A graph-theory approach to global determination of octet molecules

Damir Vukičević

Ray Hefferlin

Follow this and additional works at: https://knowledge.e.southern.edu/facworks_physics

Recommended Citation

Vukičević, Damir and Hefferlin, Ray, "A graph-theory approach to global determination of octet molecules" (2007). Faculty Works. 11. https://knowledge.e.southern.edu/facworks_physics/11

A graph-theory approach to global determination of octet molecules

Damir Vukičević ${ }^{1}$ and Ray Hefferlin ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Split, Nikole Tesle 12, HR-21000 Split
${ }^{2}$ Southern Adventist University, Collegedale, Tennessee 37315, USA

Abstract

Set theory is used to forecast the existence of all possible octet-rule cyclic and acyclic molecules formed from main-group atoms and having ionic and/or covalent bonding with orders up to three

1. Introduction

The octet rule is found to be "obeyed" by most main-group molecular structures, the more so in organic chemistry. It should be possible to invert the problem-to assume the rule and then predict, using mathematical techniques, which molecules obey it. Such prediction has been done, using simple algebra, for molecules with two, ${ }^{1}$ three, ${ }^{2}$ and four ${ }^{3}$ atoms in a way that can readily be extended to larger species. ${ }^{3}$ It has also been done with a somewhat more abstract algebra ${ }^{4}$ and (in principle) using category theory. ${ }^{5}$ In the present paper, we build on previous work ${ }^{6-10}$ and use set theory for the determination of all possible main-group moleculescyclic or acyclic—having covalent and/or ionic bonding with orders 1,2 , or 3 . We begin with singly-bonded acyclic structures and move on to doubly and triply bonded structures; then we take up molecules with cycles. A computer logic is included which should be more general than the extant computer programs that determine structures from libraries of fragments. ${ }^{4,11,12}$

2. Mathematical analyses

Let G be any connected graph with maximal degree at most 4. Denote by $v(G)$ a quadruplet of numbers $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where n_{i} is the number of vertices of degree i in G.

Denote by $\Gamma\left(p_{1}, \ldots p_{k} ; q_{1}, \ldots, q_{l}\right)$ the set of all simple graphs G (i.e. graphs without loops or multiple edges) such that the set of vertices of G is $V(G)=\left\{x_{1}, \ldots x_{k}, y_{1}, \ldots, y_{l}\right\}$; that $d_{G}\left(x_{i}\right)=p_{i}$ for each $i=1, \ldots, k$; that $d_{G}\left(y_{i}\right)=q_{i}$ for each $i=1, \ldots, l$; and that no two vertices x_{i} and x_{j} are adjacent. Denote by $\Gamma_{c}\left(p_{1}, \ldots p_{k} ; q_{1}, \ldots, q_{l}\right) \subseteq \Gamma\left(p_{1}, \ldots p_{k} ; q_{1}, \ldots, q_{l}\right)$ the set of connected graphs in $\Gamma\left(p_{1}, \ldots p_{k} ; q_{1}, \ldots, q_{l}\right)$.

Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{l}\right\}$. Let S_{1} and S_{2} be two disjoint subsets of $V(G)$. Denote by $E\left(S_{1}\right)$ the set of edges with both end-vertices in G and by $E\left(S_{1}, S_{2}\right)$ set of edges with one end-vertex in S_{1} and other in $S_{2} . E\left(S_{1}\right)$ is a special case of $E(G)=E(V(G))$. Put $e\left(S_{1}\right)=\operatorname{card}\left(E\left(S_{1}\right)\right)$ and $e\left(S_{1}, S_{2}\right)=\operatorname{card}\left(E\left(S_{1}, S_{2}\right)\right)$.

Let us prove an arbitrary lemma:
Proposition 1. Let $p_{1}, \ldots p_{k}, q_{1}, \ldots, q_{l} \in N_{0}$ such that $p_{1} \geq p_{2} \geq \ldots \geq p_{k}$ and $q_{1} \geq q_{2} \geq \ldots \geq q_{l}$. Then

$$
\Gamma\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots q_{l}\right) \neq \varnothing
$$

if and only if

$$
p_{1} \leq l \text { and } q_{p_{1}} \geq 1 \text { and } \Gamma\left(p_{2}, \ldots, p_{k} ; q_{1}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, \ldots, q_{l}\right) \neq 0 .
$$

Proof: Suppose that $p_{1} \leq l$ and $q_{p_{1}} \geq 1$ and $G \in \Gamma\left(p_{2}, \ldots, p_{l} ; q_{1}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, \ldots, q_{l}\right)$, then it is sufficient to add to G one vertex and connect it with vertices of degrees $q_{1}-1, \ldots, q_{p_{1}}-1$ in order to obtain graph in $\Gamma\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots q_{l}\right)$.

Now suppose that $\Gamma\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots q_{l}\right) \neq \varnothing$. Obviously, $p_{1} \leq l$ and $q_{p_{1}} \geq 1$. Let $G \in \Gamma\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots q_{l}\right)$ be graph such with maximal r such that x_{1} is adjacent to all vertices y_{1}, \ldots, y_{r}. Distinguish two cases:

CASE 1: $r=p_{1}$.
In this case $G-p_{1}$ is isomorphic to element of $\Gamma\left(p_{2}, \ldots, p_{l} ; q_{1}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, \ldots, q_{l}\right)$ which proves the claim.

CASE 2: Suppose that x_{1} is adjacent to $y_{1}, \ldots y_{r}$, but not to y_{r+1}. Then x_{1} is adjacent to some $y_{r+1+t}, t>0$. Since $d_{G}\left(y_{r+1}\right) \geq d_{G}\left(y_{r+1+t}\right)$ and x_{1} is adjacent to y_{r+1+t}, but not to y_{r+1}, it
follows that there is a vertex v such that $v y_{r+1} \in E(G)$ and $v y_{r+1+t} \notin E(G)$, but then $G-x_{1} y_{r+1+t}-v y_{r+1}+x_{1} y_{r+1}+v y_{r+1+t} \in \Gamma\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots q_{l}\right)$, which is in contradiction with maximality of r in G.

Here, we restrict our analyses to the vertices with degrees $1,2,3$ and 4 . The degree sequence $\left(p_{1}, p_{2}, \ldots, p_{k}\right)=(4, \ldots, 4,3, \ldots, 3,2, \ldots, 2,1, \ldots, 1)$ can be compactly written as $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$, which simply means that there are m_{1} copies of value $1, m_{2}$ copies of value 2 , and so on. We write this correspondence $\quad\left(p_{1}, p_{2}, \ldots, p_{k}\right) \leftrightarrow\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ and analogously $\left(q_{1}, q_{2}, \ldots, q_{k}\right) \leftrightarrow\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$.

Here, we always assume that $p_{1} \geq p_{2} \geq \ldots \geq p_{k}$ and that $q_{1} \geq q_{2} \geq \ldots \geq q_{1}$. Also, we compactly write $\Gamma\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{l}\right)=\Gamma\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$.

From Lemma 1 directly follows
Proposition 2. Let $m_{1}, m_{2}, m_{3}, m_{4}, n_{1}, n_{2}, n_{3}, n_{4} \in N_{0}$ and let $n_{4} \geq 1$ and let at least one of numbers m_{1}, m_{2}, m_{3} and m_{4} be different form 0 . Then $\Gamma\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right) \neq \varnothing$ if and only if one of the following holds:

1) $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{4}$ and $\Gamma\left((0,0,0,0) ;\binom{n_{1}, n_{2}, n_{3}+m_{1}+2 m_{2}+3 m_{3}+4 m_{4}}{,n_{4}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}}\right) \neq 0$;
2) $p_{1} \leq n_{4}<m_{1}+2 m_{2}+3 m_{3}+4 m_{4}$ and $\Gamma\left(p_{j+1}, p_{j+2}, \ldots, p_{k} ;\left(n_{1}, n_{2}-n_{4}+\sum_{i=1}^{j} p_{i}, n_{3}+2 n_{4}-\sum_{i=1}^{j} p_{i}, 0\right)\right) \neq 0$, where j is the smallest number such that $\sum_{i=1}^{j} p_{i} \geq n_{4}$;
3) $n_{4}<p_{1} \leq n_{1}+n_{2}+n_{3}+n_{4}$ and $\Gamma\left(p_{2}, p_{3}, \ldots, p_{k} ; q_{1}-1, q_{2}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, q_{p_{1}+2}, \ldots, q_{l}\right) \neq 0$.

Proposition 3. Let $m_{1}, m_{2}, m_{3}, m_{4}, n_{1}, n_{2}, n_{3} \in N_{0}$ and let $n_{3} \geq 1$ and let at least one of numbers m_{1}, m_{2}, m_{3} and m_{4} be different form 0 . Then $\Gamma\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, 0\right)\right) \neq \varnothing$ if and only if one of the following holds:

1) $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{3}$ and $\Gamma\left((0,0,0,0) ;\binom{n_{1}, n_{2}+m_{1}+2 m_{2}+3 m_{3}+4 m_{4}}{,n_{3}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}, 0}\right) \neq 0$;
2) $p_{1} \leq n_{3}<m_{1}+2 m_{2}+3 m_{3}+4 m_{4}$ and
$\Gamma\left(p_{j+1}, p_{j+2}, \ldots, p_{k} ;\left(n_{1}-n_{3}+\sum_{i=1}^{j} p_{i}, n_{2}+2 n_{3}-\sum_{i=1}^{j} p_{i}, 0,0\right)\right) \neq 0$, where j is the smallest
number such that $\sum_{i=1}^{j} p_{i} \geq n_{3}$;
3) $n_{3}<p_{1} \leq n_{1}+n_{2}+n_{3}$ and $\Gamma\left(p_{2}, p_{3}, \ldots, p_{k} ; q_{1}-1, q_{2}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, q_{p_{1}+2}, \ldots, q_{l}\right) \neq 0$.

Proposition 4. Let $m_{1}, m_{2}, m_{3}, m_{4}, n_{1}, n_{2} \in N_{0}$ and let $n_{2} \geq 1$ and let at least one of numbers m_{1}, m_{2}, m_{3} and m_{4} be different form 0 . Then $\Gamma\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, 0,0\right)\right) \neq \varnothing$ if and only if one of the following three conditions holds:

1) $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{2}$ and $\Gamma\left((0,0,0,0) ;\binom{n_{1}+m_{1}+2 m_{2}+3 m_{3}+4 m_{4}}{,n_{2}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}, 0,0}\right) \neq 0$;
2) $p_{1}<n_{2}<m_{1}+2 m_{2}+3 m_{3}+4 m_{4}$ and $\Gamma\left(p_{j+1}, p_{j+2}, \ldots, p_{k} ;\left(n_{1}+2 n_{2}-\sum_{i=1}^{j} p_{i}, 0,0,0\right)\right) \neq 0$, where j is the smallest number such that $\sum_{i=1}^{j} p_{i} \geq n_{2}$.
3) $n_{2} \leq p_{1} \leq n_{1}+n_{2}$ and $\Gamma\left(p_{2}, p_{3}, \ldots, p_{k} ; q_{1}-1, q_{2}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, q_{p_{1}+2}, \ldots, q_{l}\right) \neq 0$.

It can be easily seen that:
Proposition 5. Let $m_{1}, m_{2}, m_{3}, m_{4}, n_{1} \in N_{0}$ and let $n_{1} \geq 1$. Then $\Gamma\left(\left(n_{1}, 0,0,0\right) ;\left(m_{1}, m_{2}, m_{3}, m_{4}\right)\right) \neq \varnothing$ if and only if $n_{1}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}$ is an even nonnegative integer.

The following theorem is given in Reference 7 (recall that the molecular graph is a simple connected graph):

Theorem A. Let n_{1}, n_{2}, n_{3} and n_{4} be nonnegative natural numbers such that $n_{1}+n_{2}+n_{3}+n_{4} \geq 3$. There is a molecular graph G such that $v(G)=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ if and only if the following four conditions hold:

1) $n_{3}+2 n_{4} \geq n_{1}-2$;
2) $\frac{3 n_{3}+4 n_{4}-n_{1}}{2}-n_{2} \leq\binom{ n_{3}+n_{4}}{2}$;
3) $n_{1}+n_{3}$ is an even number;
4) If $n_{3}+n_{4}=1$ then $n_{2} \geq 3 n_{3}+4 n_{4}-n_{1}$.

From here we can deduce:

Proposition 6. Let n_{1}, n_{2}, n_{3} and n_{4} be nonnegative natural numbers such that $n_{1}+n_{2}+n_{3}+n_{4} \geq 3$. There is a simple graph G such that $v(G)=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ if and only if the following three conditions hold:

1) $\frac{3 n_{3}+4 n_{4}-n_{1}}{2}-n_{2} \leq\binom{ n_{3}+n_{4}}{2}$;
2) $n_{1}+n_{3}$ is an even number;
3) If $n_{3}+n_{4}=1$ then $n_{2} \geq 3 n_{3}+4 n_{4}-n_{1}$.

Proof: Necessity can be proved completely by analogy to the proof of Theorem A. Let us prove sufficiency. Distinguish two cases:
CASE 1: $n_{3}+2 n_{4} \geq n_{1}-2$.
This case follows from Theorem A.
CASE 2: $n_{3}+2 n_{4}<n_{1}-2$.
Note that $n_{1}-2 n_{3}-3 n_{4}$ is an even number larger then 2. Let graph G consist of paths with $n_{2}+n_{3}+n_{4}+2$ edges and $\frac{n_{1}-n_{3}-2 n_{4}-2}{2}$ isolated edges. Pick arbitrarily n_{3} vertices of degree 2 in the set A and n_{4} vertices of degree 2 in B. Graph G^{\prime} is created from graph G by adding a single pendant vertex to each vertex in A and 2 pendant vertices to each vertex in B. It can be easily seen that $G^{\prime} \in \Gamma\left(0,0,0,0 ; n_{1}, n_{2}, n_{3}, n_{4}\right)$.

Proposition 7. Let $m_{1}, m_{2}, m_{3}, m_{4}, n_{1}, n_{2}, n_{3}, n_{4} \in N_{0}$ and let $\Gamma\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right) \neq \varnothing$. Then $\Gamma_{c}\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right) \neq \varnothing$ if and only if $m_{3}+n_{3}+2 m_{4}+2 n_{4} \geq m_{1}+n_{1}-2$.

Proof: Suppose that $G \in \Gamma_{c}\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right)$. Then number of edges in G is equal to $\frac{m_{1}+n_{1}+2 m_{2}+2 n_{2}+3 m_{3}+3 n_{3}+4 m_{4}+4 n_{4}}{2}$, hence

$$
\frac{m_{1}+n_{1}+2 m_{2}+2 n_{2}+3 m_{3}+3 n_{3}+4 m_{4}+4 n_{4}}{2} \geq m_{1}+n_{1}+m_{2}+n_{2}+m_{3}+n_{3}+m_{4}+n_{4}-1 .
$$

Which implies $m_{3}+n_{3}+2 m_{4}+2 n_{4} \geq m_{1}+n_{1}-2$. Now suppose that $\Gamma_{c}\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right) \neq \varnothing$ and that $m_{3}+n_{3}+2 m_{4}+2 n_{4} \geq m_{1}+n_{1}-2$ but that $\Gamma_{c}\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right)=\varnothing$. Let $G \in \Gamma\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right)$ be a graph with the smallest number of components. From $m_{3}+n_{3}+2 m_{4}+2 n_{4} \geq m_{1}+n_{1}-2$, it follows that at
least one component in G contains a cycle. Let $v_{a} y_{b}$ (note that each edge has at least one vertex in y) be an edge of that cycle and let $v_{c} y_{d}$ be an edge of some other component of G. Note that

$$
G-v_{a} y_{b}-v_{c} y_{d}+y_{b} v_{c}+y_{d} v_{a} \in \Gamma\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right)
$$

has a smaller number of components that G. This is a contradiction.

3. Algorithm

Propositions 1-7 yield a simple recursive algorithm which gives the answer to the question whether the set $\Gamma_{c}\left(m_{1}, m_{2}, m_{3}, m_{4} ; n_{1}, n_{2}, n_{3}, n_{4}\right)$ is empty or not. We have the main function IsEmpty, the recursive procedure RecIsEmpty and the function Collect that transforms the ordinary sequence of numbers $\left(p_{1}, \ldots, p_{k}\right)$ or $\left(q_{1}, \ldots, q_{l}\right)$ into compact sequences $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ and $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$.
$\operatorname{IsEmpty}\left(m_{1}, m_{2}, m_{3}, m_{3} ; n_{1}, n_{2}, n_{3}, n_{4}\right)$

1) If $m_{3}+n_{3}+2 m_{4}+2 n_{4}<m_{1}+n_{1}-2$ then return Set is empty
2) Else return RecIsEmpty $\left(m_{1}, m_{2}, m_{3}, m_{3} ; n_{1}, n_{2}, n_{3}, n_{4}\right)$
$\operatorname{RecIsEmpty}\left(m_{1}, m_{2}, m_{3}, m_{3} ; n_{1}, n_{2}, n_{3}, n_{4}\right)$
If $m_{1}=m_{2}=m_{3}=m_{4}=0$ then
Begin
If $\left[\frac{3 n_{3}+4 n_{4}-n_{1}}{2}-n_{2} \leq\binom{ n_{3}+n_{4}}{2}\right]$ and $\left[n_{1}+n_{3}\right.$ is an even number $]$ and
[If $n_{3}+n_{4}=1$ then $n_{2} \geq 3 n_{3}+4 n_{4}-n_{1}$] then return Set is non-empty
Else return Set is empty
End
Else if $n_{2}=n_{3}=n_{4}=0$ then
Begin
If $n_{1}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}$ is an even non-negative integer return Set is non-
Empty
Else return Set is empty
End
Else if $n_{3}=n_{4}=0$ then
Begin
If $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{2}$ then return
$\operatorname{RecIsEmpty}\left(0,0,0,0 ; n_{1}+m_{1}+2 m_{2}+3 m_{3}+4 m_{4}, n_{2}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}, 0,0\right)$; Else if $p_{1} \leq n_{2}<m_{1}+2 m_{2}+3 m_{3}+4 m_{4}$ then return

RecIsEmpty $\left(\operatorname{Collect}\left(p_{j+1}, p_{j+2}, \ldots, p_{k}\right) ; n_{1}+2 n_{2}-\sum_{i=1}^{j} p_{i}, 0,0,0\right)$
where j is the smallest number such that $\sum_{i=1}^{j} p_{i} \geq n_{2}$.
Else if $n_{2}<p_{1} \leq n_{1}+n_{2}$ then return

$$
\operatorname{RecIsEmtpy}\binom{\operatorname{Collect}\left(p_{2}, p_{3}, \ldots, p_{k}\right)}{\operatorname{Collect}\left(q_{1}-1, q_{2}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, q_{p_{1}+2}, \ldots, q_{l}\right)} .
$$

Else return Set is empty
End
Else if $n_{4}=0$
Begin
If $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{3}$ then return
$\operatorname{RecIsEmpty}\left(0,0,0,0 ; n_{1}, n_{2}+m_{1}+2 m_{2}+3 m_{3}+4 m_{4}, n_{3}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}, 0\right)$
Else if $p_{1} \leq n_{3}<m_{1}+2 m_{2}+3 m_{3}+4 m_{4}$ then return
$\operatorname{RecIsEmpty}\left(\operatorname{Collect}\left(p_{j+1}, p_{j+2}, \ldots, p_{k}\right) ; n_{1}-n_{3}+\sum_{i=1}^{j} p_{i}, n_{2}+2 n_{3}-\sum_{i=1}^{j} p_{i}, 0,0\right) \neq 0$
where j is the smallest number such that $\sum_{i=1}^{j} p_{i} \geq n_{3}$;
Else if $n_{3}<p_{1} \leq n_{1}+n_{2}+n_{3}$ then return

$$
\operatorname{RecIsEmpty}\binom{\operatorname{Collect}\left(p_{2}, p_{3}, \ldots, p_{k}\right) ;}{\operatorname{Collect}\left(q_{1}-1, q_{2}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, q_{p_{1}+2}, \ldots, q_{l}\right)}
$$

Else return Set is empty
End
Else
Begin
If $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{4}$ then return
RecIsEmpty $\binom{0,0,0,0 ; n_{1}, n_{2}, n_{3}+m_{1}+2 m_{2}+3 m_{3}+4 m_{4}}{n_{4}-m_{1}-2 m_{2}-3 m_{3}-4 m_{4}} ;$
If $p_{1} \leq n_{4}<m_{1}+2 m_{2}+3 m_{3}+4 m_{4}$ then return
$\operatorname{RecIsEmpty}\left(\operatorname{Collect}\left(p_{j+1}, p_{j+2}, \ldots, p_{k}\right) ; n_{1}, n_{2}-n_{4}+\sum_{i=1}^{j} p_{i}, n_{3}+2 n_{4}-\sum_{i=1}^{j} p_{i}, 0\right)$
where j is the smallest number such that $\sum_{i=1}^{j} p_{i} \geq n_{4}$;
If $n_{4}<p_{1} \leq n_{1}+n_{2}+n_{3}+n_{4}$ then return

$$
\operatorname{RecIsEmpty}\binom{\operatorname{Collect}\left(p_{2}, p_{3}, \ldots, p_{k}\right) ;}{\operatorname{Collect}\left(q_{1}-1, q_{2}-1, \ldots, q_{p_{1}}-1, q_{p_{1}+1}, q_{p_{1}+2}, \ldots, q_{l}\right)}
$$

Else return Set is empty
End
It can be easily seen that the recursion RecIsEmpty can be referenced at most five times during the execution of the program, hence the algorithm works very efficiently (in a constant time) for graphs of arbitrarily large size.

4. Molecules with a single covalent bonds and/or single ionic bonds

Suppose that we have eight types of atoms: metals with $1,2,3$ and 4 electrons in the last shell (valences $1,2,3$, and 4 as in $\mathrm{Li}, \mathrm{Be}, \mathrm{B}$, and C) and non-metals with 7, 6, 5, and 4 electrons in the last shell (valences $7,6,5$, and 4 , that is, having $1,2,3$, and 4 electrons missing in the last orbital shell, as in F, O, N, and C). Denote the numbers of metal atoms by $m e_{1}, m e_{2}, m e_{3}$ and $m e_{4}$ and the numbers of non-metal atoms with by $n m_{1}, n m_{2}, n m_{3}$ and $n m_{4}$.

Metal atoms are capable only of donating electrons to participate in ionic bonding. On the other hand non-metals are capable of accepting electrons to participate in ionic bonding, and also of forming covalent bonds. A molecule is stable if each atom has its last orbital shell filled with electrons. In ionic bonding, metal atoms obtain this stability by donating all electrons and non-metals obtain this stability by accepting the necessary numbers of electrons to fill their valence electron shell. A simple row- 2 example is $[\mathrm{Li}]^{+}[\mathrm{F}]^{-}$.

In a molecule with only non-metal atoms, the atoms share outer-shell electrons such that there are eight electrons associated with each atom (counting both electrons in each bond). If the atoms are identical then the bond is strictly covalent; F_{2} is a simple example. If the atoms differ then the bond is technically not a strict covalent bond but is often (as in this paper) referred to with that term. A row-2 example is F-O-F.

Van der Waals, hydrogen, and other bondings are not considered.
We are interested if there is molecule with only single covalent bonds and single ionic bonds that corresponds to numbers $m e_{1}, m e_{2}, m e_{3}, m e_{4}, n m_{1}, n m_{2}, n m_{3}$ and $n m_{4}$. We can solve this using our algorithm. We just calculate

$$
\operatorname{IsEmpty}\left(m e_{1}, m e_{2}, m e_{3}, m e_{4}, n m_{1}, n m_{2}, n m_{3}, n m_{4}\right)
$$

and find out if there is molecule with the required properties. If we are interested only in molecules without cycles then we need to add the following condition:

$$
m e_{1}+n m_{1}=m e_{3}+n m_{3}+2 m e_{4}+2 n m_{4}+2
$$

5. Acyclic molecules with a single and/or double covalent bonds and/or single and/or double ionic bonds

Denote $v(G)$ as in Section 1. Denote by Γ_{12} set of all connected graphs that have only single and/or double bonds and have no loops or nontrivial cycles (we assume that cycle is trivial if it consists of pair of vertices connected by double bond).

The following theorem is given in Reference 9:
Theorem B. Let $n_{1}, n_{2}, n_{3}, n_{4} \in N_{0}$. Then, there is a graph $G \in \Gamma_{12}$ such that $v(G)=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ if and only if $n_{2}=n_{3}=n_{4}=0$ and $n_{1}=2$; or the following five conditions hold:

1) $n_{1} \equiv n_{3}(\bmod 2)$
2) $n_{1} \leq n_{3}+2 n_{4}+2$
3) if $n_{3}=0$, then $n_{1}+2 n_{2} \geq 4$
4) if $n_{3} \geq 1$, then $n_{1}+n_{2} \geq 2$
5) if $n_{1}=n_{3}=0$ then $n_{2}=2$.

Denote by $\Gamma_{12}\left(p_{1}, \ldots p_{k} ; q_{1}, \ldots, q_{k}\right)=\Gamma_{12}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$ set of all connected i.e. graphs without loops and nontrivial cycles and only with single and double bonds such that set of vertices of G is $V(G)=\left\{x_{1}, \ldots x_{k}, y_{1}, \ldots, y_{l}\right\}$ that $d_{G}\left(x_{i}\right)=p_{i}$, for each $i=1, \ldots, k$; $d_{G}\left(y_{i}\right)=q_{i}$ for each $i=1, \ldots, l$ and no two vertices x_{i} and x_{j} are adjacent.

Let us prove:
Theorem 8. Let $m_{1}, m_{2}, m_{3}, m_{4}, n_{1}, n_{2}, n_{3}, n_{4} \in N_{0}$. Then,

$$
\Gamma_{12}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right) \neq \varnothing
$$

if and only if $m_{1}=n_{2}=m_{2}=n_{3}=m_{3}=n_{4}=m_{4}=0, n_{1}=2$ or the following six conditions all hold:

1) $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}$
2) $n_{1}+m_{1} \equiv n_{3}+m_{3}(\bmod 2)$
3) $n_{1}+m_{1} \leq n_{3}+m_{3}+2 n_{4}+2 m_{4}+2$
4) if $n_{3}=m_{3}=0$, then $n_{1}+m_{1}+2 n_{2}+2 m_{2} \geq 4$
5) if $n_{3}+m_{3} \geq 1$, then $n_{1}+m_{1}+n_{2}+m_{2} \geq 2$
6) $n_{1}=m_{1}=n_{3}=m_{3}=0 \Rightarrow n_{2}+m_{2}=2$

Proof: First, suppose that there is $G \in \Gamma_{12}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$. Since no two vertices x_{i} and x_{j} adjacent, if follows that $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}$ and the the remaining follows from the Theorem B. Now, let us prove the opposite implication.

If $m_{1}=n_{2}=m_{2}=n_{3}=m_{3}=n_{4}=m_{4}=0, n_{1}=2$, the claim is trivial. Hence, suppose that claims 1) - 6) follow. From Theorem B, it follows that there is graph $G \in \Gamma_{12}$ such that $v(G)=\left(n_{1}+m_{1}, n_{2}+m_{2}, n_{3}+m_{3}, n_{4}+m_{4}\right)$.

Denote by $\Gamma_{12}^{\prime}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$ the set of all connected i.e. graphs without loops and only with single and double bonds such that set of vertices of G is $V(G)=\left\{x_{1}, \ldots x_{k}, y_{1}, \ldots, y_{l}\right\}$ that $d_{G}\left(x_{i}\right)=p_{i}$, for each $i=1, \ldots, k ; d_{G}\left(y_{i}\right)=q_{i}$ for each $i=1, \ldots, l$. Obviously, $\Gamma_{12}^{\prime}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$ contains graph isomorphic to G, hence $\Gamma_{12}^{\prime}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right) \neq \varnothing$. Let $G^{\prime} \in \Gamma_{12}^{\prime}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$ be the graph in $\Gamma_{12}^{\prime}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$ with the smallest value of $e(X)$. If $e(X)=0$, then $G^{\prime} \in \Gamma_{12}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)$ and theorem is proved.

Hence, suppose that $e(X) \neq 0$. Since, $m_{1}+2 m_{2}+3 m_{3}+4 m_{4} \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}$, it follows that $e(Y) \neq 0$, too. Denote $x_{a} x_{b} \in E(X)$ and $y_{c} y_{d} \in E(Y)$. Denote by $D(G)$ set of double bonds in G. Distinguish 4 cases:

CASE 1: $x_{a} y_{c}, x_{b} y_{d} \notin D(G)$.
Graph $G-x_{a} x_{b}-y_{c} y_{d}+x_{a} y_{c}+x_{b} y_{d} \in \Gamma^{\prime}{ }_{12}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right) \neq \varnothing$ has smaller value of $e(Y)$, which is contradiction.
CASE 2: $x_{b} y_{c}, x_{a} y_{d} \notin D(G)$.
Graph $G-x_{a} x_{b}-y_{c} y_{d}+x_{b} y_{c}+x_{a} y_{d} \in \Gamma^{\prime}{ }_{12}\left(\left(m_{1}, m_{2}, m_{3}, m_{4}\right) ;\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right) \neq \varnothing$ has smaller value of $e(Y)$, which is contradiction.
CASE 3: $x_{a} y_{c}, x_{b} y_{c} \in D(G)$ or $x_{a} y_{c}, x_{a} y_{d} \in D(G)$ or $x_{b} y_{d}, x_{b} y_{c} \in D(G)$ or $x_{b} y_{d}$, $x_{a} y_{d} \in D(G)$.
In the first case y_{c} has degree 5 ; in the second x_{a} has degree 5 ; in the third case x_{b} has degee 5 and in the fourth case y_{d} has degree 5 . Hence, in each case a contradiction is obtained.

All the cases are exhausted and the theorem is proved.
Now a direct application to molecular structure will be made.
Denote the atoms by $m e_{1}, m e_{2}, m e_{3}, m e_{4}, n m_{1}, n m_{2}, n m_{3}$ and $n m_{4}$ as in Section 3. We are interested if there is molecule without rings, having only single and/or double covalent bonds
and/or only single and/or double ionic bonds, and achieving stability for each atom. We just apply the Theorem 8, i.e. such a molecule exists if and only if one of the following three condition sets holds. The examples are all drawn from molecules with group-2 atoms, generalization to molecules with heavier atoms is not difficult. ${ }^{1}$

1) $m e_{1}=m e_{2}=m e_{3}=m e_{4}=n m_{2}=n m_{3}=n m_{4}=0, n m_{2}=2\left(\right.$ as in $\left.\mathrm{O}_{2}\right)$, or
2) $m e_{2}=m e_{3}=m e_{4}=n m_{2}=n m_{3}=n m_{4}=0, m e_{1}=n m_{1}=1$ (as in $\left.[\mathrm{Li}]^{+}[\mathrm{F}]^{-}\right)$, or
3) all of the following six relations hold:
3.1) $m e_{1}+2 m e_{2}+3 m e_{3}+4 m e_{4} \leq n m_{1}+2 n m_{2}+3 n m_{3}+4 n m_{4}(\mathrm{Li}-\mathrm{O}-\mathrm{Li}$ and Li-O-F; $\mathrm{O}=\mathrm{C}=\mathrm{O}$; $\mathrm{Li}-\mathrm{N}=\mathrm{O}$ and $\mathrm{F}-\mathrm{N}=\mathrm{O}$; kite BeONLi)
3.2) $m e_{1}+n m_{1} \equiv m e_{3}+n m_{1}(\bmod 2)(\mathrm{Li}-\mathrm{O}-\mathrm{Li}$ and Li-O-F; $\mathrm{Li}-\mathrm{N}=\mathrm{O}$ and $\mathrm{F}-\mathrm{N}=\mathrm{O}$; kites OONLi and OONF; kites BeONLi and BeONF, where the beryllium atom donates electrons to the oxygen and nitrogen atoms)
3.3) $m e_{1}+n m_{1} \leq m e_{5}+n m_{5}+2 m e_{4}+2 n m_{4}+2$ (Li-O-Li and Li-O-F; Li-O-O-Li and Li-O-O-F; $\mathrm{Li}_{2} \mathrm{C}=\mathrm{CLi}_{2}$)
3.4) if $m e_{3}=n m_{3}=0$, then $m e_{1}+n m_{1}+2 m e_{2}+2 n m_{2} \geq 4$ (Li-O-Li, Li-O-F, and $\mathrm{O}=\mathrm{C}=\mathrm{O}$ satisfy the equality)
3.5) if $m e_{3}+n m_{3} \geq 1$, then $m e_{1}+n m_{1}+m e_{2}+n m_{2} \geq 2$ (Li-N=O and F-N=O satisfy the equality;; kites OONLi and OONF and BeONLi satisfy the inequality)
3.6) $m e_{1}=n m_{1}=m e_{3}=n m_{3}=0 \Rightarrow m e_{2}+n m_{2}=2$ (the simplest case is $\left.[\mathrm{Be}]^{2+}[\mathrm{O}]^{2-}\right)$

6. Acyclic molecules with a single and/or double and/or triple covalent and /or ionic bonds

The following theorem is given in Reference 9, noting that the first inequality in line 3) is due to a missprint in Lemma 18 and hence that the following theorem contains $n_{1}=2$ instead of $n_{1}+n_{3}=2$:

Theorem C. Let $n_{1}, n_{2}, n_{3}, n_{4} \in \mathrm{~N}_{0}$. There is a graph $G \in \Gamma_{123}$ if and only if one of the following four condition sets holds:

1) $n_{1}=n_{2}=n_{4}=0$ and $n_{3}=2$, or
2) $n_{1}=n_{3}=0$ and $n_{2}=2$, or

[^0]3) $n_{1}+n_{3}=2, n_{2}=0, n_{4} \geq n_{3}$ and $n_{4} \equiv n_{3}(\bmod 2)$, or
4) The fourth condition is that all of the following five relations hold:
4.1) $n_{1} \equiv n_{3}(\bmod 2)$
4.2) $n_{1} \leq n_{3}+2 n_{4}+2$
4.3) if $n_{3}=0$, then $n_{1}+2 n_{2} \geq 4$
4.4) if $n_{3} \geq 1$, then $n_{1}+n_{2} \geq \max \left\{2-n_{4}, 3-n_{3}, 2-\left(n_{3}+2 n_{4}+2-n_{1}\right) / 4\right\}$
4.5) $n_{1}+n_{3}>1$.

To make direct chemical application, this theorem can be utilized to give necessary and sufficent conditions on the numbers $m e_{1}, m e_{2}, m e_{3}, m e_{4}, n m_{1}, n m_{2}, n m_{3}, n m_{4}$ for the existence of molecules with only single and/or double and/or triple covalent bonds and only single and/or double and/or triple ionic bonds that corresponds to these numbers.
It is necessary and sufficient that the numbers satisfy

$$
m e_{1}+2 m e_{2}+3 m e_{3}+4 m e_{4} \leq n m_{1}+2 n m_{2}+3 n m_{3}+4 n m_{4}
$$

and one of the following four conditions:

1) $m e_{1}=n m_{1}=m e_{2}=n m_{2}=m e_{4}=n m_{4}=0$ and $m e_{3}+n m_{3}=2$ or
2) $m e_{1}=n m_{1}=m e_{3}=n m_{3}=0$ and $n e_{2}+n m_{2}=2$
3) $m e_{1}+n m_{1}+m e_{3}+n m_{3}=2, m e_{2}=n m_{2}=0, m e_{4}+n m_{4} \geq m e_{3}+n e_{3}$ and $m e_{4}+n m_{4} \equiv m e_{3}+n e_{3}(\bmod 2)$
4) This fourth condition is that all of the following five relations hold:
4.1) $m e_{1}+n m_{1} \equiv m e_{3}+n m_{3}(\bmod 2)$
4.2) $m e_{1}+n m_{1} \leq m e_{3}+n m_{3}+2 m e_{4}+2 n m_{4}+2$
4.3) if $m e_{3}=n m_{3}=0$, then $m e_{1}+n m_{1}+2 m e_{2}+2 n m_{2} \geq 4$
4.4) if $m e_{3}+n m_{3} \geq 1$ then

$$
m e_{1}+n m_{1}+m e_{2}+n m_{2} \geq \max \left\{\begin{array}{c}
2-m e_{4}-n m_{4}, 3-m e_{3}-n m_{3}, 2- \\
\left(m e_{3}+n m_{3}+2 m e_{4}+n m_{4}+2-m e_{1}-n m_{1}\right) / 4
\end{array}\right\}
$$

4.5) $m e_{1}+n m_{1}+m e_{3}+n m_{3}>1$

7. Molecules that have bond orders up to three and that may contain cycles

The following theorems given in Reference 10 can be utilized in a completely analogous way for these molecules:

Theorem D. Let $n_{1}, n_{2}, n_{3}, n_{4} \in N_{0}$. Then, $\Gamma_{12}^{o}\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \neq \varnothing$ if and only if the following holds:

1) $n_{1} \equiv n_{3}(\bmod 2)$
2) $n_{1} \leq n_{3}+2 n_{4}+2$
3) $2 \Delta \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}$
4) $2 \Delta+2 \Delta^{\prime} \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+4$.

Theorem E. Let $n_{1}, n_{2}, n_{3}, n_{4} \in N_{0}$. Then, $\Gamma_{123}^{o}\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \neq \varnothing$ if and only if the following holds:

1) $n_{1} \equiv n_{3}(\bmod 2)$;
2) $n_{1} \leq n_{3}+2 n_{4}+2$;
3) $2 \Delta \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}$;
4) $2 \Delta+2 \Delta^{\prime} \leq n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+6$.
where Δ is maximal degree of the graph and Δ^{\prime} is second maximal degree of the graph and Γ_{12}^{o} and Γ_{123}^{o} are defined analogously as above.

The results can be stated for in a chemically relevant way as follows:
CASE 1) There is molecule with only single and/or double covalent bonds and only single and/or double ionic bonds that corresponds to numbers $m e_{1}, m e_{2}, m e_{3}, m e_{4}, n m_{1}, n m_{2}, n m_{3}$ and $n m_{4}$ if and only if these five conditions hold:

1) $m e_{1}+2 m e_{2}+3 m e_{3}+4 m e_{4} \leq n m_{1}+2 n m_{2}+3 n m_{3}+4 n m_{4}$
2) $n m_{1}+m e_{1} \equiv n m_{3}+m e_{3}(\bmod 2)$
3) $n m_{1}+m e_{1} \leq n m_{3}+m e_{3}+2 n m_{4}+2 m e_{4}+2$
4) $2 \Delta \leq m e_{1}+n m_{1}+2 m e_{2}+2 n m_{2}+3 m e_{3}+3 n m_{3}+4 m e_{4}+4 n m_{4}$
5) $2 \Delta+2 \Delta^{\prime} \leq m e_{1}+n m_{1}+2 m e_{2}+2 n m_{2}+3 m e_{3}+3 n m_{3}+4 m e_{4}+4 n m_{4}+4$.

CASE 2) There is molecule with single and/or double and/or triple covalent bonds and single and/or double and/or triple ionic bonds that corresponds to numbers $m e_{1}, m e_{2}, m e_{3}, m e_{4}$, $n m_{4}, n m_{5}, n m_{6}$ and $n m_{7}$ if and only if

1) $m e_{1}+2 m e_{2}+3 m e_{3}+4 m e_{4} \leq n m_{1}+2 n m_{2}+3 n m_{3}+4 n m_{4}$
2) $n m_{1}+m e_{1} \equiv n m_{3}+m e_{3}(\bmod 2)$
3) $n m_{1}+m e_{1} \leq n m_{3}+m e_{3}+2 n m_{4}+2 m e_{4}+2$
4) $2 \Delta \leq m e_{1}+n m_{1}+2 m e_{2}+2 n m_{2}+3 m e_{3}+3 n m_{3}+4 m e_{4}+4 n m_{4}$
5) $2 \Delta+2 \Delta^{\prime} \leq m e_{1}+n m_{1}+2 m e_{2}+2 n m_{2}+3 m e_{3}+3 n m_{3}+4 m e_{4}+4 n m_{4}+6$.

8. Summary

The theory presented here gives the necessary and sufficient conditions for the existence of a molecule which has

- single and/or double and/or triple covalent bonds, and/or
- with single and/or double and/or triple ionic bonds, and
- exactly eight electrons in the valence shell of every atom (counting those that possessed before bonding and those that it gained or lost as a result of the bonding).

It is worthwhile to note what is not being claimed:

- That only octet molecules exist,
- That octet molecules are necessarily more stable under usual laboratory conditions than non-octet molecules,
- That any given octet molecule will be observable under usual laboratory conditions.

The synthesis of octet molecules, even if it requires working under unusual conditions, should be of interest for the following (rather esoteric) reasons:

- These working conditions, unusual or not, might after analysis be found to follow interesting patterns,
- The distributions of the molecules in their multidimensional spaces, known for diatomic ${ }^{1}$ and triatomic ${ }^{2}$ molecules, might be generalized to higher spaces.

References

1. B. James, K. E. Caviness, J. Geach, C. W. Walters, and R. Hefferlin, "Global Molecular Identification from Graphs. Neutral and Ionized Main-Group Diatomic Molecules," J. Chem. Inf. Comp. Sci. 42 (2002) 1-7.
2. J. Geach, C. W. Walters, B. James, K. E. Caviness, and R. Hefferlin, "Global Molecular Identification from Graphs. Main-Group Triatomic Molecules," Croat. Chem. Acta 75 (2002) 333-400.
3. C. W. Walters, K. E. Caviness, and R. Hefferlin, "Global Molecular Identification from Graphs. IV. Molecules with four Closed p-Shell Atoms and Beyond," Croat. Chem. Acta 77 (2004) 65-71.
4. M. Froyen and P. Herdewijn, "Correct Bond Order Assignments in a Molecular Framework using Integer Linear Programming with Applications where only NonHydrogen Atom Coordinates are Available," J. Chem. Inf. Comp. Sci. 45 (2005) 12671274.
5. L. Schulz, "Catagories in Chemistry and Chemical Computers," J. Mol. Struct. (Theochem) 187 (1989) 15-22.
6. D. Vukičević and A. Graovac, "On Molecular Graphs with Valencies 1, 2, and 4 with Prescribed Numbers of Bonds, Croat. Chem. Acta, 77 (2004) 313-319.
7. D. Vukicevic and N. Trinajstic, "On the Discriminatory Power of the Zagreb Indices for Molecular Graphs," MATCH-Commun. Math. Comput. Chem., 53 (2005) 111-138.
8. D. Vukičević and A. Graovac, "Compact Valence Sequences for Molecules with Single, Double and Triple Covalent Bonds," Croat. Chem. Acta 78 (2005), 203-209.
9. D. Vukičević and A. Graovac, "Compact Valence Sequences for Molecules with Single, Double and Triple Covalent Bonds," Croat. Chem. Acta, 78 (2005) 203-209.
10. D. Vukičević and A. Graovac, "Compact Valence Sequences for Molecules with Single, Double and Triple Covalent Bonds II: Graphs with Non-trivial Cycles," preprint
11. S. Bohanec and J. Zupan, "Structure Generator GEN," MATCH No. 27 (1992) 49-85.
12. H. D. Luinge, "AEGIS, a Structure Generation Program in Prolog," MATCH No. 27, 175189.

[^0]: ${ }^{1}$ The examples provided for these statements should make it possible for the reader to supply examples for analogous statements in the following sections.

