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Degradation Models

Introduction

Reliability testing typically generates product lifetime
data, but for some tests, covariate information about
the wear and tear on the product during the life test
can provide additional insight into the product’s life-
time distribution. This usage, or degradation, can be
the physical parameters of the product (e.g., corro-
sion thickness on a metal plate) or merely indicated
through product performance (e.g., the luminosity
of a light emitting diode). The measurements made
across the product’s lifetime are degradation data,
and degradation analysis is the statistical tool for pro-
viding inference about the lifetime distribution from
the degradation data.

Degradation testing and analysis is tied in with
accelerated life testing (ALT) because both meth-
ods have evolved in recent years to suit reliability
tests for which product lifetimes are expected to
last far beyond the allotted test time (see Accel-
erated Life Models). ALT is meant to expedite
product failure during test intervals by stressing
the product beyond its normal use. This helps to
bring in more information if the link between the
accelerated test environment and the regular use
environment is known. The same is true of degra-
dation analysis. If the link between the measure
of degradation and lifetime is clearly known, the
degradation data provide valuable information about
product reliability. Accelerated degradation testing
(ADT) combines these two approaches by test-
ing products in harsh environments and measur-
ing the evidence of product degradation during the
ALT.

Degradation analysis is especially useful for tests
in which soft failures occur; that is, the lifetime
of the test item is said to end after the measured
performance decreases to a predetermined threshold
value that designates a nonfunctioning state or an
incipient failure. For a test of material strength, as
an example, the degradation measurement might be
the increasing size of the largest observed crack in
the material, or the amount of corrosion measured
on the surface. A failure event can be designated
long before the material actually breaks. As another
example, electronic components function reliably if
their resistance, capacitance and voltage stay within

design limits, and failure can be said to occur when
one or more of these parameters degrades beyond a
specified limit. Ohring [1] presents a comprehensive
array of physical models for electronic devices.
Similarly, light emitting devices may be considered
to fail only after the luminosity degrades below a
fixed measured limit.

Figures 1 and 2 illustrate two different examples
of degradation data. Figure 1, from Bogdanoff and
Kozin [2] and featured in Meeker and Escobar [3],
shows the measured crack size for alloy specimens
that were fatigued by rapid cycling. Twelve of the 21
test items failed because their crack sizes exceeded
the fixed threshold of 1.6 inches. Nine other test items
did not fail, and if the degradation model is sound,
more information will be gained from the degradation
measurements in these nine observations compared to
the respective lifetime measurements, which are right
censored.

Figure 2 shows the measured degradation path for
light emission of seven vacuum fluorescent displays
(VFDs). The VFDs were tested for 200 h in an
accelerated failure environment, so this is an example
of an ADT. See Bae and Kvam [4] for details. In
this case, the degradation path of each test item
reaches the failure threshold (defined as the time the
luminosity decreases by 50%) where a soft failure is
defined.

Degradation Modeling

Models for degradation are generally either data-
driven or derived from physical principles via
stochastic processes. Although the data-driven model
is more commonly applied to analyze degradation
data, viewing degradation through stochastic pro-
cesses helps researchers theoretically characterize the
failure process.

Data-Driven Model

The measured degradation path for the ith tested
device (i = 1, . . . , n) will consist of a vector of
mi measurements made at time points ti1, . . . , timi

.
The VFDs in Figure 2, for example, were each
measured at the same five time points (0, 24, 72,
100, and 200 h). The measured degradation at t can
be modeled as the actual unknown degradation η(t)
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plus a measurement error term ε. At the mi time
points, the degradation measurements of device i are

yij = η(tij ) + εij , 1 ≤ i ≤ n, 1 ≤ j ≤ mi (1)

The form of η can be chosen to have a strict
form or it can be more arbitrary. For example, the
degradation of many electronic components is known
to be of a log-linear form. That is, if we replace
y with log(y), η can be a linear function of time
such as η(t) = β1 + β2t . On the other hand, the form
for degradation can be unknown and nonparametric
regression techniques are required to analyze the
degradation data. Shiau and Lin [5] use this approach,
but compared to a well chosen parametric model,
their method can be quite inefficient. However, they
show that the nonparametric technique can be useful
for selecting a suitable parametric form of η.

If a specific form is described for η, we will
have an unknown set of parameter values β =
(β1, . . . , βk) that must be estimated in order to
fully characterize the degradation. In any realistic
application of degradation analysis, the test units will
degrade in a similar way but on distinct paths. To
model this unit-to-unit variability, a distribution is
assigned to β, allowing n distinctive paths to describe
the degradation of the n test units. Meeker and
Escobar [3] present a convincing argument for why
the normal distribution adequately characterizes
this randomness (i.e., β ∼ N(β̄, �)). Along with
β, let λ represent unknown parameters that are
common across test units (thus no random effects are
necessary) so the degradation path is expressed by

yij = η(tij ; λ, βi) + εij , 1 ≤ i ≤ n, 1 ≤ j ≤ mi

(2)

Degradation Processes

In many experiments, degradation is a continuous
progression of wear and decay, so it makes intuitive
sense to model the degradation path with a stochastic
process. If we let a stochastic process W(t) to
describe the degradation level of an item at time t ,
the mean degradation µ(t) = E[W(t)] is typically
increasing and sometimes known through physical
principles. For example, the wear on an automobile
tire might be measured in terms of usage (t =
odometer reading) and if the tire wear is constant,
µ(t) = λt for some unknown value λ.

The degradation characteristics of several elec-
tronic components can be described through stochas-
tic processes. For example, Mitsuo [6] determined
the mean degradation for light emitting diodes as
µ(t) = λtk for some λ > 0 and k ∈ �. Aven and
Jensen [7] show how different processes imply dif-
ferent lifetime distributions. For example, in the case
where the degradation follows a Wiener process, the
time when the degradation level first reaches a fixed
failure threshold has an inverse Gaussian distribu-
tion.

Stochastic processes are also helpful to infer life-
time distributions from damage models, which are a
special case of degradation models, for example, see
Kahle and Wendt [8]. For example, suppose M(t) is
a Poisson shock process with rate λ. Let Pk be the
probability that the system survives k shocks, so that
1 = P0 ≤ P1 ≤ P 2 ≤ . . .. Then, the system survival
can be expressed as

∞∑
k=0

Pk

(λt)k

k!
e−λt

If Pi+j ≤ PiPj , then compared to a new device, the
probability of surviving k additional shocks is smaller
when the device has already absorbed some shocks.
Based on this premise, it is possible to show that
the lifetime distribution is new better than used, that
is, for any x, y > 0, P(X ≥ x)P (X ≥ y) ≥ P(X ≥
x + y) (see Stochastic Orders and Aging).

Relating Degradation to Lifetime

If the physics of failure is known through the
model of an item’s degradation over time, it’s life-
time distribution can be inferred from this model
as well (see Degradation and Failure). For materi-
als, specimens exposed to constant stress cycles in a
given stress range, lifetime is measured in number-of-
cycles until failure (N ). The Whöler curve (or S − N

curve) relates stress level (S) to N as NSb = k,
with known material parameters b and k. The S − N

equation is expressed in log form as Y = log N =
log k − b log S. If N is log-normally distributed, Y

is normally distributed and regular regression models
can be applied for predicting cycles-to-failure. The
log-normal distribution is considered for modeling
the failure time distribution when the corresponding
degradation process based on rates that combine mul-
tiplicatively, and it is convenient for modeling fatigue
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crack growth in metals and composites. Sobczyk and
Spencer [9] features numerous settings and examples.

An alternative model based on fatigue, introduced
by Birnbaum and Saunders [10], defined Bn to be
the measurable damage (see Cumulative Damage
Models Based on Gamma Processes) to the test
item after n cycles with accumulated amount of
damage ζi in the ith cycle via Bn = ζ1 + · · · + ζn,
i = 1, . . . , n. If the ζis are identically and inde-
pendently distributed as with mean µ and variance
σ 2,

P(N ≤ n) = P(Bn > B∗) ≈ �

(
B∗ − nµ

σ
√

n

)
(3)

where � is the standard normal cumulative distri-
bution function (CDF). This results because Bn will
be approximately normal if n is large enough. The
reliability function for the test unit is

R(t) ≈ �

(
B∗ − nµ

σ
√

n

)
(4)

This is called the Birnbaum–Saunders distribu-
tion, and it follows that

W = µ
√

N

σ
− B∗

σ
√

N
(5)

has a normal distribution, which leads to accessi-
ble implementation in lifetime modeling. Bogdanoff
and Kozin [2] overview properties of the Birn-
baum–Saunders distribution for materials testing.

Statistical Inference

If we assume the degradation path model in
equation (2), with item-to-item variability reflected
through random coefficients in η, we have an
accumulated set of unknown parameters θ =
(λ, β̄, �), which makes for a difficult computation
of the lifetime distribution. Numerical methods and
simulations are typically employed to generate point
estimates and confidence statements.

In selecting a degradation model based on lon-
gitudinal measurements of degradation, monotonic
models are typically chosen under the assumption that
degradation is a one-way process. From the degrada-
tion model, the lifetime distribution is defined as the

time at which the degradation first reaches the failure
threshold, designated y∗:

F(t) = P(y(t) > y∗) = P(η(t ; λ, β) + ε > y∗)
(6)

Least squares (Least-Squares Estimation) or
maximum likelihood (Maximum Likelihood) can
be used to estimate the unknown parameters in the
degradation model. To estimate F(t0), one can simu-
late N degradation curves from the estimated regres-
sion by generating N random coefficients θ1, . . . , θN

from the estimated distribution G(θ ; β̂). Next com-
pute the estimated degradation curve for yi based on
the model with θi and λ̂ : yi(t) = ηi(t ; λ̂, θi). Then
F̂ (t0) is the proportion of the N generated curves that
have reached the failure threshold y∗ by time t0.

A nonparametric bootstrap sampling procedure
can be used for measuring the uncertainty in the
lifetime distribution estimate. The bootstrap proce-
dure resamples the sample degradation curves with
replacement (i.e., so some curves may not be repre-
sented in the sample while others may be represented
multiple times). Meeker and Escobar [3] summarize a
bootstrap procedure for making confidence intervals
for the lifetime distribution:

1. Compute estimates of parameters β̄, λ, �.
2. Use simulation (above) to construct F̂ (t0).
3. Generate N ≥ 1000 bootstrap samples, and for

each one, compute estimates F̂ (1)(t0), . . . ,

F̂ (N)(t0). This is done as before except now the
M simulated degradation paths are constructed
with an error term generated from H(η; �̂) to
reflect variability in any single degradation path.

4. With the collection of bootstrap estimates in
equation (7), compute a 1 − α level confidence
interval for F(t0) as (F̂ l(t0), F̂ u(t0)), where the
indexes 1 ≤ l ≤ u ≤ N are calculated as N−1 =
�(2�−0.5(p0) + �−0.5(0.5α)) and uN−1 =
�(2�−0.5(p0) + �−0.5(0.5(1 − α))), and p0 is
the proportion of bootstrap estimates of F(t0)

less than F̂ (t0).

Example

The VFDs are tested (see Figure 2) at higher fil-
ament voltage level than normal usage condition
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(Ef = 4.55 V). It is known that the display luminos-
ity for VFDs decreases exponentially over most of
the usage period when the degradation path can be
expressed as

�(t) = β0 exp(−β1t) (7)

where �(t) denotes the luminosity at time t , β0 is the
initial luminosity, and β1 is the rate of degradation.
The light device is considered to fail at the time
its luminosity decreases below 50% of its initial
measurement. That is, failure is defined as the first
time relative luminosity

y(t) = �(t)

�(0)
= exp(−β1t) (8)

falls below 0.5. Using least-squares regression with
the log transformation log y(t) = −β1t , and by ignor-
ing variation between individuals, the fitted (no-
intercept) model is

log y(t) = −0.0048t (9)

with R2 = 0.9893. However, the model fails to reflect
individual variation of degradation rate (see Table 1).

To reflect individual variation of degradation, a
linear random-coefficients model can be applied by
assuming that β1 is random. The random effects
model can be written as

log y(tij ) = −(β + ui)tij + εij (10)

where tij is the covariate for the j th measurement
time on the ith individual, εij ∼ N(0, σ 2), and ui ∼
N(0, σ 2

u ). Using the SAS NLMIXED procedure, the
fitted linear random-coefficients model is computed
numerically as

log y(tij ) = −0.004751tij (11)

Table 1 Estimated degradation rates for
VFDs in Figure 2

Sample Degradation rate

1 4.6 × 10−3

2 5.1 × 10−3

3 4.6 × 10−3

4 5.1 × 10−3

5 4.8 × 10−3

6 4.0 × 10−3

7 5.0 × 10−3

with σ̂ 2
u = 0.001574 and σ̂ 2 = 1.032 × 10−7. Based

on the estimated parameters, the fitted lines are given
in Figure 3.

Comments

Degradation measurements have great potential to
improve lifetime data analysis, but they also intro-
duce new problems to the statistical inference. Life-
time models have been researched and refined for
many manufactured products that are put on test.
On the other hand, parametric degradation models
tend to be based on simple physical properties of
the test item and its environment (e.g., the Paris
crack law, Arrhenious rule, Power law) which often
lead to obscure lifetime models. Meeker and Esco-
bar [3] show that most valid degradation models
will not yield lifetime distributions with closed-form
solutions. Given the improving computational tools
available to researchers, this should be no deterrent
to using degradation analysis.

In a setting where the lifetime distribution is
known, but the degradation distribution is unknown,
degradation information does not necessarily com-
plement the available lifetime data. For example,
the lifetime data may be distributed as Weibull, but
conventional degradation models will contradict the
Weibull assumption (actually, the rarely used recipro-
cal Weibull distribution for degradation with a fixed
failure threshold leads to Weibull lifetimes). Bae
et al. [11] discuss this problem in terms of a simple
additive degradation model.

Finally, the monotone relationship between degra-
dation and usage (or time) does not necessarily hold
for all applications. Bae and Kvam [12] analyze light
display data for a VFD that shows nonmonotonic
degradation during its burn-in period (see Burn-In
and Maintenance Policies), when impurities in the
vacuum are being burned off. As this happens, lumi-
nosity actually increases slightly before beginning a
long and steady decrease over its usage period. In
this case, a more complicated mixture model that
captures the burn-in effect proves to be more effi-
cient.

Compared to ordinary life testing or even ALT,
degradation analysis procedures tend to be com-
putationally cumbersome. However, for important
applications, the increase in statistical efficiency can
be dramatic. In the past, these computations have
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Figure 3 Fitted degradation model

impeded degradation analysis from being a feature
of reliability problem solving. Such analyses are
easier to implement now, and the reliability ana-
lyst need not be coerced into using an overly sim-
plistic model – for instance, a linear model that
does not allow for random coefficients. Chen and
Zheng [13] construct an imputation algorithm to
generate a closed-form solution, although its per-
formance is suspect for medium or small sam-
ples.

Robinson and Crowder [14] introduce a Bayesian
approach and showed if prior distributions are cho-
sen from a reasonable class, they have negligible
effect on the lifetime estimation. Bayesian reliabil-
ity is summarized in Bayesian Reliability Analy-
sis. In most cases the Bayesian procedure is even
more computational than the one introduced here,
but Markov chain Monte Carlo (e.g., Hierarchi-
cal Markov Chain Monte Carlo (MCMC) for

Bayesian System Reliability) methods have straight-
forward implementation.
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