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Length Bias in the Measurements of Carbon

Nanotubes

Paul Kvam

H. Milton Stewart School of Industrial Engineering

Georgia Institute of Technology

Atlanta, GA, USA

Abstract

To measure carbon nanotube lengths, atomic force microscopy and special software
are used to identify and measure nanotubes on a square grid. Current practice does
not include nanotubes that cross the grid, and as a result, the sample is length biased.
The selection bias model can be demonstrated through Buffon’s Needle Problem, which
was extended to general curves that more realistically represent the shape of nanotubes
observed on a grid. In this paper, the nonparametric maximum likelihood estimator is
constructed for the length distribution of the nanotubes, and the consequences of the
length bias are examined. Probability plots reveal that the corrected length distribution
estimate provides a better fit to the Weibull distribution than the original selection-
biased observations, thus reinforcing a previous claim about the underlying distribution
of synthesized nanotube lengths.

Keywords: Buffon’s Needle Problem, Censoring, Goodness of Fit, Nonparametric, Proba-
bility Plot, Sampling, Selection Bias, Weibull, Weighted Distributions
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1 Introduction

Carbon nanotubes are rolled-up nano-scale sheets of graphitic carbon used to enhance mate-
rials with tensile strength, thermal conductivity and electronic conductivity. In terms of ten-
sile strength alone, they can be stiffer and stronger than any micro-scaled fibres previously
manufactured. Nanotubes and similar nano-sized devices have garnered great attention in
the industrial and academic world, although statistical research in nano-manufacturing is
still in its early stages. In contrast to laboratory research, commercial applications have de-
veloped at a slow pace, primarily because of the enormous production costs of high-quality
nanotubes.

A major challenge in the production of nanotubes is controlling and analyzing the im-
portant qualities such as length, diameter and strength. Nanotube lengths can be measured
using atomic force microscopy (AFM) and special software developed by SIMAGIS r, which
processes three dimensional images of the bulk nanotube material samples. The software
identifies and classifies nanotubes and then analyzes nanotube lengths while recognizing
the intersections, contacts and three dimensions of curvature of the tubes. The solution
features also include the ability to filter objects according to selected length and height.
In this paper, we will focus on length measurements. Figure 1 represents an example of
an AFM profile image of carbon nanotubes in a 5µm x 5µm square interval. The average
size of these nanotubes is nearly 0.5 µm, or 500 nm. This recent technological innovation
gives experimenters the ability to ascertain distributional properties of carbon nanotubes
beyond the simple mean lengths, as characterized in Ziegler, et al. (2005). Important me-
chanical properties that are attainable include tensile strength, elastic modulus and fracture
toughness.

Wang, et al. (2006) present a statistical characterization of nanotube length using an
AFM sample and the SIMAGIS software. The set of length measurements for 651 detected
nanotubes is summarized in a histogram in Figure 2. Like the image in Figure 1, the sam-
pling area consisted of a square grid with sides measuring 5 µm. While it has been verified
in smaller samples that the software accurately finds and measures nanotubes less than 10
nanometers, the software’s count does not include nanotubes that cross the boundary of
the square and the data are therefore length-censored. Although the censoring mechanism
can be easily included in the statistical analysis, this sampling method introduces size bias
into the analysis as well.

2 Length Bias

For a positive random variable X with density function f(x), if the random variable is
observed with a probability proportional to its size w(x), then the distribution of the random
sample obtained with this bias has density
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Figure 1: AFM image of Carbon Nanotubes.

fw(x) =
w(x)f(x)∫
w(x)f(x)dx

.

This kind of weighted bias in sampling was first discussed by Rao (1965) with a particular
interest in length bias, where w(x) = x. This holds for discrete distributions as well, and
we will use dF (x) to denote the more general class of distributions.

Length bias is a common phenomenon in survival studies in which prevalent cases are
determined through cross-sectional study. For example, a test tends to detect more slow-
growing cancers that take longer to become symptomatic compared to aggressive, fast-
growing cancers. Cancers that grow slowly are easier to detect because they have a longer
pre-symptomatic period when they are detectable, and thus show up with more relative fre-
quency in such cancer studies. Horvath (1985) and Asgharian (2002) contain more detailed
discussion on sampling and analysis problems induced by length bias.

2.1 Buffon’s Needle Problem

Buffon’s famous Needle Problem can be used to illustrate the length bias that takes place
in this kind of two-dimensional sample. In 1733, Georges-Louis Buffon, a French naturalist
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Figure 2: Histogram of dispersed SWNT lengths.

and mathematician, posed the following problem. Given a needle of length r and a grid of
parallel lines spaced by an equal distance a, what is the probability that a randomly tossed
needle will cross one of these lines? The problem is solved with rudimentary geometry
based on assuming that the center of the needle and its angle with respect to the grid
are uniformly distributed. The example has been featured as a classic probability problem
and as an experimental way of obtaining an estimate of the constant π; see Perlman and
Wichura (1975), for example. In this paper, we focus on the case in which r ≤ a, where the
censoring probability is 2r/(aπ).

By 1812, Pierre-Simon Laplace considered a second grid of parallel lines constructed
at right angles to the first set of parallel lines and with the same distance a, and found
the crossing probability doubled. That is, the probability of a line crossing on a square
boundary is 4r/(aπ). A geometrical proof is offered by Mantel (1952).

Gnedenko (1962) provided a more general extension of the crossing probability to multi-
sided convex polygons under the constraint that the diameter was less than a. Ramely
(1969) reframed this extension in terms of arbitrary curves, and it is sometimes referred to
as “Buffon’s Noodle Problem”. With polygons and crooked lines, the crossing frequency
changes, but the number of expected crossings remains constant. To illustrate this, think
of a needle bent in half. The probability the folded-over needle crosses a grid line is halved,
but the expected number of crossings stays the same because the the needle will necessarily
cross the the grid line twice.

To represent a nanotube of length r, we could treat it as a straight needle with crossing
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probability of 4r/(aπ), or a crooked, curving tube that connects to itself, in which case the
crossing probability is reduced to 2r/(aπ). From Figure 2, the nanotubes exhibit only a
modest curvature - much more like a straight needle than a connected polygon.

To illustrate the effect of curvature in a simple way, we assume any nanotube consists
of two segments of equal length. Figure 3 shows the nanotubes with segment angles of
θ = {0, π/8, π/4}. If a nanotube consists of two segments of length r/2, the sum of the three
side lengths of the inscribed triangle is r(1 + cos(θ)). Accordingly, the crossing probability
would be reduced to

4r

aπ
λ, (1)

where λ = (cos(θ) + 1) /2 represents the shrinkage in the crossing probability due to the
bending of the nanotube. For θ = {0, π/8, π/4}, we have λ = {1, 0.9619, 0.8536}. It
might be sensible to treat λ as a random effect, reflecting the apparent heterogeneity of
shapes observed in the sample of synthesized nanotubes. In this paper, we focus on a fixed,
known λ, emphasizing the case of λ = 1 (straight nanotubes). The effects of curvature and
randomness in the shape properties are discussed further in Section 4.

= 0

= /8 = /4

r/2

Figure 3: Nanotubes represented as bisected needles with angles θ = {0, π/8, π/4}.

2.2 Censored Nanotubes

Obviously, a longer nanotube is more likely to be censored (and thus not measured) than a
smaller one. Consequently, the sample that ignores the censored lines is biased according to
the nanotube’s length. Suppose the carbon nanotube lengths have cumulative distribution
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function FL(t). We will assume FL(t0) = 1 for some t0 < a, though this constraint is
not necessary for demonstrating the selection bias. Let µL =

∫
tdFL(t). Based on the

approximation in (1), the overall probability of censoring is

p =
∫

4λt

aπ
dFL(t) =

4λµL

aπ
. (2)

From the software output, we observe a sample of n nanotube measurements that has
empirical distribution function F̃n(t). Let F0 and F1 be the distribution functions of the
censored observations (nanotubes that cross the boundary) and uncensored observations,
respectively.

From the mixture

FL(t) = pF0(t) + (1− p)F1(t), (3)

F̃n(t) is actually the nonparametric maximum likelihood estimator (NPMLE) for F1 and
not FL. If the censoring probability p remains small, the bias from estimating FL(t) with
F̃n(t) might be minuscule. For problems in which the nanotube length represents a more
significant proportion of a, however, we will see the bias can be sizeable. From (3), the length
bias (w(x) = x) affects both the censored population (F0) and the observed population (F1)
as

dF0(t) =
t

µL
dFL(t), and dF1(t) =

aπ − 4λt

aπ − 4λµL
dFL(t), (4)

where 0 ≤ t ≤ a. While the censored observations are length biased, the observations lying
strictly within the square are also biased in an opposite manner.

In the remainder of the paper, we restrict our consideration to distributions for which
both F0 and F1 are proper distributions functions. From (4), we require that FL(t0) = 1
for some t0 < aπ/4.

2.3 Example

The following simple example illustrates how length bias can adversely affect the sample
outcome if one does not compensate for it. Suppose the underlying distribution for (straight)
nanotube lengths is Uniform(0, 2µ), observed on a unit grid (a=1). From dF1(t) in (4), the
density function of the uncensored nanotubes is

f1(x) =
(

1
2µ

)
π − 4x

π − 4µ
, 0 ≤ x ≤ 2µ (5)

where µ is the mean nanotube length. In this case, the mean for F1(t) is

µ1 = µ

(
3π − 4µ

3π − 12µ

)
.

Figure 4 shows the ratio mean for FL(t) over the mean of F1(t).
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Once the mean nanotube length increases to 20% of the length of the grid, the increase
in µ1 will get out of hand quickly. The effect of length biasing will be further investigated
for the nanotube data in the following section where we consider nonparametric estimation
of the underlying length distribution.

Figure 4: Ratio of µL over the mean of F1(t) (µ1) for nanotube mean lengths up to 50% of
grid size.

3 Estimating the length distribution

Although the bias for dF1(t) in (4) is not the commonly observed form of length bias, it
presents nonetheless a straightforward selection-bias estimation problem that can be solved
directly. If our observed sample is denoted by x1, . . . , xn, then from Vardi (1985), the biased
distribution can be expressed as some distribution function G(t) such that

G(t) =

∫ t
0 w(u)dFL(u)∫∞
0 w(u)dFL(u)

where the weight function representing the bias is w(x) = aπ − 4λx. In this case, G(t) is
identifiable only for values of t < aπ/(4λ).

As a result, it can be shown from Theorem 1 and Theorem 2 in Vardi (1985) that the
NPMLE of FL is

F̂L(t) =
∑n

i=1 I(xi ≤ t)(aπ − 4λxi)−1

∑n
i=1(aπ − 4λxi)−1

. (6)

3.1 Properties of F̂L

Borrowing the method of proof from Theorem 3.2 in Vardi (1982), we can show the following
result. We assume the coefficient representing nanotube curvature λ is fixed and known.
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Theorem: Assume F (t) is continuous for values 0 < t < aπ/(4λ) and has bounded
density with F (0) = 0 and F (aπ/(4λ)) = 1. Then

∫ aπ/(4λ)

0
(aπ − 4λx)dF̂L(x) −→

∫ aπ/(4λ)

0
(aπ − 4λx)dFL(x) w.p.1

and

√
n(F̂L(t)− FL(t))

converges in distribution to a pinned Gaussian process with mean zero and covariance
function C(u, v), where, for u ≤ v ≤ r and ψ(t) =

∫ t
0 (aπ − 4λs)−1dFL(s),

C(u, v) = (aπ − 4λµL) (ψ(u)(1− FL(v)) + FL(u) (ψ(r)FL(v)− ψ(v))) .

3.2 Nanotube data

In the analysis of the Wang, et al. (2006) data, we will use λ = 1 and refrain from making
more elaborate assumptions about the apparent nanotube curvature displayed in the AFM
image. Figure 5 shows the estimated survival function along with an approximate 95%
confidence interval, based on the nonparametric percentile bootstrap procedure (with 1000
bootstrap samples) described in Chapter 15.2 of Kvam and Vidakovic (2007). Because
of the large sample size, the coverage probability is not significantly improved using bias
correction.

To see how the corrected nonparametric estimator compares with the uncorrected one,
we can visually compare their density estimates. Figure 6 shows a smoothed version of the
density associated with F̂L(t) (dotted line) along side the biased estimator constructed from
the unadjusted empirical density (solid line). The estimated mean and standard deviation
using the standard estimator (530.5 nm, 261.4 nm) are not remarkably different from the
mean and standard deviation of the data (510.4 nm, 253.2 nm). In this case, the mean
nanotube length is on the order of 10 times smaller than the length of the side of the square
from which they are sampled.

Obviously, if the nanotube lengths are more in proportion to the side of the square,
the length bias can be much more dramatic. Figure 7 shows the original empirical density
and estimators adjusted for two smaller (hypothetical) AFM image squares. The squares
have sizes measuring 2500 and 2000 nm (roughly between four to five times bigger than
the mean nanotube size). The estimated densities show how the NPMLE adjusts for more
of the larger nanotubes being censored as the window size is reduced. For the 2500 nm2

window, this is reflected in mass being transferred to the right, illustrating how substantial
bias can be created by the missing censored observations. For the 2000 nm2, the NPMLE
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Figure 5: Nonparametric survival function (black line) and 95% confidence interval (gray
lines) for carbon nanotube lengths.

has generated an extra mode for probability mass representing the lost observations due to
censoring.

3.3 Effect of Shape

With sound knowledge about the curvature of nanotubes in the AFM image, models based
on λ < 1 suggest that improvement in the estimation of the length distribution is possible.
For the carbon nanotube data, however, changing the model by assigning λ = 0.9 will not
change the NPMLE noticeably. For example, the estimated mean changes only 0.68%. Es-
timating the sample curvature has not been broached in the nanomanufacturing literature,
although it posits an intriguing problem for future research. More importance has been
placed on tube lengths, diameters and clusters than on how the nanotubes curve and bend.

Along with unknown curvature, heterogeneity within synthesized batches of carbon nan-
otubes has been carefully researched. See, for example, Lu and Bhattacharya (2005). Again,
the randomness of the nanotube curvature has not received special attention beyond how
the tubes will overlay with each other, which naturally affects electrical properties of nano-
devices. Although the metric implied in Figure 3 is overly simplistic in many regards, here
it will adequately serve the purpose of illustrating the effects of shape variability on the
censoring, length-biasing and nonparametric estimation of nanotube length.
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Figure 6: Empirical density (solid line) and adjusted density estimator (dotted line) for
carbon nanotube lengths.

In this example, the carbon nanotubes are represented as bisected needles, and the angle
of bend θ is governed by a uniform distribution, θ ∼ U(0, π/4). The resulting distribution
of λ (related to the arc since distribution) percolates uncertainty down through F̂L. In
this example, the length distribution is U(0, 2µ), and F1 is represented as a mixture with
mixing density gλ(w) = 4π−1(1 − w2)−1/2, corresponding to λ = (cos(θ) + 1)/2. Through
numerical integration, we can compare the variation between non-censored observations
from the mixture. If µ ≤ 0.25, the standard deviation of the mixture sample is within 1% of
the sample with fixed λ = π/8, which suggests that mild differences in nanotube curvature
will not significantly affect the distribution of non-censored observations.

4 Discussion of Results

The problem of locating and measuring nano-sized matter has been greatly improved in
recent years due to improving AFM technology and recognition software. However, if the
sampling mechanism is unable to include observations crossing the boundary of the obser-
vation grid, the resulting length bias in the data set must be dealt with. If the bias is
not addressed, the length distribution for nanotubes will be underestimated (along with
the variability). In the example featured in Wang, et al. (2006), the consequences of the
bias are relatively benign. However, other examinations of synthesized carbon nanotubes
have included smaller regions, relative to the average size of the nanotubes. The length
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Figure 7: Empirical density (solid line) and adjusted density estimators based on different
AFM image sizes. Original size is 5000 nm. Adjusted sizes are 2500 nm (dotted line) and
2000 nm (dashed line).

of synthesized nanotubes are increasing as the technology improves; Burke, et al. (2006)
describe carbon nanotubes of 0.4 cm in length that have been developed in research labs.
The analysis in this paper shows that the bias will have a substantial effect on the estimator
of the length distribution if the mean nanotube length is as high as 20% of the size of the
side of the square from which they are sampled.

Note that if censored observations were measured, the analysis would be straightforward
using the Kaplan-Meier product limit estimator. In some cases, a nanotube located in the
corner of a square can cross both grid boundaries, but in the nature of sampling nanotube
lengths, the (right) censoring is the same.

In Wang, et al. (2006), the authors set to prove that the underlying length data can
be characterized by the Weibull distribution. Indeed, the Weibull model has served as a
precedent for similar distributional properties of fibrous materials. Based on the model
for fiber composites in Fukuda and Kawata (1974) and Jayaraman and Kortschot (1996),
Wang, et al. (2006) show the epoxy composite stiffness measurements are consistent with
Weibull-distributed nanotube lengths. Although their probability plot of the original data
in Figure 8 is not entirely convincing, one may conclude the Weibull presents “reasonable”
distribution fit to the sample. Knowing the data are length biased, we can reconsider
this goodness of fit for the NPMLE, F̂L. If we compare the original Weibull probability
plot in Figure 8 to the corrected one in Figure 9, we see that the Weibull fit has actually
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improved slightly. This is confirmed by the decrease in the computed Kolmogorov-Smirnov
test statistics. That is, the corrected estimator for the length-biased data offers stronger
evidence to the conjecture made by Wang, et al. (2006).
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Figure 8: Original Weibull probability plot of the length-biased data for carbon nanotube
lengths.
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