x1)dx2dx1.

=
1

2

∫ δ

−∞
Q21(x2)2φ(x2)dx2 −

∫ δ

0

(
Φ(x2)− 1

2

)
Q21(x2)2φ(x2)dx2.

By numeric integration, it can be shown this function is maximized at 0.439.

Player Three Marginal Strategy when X3 < X1 < X2

We may express P (X3 < X1 < X2) =
∫

Ω0(312) f(x)dx, where f(x) =
∏4
i=1 f(xi)dxi

is the density function for X = (X1, X2, X3, X4) and Ω0(312) is the set −∞ < x3 <

x1 < x2 <∞,−∞ < x4 <∞.

Without loss of generality, let Xi ∼ N(0, 1) for i = 1, 2, 3, 4. If Player 3 offsets

the bid by δ, then the probability Player 3 wins in this scenario is P (Ωδ(312)) =
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∫
Ωδ(312)

∏4
i=1 f(xi)dxi where Ωδ(312) is the set

{x3 ∈ (−∞, δ)} ∩ {x2 ∈ R+} ∩ {x1 ∈ (0, x2)} ∩ {x4 ∈ (−∞, x3) ∪ (0,∞)}

With δ = 0, the probability Player 3 wins with this particular order can be

deduced using binomial probabilities (as before). There are 3 out of 24 equally likely

orderings in which x3 is the smallest bid out of four, and one out of 24 in which

x3 is the second smallest [4312], so the probability of winning would be ( 3
24)( 4

16) +

( 1
24)( 6

16) = 3
32 = 0.047. It is also easy to show that P (Ωδ(312)) is increasing in δ,

and levels off at 1
8 = 0.125, which is the probability the other three players overbid.

Player Three Marginal Strategy when X1 < X3 < X2

If θ ∈ (0, 1), we consider the bid X1 + θ(X3−X1). If θ = 1, and Player 3 uses X3 as

the bid, then there are four out of 24 scenarios in which X3 is the second smallest

bid (win probability = 6/16) and four in which X3 is third smallest (win probability

= 4/16), so Player 3’s win probability in this case is ( 4
24)( 6

16) + ( 4
24)( 4

16) = 5
48 =

0.104.

In this case, it can be shown that the win probability increases as θ decreases to

zero. Using the same assumptions as in the previous proof, let Ωθ(132) be the set

of bids in which Player 3 wins. Then Ωθ(132) is defined as

{x1 ∈ R−}∩{x2 ∈ R+}∩{x3 ∈ (x1,
−(1− θ)x1

θ
)}∩{x4 ∈ (−∞, −(1− θ)x1

θ
)∪(0,∞)}.

Because g(t) = (1 − t)/t is strictly decreasing in 0 < t < 1, this area is strictly

increasing as θ decreases from one to zero.

Specifically, Figure 6 shows how we integrate over more area (for X1, X3) as θ

decreases from one to zero, where the entire quadrant x1 < 0, x3 > 0 is included. As

θ approaches 0, and Player 3 bids the minimum amount over X1, the probability of

winning increases to ( 6
24)(10

16) + ( 2
24)( 4

16) = 17
968 = 0.177.
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