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Statistical Reliability with Applications

Paul Kvam and Jye-Chyi Lu

School of Industrial & Systems Engineering

Georgia Institute of Technology

This chapter reviews fundamental ideas in reliability theory and inference. The
first part of the chapter accounts for lifetime distributions that are used in engi-
neering reliability analyis, including general properties of reliability distributions
that pertain to lifetime for manufactured products. Certain distributions are for-
mulated on the basis of simple physical properties, and other are more or less
empirical. The first part of the chapter ends with a description of graphical and
analytical methods to find appropriate lifetime distributions for a set of failure
data.

The second part of the chapter describes statistical methods for analyzing re-
liability data, including maximum likelihood estimation and likelihood ratio
testing. Degradation data are more prevalent in experiments in which failure is
rare and test time is limited. Special regression techniques for degradation data
can be used to draw inference on the underlying lifetime distribution, even if
failures are rarely observed.

The last part of the chapter discusses reliability for systems. Along with the
components that comprise the system, reliability analysis must take account
of the system configuration and (stochastic) component dependencies. System
reliability is illustrated with an analysis of logistics systems (e.g., moving goods
in a system of product sources and retail outlets). Robust reliability design
can be used to construct a supply chain that runs with maximum efficiency or
minimum cost.

Keywords: Censoring, Degradation, Exponential Distribution, Failure Rate, K-out-of-N
system, Load Sharing, Likelihood Ratio, Logistics Network, Maximum Likelihood Estima-
tion, Probability Plot, Weibull Distribution.
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1 Introduction and Literature Review

In every day use, words like reliability and quality have meanings that vary depending
on the context. In engineering, Reliability is defined the ability of an item to perform its
function, usually measured in terms of probability as a function of time. Quality denotes
how the item conforms to its specifications, so reliability is a measure of the item’s quality
over time.

Since the time of Birnbaum, et al. (1966), when system reliability emerged as its own
discipline, research has centered on the operation of simple systems with identical parts
working independently of each other. Today’s systems don’t fit this mold; system repre-
sentation must include multi-faceted components with several component states that can
vacillate between perfect operation and terminal failure. Not only do components interact
within systems, but many systems are dynamic in that the system configuration can be
expected to change during its operation, perhaps due to component failures or external
stresses. Computer software, for example, is change its failure structure during the course
of design, testing and implementation.

Statistical methods for reliability analysis grew from this concept of system examination,
and system reliability is often gauged through component lifetime testing. This chapter
reviews the current framework for statistical reliability and considers some modern needs
from experimenters in engineering and the physical sciences.

Statistical analysis of reliability data in engineering applications cannot be summarized
comprehensively in a single book chapter such as this. The following books (listed fully in
the reference section) serve as an excellent basis for a serious treatment of the subject:

1. Statisitcal Theory of Reliability and Life Testing by Barlow and Proschan (1975)

2. Practical Methods for Reliability Data Analysis by Ansell and Phillips (1994)

3. Reliability: Probabilistic Models and Statistical Methods by Leemis (1995)

4. Applied Reliability by Tobias and Trindade (1995)

5. Engineering Reliability by Barlow (1998)

6. Reliability for Technology, Engineering and Managementby Kales (1998)

7. Statistical Methods for Reliability Data by Meeker and Escobar (1998)

8. Reliability Modeling, Prediction, and Optimization by Blischke and Murthy (2000)

9. Statistical Methods for the Reliability of Repairable Systems by Rigdon & Basu (2000)

10. Modern Reliability Analysis: A Bayesian Perspective by Johnson, et al. (2005)

Some of the books in the list focus on reliability theory, and others focus exclusively on
reliability engineering. From the more inclusive books, Meeker and Escobar (1998) provides
a complete, high-level guide of reliability inference tools for an engineer, and most examples
have an engineering basis (usually in manufacturing). For reliability problems closely associ-
ated with materials testing, Bogdanoff and Kozin (1985) connects the physics of degradation
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to reliability models. Sobczyk and Spencer (1992) also relate fatigue to reliability through
probability modeling. For reliability prediction in software performance, Lyu (1996) pro-
vides a comprehensive guide of engineering procedures for software reliability testing, while
a more theoretical alternative by Singpurwalla and Wilson (1999) emphasizes probability
modeling for software reliability, including hierarchical Bayesian methods. Closely related
to reliability modeling in engineering systems, Bedford and Cooke (2001) goes over methods
of probabilistic risk assessment, which is an integral part of reliability modeling for large
and complex systems.

Other texts emphasize reliability assessment in a particular engineering field of inter-
est. For statistical reliability in geotechnical engineering, Baecher and Christian (2003) is
recommended as it details statistical problems with soil variability, autocorrelation (i.e.,
Kriging), and load/resistance factors. Ohring (1998) provides a comprehensive guide to
reliability assessment for Electical Engineering and Electronics manufacturing, including
reliability pertaining to degradation of contacts (e.g., crack growth in solder), optical fiber
reliability, semiconductor degradation and mass transport-induced failure. For civil engi-
neering, Melchers’ (1999) reliability text has a focus on reliability of structural systems and
loads, time dependent reliability and resistance modeling.

2 Lifetime Distributions in Reliability

While engineering research has contributed a great deal of of the current methods for relia-
bility life testing, an equally great amount exists in the biological sciences, especially relating
to epidemiology and biostatistics. Life testing is a crucial component to both fields, but the
bio-related sciences tend to focus on mean lifetimes and numerous risk factors. Engineering
methods, on the other hand, are more likely to focus on upper (or lower) percentiles of the
lifetime distribution as well as the stochastic dependencies between working components.
Another crucial difference between the two research areas is that engineering models are
more likely based on principles of physics that lead to well-known distributions such as
Weibull, log-normal, extreme value and so on.

The failure-time distribution is the most widely used probability tool for modeling prod-
uct reliability in science and industry. If f(x) represents the probability density function for
the product’s failure time, then the its reliability is R(x) =

∫∞
x f(u)du, and R(t) = 1−F (t)

where F is the cumulative distribution function (CDF) corresponding to f . A quantile
is the CDF’s inverse; The pth quantile of F is the lifetime value tp such that F (tp) = p.
To understand the quality of a manufactured product through these lifetime probability
functions, it is often useful to consider the notion of aging. For example, the (conditional)
reliability of a product that has been working t units of time is
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R(x|t) =
R(t+ x)
R(t)

if R(t) > 0.

The rate of change in R(x|t) is an important metric for judging a product’s quality, and
the conditional failure rate function h(t) is defined

h(t) = lim
x→∞

x−1R(t)−R(t+ x)
R(t)

=
f(t)
R(t)

.

The cumulative failure rate (sometimes called hazard function) is H(t) =
∫ t
0 h(u)du, and

has many practical uses in reliability theory because of its monotonicity and the fact that
H(t) = − logR(t).

The failure rate clearly communicates how the product ages during different spans of
its lifetime. Many manufactured products have an increasing failure rate, but the rate of
increase is rarely stable throughout the product’s lifetime. If r(t) remains constant, it’s
easy to show the lifetime distribution is exponential (f(x) = θ exp (−θx), x > 0) and the
product exhibits no aging characteristics. Many electronic components and other manu-
factured items have brief initial period when failure rate is relatively high and decreasing
toward a steady state, where it stays until aging causes the rate to increase. This is called
a bath-tub failure rate. The period in which early failures occur (called infant mortality)
is called the burn-in period, and is often used by manufacturers to age products and fetter
out defectives (early failures) before being making it available to the consumer.

2.1 Alternative Properties to Describe Reliability

The failure rate function, reliability function, cumulative hazard function, and probabil-
ity density describe different aspects of a lifetime distribution. The expected lifetime, or
Mean Time to Failure (MTTF) is an important measure for repairable systems. Several
alternatives for characterizing properties of the lifetime distribution include

Mean Residual Life = L(t) = EX(X − t|X ≥ t) is the expected residual life of a component
that has already lasted t units of time. If L(t) is less than the expected lifetime µ, the
product is exhibiting aging by the time t.
Reversed Hazard Rate = ν(t) = f(x)/F (x) provides a different aspect of reliability: the
conditional failure frequency at the time just before t given the product failed in (0, t] (see
Chapter 1 of Shaked and Shanthikumar (1994), for example).
Percentile Residual Life = Qα = F−1 (1− (1− α)R(t))− t is the α quantile of the residual
life (the conditional lifetime distribution given the product has lasted t units of time). The
Median residual life, where α = 1/2 compares closely to L(t).
Mill’s Ratio = R(x)/f(x) = 1/h(x), used in economics, is not an ordinary way to charac-
terize reliability, but it’s worth noting because of its close connection to failure rate.
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2.2 Conventional Reliability Lifetime Distributions

So far, only one distribution (Exponential) has been mentioned. Rather than presenting a
formal review of commonly used reliability distributions, a summary of commonly applied
lifetime distributions is presented in Table 2.2, including the Exponential, Gamma, Weibull,
Log-normal, Logistic, Pareto and Extreme Value. In the table, Γ(t) =

∫∞
0 xt−1e−xdx is the

ordinary gamma function, and IG(t, x) represents the corresponding incomplete Gamma
function.

For manufacturing centers and research laboratories that conduct lifetime tests on prod-
ucts, lifetime data is an essential element in reliability analysis. However, a great deal of
reliability analysis is based on field data, or reliability information sampled from day to day
usage of the product. In many of these instances, lifetime data is a luxury not afforded to
the reliability inference. Instead, historical event data and inspection counts are logged for
the data analysis. Consequently, several discrete distributions (e.g., Poisson, Binomial, Ge-
ometric) are important in reliability applications. Chapter ?? has a more detailed discussion
of these and other statistical distributions applied in engineering problems.
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2.3 From Physics to Failure Distributions

Many of the distributions in Table 2.2 are derived based on physical principles. For example,
Weibull (1939) derived the distribution for which he is named to represent the breaking
strength of materials based on the idea that some components are comparable to a chain
that is no stronger than its weakest link. From this premise, the distribution can derived
from properties of minimums, in contrast to the extreme value distribution, which can
be derived through properties of maximums (see David (1981), for example). In a short
time after its introduction, the Weibull distribution was successfully applied to numerous
modeling problems in engineering and has become the hallmark distribution in applied
reliability. A primary reason for its suitability to lifetime analysis is its flexible failure rate;
unlike other distributions listed in Table 2.2, the Weibull failure rate is simple to model,
easy to demonstrate and it can be either increasing or decreasing. A mixture of two Weibull
distributions can be used to portray a bath-tub failure rate (as long as only one of the shape
parameters is less than one). Mudholkar, et al. (1996) introduce a new shape parameter
to a generalized Weibull distribution that allows bath-tub shaped failure rates as well as a
broader class of monotone failure rates.

For materials exposed to constant stress cycles with a given stress range, lifetime is
measured in number-of-cycles until failure (N). The Whöler curve (or S−N curve) relates
stress level (S) to N as NSb = k, where b and k are material parameters (see Sobczyk and
Spencer (1992) for examples). By taking logarithms of the S −N equation, we can express
cycles-to-failure as a linear function: Y = logN = log k − b logS. If N is log-normally
distributed, then Y is normally distributed and regular regression models can be applied
for predicting cycles-to-failure (at a given stress level). In many settings, the log-normal
distribution is applied as the failure time distribution when the corresponding degradation
process based on rates that combine multiplicitively. Despite having a concave-shaped (or
upside-down-bathtub-shape) failure rate, the log-normal is especially useful in modeling
fatigue crack growth in metals and composites.

Birnbaum and Saunders (1969) modeled the damage to a test item after n cycles as
Bn = ζ1 + · · · + ζn, where ζi represents the damage amassed in the ith cycle. If failure is
determined by Bn exceeding a fixed damage threshold value B∗, and if the ζis are identically
and independently distributed,

P (N ≤ n) = P (Bn > B∗) ≈ Φ(
B∗ − nµ

σ
√
n

)

where Φ is the standard normal CDF. This results because Bn will be approximately normal
if n is large enough. The reliability function for the test unit is

R(t) ≈ Φ
(
B∗ − nµ

σ
√
n

)
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which is called the Birnbaum-Saunders distribution. It follows that

W =
µ
√
N

σ
− B∗

σ
√
N

has a normal distribution, which leads to accessible implementation in lifetime modeling
(see Høyland and Raussand (1994) or Bogdanoff and Kozin (1985) for more properties).

2.4 Lifetime Distributions from Degradation Modeling

These examples show how the product’s lifetime distribution can be implied by knowledge
of how it degrades in time. In general, degradation measurements have great potential to
improve lifetime data analysis, but they also introduce new problems to the statistical in-
ference. Lifetime models have been researched and refined for many manufactured products
that are put on test. On the other hand, degradation models tend to be empirical (e.g.,
nonparametric) or based on simple physical properties of the test item and its environment
(e.g., the Paris crack law, Arrhenious rule, Power law) which often lead to obscure lifetime
models. Meeker and Escobar (1998) provide a comprehensive guide to degradation model-
ing, and show that many valid degradation models will not yield lifetime distributions with
closed-form solutions. Given the improving computational tools available to researchers,
this is no deterrent to using degradation analysis; users of the S-plus programming software
can access advanced tools for degradation analysis from SPLIDA (S-plus functions for life
data analysis) developed by Meeker (2003).

In a setting where the lifetime distribution is known, but the degradation distribution
is unknown, degradation information does not necessarily complement the available life-
time data. For example, the lifetime data may be distributed as Weibull, but conventional
degradation models will contradict the Weibull assumption (actually, the rarely used re-
ciprocal Weibull distribution for degradation with a fixed failure threshold leads to Weibull
lifetimes).

In selecting a degradation model based on longitudinal measurements of degradation,
monotonic models are typically chosen under the assumption that degradation is a one-
way process. In some cases, such as the measured luminosity of light displays (vacuum
fluorescent displays, plasma display devices), the degradation is not necessarily monotonic
because during the first phase of product life, impurities inside the light display’s vacuum are
slowly burned off and luminosity increases. After achieving a peak level, usually before 100
hours of use, the light slowly degrades in a general monotonic fashion. See Bae and Kvam
(2004a, 2004b) for details on the modeling of non-monotonic degradation data. Degradation
data analysis is summarized in Section 3.3.
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2.5 Censoring

For most products tested in regular-use conditions (as opposed to especially harsh con-
ditions), the allotted test time is usually too short to allow the experimenter to witness
failure times for the entire set that is on test. When the item is necessarily taken off test
after a certain amount of test time, its lifetime is right censored. This is also called Type I
censoring. Type II censoring corresponds to tests that are stopped after a certain number
of failures (say k out of n, 1 ≤ k ≤ n) occur.

Inspection data are lifetimes only observed at fixed times of inspection. If the inspection
reveals a failed test item, it must be left censored at that fixed time. Items that are still
working at the time of the last inspection are necessarily right censored. This is sometimes
called interval censoring.

Censoring is a common hindrance in engineering applications. Lifetime data that are
eclipsed by censoring cause serious problems in the data analysis, but it must be kept in
mind that each observation, censored or not, contributes information and increases precision
in the statistical inference, overall.

2.6 Probability Plotting

Probability plotting is a practical tool for checking the adequacy of a fitted lifetime distri-
bution to a given set of data. The rationale is to transform the observed data according to
a given distribution so a linear relationship exists if the distribution was specified correctly.
In the past, probability plotting paper was employed to construct the transformation, but
researchers can find plotting options on many computer packages that feature data anal-
ysis (e.g., SAS, S-Plus, Matlab, Minitab, SPSS) making the special plotting paper nearly
obsolete. Despite the applicability of this technique, few engineering texts feature in-depth
discussion on probability plotting and statistics texts tend to focus on theory more than
implementation. Rigdon and Basu (2000) provide a thorough discussion of basic probability
plotting, and Atkinson (1992) provides a substantial discussion of the subject in the context
of regression diagnostics. Advanced plotting techniques even allow for censored observations
(see Waller and Turnbull (1992), for example).

To illustrate how the plot works, we first linearize the CDF of the distribution in ques-
tion. For example, if we consider the two-parameter Weibull distribution, the quantile
function is

tp =
[
− log p
λ

]1/κ

,

which implies that the plot of log t has a linear relationship with the log-log function of
p = F (t). Hence, Weibull probability plots are graphed on log-log probability paper. Figure
2.6 shows a Weibull plot (using Minitab) for the fatigue life of 67 alloy specimens that
failed before n = 300, 000 cycles. This data set is from Meeker and Escobar (1998) and the
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Figure 1: Weibull Probability Plot for Alloy T7987 Fatigue Life

plot also includes 95% confidence bands that identify the uncertainty associated with the
plot. In this case the curviture (especialy noticeable on the left side) suggests the Weibull
distribution does not provide adequate fit.

3 Analysis of Reliability Data

Once the lifetime distribution of a test item is determined, the data can be used to estimate
important properties of the distribution, including mean, standard deviation, failure rate,
reliability (at a fixed time t) and upper or lower quantiles that pertain to early or late failure
times.

There are two fundamental methods for approaching the analysis of lifetime data:
Bayesian methods and, for lack of an optimal term, non-Bayesian methods. Although
Bayesian methods are accepted widely across many fields of engineering and physical sci-
ence, non-Bayesian statistics, mostly frequentist and likelihood methods, are still an indus-
try standard. Chapter ?? features the application of Bayesian methods to various problems
of data analysis in engineering. This chapter will not detail how methods of statistical
inference are derived in various frameworks of statistical ideology. Accelerated life testing,
an important tool for designing reliability experiments, is discussed in detail in Chapter ??
and only receives mention in this chapter. Instead, a summary of important procedures are
outlined for statistical estimation, confidence intervals and hypothesis tests.
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3.1 Maximum Likelihood

Parametric likelihood methods examine a family of probability distributions and choose the
parameter combination that best fits the data. A likelihood function is generally defined
by the observed probability model; If the lifetime data X1, . . . , Xn are independently and
identically (IID) distributed with density function fX(x; θ), the likelihood function is

L(θ) =
n∏

i=1

fX(xi; θ)

and the Maximum Likelihood Estimator (MLE) is the value of θ that maximizes L(θ).
Single parameter distributions such as the exponential generate easily solved MLEs, but
distributions with two or more parameters are not often straightforward. Samples that
are not IID lead to complicated likelihood functions and numerical methods are usually
employed to solve for MLEs. If an observation x represents a right censoring time, for
example, then P(censor) = R(x) and this information contributes the term R(x) to the
likelihood instead of f(x). Leemis (1995) provides a thorough introduction to likelihood
theory for reliability inference.

For most parametric distributions of interest, the MLE (θ̂) has helpful limit properties.
As the sample size n→∞,

√
n(θ̂ − θ) → N(0, i(θ)−1), where

i(θ) = E
[
(
∂

∂θ
log f)2

]
= −E

(
∂2

∂θ2
log f

)
is the estimator’s Fisher information. For other parameters of interest, say ψ(θ), we can
construct approximate confidence intervals based on an estimated variance using the Fisher
information:

σ̂2(ψ(θ̂)) ≈ 1

ψ(θ̂)2i(θ̂)

This allows the analyst to make direct inference for component reliability (ψ(θ; t) = Rθ(t),
for example).

Example. MLE for failure rate with exponential data (X1, . . . , Xn): the likelihood is
based on f(x) = θ exp−(θx) and is easier to maximize in its natural log form

logL(θ) = log

(
n∏

i=1

θe−θxi

)
= n log θ − θ

n∑
i=1

xi.

The maximum occurs at θ̂ = 1/x̄, and the Fisher information i(θ) = n/θ2, so an approximate
(1− α) confidence interval is

1
x̄
± zα

2
i(θ̂)−1/2 =

1
x̄
± zα

2

θ̂√
n

=
1
x̄
± zα

2

(
x̄
√
n
)−1

.
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In this case, the approximation above is surpassed by an exact interval that can be
constructed from the statistic 2θ(X1 + · · ·+Xn) which has a Chi-square distribution with
2n degrees of freedom. The confidence statement P (χ2

2n(1 − α/2) ≤ (X1 + · · · + Xn) ≤
χ2

2n(α/2)) = 1−α, where χ2
2n(α) represents the α quantile of the Chi-square distribution

with 2n degrees of freedom, leads to a 1− α confidence interval for θ as(
χ2

2n(1− α/2)
2nx̄

,
χ2

2n(α/2)
2nx̄

)
3.2 Likelihood Ratio

Uncertainty bounds, especially for multidimensional parameters, are more directly com-
puted using the likelihood ratio (LR) method. Here we consider θ to have p components.
Confidence regions are constructed by actual contours (in p-dimensions) of the likelihood
function. Define the LR as

Λ(θ, θ̂) =
L(θ)

L(θ̂)

where θ̂ is the MLE of L. If θ is the true value of the parameter, then

−2 log Λ ∼ χ2
p,

where χ2
p is the Chi-square distribution with p degrees of freedom. A (1 − α) confidence

region for θ is {
θ : −2 log Λ(θ, θ̂) ≤ χ2

p(α)
}
,

where χ2
p(α) represents the 1− α quantile of the χ2

p distribution.

Example Confidence Region for Weibull parameters: In this case, the MLEs for θ =
(λ, r) must be computed using numerical methods. Many statistical software packages
compute such estimators along with confidence bounds. With (λ̂, r̂), L(λ̂, r̂) standardizes
the likelihood ratio so that 0 ≤ Λ(θ, θ̂) ≤ 1 and Λ peaks at (λ, r) = (λ̂, r̂). Figure 3.2 shows
50%, 90% and 95% confidence regions for the Weibull parameters based on a simulated
sample of n = 100.

Empirical Likelhihood provides a powerful method for providing confidence bounds on
parameters of inference without necessarily making strong assumptions about the lifetime
distribution of the product (i.e., it is nonparametric). This chapter cannot afford the space
needed to provide the reader with an adequate description of its method and theory; Owen
(2001) provides a comprehensive study of empirical likelihood including its application to
lifetime data.
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Figure 2: 1−α = 0.50, 0.90, 0.95 confidence regions for Weibull parameters (λ, r) based on
simulated data of size n=100

3.3 Degradation Data

As an alternative to traditional life testing, degradation tests can be effective in assessing
product reliability when measurements of degradation leading to failure are observable and
quantifiable. Meeker and Escobar (1998) provide the most comprehensive discussion on
modeling and analyzing degradation data for manufactured items that have either a soft
failure threshold (i.e., an arbitrary fixed point at which the device is considered to have
failed) or items that degrade before reaching a failed state. In the electronics industry,
product lifetimes are far too long to test in a laboratory; some products in the lab will tend to
become obsolete long before they actually fail. In such cases, accelerated degradation testing
(ADT) is used to hasten product failure. In the manufacture of electronic components, this
is often accomplished by increasing voltage or temperature. See Chapter ?? for a review of
recent results in ALT.

If the degradation path is modeled as

yi(t) = ηi(t) + εi(t)

where ηi is the path of the ith tested unit (i = 1, . . . , n) and εi represents an error term that
has distribution H(ε; Σ) with parameter Σ unknown, failure would be declared once yi(t)
passes a certain degradation threshold, say y∗. The lifetime distribution can be computed
as (assuming degradation is an increasing function)

F (t) = P (y(t) > y∗) = P (εi(t) > y∗ − ηi(t)) .
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If η is a deterministic function, the lifetime distribution is driven completely by the error
term. This is not altogether realistic. In most cases, item-to-item variability exists and
the function η contains random coefficients; that is, η(t) = η(t, λ, θ), where λ is a vector of
unknown parameters (common to all units) and θ is a vector of random coefficients which
have a distribution G (with further unknown parameters β) so that realizations of θ change
from unit to unit. With an accumulated set of unknown parameters (λ, β,Σ), this makes
for a difficult computation of the lifetime distribution. Numerical methods and simulations
are typically employed to generate point estimates and confidence statements.

Least squares or maximum likelihood can be used to estimate the unknown parameters in
the degradation model. To estimate F (t0), one can simulate M degradation curves (choose
M to be large) from the estimated regression by generatingM random coefficients θ1, . . . , θM

from the estimated distribution G(θ; β̂). Next compute the estimated degradation curve for
yi based on the model with θi and λ̂: yi(t) = ηi(t; λ̂, θi). Then F̂ (t0) is the proportion of
the M generated curves that have reached the failure threshold y∗ by time t0.

Meeker and Escobar use bootstrap confidence intervals for measuring the uncertainty
in the lifetime distribution estimate. Their method follows the general algorithm for non-
parametric bootstrap confidence intervals described in Efron and Tibshirani (1993). There
are numerous bootstrap sampling methods for various uncertainty problems posed by com-
plex models. This algorithm uses a nonparametric bootstrap sampling procedure which
re-samples n of the sample degradation curves with replacement (i.e., so some curves may
not be represented in the sample while others may be represented multiple times). This re-
sampled set will be termed the bootstrap sample in the following procedure for constructing
confidence intervals.

1. Compute estimates of parameters β, λ, Σ.

2. Use simulation (above) to construct F̂ (t0).

3. Generate N ≥ 1000 bootstrap samples, and for each one, compute estimates F̂ (1)(t0),
. . . , F̂ (N)(t0). This is done as before except now the M simulated degradation paths
are constructed with an error term generated from H(η; Σ̂) to reflect variability in
any single degradation path.

4. With the collection of bootstrap estimates in (3), compute a 1−α-confidence interval
for F (t0) as (F̂ l(t0), F̂ u(t0)), where the indexes 1 ≤ l ≤ u ≤ N are calculated as
l/N = Φ(2Φ−1/2(p0) + Φ−1/2(α/2)) and u/N = Φ(2Φ−1/2(p0) + Φ−1/2(1−α/2)), and
p0 is the proportion of bootstrap estimates of F (t0) less than F̂ (t0).

Procedures based on realistic degradation models can obviously grow to be computa-
tionally cumbersome, but for important applications, the increase in statistical efficiency
can be dramatic. In the past, these computations have impeded degradation analysis from
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being a feature of reliability problem solving. Such analyses are easier to implement now,
and the reliability analyst need not be coerced into using an overly simplistic model - for
instance, a linear model that does not allow for random coefficients.

4 System Reliability

A system is the arrangement of components that work together for a common goal. So far,
the discussion has fixated on the lifetime analysis of a single component, so this represents
an extension of single-component reliability study. At the simplest level, a system contains n
components of an identical type that are assumed to function independently. The mapping
of component outcomes to system outcomes is through the system’s structure function. The
reliability function describes the system reliability as a function of component reliability.

A series system is such that the failure of any of the n components in the working group
causes the system to fail. If the probability that a single component fails in its mission is
p, the the probability the system fails is 1 - P(system succeeds) = 1 - P(all n components
succeed) = 1 − (1 − p)n. More generally, in terms of component reliabilities (p1, . . . , pn),
the system reliability function Ψ is

Ψ(p1, . . . , pn) =
n∏

i=1

(1− pi).

A parallel system is just the opposite; it fails only after every one of its n working
components fail. The system failure probability is then

Ψ(p1, . . . , pn) = 1−
n∏

i=1

pi.

The parallel system and series system are special cases of a k-out-of-n system, which is a
system that works as long as at least k out of its n components work. Assuming pi =
p, i = 1, . . . , n, the reliability of a k-out-of-n systems is

Ψ(p) =
n∑

i=k

(
n

i

)
(1− p)ipn−1.

Of course, most component arrangements are much more complex that a series or parallel
system. With just three components, there are five unique ways of arranging the compo-
nents in a coherent way (that is, so that each component success contributes positively to
the system reliability). Figure 4 shows the system structure of those five arrangements in
terms of a logic diagram including (1) a series system, (3) a 2-out-of-3 system and (5) a
parallel system. Note that the 2-out-of-3 system cannot be diagrammed with only three
components, so each component is represented twice in the logic diagram. Figure 4 displays
the corresponding reliabilities, as a function of component reliability 0 ≤ p ≤ 1, of those five
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Figure 3: Five unique systems of three components: (1) is Series, (3) is 2-out-of-3 and (5)
is parallel.

systems. Fundamental properties of coherent systems are discussed in Barlow and Proschan
(1975) and Leemis (1995).

4.1 Estimating System and Component Reliability

In many complex systems, the reliability of the system can be computed through the relia-
bility of the components along with the system’s structure function. If the exact reliability
is too difficult to compute explicitly, reliability bounds might be achievable based on mini-
mum cut sets (MCS) and minimum path sets (MPS). A MPS is the collection of the smallest
component sets that are required to work in order to keep the system working. A MCS is
the collection of the smallest component sets that are required to fail in order for the sys-
tem to fail. Table 4.1 shows the minimum cuts sets and path sets for the three-component
systems from Figure 4.

In most industrial systems, components have different roles and varying reliabilities, and
often component reliability depends on the working status of other components. System
reliability can be simplified through fault tree analyses (see Chapter 7 of Bedford in Cooke
(2003), for example), but uncertainty bounds for system reliability are typically determined
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Figure 4: System reliabilities of five system configurations in Fig. 4 from series system (left)
to parallel system (right).

Table 2: Minimum cut sets and path sets for systems in Figure 4.

System Minimum Path Sets Minimum Cut Sets

1 {A,B,C} {A}, {B}, {C}
2 {A,B}, {C} {A,C}, {B,C}
3 {A,B}, {A,C}, {B,C} {A,B}, {A,C}, {B,C}
4 {A,B}, {A,C} {A}, {B,C}
5 {A}, {B}, {C} {A,B,C}
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through simulation.
In laboratory tests, component reliabilities are determined and the system reliability is

computed as a function of the statistical inference of component lifetimes. In field stud-
ies, the tables are turned. Component manufacturers seeking reliability data outside lab
tests look to component lifetime data within a working system. For a k-out-of-n system,
for example, the system lifetime represents an order statistic of the underlying distribution
function. That is, if the ordered lifetimes form a set of independent and identically dis-
tributed components (X1:n ≤ X2:n ≤ · · · ≤ Xn:n), then Xn−k+1:n represents the k-out-of-n
system lifetime. The density function for Xr:n is

fr:n(t) = r

(
n

r

)
F (t)r−1 (1− F (t))n−r f(t), t > 0.

Kvam and Samaniego (1994) derived the nonparametric maximum likelihood estimator
for F (t) based on a sample of k-out-of-n system data, and showed that the MLE F̂ (t) is
consistent. If the ith system (i = 1, . . . ,m) observed is a ki-out-of-ni system, the likelihood
can be represented as

L(F ) =
m∏

i=1

fki:ni
(ti)

and numerical methods are employed to find F̂ . Huang (1997) investigated the asymptotic
properties of this MLE, and Chen (2003) provides an ad-hoc estimator that examines the
effects of censoring.

Compared to individual component tests, observed system lifetimes can be either advan-
tageous or disadvantageous. With an equal number of k-out-of-n systems at each 1 ≤ k ≤ n,
Takahasi and Wakimoto (1968) showed that the estimate of MTTF is superior to that of an
equal number of individual component tests. With an unbalanced set of system lifetimes,
no such guarantee can be made. If only series systems are observed, Kvam and Samaniego
(1993) show how uncertainty in F̂ (t) is relatively small in the lower quantiles of F (where
system failures are observed) but explodes in the upper quantiles.

4.2 Stochastic dependence between system components

Almost all basic reliability theory is based on systems with independently operating com-
ponents. For realistic modeling of complex systems, this assumption is often impractical;
system components typically operate at a level related to the quality and operational state
of the other system components.

External events that cause the simultaneous failure of component groups is a serious
consideration in reliability analysis of power systems. This can be a crucial point in sys-
tems that rely on built-in component redundancy to achieve high target system reliability.
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Shock models, such as those introduced by Marshall and Olkin (1967), can be employed to
demonstrate how multiple component failures can occur. An extra failure process is added
to the otherwise independent component failure processes, representing the simultaneous
failure of one or more components, thus making the component lifetimes positively depen-
dent. This is the basis to most dependent failure models in probabilistic risk assessment,
including Common Cause Failure models used in the nuclear industry (alpha-factor model,
beta-factor model, binomial failure rate model). See Chapter 8 of Bedford and Cooke (2001)
for discussion about how these models are used in risk assessment.

In dynamic systems, where system configurations and component reliability can change
after an external event or a failure of one or more of the system components, the shock
model approach cannot be applied effectively. In some applications, a load-share model
applies.

Early applications of the load-share system models were investigated by Daniels (1945)
for studying the reliability of composite materials in the textile industry. Yarns and cables
fail after the last fiber (or wire) in the bundle breaks, thus a bundle of fibers can be
considered a parallel system subject to a constant tensile load. An individual fiber fails in
time with an individual rate that depends on how the unbroken fibers within the bundle
share the load of this stress. Depending on the physical properties of the fiber composite,
this load sharing has different meanings in the failure model. Yarn bundles or untwisted
cables tend to spread the stress load uniformly after individual failures which defines an
equal load share rule, implying the existence of a constant system load that is distributed
equally among the working components.

As expected, a load-sharing structure within a system can increase reliability (if the
load distribution saves the system from failing automatically) but reliability inference is
hampered even by the simplest model. Kvam and Peña (2004) show how the efficiency of
the load share system, as a function of component dependence, varies between that of a
series system (equivalent to sharing an infinite load) and a parallel system (equivalent to
sharing zero load).

4.3 Logistics Systems

Numerous studies have examined fundamental problems in network reliability (Ball, 1979),
system performance degradation and workload re-routing for telecommunication, power and
transportation networks (Sanso and Soumis, 1991; Shi, 2004). In comparison, the litera-
ture on modeling logistics system reliability or performance degradation is scarce. Logistics
systems that transport goods, energy (e.g., electricity and gas), water, sewage, money or
information from origins to destinations are critical to every nations economic prosperity.
Unlike the “hub” in the typical Internet or telecommunication or network, where the mes-
sages are not mixed together, logistics distribution centers (DCs) tend to mix products from
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various sources for risk pooling purposes (Kim, Lu and Kvam, 2004). Past studies (e.g.,
Chen et al., 1999) of road-network reliability addressed mainly connectivity and travel time
reliability. These developments have limited use in providing a first-cut analysis for system-
level planning that involves robust logistics network design to meet reliability requirements
or supply-chain cost and delivery time evaluation for contract decisions (Dandamudi and
Lu, 2004).

Consider a logistics network consisting of many suppliers providing goods to several
DCs, which support store operations to meet customer demands. The reliability of such
a network can be evaluated in terms of the probability of delivering goods to stores in
a pre-specified time limit t0. Traveling time in transport routes contain uncertainty, as
does the processing time for products shipped through DCs. Random traveling time is a
function of routing distances, road and traffic conditions and possible delays from seaport or
security checkpoint inspections. Traveling distance depends on the configuration of logistics
networks. Some retail-chains use single-layer DCs, but others use multiple-layer DCs similar
to airline hubs (e.g., regional DCs and global DCs) in aggregating various types of goods.
Vehicle routing procedures typically involve trucks that carry similar products to several
stores in an assigned region. Different products are consolidated in shipment for risk-pooling
purposes and to more easily control delivery time and store- docking operations.

When one DC cannot meet the demands from its regional stores (due to demand increase
or the DCs limited capability), other DCs provide back-up support to maintain the overall
networks service-reliability. Focusing on the operations between DCs and stores, Ni, Lu and
Kvam (2004) defined the following network reliability as a weighted sum of the individual
reliabilities from each DCs operations:

r∗system,k = {
M∑

i=1,i6=k

diP (T ∗m,i < t0) +
M∑

i=1,i6=k

pidkP (T ∗m,k,i < t0)}/
M∑
i=1

di, (1)

where di is the demand aggregated at the ith DC, T ∗m,i is the motion time defined as the
sum of traveling time from DCi to its assigned stores (including material processing time at
DCi), pi is the proportion of products re-routed from DCk through DCi due to the limited
capability in DCk and T ∗m,k,i is the modified motion time including the re-routed traveling
time.

For modeling the aggregated demand di and calculating routing distance, Ni, Lu and
Kvam (2004) proposed a multi-scale approximation model to quantify demand patterns at
spatially located clustered stores. Then, they evaluated product re- routing strategies for
maintaining system service-reliability defined in (1). Based on the store locations of a major
retail-chain, several examples show the importance of designing a robust logistics network
to limit service-reliability degradation when a contingency (e.g., multiple DC failure) occurs
in the network. Future work includes
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1. Modeling the low-probability but high-impact contingency in the DCs (e.g., Kim, Lu
and Kvam (2004)) and routes for calculating their “relative importance” to network
reliability

2. Examining the tradeoff between the cost of adding more DCs and the improvement
of service reliability

3. Resolving the “domino effect” when the added workload to DCs after a local DC
failure causes further DC failures due to faulty pre-determined rules of re-routing to
maintain system reliability (e.g., the 2003 electricity blackout in the Northeastern
region of U.S.).

4.4 Robust Reliability Design in the Supply-chain

Past studies of robust parameter design (e.g., Wu and Hamada (2000), page 503) focused
on product quality issues and assumed that all the controllable variables are under single
ownership. Recent outsourcing trends in automobile and electronic manufacturing pro-
cesses motivate the presentation in this section. In an automobile manufacturing enterprize
system, various parts suppliers have control of variables determining quality and reliabil-
ity. Most of the automobile supply-chain systems assemble these parts into a subsystem
and then move these systems to other locations owned by different partners for the final
system-level assembly and testing. Every segment of the assembly operation controls a sub-
set of variables leading to different levels of system reliability. Because the warranty policy
is addressed to all of the part manufacturing and assembly processes in making the final
product, it is important to extend the robust parameter design concept to the supply-chain
oriented manufacturing processes.

Supply-chain partners have their own operation objectives (e.g., maximize the profit of
manufacturing parts to supply several automobile companies). Some of the objectives are
aligned in manufacturing a specific type of product, but there are many potential situations
with conflicting objectives. When there is no single ownership of all controllable variables
in the manufacturing processes, negotiation is needed to resolve potential conflicts. Game
theory (Fudenberg and Tirole, 2000) is commonly used in supply-chain contract decisions.
Following the framework of Chen and Lewis (1999), we can decompose the set of controllable
variables into a few subsets owned by distinct partners and formulate the objectives of these
partners. The supply-chain manager can define the product quality and reliability measures
and build models to link them to the controllable and uncontrollable variables that are seen
in robust parameter design.

Different negotiation situations (e.g., final product assembly company has more bar-
gaining power than other partners) will lead to distinct levels selected for the controllable
variables (see Charoensiriwath and Lu (2004) for examples in negotiations). As a result,

21



the reliability of the final product can vary. Designing a supply-chain system that leads
to the most reliable products (with minimum cost) presents an acute challenge, and war-
ranty policies can be designed correspondingly. Because parts and subsystems are made by
various partners, warranty responsibilities for certain parts are distributed among partners
under the negotiated supply-chain contracts.
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