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Abstract. 

Periodic Systems of Moiecules from Group Theory 

R.Cavanaugh, Southern College, Collegedale, TN, USA. 

R.Hefferlin, Southern College, Collegedale, TN, USA. 

G.V.Zhuvikin, St. Petersburg University, Russia, CIS. 

(Raciaved 

Atoms are indistinguishable particles which can be transformed one into another by the elements of a 

group G,1 which corresponds to the internal symmetry of their periodic system. We construct a 

molecular periodic system using G and bosonic creation operators. The vectors li> = b+ ~o> correspond 

to various atoms where lo> is the vacuum state vector, and b+i is the creation operator for atom i. The 

annihilation operator is b;; boson symmetry requires fbrbJ = b+ rb+ J = 0, [bi,b+ j] = 1. State vectors 

lijk ... > correspond to molecules. They can be recast as a direct sum of irreducible representations 

whose vectors are (often) linear combinations of individual molecular states. The one-particle operator 

P1 of the lie algebra of G is I:i,j P1(i;j) b+pj" We have tested our systems by plotting a variety of 

tabulated experimental data along principle axes for atomic and for diatomic and triatomic molecular 

multiplets. 

1. Zhuvikin, G.V., Hefferlin, R. , Vestnik Leningradskovo Universiteta No. 16, Pg. 10, 1983. 



Part 1. Introduction 

This study extends the group theoretical concepts applied to the periodic system of atoms, 

outlined by A. I. Fet, to that of molecules. Bosonic symmetry is required in accordance with 

the previous work completed by R. Hefferlin and G.V. Zhuvikin. This paper results from their 

previous work along with the development of a computer program which computes symmetry 

multiplets, thus bypassing the tedious algebraic work of hand producing multiplets for the study 

of particular symmetries. 

Part 2. Theory 

The set of atoms, designated as A throughout the paper, is assumed to be a noncompact set 

of indistinguishable particles. We assume that this set of atoms posseses an internal symmetry 

for which there exists symmetry groups corresponding to particular subsets of A. If we 

suppose 8 is one of these particular subsets of A, then there is a symmetry group, call it G, 

corresponding to this internal symmetry of B. The elements (atoms} of B are defined to be 

linearly independent basis vectors for some Hilbert space L f See figure 1. More precisely, 

we define an isomorphism between the atoms in 8 and the basis vectors in L f Now if we 

define rasa homomorphism from G to GL(L
1
}, where GL(L

1
) is the group of all injective 

linear transformations from L 1 to L 1, then r is a representation of G and L 1 is a 

representation space 1 of G. See figure 2. Thus, any representation matrix M9 in GL(L 
1
;, 

corresponding to the operator 9 in G, operating any vector ja> in L 1, converts Ia> into 

some other vector Jb> in L 1 with the property that any element 9 of G operating on any 

element (atom) a in B converts a into some other element (atom} bin B. In effect, the 

elements of G change one atom into another atom in exactly the same way that ladder 

operators change one state vector into some other state vector. In this sense, all atoms are 

theorized to be excited states of some abstract particle. 

Similarly, N-atomic molecules are assumed to be indistinguishable N-tuples in the direct 

product M = ITNi=tAi. This set M is clearly also a noncompact set for which there exist 

symmetry groups corresponding to the internal symmetry of the N-atomic molecules under 

study, i.e., for particular subsets of M. If we suppose that C is one of these particular 



subsets of M, then the N-tuples of C are defined to be linearly independent basis vectors for 

some Hilbert space LN. Again, we define a homomorphism from G to GL(LN) so that LN is a 

representation space of G. In an analogous fashion to the atomic case, any representation 

matrix Mg in GL(L N), corresponding to the operator g in G, operating any vector Ia 1, a2, 

a3, ... , aN> in L 1, converts Ia 1, a2, a3, ... , aN> into some other vector lb 1, b2, b3, .. 

. , bf1> in L1with the property that any element g of G operating on any element (N-atomic 

molecule) (a 1, a2, a3, . .. , aN) in B converts (a 1, a2r a3, ... , aN) into some other 

element (N-atomic molecule) (b1, b2, b3, ... , bN) in B. The representation space LN is not 

in general an irreducible represenation space of G. Thus, this vector space can be decomposed 

into a direct sum of irreducible subspaces LN. fori in some indexing set2 /. 
I 

Section 2.1. The symmetry groups, and their subgroups 

The groups acting on the particular subsets of A are known as special unitary groups 

and/or special orthogonal groups . See table 1. Of particular interest to the theory are the 

groups S0(4,2) and SU(2). The symmetry group S0(4,2) consists of all orthogonal 

transformations with determinant 1 in the pseudo-Euclidian space (Xt, x2, x3, x4, x5, x6>· 

This group has two chains of subgroups. See figure 3. However, for the scope of this paper we 

will concern ourselves only with the chain: S0(4,2) > S0(4) > S0(3} > S0(2). The matrix 

operators corresponding to the subgroup S0(4) < S0(4,2) consist of all orthogonal 

transformations with determinant 1 in the subspace (x 1• x2, x3, x4) of (x 1, x2. x3, x4, 

x5, x6) while keeping the subspace (x5, x6} constant3. It can be shown that the 

decomposition of the representation space of S0(4} generates irreducible subspaces (i.e. 

multiplets}, each of which correspond to some unique element in the index set {1,2,3, ... }. See 

figure 4. We associate this index set with the set of chemical principle quantum states n = 1, 

2, 3, ... and denote the multiplet corresponding to some state n as {n}. In short, the chemical 

principle quantum ground state n = 1 corresponds to the multiplet {1} of 80(4), the chemical 

principle quantum state n = 2 corresponds to the multiplet {2}, and so on. 

Continuing in this fashion, we obtain the subgroup S0(3) from the chain S0(3) < S0(4) < 

S0(4,2). The matrix operators corresponding to this subgroup consists of all orthogonal 

transformations with determinant 1 in the subspace (Xt, x2, x3) while keeping the 

coordinates in the subspace (x4, x5, x6) constant. The decomposition of the representation 



space of S0(3) generates submultiplets of {n}, that is, each set of multiplets in S0(3) 

corresponds to a particular chemical principle quantum number n and each multiplet in each set 

corresponds to a particular chemical angular momentum ln. See figure 5. We denote these 

multiplets as {n;~. Continuing down the chain, the multiplets of the representation space of 

S0(2), are distinguished by different values of chemical magnetic quantum numbers m, where 

m takes on the values -1, -1+1, ... , 0, ... , J.-1, I. 

So far, we have demonstrated the existance of three different indicies (or quantum 

numbers) for which we can distinguish multiplets of A in S0(4,2) symmetry, that is, the 

multiplets of S0(2) are denoted {n;l;m}. (Note: since A and the representation Hilbert 

space L 1 are isomorphic, we will often speak of A as if it were the representation space L 1) 

However, it can be shown that two atoms correspond to each particular multiplet {n;/;m}. 

Thus there is not a one to one correspondence between the multiplets generated by S0(4,2) and 

the set of atoms. Now, the well known unitary group SU(2) produces doublets which we denote 

as corresponding to chemical spin p. (p. = + 1/2 or p. = -1 /2). Thus, by forming the direct 

product S0(4,2)xSU(2), we see that the unitary group SU(2) effectively distinguishes between 

the two atoms corresponding to some particular multiplet {n;/;m} by producing the 

multiplets {n;/;m;+1/2} and {n;l;m;-1/2}. As a result, there is a one to one 

correspondence between the multiplets of S0(4,2)xSU(2) and the set of atoms A. 

As is evident, this particular chain of subgroups of S0(4,2)xSU(2) produces four different 

quantum numbers: 

n= 1, 2, 3, ... ; 

I= 0, 1, 2, 3, ... , n - 1 ; 

m = -I, -I+ 1, ... , 0, .. . , /-1 , I; 

p. = +112, -1/2; 

where each vector, representing the elements of S0(4,2)xSU(2), corresponds to a particular 

multiplet4 {n;l;m;p.} in S0(2)xSU(2) and conversly, each multiplet in S0(2)xSU(2) 

corresponds to a particular vector. See figure 6. 

Section 2.2. Application of the group S0(4,2)xSU(2) and Its subgroups to 

periodic systems of molecules. 

Let V = {v1, v2> v3, . . . } be some subset of A. Then, in accordance with the general 

method, the set of basis vectors spanning L1 is defined as {lv1>, IV,?, jv3>, ... } where 



the basis vector IV;> corresponds to the atom v1 in V, for some i in {1 ,2,3, ... }. The 

creation operator b+ v· is defined as the operator which, when operating on the vacuum state 
I 

lo>, produces the vector Vj> corresponding to the atom v1. That is: 

b+ v)o> =IV;> 

The annihilation operator ba. is defined as the operator which, when operating on the atomic 
I 

state Vf> produces the vacuum state lo>. That is: 

bv1~ Vf> = lo>. 

When the annihilation operator operates on the vacuum state,the result is the scalar zero. 

Notice that since every vector has a one to one correspondence to some particular multiplet 

{n;/;m;,u}, the vector IV;> can be equivalently denoted lnl1mpj>· In fact, since one need 

not be restricted to one particular periodic system, the most precise way to denote any vector 

is to denote it using its corresponding quantum numbers. However, in order to simplify many 

of the equations, we will usually use v and IV>, instead of {n;/;m;,u} and lnlm,u> to 

denote atoms and atomic vectors respectively. 

Since observations in nature have demonstrated that a molecule may have any number of 

identical atoms, it seems natural that bosonic symetry is required. Thus, we obtain the 

following commutators: 

[b+ vs b+ wl== 0 

fbv, bwJ= 0 

fbv, b+ wl = Ov.w 
tor any v, w in V. It can easily be shown that these commutation relations imply that 

<VIV> = 1 for any vin V. 

Thus, all atomic basis vectors are naturally normalized. 

To generalize the discussion from atoms to N-atomic molecules, let { (a 1a2a3 . . . aN>• 

(b1b2b3 . . . bN), (c1c2c3 . . . eN), ... } be a set of N-atomic molecules. Then the 

corresponding set of basis vectors spanning LN is { la 1aza3 ... aN>, lb1bzb3 ... bw, 

lc1cze3 . .. eN>, ... }. The creation and annihilation operators are defined as in the atomic 

case. However, the creation of any state vector, say 1a1a2a3 . .. aN>, is defined as: 

b+ atb+ a~+ a3 . .. b+ arJo> = lata.2'13 .. . a,..,.. 

Now, we require that these basis vectors be normalized. Thus for N-atomic molecules, a 

normalized basis vector is: 



1/Sqrt[<ata.i13 ... arJata.i13 . . . awJ b+ a1b+ a/J+ a3 . .. b+ a,.)O> 

Analogous to the atomic case, it can be shown that repeated application of the commutation 

relations produces: 

<a1a.i13 ... a,..j.a1a.i13 . .. aw = Ilmi=t C(S)! 

where m is the number of distinct atoms and C(S) is cardinality of the ilh set of 

homonuclear atoms, s,~ belonging to the N-atomic molecule a1a2a3 ... aN. For example, 

suppose that from the atoms x, y, z , we construct the the 6-atomic basis vector xxxyyz>. 

Then the norm of x xxyyZ> is just: 

<xxxyyz I xxxyyZ> = IT3;=1C(S)! = C( {x, x, x} )! C( {y,y} )I C( {z) )! = 3! 2! 11 = 12. 

Section 2.3. Description of the respresentatlon space operators of the 

subgroups of S0{4,2) and SU(2) 

Every subgroup G of S0(4,2) has generators of G which correspond to the group 

representation matrix generators in GL(LN)' call them Tz, T+, T_. We associate these 

generators with ladder operators. In addition, bosonic symmetry requires that these ladder 

satisify the following commutation relations: 

[Tz. T.J= T+-
[Tz. TJ = -T_, 

tT +- T_J = 2Tz. 
It can be shown that for S0(4)xSU(2) these representation matrix ladder operators take the 

form : 

A z "" J; [(/+m+ 1 )(1-m+ 1 )(n-1-1 )(n+l+ 1) I (21+3)(21+ 1)/12 b + b 
1 

+ 
n, I, m,f.l n.l+ 1, m,f.l n, ,m,f.l 

+ J; [(/+m)(l-m){n-l)(n+l) I (21+ 1 )(21-1 ;/12 b + 
1 1 

b 
1 n,l,m,f.l n, - ,m,f.l n, ,m,f.l 

A+ = J; [(1-m)(l-m-1 )(n-l)(n+l) I (21+ 1 )(21-1)/12 b + b 
1 

+ 
n,l,m,f.l n,l-1,m+1,f.l n,m,f.l 

-J; [(l+m+ 1 )(l+m+2)(n-l-1 )(n+f+ 1) I (21+3)(21+ 1 ;/12 b + 
1 1 1 

b 
1 n,l,m,f.l n, + ,m+ ,f.l n, ,m,f.l 

A_""- J: [(l+m)(l+m-1)(n+l)(n-l) I (21+1)(21-1)/12 b+ b 
1 

+ 
n,l,m,f.l n,l-1,m-1,f.l n,m,f.l 

+ J: [(l-m+1)(1-m+2)(n-l-1)(n+l+1) I (21+3)(21+1)/12 b+ 
1 

b 
1 n,l,m,f.L n, +1,m-1,f.l n, ,m,f.l 



The representation space generators of S0(3) have the form: 

Mz = L mb+ b 
· n,l,m,).L n,l,m,J.L n,l,m,J.L 

M. = .l: [(I - m + 1) (I+ m) / 12 b+ b . 
n,l,m,J.L n,l,m-1 ,fl. n,l,m,J.L 

Analogously, the representation space of the group SU(2) has generators: 

Sz= L mb+ b 
n,l,m,J.L n,l,m,J.L n,l,m,J.L 

s+ = X [(112 + J.L + 1) (312- J.LJ /'2 b+ b 
nl,m,J.L n,/,m+ 1 ,J.L n,/,m,J.L 

S.=L [(112-).L+1)(312+J.L)/'2 b+ b 
n,/,m,J.L n,l,m·1,J.L n,l,m,J.L 

Thus for atoms, S+ I n,l,m,J.L > will produce 1 n,l,m,J.L+1 >and M+l n,l,m,J.L > will 

produce 1 n,l,m+1,J.L >,where we have normalized both results. As a specific example, 

suppose we choose to operate on the diatomic vector 1 HHe > with the operator S +' then we 

obtain (after normalizing) the vector 1/Sqrt[2] 1 HeHe >. 

Section 2.4. Description of t he decomposition of the representation space LN 

Into a direct sum of irreducible subspaces of L N 

We define a seniority vector as a vector in LN such that either the raising ladder operator 

operating on the vector produces the zero result or the lowering ladder operator operating the 

the seniority vector produces the zero result. In some since, a seniority vector is analagous to 

a generating element in a group under one of the operators M+,M-,S+, S_, etc. This follows 

since repeated function compostion on the seniority vector will generate the smallest possible 

multiplet containing it. Another way of saying the same thing is that the multiplet generated by 

the seniority vector is an ·irreducible subspace of LN. Turning to the specific symmetry 

S0(3)xSU(2), we construct irreducible multlplets (that is, irreducible subspaces of LN) of 

state vectors by repeated use of the laddder operators M+, or M_ and S+ or S_ on some 

seniority seniority state vector in LN. This is all done with the goal of finding the irreducible 



multiplet decomposition of the Hilbert representation space LN The process of repeated 

ladder operation on the seniority vector may produce mixed states and, in fact, this is usually 

the case. These mixed states are, by definition, linear combinations of the basis state vectors 

of LN (take lab> + lbe> in L2 for example). Thus, to find all irreducible multiplets one 

must not on ly find the multiplets generated by each basis state, but also the multiplets 

generated by the vectors orthogonal to the generated mixed state vectors. 

For example, in S0(3)xSU(2) we select the subset {B, C, N, 0, F, Ne}x{B, C, N, 0, F, Ne} of 

AxA. The ortho-normalized basis vectors spanning L2 are defined to be 1/Sqrt[2] I BB>, I 
BC >, 1 BN >, .. . , 1 NeF >, 1/Sqrt[2] 1 NeNe >. Note: to simplify notation we will denote 

specific vectors like 1/Sqrt[2) 1 BB > as just 1/Sqrt[2] BB and so on, instead of using 

traditional dirac notation. (Reference to figure 7 throughout the rest of this paragraph wil l be 

helpful.) Now if we select 1/Sqrt[2] BB as the seniority vector, then one readily forms an 

irreducible multiplet by using the raising operators M+ and S+ repeatedly on 1/Sqrt[2] BB. 

This multiplet, which has spin multiplicity S = 3 and angular momentum L = 2, is denoted using 

spectroscopic notation as 3o. Now, that there exists mixed states in the 3o multiplet. Thus, 

the 3o multiplet does not span all of L2. By finding the vector orthogonal to 1/Sqrt[3] (BF + 

NN), namely 1/Sqrt[6] (2BF - NN), we can form a new Irreducible multiplet. This new 

irreducible multiplet again has spin multiplicity S = 3. However, the angular momentum L has 

changed from 2 to o. Thus, this multiplet is denoted as 3s. Consequently, we see that the 

process of finding a vector orthogonal to some mixed state vector and generating its resulting 

multiplet effectively raises or lowers the angular momentum L. However, this process is not 

analogous to some new rasing or lowering operator for L, since it allows one to skip integral 

steps of L (example given: the previous case). 

In completely the same way, we construct the 1 P multiplet from the vector orthogonal to 

1/Sqrt[2] (BO + CN), namely: 1/Sqrt[2] (BO - CN). Notice that the three multiplets all 

contain mutually orthogonal vectors with respect to like quantum numbers Jl and m. Thus, we 

have exhausted the different possibilites of orthogonal mixed state vectors, and thus we have 

exhausted the different possibilities of irreducible multiplets. Now, since we know that in 

general LN can be expressed as a direct sum of irreducible subspaces, we must have 

L2 = 3s + 1 P + 3o . 



Section 2.5. Expectation values for observables 

For atoms, the expectation value of any single particle observable P is given by: 

<P> :;:: <VIP IV> 
where P is may be the single particle operator defined as: 

P = Pr = L; P(i;nj>+,bn 

N-Atomic molecules are analogous. That is, the expectation value of any observable P is given 

by: 

<P> = <a1aza3 .. . a,.; P ta1a,ii3 . .. alf' I <a1a.ii3 .. . a,..)a1a.ii3 . . . alf' 
Notice that since N-atomic molecular state vectors are not naturally normalized, we must 

worry about normalization. Now, for the N-atomic case we need not restrict ourselves to 

single particle operators like was required for the atomic case. The analogous definition for a 

two particle operator is: 

P 2 = L;?jLn?pP (i,j;n,pj>+ p+ /JrPp 

And a three particle operator takes the form: 

P3 = Lt~j?kLncp?rP(i,j,k;n,p,r)b+p+p+kbnbpbr 
In general, given an N-atomic molecular vector, N-particle operators exist and follow the same 

pattern. 

If we take the case of triatomic molecules, then we may employ single- , double-, or 

triple-particle operators to find expectation values. Supposing a vector of the form 1 xyz >, 

then a· three particle operator trivially gives: 

< xyz iP31 xyz > = < xyz iP3I xyz >. 

A two particle operator gives the diatomic identity: 

< xyz IP~ xyz> = < xy 1P.21 xy> + < xz iP~ XZ> + < YZ IP~ yz>. 

And a single particle operator gives the atomic identity: 

< xyz iPtl xyz> = < xiPtl X>+< y IPtl Y> + < z iPtl Z >. 

This pattern can be extended to N-atomic molecules as well. In fact, for a single particle 

operation on an N-atomic vector we get: 

< a1a,ii3 . .. aNIPtl a1a2'13 . .. aN> =< a1 1Ptl a1 > + < a2 1Ptl a2 > + 

+ < a3 1Ptl a3 >+ ... +<aN IPtl aN > 
The extent to which any particle operator other than an N-atomic particle operator operating on 

an N-atomic vector has any practical physical significance in predicting data for various N-



atomic molecules is unknown at the present time. A study of various plots involving different 

particle operators will indicate the degree of usefulness of these nontrivial identities. 

However, there does exist a theoretical importance to the identities. Notice that, 

< a1 1Ptl a1 > = < a1a1a1 .. . a1 JPtl a1a1a1 ... a1 >, 

< a21Ptl Sz> = < azazaz· 0 0 a2 1Ptl azaza2· . 0 az> 

and so on. Thus, it follows that the expectation value of the origional N·atomlc state vector, 

can be rewritten completely in terms of homonuclear expectation values: 

< a1aza3 . .. aN IPtl a1aza3 ... aN>= 

< a1a1a1 . . . a1 1Pti a1a1a1 .. . a1 > + 

+ < azaza2 ... a2 1Ptl azazaz . . . a2> + 

+ < aT3a3 . .. a3 ]Ptl aTT3 . .. a3 > + 

+ ... + 

+ < a,..pfilN· .. aNIPtl aNaftFN· . . aN> 

This is of great theoretical as well as practical interest since we see that one can employ this 

homonuclear identity to reduce a problem involving heteronuclear expectation values to sums of 

only homonuclear expectation values. Graphs using this homonuclear approximation have been 

plotted with good results (see parts 3 and 4). 

Section 2.6. Computer program which produces symmetry multlplets and 

expectation values. 

The process of hand producing multiplets and expectation values becomes very tedious for 

diatomic and higher order molecules. Consequently, a computer program has been constructed 

to provide multiplets and expectation values for certain symmetries. In particular, given a 

seniority vector in S0(3)xSU(2) symmetry, the program will produce the irreducible multiplet 

which contains the seniority vector. While the program is still in the developmental stage, it 

has nevertheless produced some nice results. Specifically, the appendix contains a listing of 

the diatomic multlplets in S0(3)xSU(2) symmetry that the program has generated. Notice that 

for a specific chemical angular momentum b, all triplet multiplets formed with I = b x b are 

seen to be isomorphic. This is particularly nice since with the construction of one triplet 

multiplet with I = b x b, all other triplet multiplets with I = b x b, can be formed by just a 

renaming process. The same result holds true for all singlet multiplets as well. 



Part 3. Results for Ionization potentials 

Expection values of ionization potentials for the P atoms of row 2 (B, C, N, 0, F, Ne) have 

been plotted in figure 8. The expectation value for each state was calculated using a single 

particle operator. The number on each block represents the number of electrons which the 

molecule, or atom in this case, posseses. The trend for this plot is clear--ionization potentials 

increase with both Jl and m. 

The expectation values for the states belonging to the triplet D multiplet for dlatomics 

formed from the same set of atoms have been plotted in figure 9. Again, a single particle 

operator was used to formulate the expectation values. Unfortunitely, it is not clear whether 

the ionization potentials decrease or increase with Jl and m. It does appear, however, that 

the data seems not to contradict the atomic case. Figure 10 corresponds to this same 

multiplet, however, using various homonuclear identies , the formulas for the expectation 

values have been recast into a sum involving only homonuclear terms. This has the effect of 

smothing the surface of the graph. For purposes of interpolation, we have assumed that the 

ionization potential of B2 was 8 eV for the white and light shaded areas and we have assumed 

that the ionization potential for NeNe is 16 eV for the white and medium shaded areas. Notice 

that the ionization potentials increase with Jl and m as it did in the atomic case. In addition, 

the level curves of of the surface seem parallel to isoelectronic sequences. Least-squares 

analysis will demonstrate whether this appearance is indeed the case. 

The expectation values for the states belonging to the singlet P multiplet fo; diatomics have 

been plotted on figure 11. The assumptions made on this plot correspond to the assumptions 

made in figure 1 o. Notice that the ionization potentials increase with m. Since this multiplet 

is a singlet, we can have no graphical information about JL, however the variation of ionization 

potentials with m Is in agreement with figures 8 and 9. 

The expectation values for the states belonging to the triplet S multiplet for diatomics have 

been plotted in figure 12. The assumptions made for the singlet P and the triplet D plots hold 

for this graph as well. Notice that the ionization potentials increase with }l in agreement with 

the Diatomic triplet D and the atomic doublet P plot. Thus the same general trend for the 

ionization potentials is found to be consistent with all the graphs plotted for ionization 

potentials 



Part 4. Results for Heat of atomization 

The expectation values for ilHa of the states belonging to the triplet D multiplet for 

diatomic molecules formed from the P atoms of row 2 have been plotted In figure 14. A single 

particle operator was used to formulate the expectation values. Notice that ilHa first 

increases with J.L and m, but then later decrease with J.L and m. Again, to a first 

approximation, the level curves of of the surface seem to be parallel to isoelectronic 

sequences. Figure 15 is a plot of ilHa for this same triplet D multiplet, however the 

expectation value formulation has been recasted so as to involve only homonuclear terms. The 

effect is that the surface is smoother than the previous case. Notice that the same trends are 

visible for this plot as was for the previous case. 

The expectation values of ilHa for the states belonging to the singlet P multiplet for 

diatomics formed from the same set of atoms have been plotted on figure 16. Notice that ilHa 

decreases with m. Refering back to figures 14 and 15, one sees that, for the same range of 

quantum numbers, the trend of ilHa for the singlet P multiplet agrees with the trend found in 

the triplet D multiplet (that is figures 14 and 15). The corresponding plot involving only 

homonuclear terms in the expectation value Is found in figure 17. This plot contains a minimum 

which is inconsistant with both figures 14 and 15. Further investigation as to why this 

inconsistancy occurs should be undertaken. 

The expectation values of ilHa for the state belonging to the triplet S multiplet of diatomic 

molecules formed from the same set of atoms have been plotted on figures 18 and 19. Figure 

18 has been plotted using the original formulation of the expectation values of the states. 

Figure 19, however has been plotted by using homonuclear identites. Notice that ilHa decreases 

with J.l for both plots; this is In agreement with figures 14 and 15. 

For triatomlcs, we have plated the molecules formed from this same set of P atoms from 

row 2. In figure 20, notice that while a good portion of the data for the quartet F multiplet is 

missing, the data available does seem to agree with the general trend for aHa. Notice also 

that, to a first approximation, the level curves of this plot seem to lie along the isoelectronic 

sequences. As in the other cases, least squares analysis will determine whether this is truly 

the case or not. 

The doublet D multiplet also seems to support this general trend for J.lHa. Figure 21 is a 

plot of ilHa for the doublet D multiplet. 

Figure 22 is a plot of ilHa for the P multiplet of triatomic molecules formed from the same 



P atoms of row 2. From the available data, one can not draw any conclusion about the trend in 

figure 22 for the quartet P multiplet. However, the plot does not appear to contradict the 

general trend for AHa. Thus, we conclude that the same general trend for the heat of 

atomization is found or is consistent in nearly all of the graphs plotted. 

Conclusion 

This paper considers only vectors corresponding to like quantum numbers nand /. 

However, "off diagonal" multiplets do exist which contain vectors corresponding to mixed 

quantum numbers n and /. Thus, a complete listing for diatomics should be done. This is 

currently being accomplished via the computer program and the results appear encouraging. 

Both diatomic and triatomic molecules are also being heavely investigated, though triatomics 

will take considerably more time due to the intensity of the calculations involved and the lack of 

experimental data. In addition, a bridge between the general theory outlined in this paper and 

that of quantum mechanics needs to be done to more fully demonstrate the theory's promise. 

Clearly, the trends visible in ionization potential and heat of atomization for up to triatomic 

molecules from the P atoms oi row 2 suggest that significant trends might be global. However, 

this set of graphs is very small compared to the number of multiplets that exist for even a 

diatomic periodic system in S0(3)xSU(2) symmetry. As a result of the increase in calculation 

efficiency which the computer program brings to the development of the study, many more 

graphs will be able to be produced in an effort to conclusivly demonstrate that these and other 

trends are in fact general. 



APPENDIX: Incomplete listing of diatom ic multlplets 

symmetry produced by computer program 

3s ; n = 1x1; I = 0 X 0 

mz 0 

J.L = -1 sqrt[1/2] (1 HH) 

J.L = 0 sqrt[1/1] (1 HHe) 

J.L = +1 sqrt[1/2] (1 HeHe) 

3s. 
' n =2 x 2 ; I = 0 X 0 

m = 0 

J.L = -1 sqrt(1/2) (1 Lili) 

J.L = 0 sqrt[1/1] (1 LiB e) 

J.L = +1 sqrt[1/2] (1 Be Be) 

3s ; n = 2 X 2; I a 1 X 1 

m =0 

J.L = -1 sqrt[1/6] (2 BF + -1 NN) 

J.1. = 0 sqrt[1/3] (1 BNe + 1 CF + -1 NO) 

J.L = +1 sqrt[1/6] (2 CNe + -1 00) 

1 P ; n "" 2 X 2; I = 1 X 1 

m = -1 

J.1. = 0 sqrt[1/2] (1 80 + -1 CN) 

m = o 
J.L = 0 sqrt[1/2] {-1 BNe + 0 NO + 1 CF) 

m • +1 

J.L = 0 sqrt{1/2] (-1 NNe + 1 OF) 

In S0(3)xSU{2) 



3o ; n = 2 X 2; I = 1 X 1 

m = -2 

f.L = -1 sqrt[1 /2) (1 BB) 

p = 0 sqrt[111] (1 BC) 

f.L = +1 sqrt[1/2] (1 CC) 

m = -1 

p = -1 sqrt[1/1] (1 BN) 

f.L = 0 sqrt[1/2) (1 80 + 1 CN) 

f.L = +1 sqrt[1/1] (1 CO) 

m = 0 

f.L = -1 sqrt[1/3J (1 BF + 1 NN) 

f.L = 0 sqrt[1/6] (1 BNe + 1 CF + 2 NO) 

f.L = + 1 sqrt[1/3] ( 1 CNe + 1 00) 

m = +1 

f.L = -1 sqrt[1/1] (1 NF) 

f.L = 0 sqrt[1/2] (1 NNe + 1 OF) 

f.L = +1 sqrt[1/1] (1 ONe) 

m = +2 

f.L = -1 sqrt[1/2] {1 FF) 

f.L = 0 sqrt[1/1] (1 FNe) 

f.L = +1 sqrt[1/2] (1 NeNe) 

3s ; n = 3 X 3; I = 0 X 0 

m = o 
f.L = -1 sqrt[1/2) (1 NaNa) 

f.L = o sqrt[1/1] {1 NaMg) 

f.L = + 1 sqrt[112] (1 MgMg) 

3 S ; n = 3 X 3; I = 1 X 1 

m = 0 

p = -1 sqrt[1/6] (2 AICI + -1 PP) 



J..L = 0 sqrt[1 /3] (1 AlAr + 1 SiC I + -1 PS) 

J..1. = +1 sqrt[1/6] (2 SiAr + -1 SS) 

1 P ; n "' 3 X 3; I = 1 X 1 

m = -1 

J..L "" 0 sqrt[1/2] (-1 AIS + 1 SiP) 

m=O 

J..L = 0 sqrt[1/2] (-1 AlAr + 0 PS + 1 SiCI) 

m = +1 

J..1. = 0 sqrt[1/2] (-1 PAr + 1 SCI) 

3o ; n = 3 X 3; I = 1 X 1 

m = -2 

m = -1 

m = 0 

m = +1 

m = +2 

J..1. = -1 sqrt[1/2] (1 AlAI) 

J..1. = 0 sqrt[1/1) (1 AISi) 

J..l. = + 1 sqrt[1 /2] (1 SiSi) 

J..l. = -1 

J..l. = 0 

J..l. = +1 

sqrt[1/1] (1 AlP) 

sqrt[1/2] (1 AIS + 1 SiP} 

sqrt[1/1] (1 SIS) 

J..1. = -1 sqrt{1/3] (1 AICI + 1 PP) 

J..1. = 0 sqrt{1/6] (1 AlAr + 1 SiCI + 2 PS) 

J..1. = +1 sqrt[1/3] (1 SiAr + 1 SS) 

J..L = -1 sqrt[1/1] (1 PCI) 

J..L = 0 sqrt[1 /2] (1 PAr + 1 SCI) 

J..L = +1 sqrt(1/1] (1 SAr} 

J..1. = -1 sqrt[1/2] (1 CICI) 

J..l. = 0 sqrt[1/1] (1 CIAr) 

J..1. = +1 sqrt[1/2] (1 ArAr) 



3s ; n = 3 X 3; I = 2 X 2 

m = 0 

p. = -1 sqrt[1/10] (-2 ScCu + 2 VCo + -1 MnMn) 

p. = 0 sqrt[1/5] (-1 ScZn + -1 TiCu + 1 VNi + 1 CrCo + -1 MnFe) 

p. = +1 sqrt[111 0] (-2 TiZn + 2 CrNi + -1 FeFe) 

3 0 ; n = 3 x 3; I = 2 X 2 

m = -2 

m = -1 

m = o 

m = +1 

m = +2 

J.L= -1 sqrt[1 /168] { -4 sqrt[6] ScMn + 6 VV) 

p.= 0 sqrt[1/42] (-2 sqrt[3] ScFe + -2 sqrt[3) TiMn + 

+ 3 sqrt[2] VCr) 

p.= + 1 sqrt[1 /42) (-2 sqrt[6] TiFe + 3 CrCr) 

JL= -1 sqrt[1 /42] ( -6 ScCo + 1 sqrt[6] VMn) 

p.= 0 sqrt[1/42] (-3 sqrt[2} ScNi + -3 sqrt[2) TiCo + 1 sqrt(3] VFe 

+ 1 sqrt[3] CrMn) 

J.L= +1 sqrt[1/42] (-6 TiNi + 1 sqrt[6] CrFe) 

p.= -1 sqrt[1/7] (-2 ScCu + -1 VCo + 1 MnMn) 

p.= 0 sqrt[1 /14] (-2 ScZn + -2 TiCu + -1 VNi + -1 CrCo + 2 MnFe) 

P.= +1 sqrt[117] (-2 TiZn + -1 CrNi + 1 FeFe) 

p.= -1 sqrt[1/42] (-6 VCu + 1 sqrt[6] MnCo) 

p.= 0 sqrt[1 /42] ( -3 sqrt[2] VZn + -3 sqrt[2] CrCu + 1 sqrt[3] MnNi 

+ 1 sqrt[3] FeCo) 

p.= +1 sqrt[1/42] (-6 CrZn + 1 sqrt[6] FeNI) 

!J= -1 sqrt[1/42] (-2 sqrt[6] MnCu + 3 CoCo) 

!J= 0 sqrt[1/42] (-2 sqrt(3] MnZn + -2 sqrt[3] FeCu + 



+ 3 sqrt[2) CoNI) 

f.l= + 1 sqrt[1/42] ( -2 sqrt[6] FeZn + 3 NiNi) 

1 F ; n = 3 x 3; I == 2 x 2 

m == -3 

m "" -2 

m = -1 

m = o 

m = +1 

m = +2 

f.l= 0 sqrt[1/2] ( -1 SeCr + 1 TiV) 

f.l= 0 sqrt[1!12] (-1 sqrt[6] SeFe + 0 VCr + 1 sqrt[6] TiMn) 

f.l= 0 sqrt[1/30] (-3 SeNi + -1 sqrt[6] VFe + 3 TiCo + 

+ 1 sqrt[6) CrMn) 

f.l= 0 sqrt[1/360) (-6 SeZn + -12 VNi + 0 MnFe + 6 TiCu + 12 CrCo) 

f.l= 0 sqrt[1/30) (-3 VZn + -1 sqrt[6] MnNi + 3 CrCu + 

+ 1 sqrt[6) FeCo) 

f.l= 0 sqrt[1/300) (-5 sqrt(6] MnZn + 0 CoNi + 5 sqrt[6] FeCu) 

f.l= 0 sqrt[1/2] (-1 CoZn + 1 NiCu) 

3G ; n = 3 x 3; I = 2 X 2 

m = -4 

f.l= -1 sqrt[1 /2] ( 1 SeSe) 

f.l= 0 sqrt[1/1] (1 SeT) 

f.l= +1 sqrt[1/2] (1 TiTi) 

m = -3 

f.l= -1 sqrt[1/1] (1 ScV) 

f.l= o sqrt(1 /2] ( 1 Seer + 1 TiV) 

f.l= +1 sqrt[1/1] (1 TICr) 

m = -2 

f.l= -1 sqrt[1/14] (1 sqrt[6] SeMn + 2 VV) 



m = -1 

m = +1 

m = +2 

m = +3 

m = +4 

J.l= 0 sqrt[1/14] (1 sqrt[3] ScFe + 1 sqrt[3] TiMn + 2 sqrt[2] VCr) 

J.l= + 1 sqrt[1/14] (1 sqrt[6] TiFe + 2 CrCr) 

J.l= -1 sqrt[1/7] (1 ScCo + 1 sqrt[6] VMn) 

J.l= 0 sqrt(1/28] (1 sqrt[2] ScNi + 1 sqrt[2] TiCo + 2 sqrt[3] VFe + 

+ 2 sqrt[3) CrMn) 

J.l= +1 sqrt[1/7] (1 TiNi + 1 sqrt[6] CrFe) 

J.l= -1 sqrt[1/35] (1 ScCu + 4 VCo + 3 MnMn) 

J.l= 0 sqrt[1/70] (1 ScZn + 1 TiCu + 4 VNi + 4 CrCo + 6 MnFe) 

J.l= + 1 sqrt(1/35) (1 TiZn + 4 CrNi + 3 Fe Fe) 

J.l= -1 sqrt[1l7] (1 VCu + 1 sqrt[6] MnCo) 

J.l= o sqrt[1/28) (1 sqrt[2] VZn + 1 sqrt[2) Crcu + 2 sqrt[3) MnNi + 

+ 2 sqrt[3] FeCo) 

J.l= + 1 sqrt[1 /7] (1 CrZn + 1 sqrt[6) FeNi) 

J.l= -1 sqrt[1/14] (1 sqrt[6] MnCu + 2 CoCo) 

J.l= 0 sqrt(1/14) (1 sqrt[3] MnZn + 1 sqrt[3) FeCu + 2 sqrt[2] CoNi) 

J.l= +1 sqrt[1/14] (1 sqrt[6] FeZn + 2 NiNi) 

J.l= -1 sqrt[1/1] ( 1 CoCu) 

J.l= 0 sqrt[1/2] (1 CoZn + 1 NiCu) 

J.l= + 1 sqrt[1 /1] (1 NiZn) 

J.l= -1 sqrt[1/2] (1 CuCu) 

f.L= 0 sqrt[1/1] ( 1 CuZn) 

J.l= +1 sqrt[1/2] (1 ZnZn) 



3s ; n = 4 x 4; 1 = o x o 
m = o 

f.L= -1 sqrt[1/2] (1 KK) 

f.L= 0 sqrt[1/1] (1 KCa) 

f.L= +1 sqrt[1/2] (1 CaCa) 

3o ; n = 4 X 4; I = 1 X 1 

m = -2 

f.L= -1 sqrt[1/2] (1 GaGa) 

f.L= 0 sqrt[1/1] (1 GaGe) 

f.L= +1 sqrt[1/2] (1 GeGe) 

m = -1 

P.= -1 sqrt[1/1] (1 GaAs) 

f.L= 0 sqrt[1/2] (1 GaSe + 1 GeAs) 

p.= +1 sqrt(1/1 J ( 1 GeSe) 

m = O 

f.L= -1 sqrt[1/3] (1 GaBr + 1 AsAs) 

Jt= 0 sqrt[1/6] (1 GaKr + 1 GeBr + 2 AsSe) 

Jt= +1 sqrt[1/3] (1 GeKr + 1 SeSe) 

m = +1 

P.= -1 sqrt[1/1] (1 AsBr) 

Jt= 0 sqrt[1/2] (1 AsKr + 1 SeBr) 

J.L= +1 sqrt[111] (1 SeKr) 

m = +2 

Jt= -1 sqrt[1/2] (1 BrBr) 

f.L= 0 sqrt[1/1] (1 BrKr) 

Jt= +1 sqrt[1/2] (1 KrKr) 

3G; n = 4 X 4; I = 2 x 2 

m = -4 

Jt= -1 sqrt[1 /2] (1 YY) 

J.L= 0 sqrt[1/1] (1 YZr) 



m = -3 

m = -2 

m = -1 

m ... 0 

m = +1 

m = +2 

m = +3 

J.L= + 1 sqrt[1/2] (1 ZrZr) 

J.L"" -1 sqrt[1/1) (1 YNb) 

J.L= 0 sqrt[1/2] (1 YMo + 1 ZrNb) 

J.L= +1 sqrt[1/1] (1 ZrMo) 

J.L= -1 sqrt[1/14] (1 sqrt[6] YTc + 2 NbNb) 

J.L= o sqrt[1 /14] (1 sqrt[3] YRu + 1 sqrt[3] ZrTc + 2 sqrt[2] NbMo) 

J.L= +1 sqrt(1/14] (1 sqrt[6] ZrRu + 2 MeMo) 

J.L= -1 sqrt[1/7) (1 YAh + 1 sqrt[6] NbTe) 

J.L= o sqrt[1/28] (1 sqrt[2] YPd + 1 sqrt[2] ZrRh + 2 sqrt[3] NbRu + 

+ 2 sqrt[3] MoTe) 

p.= + 1 sqrt[1 /7] (1 ZrPd + 1 sqrt(6] MoRu) 

J.L= -1 sqrt[1/35] (1 VAg + 4 NbRh + 3 TeTe) 

p.= 0 sqrt[1 /70] (1 YCd + 1 ZrAg + 4 NbPd + 4 MoRh + 6 TeRu) 

J.L= + 1 sqrt[1 /35] (1 ZrCd + 4 MoPd + 3 Au Au) 

P.= -1 sqrt[1/7] (1 NbAg + 1 sqrt[S] TcRh) 

p.= 0 sqrt[1/28] (1 sqrt[2] NbCd + 1 sqrt[2] MoAg + 2 sqrt[3) TePd 

+ 2 sqrt[3] RuRh) 

p.= +1 sqrt[1/7] (1 MoCd + 1 sqrt[6] RuPd) 

p.= -1 sqrt[1/14] (1 sqrt[S) TcAg + 2 RhRh) 

P.= 0 sqrt[1 /14] (1 sqrt[3] TeCd + 1 sqrt[3] RuAg + 2 sqrt[2] AhPd) 

J.L= + 1 sqrt[1/14] ( 1 sqrt[6] RuCd + 2 PdPd) 

p.= -1 sqrt[1/1] (1 RhAg) 

p.= 0 sqrt[1/2] (1 RhCd + 1 PdAg) 

P.= +1 sqrt[1/1] (1 PdCd) 



m = +4 

Jl= -1 sqrt[1/2] (1 AgAg) 

Jl= 0 sqrt[1 /1] (1 AgCd) 

Jl= +1 sqrt[1 /2} (1 CdCd) 

31 ; n • 4 X 4; I .. 3 X 3 

m. -6 

m'"' -5 

m = -4 

m = -3 

m'"' -2 

Jl= -1 sqrt[1/2] (1 LaLa) 

Jl= 0 sqrt[1/1] (1 LaCe) 

Jl= +1 sqrt[1/2} (1 CeCe) 

Jl= -1 sqrt[1/1] (1 LaPr) 

Jl= 0 sqrt[1/2] (1 LaNd + 1 CePr) 

Jl= +1 sqrt[1 /1] (1 CeNd) 

Jl= -1 sqrt[1 / 11 ] (1 sqrt[5] LaPm + 1 sqrt(3] PrPr) 

Jl= 0 sqrt[1/22] (1 sqrt[5] LaSm + 1 sqrt[S] CePm + 

+ 2 sqrt(3] PrNd) 

Jl= + 1 sqrt[1/11] ( 1 sqrt[S] CeSm + 1 sqrt[3] NdNd) 

Jl= -1 sqrt[1/22] (2 LaEu + 3 sqrt[2] PrPm) 

Jl= 0 sqrt[1/22] (1 sqrt[2] LaGd + 1 sqrt[2] CeEu + 3 PrSm + 

+ 3 NdPm) 

Jl= +1 sqrt[1/22] (2 CeGd + 3 sqrt[2] NdSm) 

Jl= -1 sqrt[1/198] (2 sqrt[3] LaTb + 4 sqrt[6] PrEu + 

+ 3 sqrt(5] PmPm) 

Jl= 0 sqrt[1/198] (1 sqrt[6) LaDy + 1 sqrt[6] CeTb + 

+ 4 sqrt(3] PrGd + 4 sqrt[3] NdEu + 3 sqrt[1 OJ PmSm) 

Jl= + 1 sqrt[1 /198] (2 sqrt[3] CeDy + 4 sqrt[6] NdGd + 

+ 3 sqrt[5] SmSm) 



m = -1 

m=O 

m = +1 

m = +2 

m = +3 

p.= -1 sqrt[1/1980] (1 sqrt[30] LaHo + 15 sqrt[2] PrTb + 

+ 10 sqrt[15] PmEu) 

p.= 0 sqrt[1/1980] (1 sqrt[15] LaEr + 1 sqrt[15] CeHo + 15 PrDy + 

+ 15 NdTb + 5 sqrt[30] PmGd + 5 sqrt(30) SmEu) 

p.= + 1 sqrt[1/1980] (1 sqrt[30] CeEr + 15 sqrt[2] NdDy + 

+ 10 sqrt[15] SmGd) 

p.= -1 sqrt[1/462] (1 LaTm + 6 PrHo + 15 PmTb + 10 EuEu) 

p.= 0 sqrt[1/924] (1 LaYb + 1 CeTm + 6 PrEr + 6 NdHo + 15 PmDy + 

+ 15 SmTb + 20 EuGd) 

p.= +1 sqrt[1/462] (1 CeYb + 6 NdEr + 15 SmDy + 10 GdGd) 

p.= -1 sqrt[1/396] (1 sqrt(6] PrTm + 3 sqrt(1 0] PmHo + 

+ 10 sqrt[3] EuTb) 

p.= 0 sqrt(1/396] (1 sqrt[3] PrYb + 1 sqrt[3] NdTm + 

+ 3 sqrt(5] PmEr + 3 sqrt(5] SmHo + 5 sqrt[6] EuDy + 

+5 sqrt[6] GdTb) 

p.= + 1 sqrt[1/396] (1 sqrt[6} NdYb + 3 sqrt[1 O] SmEr + 

+ 1 o sqrt[3] GdDy) 

p.= -1 sqrt[1/990] (2 sqrt[15] PmTm + 4 sqrt[30] EuHo + 15 TbTb) 

p.= o sqrt[1/990] (1 sqrt[30] PmYb + 1 sqrt[30] SmTm + 

+ 4 sqrt[15] EuEr + 4 sqrt[15] GdHo + 15 sqrt[2] TbDy) 

P.= +1 sqrt[1/990) (2 sqrt[15] SmYb + 4 sqrt[30] GdEr + 15 DyDy) 

p.= ·1 sqrt[1/22] (2 EuTm + 3 sqrt[2] TbHo) 

p.= 0 sqrt[1/22] (1 sqrt[2] EuYb + 1 sqrt[2] GdTm + 3 TbEr + 

+ 3 DyHo) 

p.= + 1 sqrt[1/22] (2 GdYb + 3 sqrt[2] DyEr) 



m = +5 

m = +6 

Jl= -1 sqrt[1/165] (5 sqrt[3] TbTm + 3 sqrt[5) HoHo) 

JJ= 0 sqrt[1 /330] (5 sqrt[3) Tb Yb + 5 sqrt[3] DyT m + 

+ 6 sqrt[5] HoEr) 

JJ= + 1 sqrt[1 /165] (5 sqrt[3] DyYb + 3 sqrt[5] ErEr) 

f.L= -1 sqrt[1/1] (1 HoTm) 

JJ= 0 sqrt[1 /2] (1 HoYb + 1 ErTm) 

JJ= +1 sqrt[1/1] (1 ErYb) 

f.L= -1 sqrt[1/2] (1 TmTm) 

f.L= 0 sqrt[1/1] (1 TmYb) 

JJ= +1 sqrt[1/2] (1 YbYb) 

3s ; n = 5 x 5; 1 = o x o 

m = O 

f.L= -1 sqrt[1/2) (1 RbRb} 

JJ= 0 sqrt[1/1] (1 RbSr) 

f.L= + 1 sqrt[1 /2] (1 SrSr) 

3D ; n = 5 x 5; I = 1 x 1 

m = -2 

f.L= -1 sqrt[1/2] (1 lnln} 

f.L= 0 sqrt[1 /1] (1 lnSn) 

f.L= + 1 sqrt[1 /2] (1 SnSn} 

m = -1 

f.L= -1 sqrt[1/1] (1 lnSb) 

f.L= 0 sqrt[1/2] (1 lnTe + 1 SnSb) 

f.L= +1 sqrt[1/1] (1 SnTe) 

f.L= -1 sqrt[1 /3) (1 In I + 1 SbSb) 

Jt= 0 sqrt[1/6] (1 lnXe + 1 Snl + 2 SbTe) 



IJ.= +1 sqrt[1/3] (1 SnXe + 1 TeTe) 

m = +1 

P.= -1 sqrt[1 /1] (1 Sbl ) 

Jl.= 0 sqrt[1 /2) (1 SbXe + 1 Tel ) 

jJ.= +1 sqrt[1/1) (1 TeXe) 

m = +2 

J.L= -1 sqrt[1 /2] (1 I I ) 

Jl.= 0 sqrt[1 /1] (1 I Xe) 

Jl.= +1 sqrt[1 /2] (1 XeXe) 

3G ; n = 5 x 5; I = 2 x 2 

m = -4 

m = -3 

m = -2 

m = -1 

m= O 

J.L= -1 

p.= 0 

IJ.= +1 

Jl.= -1 

J.L= 0 

p.= +1 

sqrt[1 /2] (1 Lulu) 

sqrt[1 /1) (1 LuHf) 

sqrt[1/2] (1 HfHf) 

sqrt[1/1] (1 LuTa) 

sqrt[1 /2] (1 LuW + 1 HfTa) 

sqrt[1/1) (1 HfW) 

IJ.= -1 sqrt[1/14] (1 sqrt[6] LuRe + 2 TaTa) 

p.= 0 sqrt[1/14] (1 sqrt[3) LuOs + 1 sqrt[3) HfRe + 2 sqrt[2) TaW) 

p.= + 1 sqrt[1/14] (1 sqrt[6] HfOs + 2 WW) 

p.= -1 sqrt[1/7] (1 Lulr + 1 sqrt[6] TaRe} 

IJ.= 0 sqrt[1/28] (1 sqrt[2] LuPt + 1 sqrt[2] Hflr + 2 sqrt[3] TaOs + 

+ 2 sqrt[3] WRe} 

p.= + 1 sqrt[1 /7] (1 HfPt + 1 sqrt[6) WOs} 

IJ.= -1 sqrt[1/35] (1 LuAu + 4 Talr + 3 ReRe} 

Jl.= 0 sqrt[1/70] (1 LuHg + 1 HfAu + 4 TaPt + 4 Wlr + 6 ReOs) 

p.= + 1 sqrt[1/35] (1 HfHg + 4 WPt + 3 OsOs) 



m = +1 

m = +2 

m = +3 

J.L= -1 sqrt[1 /7] (1 TaAu + 1 sqrt[6] Relr) 

J.L= 0 sqrt[1/28] (1 sqrt[2] TaHg + 1 sqrt[2] WAu + 2 sqrt[3] RaPt 

+ 2 sqrt[3] Oslr) 

J.L= + 1 sqrt[1 /7] (1 WHg + 1 sqrt[6] OsPt) 

J.L= -1 sqrt[1/14] (1 sqrt[6] ReAu + 2 lrlr) 

J.L= 0 sqrt[1 /14] (1 sqrt[3] ReHg + 1 sqrt(3] OsAu + 2 sqrt[2] lrPt) 

Ji.= +1 sqrt[1/14] (1 sqrt[6] OsHg + 2 PtPt) 

J.l.= -1 sqrt[1/1] (1 lrAu) 

J.L= 0 sqrt{1/2] ( 1 lrHg + 1 PtAu) 

Jl.= +1 sqrt[1/1] (1 PtHg) 

Jl.= -1 sqrt[1/2] (1 AuAu) 

J.L= 0 sqrt(1/1) (1 AuHg) 

J.L= +1 sqrt[1/2] (1 HgHg) 

31 ; n = 5 x 5; I = 3 x 3 

m = -6 

J.L= -1 sqrt[1/2] (1 AcAc) 

J.L= o sqrt[1/1] (1 AcTh) 

J.L-= +1 sqrt[1/2] (1 ThTh) 

m = -5 

Jl.= -1 sqrt[1/1] (1 AcPa) 

Jl.= 0 sqrt[1/2] (1 AcU + 1 ThPa) 

Jl.= +1 sqrt(1/1] (1 ThU) 

m = -4 

Jl.-= -1 sqrt[1/11] ( 1 sqrt[5] AcNp + 1 sqrt[3] PaPa) 

Jl.= 0 sqrt[1 /22] (1 sqrt[5] AcPu + 1 sqrt[5] ThNp + 2 sqrt(3] PaU) 

Jl.= +1 sqrt[1/11] (1 sqrt(5] ThPu + 1 sqrt[3) UU) 



m = -3 

m = -2 

m = -1 

m = o 

m = +1 

J.l= -1 sqrt[1/22] (2 AcAm + 3 sqrt[2] PaNp) 

J.l= o sqrt[1/22] (1 sqrt[2] AcCm + 1 sqrt[2] ThAm + 3 PaPu + 

+ 3 UNp) 

J.l= + 1 sqrt[1/22) (2 ThCm + 3 sqrt[2] UPu) 

J.l= -1 sqrt[1 /198] (2 sqrt[3] AcBk + 4 sqrt[6] PaAm + 

+ 3 sqrt[5) NpNp) 

J.l= 0 sqrt[1/198] (1 sqrt[6] AcCf + 1 sqrt[6] ThBk + 

+ 4 sqrt[3] PaCm + 4 sqrt[3) UAm + 3 sqrt[1 0) NpPu} 

J.l= + 1 sqrt[1 /198] (2 sqrt[3] ThCf + 4 sqrt{6) UCm + 

+ 3 sqrt[5] PuPu) 

J.l= -1 sqrt[1/1980] (1 sqrt{30] AcEs + 15 sqrt[2] PaBk + 

+ 1 o sqrt[15] NpAm) 

J.L= 0 sqrt[1/1980] (1 sqrt[15] AcFm + 1 sqrt(15) ThEs + 

+ 15 PaCt + 15 UBk + 5 sqrt[30] NpCm + 5 sqrt(30] PuAm) 

J.l= + 1 sqrt[1/1980] (1 sqrt[30] ThFm + 15 sqrt[2] UCf + 

+ 1 0 sqrt[15] PuCm) 

J.L= -1 sqrt[1/462] (1 AcMd + 6 PaEs + 15 NpBk + 10 AmAm) 

J.l= 0 sqrt[1/924] (1 AcNe + 1 ThMd + 6 PaFm + 6 UEs + 15 NpCf + 

+ 15 PuBk + 20 AmCm) 

J.l= +1 sqrt[1/462] (1 ThNo + 6 UFm + 15 PuCf + 10 CmCm) 

J.l= -1 sqrt[1/396] (1 sqrt[6] PaMd + 3 sqrt[10) NpEs + 

+ 1 0 sqrt[3] AmBk) 

J.l= 0 sqrt[1/396] (1 sqrt[3] PaNe + 1 sqrt[3] UMd + 3 sqrt[5] NpFm 

+ 3 sqrt[5] PuEs + 5 sqrt[6] AmCf + 5 sqrt(6) CmBk) 

J.L= + 1 sqrt(1/396] (1 sqrt[6] UNo + 3 sqrt[1 OJ PuFm + 

+ 1 o sqrt[3] CmCf) 



m = +2 

J.L= -1 sqrt[1/990] (2 sqrt[15] NpMd + 4 sqrt[30] AmEs + 15 BkBk) 

J.L= 0 sqrt[1 /990] (1 sqrt[30] NpNo + 1 sqrt[30] PuMd + 

+ 4 sqrt[15] AmFm + 4 sqrt[15] CmEs + 15 sqrt[2) BkCf) 

jJ.= +1 sqrt[1!990] (2 sqrt[15] PuNa + 4 sqrt(30] CmF m + 15 CfCf) 

m= +3 

J.L= -1 sqrt[1/2.2] (2 AmMd + 3 sqrt[2] BkEs) 

J.L= 0 sqrt[1 /2.2] (1 sqrt[2] AmNo + 1 sqrt[2] CmMd + 3 BkFm + 

+ 3 CfEs) 

jJ.= +1 sqrt[1/22] (2 CmNo + 3 sqrt[2] CfFm) 

m = +4 

jJ.= -1 sqrt[1/165] (5 sqrt[3] BkMd + 3 sqrt[5] EsEs) 

jJ.= 0 sqrt[1/330] (5 sqrt[3] BkNo + 5 sqrt[3] CfMd + 

+ 6 sqrt[5] EsFm) 

J.L= + 1 sqrt[1/165] (5 sqrt[3] CfNo + 3 sqrt[5] FmFm) 

m = +5 

jJ.= -1 sqrt[1/1] ( 1 EsMd) 

jJ.= 0 sqrt[1/2] (1 EsNo + 1 FmMd} 

jJ.= + 1 sqrt[1/1] (1 FmNo) 

m = +6 

jJ.= -1 sqrt[1/2] (1 MdMd) 

jJ.= 0 sqrt[l/1] (1 MdNo) 

jJ.= +1 sqrt[1/2] (1 NoNo) 

3s ; n = 6 X 6; I = 0 X 0 

m=O 
jJ.= -1 sq rt[1/2] (1 CsCs) 

J.L= 0 sqrt[1/1] (1 CsBa) 

J.L= +1 sqrt[1/2] (1 BaBa) 



3o ; n = 6 x 6; 1 = 1 x 1 

m = -2 

J.l= -1 sqrt[1/2] (1 TITI) 

J.l= 0 sq rt[1 /1] (1 TIPb) 

J.l= +1 sqrt[1 /2] (1 PbPb} 

m = -1 

J.l= -1 sqrt[1/1] (1 TIBi) 

J.l= 0 sqrt[1/2) ( 1 TIPo + 1 PbBi) 

J.l= +1 sqrt[1/1] (1 PbPo) 

m = O 

J.l= -1 sqrt[1/3] (1 TIAt + 1 BiBi) 

J.l= 0 sqrt[1/6] (1 TIRn + 1 PbAt + 2 BiPo) 

J.l= +1 sqrt[1/3] (1 PbRn + 1 PoPo) 

m = +1 

J.l= -1 sqrt[1/1] (1 BiAt} 

J.l= 0 sqrt[1/2] (1 BiRn + 1 PoAt) 

J.l= +1 sqrt[1/1] (1 PoRn) 

m = +2 

J.l= -1 sqrt[1/2] (1 At At) 

J.l= 0 sqrt[1/1] (1 A tAn) 

J.l= +1 sqrt[1/2] (1 A nAn) 

3G ; n = 6 x 6; I = 2 x 2 

m = -4 

J.l= -1 sqrt[1/2] (1 YY) 

J.l= 0 sqrt[1/1] (1 YZr} 

J.l= + 1 sqrt[1/2] (1 ZrZr) 



3s ; n = 7 x 7; 1 = o x o 
m = 0 

J.L= -1 sqrt[1/2) (1 FrFr) 

J.L= 0 sqrt[1/1] (1 FrRa) 

Jl= +1 sqrt[1 /2] (1 RaRa) 
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Representation space L(1) corresponding to the group S0(4J2}xSU(2) 

n=1 n-2 n-4 n-5 n-7 n-8 n-9 - - - - - - -
I= Ll Na K Cs Fr m= 

He Ca Sr 8a 
1 B m=-1 

c Sn Pb 
N p As Sb Bf m= 

s Te Po 
F Br At m= 1 
Ne Ar Kr Xe 

Sc y Lu Lr m=-2 
Ti Hf Ku 
v Nb Ta m=-1 
Cr Mo w 
Mn Tc m= 
Fe Os 
Co m= 1 
Ni Pd Pt 
Cu Ag Au m= 2 

Cd 
La Ac m=-3 
Ce Th 
Pr Pa m=-2 
Nd u 
Pm Np m=-1 
Sm Pu 
Eu Am m= 

Crn 
Tb Bk m= 1 
Dv Cf 
Ho Es m= 2 
Er Fm 
Tm Md m= 
Yb No 

m=-4 

m=-3 

m=-2 

m=-1 

m= 

m= 1 

m= 2 

m= 

m= 4 
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corresponding to the subgroup S0(4)xSU(2) 
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corresponding to the subgroup 
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corresponding to the subgroup 
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Decomposition of the representation space L2 

corresponding to diatomic molecules from the atoms of row 2 
in symmetry 

Figure : 7 



Ionization for x 

Atoms 2 multiplet 
Single Particle 

Figure: 8 



Ionization Potentials for x 
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. 

Diatomic Molecules 2 3D multiplet 
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Figure : 9 



Ionization for x SU(2) Symmetry 
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. 
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Figure : 



Ionization Potentials for x Symmetry 
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2 
is 16 e V 

- Assume Both 
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11 



for x SU(2) Symmetry 

z.oo o.oo 

Assume I.P. of B2 is 8 e V 
D -Assume I.P. of Ne

2 
is 16 eV 

Assume Both 

Diatomic Molecules 2 multiplet 
Particle Operator on Homonuclear Vectors 

Figure : 12 



Ionization Potentials for x Symmetry 

Triatomic Molecules 2 multiplet 
Single Particle 

Figure: 13 



Heat of for x 

\\ 

Diatomic Molecules 2 3D multiplet 
Single Particle Operator 
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Heat of Atomization for X SU(2) Symmetry 

Diatomic Molecules 2 3D multiplet 
Single Particle Operator on Homonuclear Vectors 

Figure: 15 
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Molecules 2 multiplet 
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Heat of Atomization for x Symmetry 

. 
o.oo 

Diatomic Molecules 2 1P multiplet 
Particle on Homonuclear Vectors 

Figure: 17 



Heat of Atomization for x 

o.oo 

Diatomic Molecules 2 3S multiplet 
Single Particle Operator 

Figure: 18 



Heat of Atomization for x 

Diatomic Molecules 2 3S multiplet 
Single Particle on Homonuclear Vectors 

Figure: 19 



Heat of Atomization for x SU(2) Symmetry 

Triatomic Molecules 2 multiplet 
Single Particle Operator 

Figure: 



Heat of for x SU(2) 

- 1/2 

Molecules 2 2D 
Single Operator 

Figure: 21 



Heat of Atomization for x Symmetry 

Triatomic Molecules 2 multiplet 
Single Particle Operator 

Figure : 22 



Table 1: 

Group name Matrices in representation group 

U(n) nxn unitary (UH U 

SU(n) nxn unitary with determinant 1 
n xn orthogonal 1) 

nxn orthogonal with determinant 1 



FIG. 1. The representation space L 1 corresponding to the set of atoms. 

2. Diagramatic relationships between G, A, GL(L1), and L1. 

3. The two chains of subgroups of 

4. Multiplets corresponding to the subgroup 

5. Multiplets corresponding to the subgroup 

6. Multiplets corresponding to the subgroup 

7. Periodic system of diatomic molecules formed from 

8. potentials for doublet P atoms. 

9. Ionization potentials for triplet diatomic molecules. 

1 a. Ionization potentials for D diatomic molecules using homonuclear identies. 

FIG. 11.lonizatlon potentials for singlet P diatomic molecules using homonuclear identles. 

12.1onization potentials for tripletS diatomic molecules using homonuclear identies. 

13.1onization potentials for quartet F triatomic molecules. 

FIG. 14. Heat of atomization for triplet D diatomic molecules. 

FIG. 15.Heat of atomization for triplet D diatomic molecules using homonuclear identies. 

FIG. 16. Heat of atomization for singlet P diatomic molecules. 

17.Heat of atomization for singlet P diatomic molecules using homonuclear identies. 

18. Heat of atomization _for triplet diatomic molecules. 

19. Heat of atomization for triplet diatomic molecules using homonuclear identies. 

Heat of atomization for quartet F triatomic molecules. 

21. Heat of atomization for doublet D triatomic molecules. 

FIG. 22. Heat of atomization for quartet P triatomic molecules. 

TABLE. 1. Different types of groups. 
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