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Load-Sharing Models

Introduction

Consider a system of components whose lifetimes
are governed by a probability distribution. Load shar-
ing refers to a model of stochastic interdependency
between components that operate within a system.
If components are set up in a parallel system (see
Parallel, Series, and Series–Parallel Systems) for
example, the system survives as long as at least
one component is operating. In a typical load-sharing
system, once a component fails, the remaining com-
ponents suffer an increase in failure rate due to the
extra “load” they must encumber due to the failed
component.

Component interdependencies are discussed in
Dependence; Aging and Positive Dependence;
Measures of Association. Another model for compo-
nent interdependency is called a shock model, such as
Marshall and Olkin [1] bivariate exponential model,
which enables the user to model stochastic dependen-
cies between component lifetimes by incorporating
latent variables to allow simultaneous component
failures. For example, suppose two components in a
system are characterized by failure processes �1 and
�2. In a shock model, we can add a new process �3

that characterizes events causing both components to
fail, hence the overall failure process for the com-
ponents become �1 + �3 and �2 + �3. This is the
basis for most dependent failure models in probabilis-
tic risk assessment, including Common Cause Failure
models used in the nuclear industry; see Chapter 8 of
Bedford and Cooke [2].

In contrast to the shock model, the load shar-
ing creates a dynamic reliability model in which
component lifetime distributions may or may not
change throughout the course of a system lifetime.
Daniels [3] originally adopted the load-share model
to describe how the strain on yarn fibers increases as
individual fibers within a bundle break. In this case,
reliability is measured from strength instead of time
until failure. Freund [4] formalized the probability
theory for a bivariate exponential load-share model.

In general, the shock model provides an easier
avenue for multivariate modeling of system compo-
nent lifetimes. However, dynamic models such as
the load-share model are deemed more realistic in
environments where a component’s performance can

change once another component in the system fails
or degrades. In typical applications of the load-share
model, the group of operating components share a
load (e.g., current, stress, weight) and once a com-
ponent within the system fails, the failure rate of
the surviving components increase because there are
fewer components to share the constant load.

The load-sharing framework can apply to general
problems of detecting members of a finite population.
If resources allocated for finding a finite set of items
are defined globally, rather than assigned individu-
ally, then once items are detected, resources can be
redistributed for the problem of detecting the remain-
ing items. This action gives rise to a load-sharing
model. For bridge construction, some beams con-
nected to the girder are further supported by a set of
welded joints. The failure of one or two welded joints
can cause the increase of stress on the remaining
joints, inducing a load-share model.

Load-Share Rules

Perhaps the most important element of the load-
share model is the rule that governs how failure rates
change after some components in the system fail. This
rule depends on the reliability application and how
the components within the system interact that is,
through the structure function. For example, an equal
load-sharing rule, illustrated in Figure 1, implies that
the extra load caused by the failed component is
shared equally among the surviving ones. A local

0 X1:5 X2:5 X3:5 X4:5

Figure 1 Illustrative load transfer with an equal load-
sharing rule
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Figure 2 Illustrative load transfer with an local load-
sharing rule, where the load from a failed component is
transferred to its closest neighbors

load-sharing rule, illustrated in Figure 2, dictates that
a failed component’s load is transferred to adjacent
components; the proportion of the load the surviving
components inherit depends on their distance to the
failed component.

More generally, a monotone load-sharing rule
states that the load on the surviving components is
nondecreasing with respect to the failure of other
components in the system. Not all load-share rules
need to be monotone. In finite population sampling,
the event of finding one of the n observations might
decrease the rate for finding the others. To model
the detection rate in software debugging for example,
the detection time for existing faults can depend
on the number of other faults in the software that
have already been found (see Software Reliability
Modeling and Analysis). The discovery of a critical
fault in the software might help reveal or conceal
other yet undetected bugs. If other faults are more
concealed, they have a decreased rate of discovery in
the debugging process.

For assessing an unknown load-sharing rule,
Kim and Kvam [5] model the dynamic nature of
component reliability through proportional hazards.
The baseline component failure time distribution is
denoted by F . The hazard function (or cumulative
hazard rate) corresponding to F is R(x) = − log(1 −
F(x)), and the hazard rate is r(x) = f (x)[1 −
F(x)]−1, where f (x) is the density of F . Until the
first component failure, the failure rate of each of
k components in the system equals the baseline rate

r(x). Upon the first failure within a system, the failure
rates of the k − 1 remaining components jump to
γ1r(x), and remain at that rate until the next com-
ponent failure. After this failure, the failure rates of
the k − 2 surviving components jump to γ2r(x), and
so on. The failure rate of the last remaining compo-
nent is γk−1r(x). An equal load-share rule is implied
by the k − 1 parameters γ1, γ2, . . . , γk−1.

To illustrate the relationship of the load-share rule
to the system failure process, we consider Daniels’
original application for modeling fiber strength.

Stress-Strength Models

For researchers in the textile industry who investigate
the reliability of composite materials, a bundle of
fibers can be considered as a parallel system subject
to a steady tensile load. The rate of failure for
individual fibers depends on how the unbroken fibers
within the bundle share the load of this overall stress.
The load-share rule of such a system depends on
the physical properties of the fiber composite. Yarn
bundles or untwisted cables tend to spread the stress
load uniformly after individual failures. This leads to
an equal load-share rule, which implies the existence
of a constant system load that is distributed equally
among the working components.

In more complex settings, a bonding matrix joins
the individual fibers as a composite material, and
an individual fiber failure affects the load of certain
surviving fibers (e.g., neighbors) more than others,
dictated by a local load-sharing rule. If individual
fiber strengths are independently and identically dis-
tributed with distribution function F , the (parallel)
system strength is

Yn = max
n

{
n − k + 1

n
Xk:n, k = 1, . . . , n

}
(1)

Unfortunately, the distribution FYn
for Yn becomes

intractable quickly as n increases. Suh et al. [6]
developed a recursive formula for Fn

FYn
=

n∑
i=1

(
n

i

)
(−1)i+1 (F (x))i Fn−i

(
nx

n − i

)
(2)

that allows algorithmic computation, but even this
solution becomes computationally infeasible with
large n.

As an alternative approach, consider a system with
each fiber undergoing a positive stress level x. As
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x increases, more and more individual fibers break.
In this scenario, however, the system load actually
decreases at the instance of failure because here the
system load is measured as the total stress divided by
the number of surviving fibers. Now the actual load
in the system (per fiber) at stress level x is

L(x) = xn−1
n∑

i=1

I (Xi > x) (3)

Because x−1nL(x) is binomially distributed, L(x)

has an asymptotic normal distribution with mean
x(1 − F(x)) and variance x2F(x)(1 − F(x)). The
mean is unimodal in x, so there is a stress value
x0 such that L(x0) represents the maximum load
the system can endure. For example, if F(x) = x,
0 ≤ x ≤ 1 (strength is uniformly distributed between
0 and 1) then x0 = 0.5, the maximum value of
x(1 − x).

Various techniques have been used to approx-
imate Pn(x) = n−1 ∑

I (Xi ≤ n) in L(x) = x(1 −
Pn(x)). These are summarized in Crowder et al. [7];
Barbour [8] approximation shows a slight improve-
ment over the others based on Pn(x) ≈ �(zx), where

zx =
√

n(x − L0 − λ�1/3n−2/3)

σ 2 + γ n−1/2�2/3
(4)

L0 = L(x0), σ 2 = x0
2F(x0)(1 − F(x0)), and

� = x4
0F ′(x0)

2

2F ′(x0) + x0F ′′(x0)
(5)

(λ, γ ) are constant with γ ≈ −0.317 and λ ≈ 0.996.
McCartney and Smith [9] carefully evaluated several
approximation techniques, noting that the Barbour
technique outperform other methods in the lower tail
of the distribution.

Time-to-Failure Models

The load-share model has found broad applica-
tion in life testing and dependent systems analy-
sis since first being developed for material strength
models. In most examples, load-sharing models
serve as a detriment to systems, especially parallel
systems. Most research has emphasized paramet-
ric lifetime distributions for the dependent compo-
nents (e.g., Exponential, Weibull) with an assigned
load-sharing rule to characterize the dependence.
Rydeń [10] extended the load-sharing framework
to nonparametric estimation of component and

system lifetime using the same load-sharing rules of
Daniels [3].

As a simple example, if the components of a paral-
lel system have independent exponential distributions
with failure rate λ, it is easy to show through spacings
(the time between successive failures in the system)
that the expected system lifetime is

(
n+1

2

)
λ−1. How-

ever, if there is a load-sharing system in which the
load of the failed component is added to the other
components, the expected system lifetime is reduced
to λ−1. This is another consequence of the memory-
less property that is, for 0 < a < t , if X ∼ Exp(λ),
P(X > t |X > a) = P(X > t − a). In this case, it
does not even matter if the load is shared equally
by all the surviving components or whether the load
is put only on one or two survivors.

Figure 3 shows the expected lifetime for paral-
lel system of Weibull(a, b)-lifetime components. The
scale parameter (a) equals one and the shape parame-
ter (b) changes from one to five, so the left-most case
refers to the exponential model, where the expected
lifetime is 1.0. For the components, the failure rate is
r(t) = tb. Here, the load from a failed component is
assumed to be distributed equally among the surviv-
ing components via the scale parameter as described
by Kvam and Peña [11] and Liu [12].

With complex load-sharing rules, the number
of parameters can escalate dramatically. Lynch [13]
showed that complex systems of Weibull-distributed
components, in a load-sharing model, can be modeled
using a mixture of gamma-type distributions.

2 3 4 5

0.95

0.96

0.97

0.98

0.99

Figure 3 Expected parallel system lifetime versus shape
parameter of Weibull-distributed components. The shape
parameter changes from 1 (Exponential case) to 5. Curves
are for cases n = 20 (highest), n = 10 (middle) and n = 5
(lowest)
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Estimating the Load-Sharing Rule

Using nonparametric maximum likelihood estima-
tion (MLE), Kvam and Peña [11] estimated a simple
load-sharing rule based on independent identically
distributed (i.i.d). parallel systems for which the fail-
ure rates of all components were equal, but the change
in rate after a component failure depends on the set
of functioning components in the system. The pro-
portional hazard model by Kim and Kvam [5] is
applied to estimate the load-sharing rule; that is, fail-
ure rate changes are characterized by k − 1 unknown
parameters γ1, γ2, . . . , γk−1 and the unknown base-
line distribution or hazard function. In this case,
estimating the underlying baseline functions F was
of primary interest.

If Xij represents the lifetime of the j th component
in the ith parallel system, then the random spacing
Tij is the time between j th failure and (j − 1)th
failure for the ith system. Kim and Kvam [5] con-
sidered the exponential model. For this special case
where i = 1, . . . , n and j = 1, . . . , k, the likelihood
function for the ith system is

Li(θ, γ ; ti1, ti2, · · · , tik)

= k!θk

k−1∏
j=1

γj exp

(
−θ

k∑
j=1

(k − j + 1)γj−1tij

)
(6)

Although the likelihood provides no closed form
solution to obtaining MLEs, a Gauss-Seidel algorith-
mic method can be used to solve them. Kim and
Kvam [5] also considered order restricted inference
caused by monotone load sharing where 1 ≤ γ1 ≤
γ2 ≤ · · · ≤ γk−1. In this case, a component failure
causes the increase in the work-load of the other com-
ponents, which can equate to an increase of failure
rate.

Kvam and Peña [11] generalized the special case
of Kim and Kvam [5] in which the components are
distributed exponential. Si,1 < Si,2 < . . . represents
the successive component failure times for the ith
system. With the counting processes

Ni(t) =
k∑

j=1

I (Si,j ≤ t), i = 1, 2, . . . , n (7)

Ni(t) represents the number of component failures
for the ith system that occurred by time t . We
can express γ in terms of the counting processes

as γ [Ni(w)] = ∑k−1
j=0 γj I (Ni(w) = j). To formulate

the nonparametric likelihood in terms of stochastic
processes, let

Yi(w) = (k − Ni(w−)) I (τ ≥ w) (8)

Define Fit = σ {(Ni(w), Yi(w+)); w ≤ t} to be the
filtration generated by the ith system up to time t ,
and let Ft =

∨n
i=1 Fit . The load-share model can be

described by specifying the failure intensities as

Pr{dNi(t) = 1|Fit−}
= r(t)Yi(t)γ [Ni(t−)] dt, i = 1, . . . , n

(9)

Note that

Mi(t) = Ni(t) −
∫ t

0
γ [Ni(u−)]r(u)Yi(u) du (10)

is a vector of orthogonal square-integrable zero-mean
martingales. See, for example, Andersen et al. [14].
In terms of {(Ni(w), Yi(w)), 0 ≤ w ≤ τ) :
i = 1, 2, . . . , n}, the likelihood is

L(R(·), γ )

=
{

n∏
i=1

π
0≤w≤τ

[
Yi(w)γ [Ni(w−)] dR(w)

]dNi(w)

}

× exp

{
−

∫ τ

0
Yi(w)γ [Ni(w−)] dR(w)

}
(11)

We can estimate R(·) from the equation (10) by fixing
γ , in R̂(·; γ ). By plugging R̂(·; γ ) into the equa-
tion (10), we have the profile likelihood Lp(γ ) for
γ , which is then maximized in γ to obtain the esti-
mator γ̂ . The semiparametric estimator of R(·) is
R̂(·) = R̂(·; γ̂ ). To estimate R this way, we define
J (w) = I (

∑n
i=1 Yi(w) > 0), where J (w) = 0 indi-

cates all nk components have already failed at time
w−. If γ is known, by using the zero-mean property
of the martingale

∑n
i=1 Mi(·), we have

R̂(s; γ ) =
∫ s

0

J (w) dN(w)
n∑

i=1

Yi(w)γ [Ni(w−)]

(12)

This is analogous to the derivation of the Nelson-
Aalen estimator in Aalen [15].
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The estimator in the equation (12) is a generalized
Nelson-Aalen estimator, and is similar in structure
to the hazard function estimator for tensile strengths
derived by Rydeń [10]. To obtain the estimator of
R(·) for the more general case where γ is unknown,
we first obtain the profile likelihood for γ by plugging
in R̂(·; γ ) given in equation (12) into the likelihood
function in equation (10). From equation (11) and
equation (12) we obtain the profile likelihood to be

Lp(s; γ ) =
n∏

i=1

π
0≤w≤s




Yi(w)γ [Ni(w−)]
n∑

l=1

Yl(w)γ [Nl(w−)]




dNi(w)

(13)

This profile likelihood is maximized with respect to
γ to obtain γ̂ , which is then plugged in into R̂(·; γ )

to obtain the semiparametric estimator of R given by

R̂(s) = R̂(s; γ̂ ) (14)

By virtue of the product representation of
F̄ = 1 − F given by F̄ (s) = π 0≤w≤s[1 − R(dw)],
we can estimate F̄ with

ˆ̄F(s) = π
0≤w≤s

[1 − R̂(dw)] (15)

The solution to the nonparametric MLE is detailed in
Kvam and Peña [11], and asymptotic properties for
R̂ and γ are discussed in the section titled “Time-to-
Failure Models” of that paper.
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