
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

2009

Extending the Skill Test for Disease Diagnosis
Shu-Chuan Lin

Paul H. Kvam
University of Richmond, pkvam@richmond.edu

Jye-Chyi Lu

Follow this and additional works at: https://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Applied Statistics Commons, and the Mathematics Commons
This is a pre-publication author manuscript of the final, published article.

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Lin, Shu-Chuan; Kvam, Paul H.; and Lu, Jye-Chyi, "Extending the Skill Test for Disease Diagnosis" (2009). Math and Computer Science
Faculty Publications. 206.
https://scholarship.richmond.edu/mathcs-faculty-publications/206

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232788455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications/206?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


Extending the Skill Test for Disease Diagnosis

Shu-Chuan Lin∗ Paul H. Kvam Jye-Chyi Lu

H. Milton Stewart School of Industrial & Systems Engineering

Georgia Institute of Technology

Abstract

For diagnostic tests, we present an extension to the skill plot introduced by

Briggs and Zaretski [1]. The method is motivated by diagnostic measures for

osteopetrosis in a study summarized by Hans et al. [2]. Diagnostic test accuracy

is typically defined using the area (or partial area) under the receiver operator

characteristic (ROC) curve. If partial area is used, the resulting statistic can be

highly subjective because the focus region of the ROC curve corresponds to a

set of low false-positive rates that are chosen by the experimenter. This paper

introduces a more objective diagnostic test for which the focus region depends

on a skill score, which in turn depends on the loss functions associated with

misdiagnosis. More specifically, the skill-based diagnostic test serves as a more

objective version of the nonparametric test introduced by Dodd and Pepe [3].

1 Introduction

The classification and prediction of dichotomous events has been a cornerstone in

biostatistics research and is becoming increasingly important in many other areas

of science, including meteorology, economics and computer science. Sing et al. [4]

show how pattern classification, scoring and ranking predictors are vital in a wide

range of biological problems. Examples include predicting phenotypic properties of

HIV-1 from genotypic information, microarray analysis for the prediction of tissue

condition based on gene expression, predicting bio-availability or toxicity of drug
∗Contract/grant sponsor: National Science Foundation, CMMI 0700131
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compounds and gauging treatment effect in clinical trials (Brumback et al. [5]). In

many cases, robustness and efficiency of the markers of a diagnostic test are critical

and the cost of misclassification is a primary factor for classification and prediction.

Diagnostic tests that use markers to determine whether a patient is diseased

or healthy are standard tools in medical screening. Early detection is considered

essential to effective treatment. Finding new markers that are less invasive, less

expensive, and more accurate than existing measures are important in disease pre-

vention [3]. For the diagnosis of many modern diseases, the difference in marker

measurements used to screen healthy patients from diseased patients can be sub-

tle, and statistical researchers work to develop the most effective tool to discern

this difference. Misclassification costs are often asymmetric; that is, the cost of

misclassifying a healthy patient into the diseased group (a false positive result) is

often less than the cost of misclassifying a diseased patient into the healthy group.

One tool that has been especially useful in recent decades is the receiver operating

characteristic (ROC) curve.

1.1 ROC Curve

To describe the ROC, let Y equal one if the patient actually has the disease, and Y is

zero otherwise. Let p = P (Y = 1) represents the proportion of diseased patients in

the total population. Suppose each patient has diagnostic marker response X. If the

patient is a member of the healthy population then X has cumulative distribution

function (CDF) F , and if the patient is from the diseased group then X has CDF

G. Without loss of generality, we will assume the patient is diagnosed as diseased

if X ≥ c for some fixed threshold c. In many such cases, it might be assumed that

F (x) ≥ G(x) for all values of x.

The ROC curve is a plot of the true-positive rate (TPR = sensitivity) versus

the false-positive rate (FPR = 1 − specificity), for a classification rule based on a

continuously increasing sequence of threshold values. The graph of TPR (P (X ≥
c|Y = 1)) vs. FPR (P (X ≥ c|Y = 0)) defines the ROC curve:
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R(t) = 1−G
(
F−1(1− t)

)
(1)

where 0 < t < 1. The curve shows the inherent trade-off between FPR and TPR. A

test can be judged according to how its corresponding ROC curve arches over the

45o line - the more concave the better.

A typical diagnostic test classifies patients according to single marker, and the

misclassification rates depend on the threshold value that distinguishes the two

screening outcomes. However, it is not always certain how to determine the optimal

cutoff point. Chapter 4 of Pepe [6] suggests factors such as health care resources,

invasive examination etc., can influence the choice of threshold. In general, the

choice of the cutoff point depends on:

(1.) The fixed cost k10 for classifying a diseased person as a healthy one.

(2.) The fixed cost k01 for classifying a healthy person as a diseased patient.

(3.) The overall misclassification probability, p(1−TPR) + (1− p)FPR. By mini-

mizing the overall misclassification probability, the slope of the ROC curve at

the optimal cutoff point is (1− p)/p.

(4.) The expected cost of misclassification, k10p(1 − TPR) + k01(1 − p)FPR. By

minimizing the expected cost of misclassification, the slope of the ROC curve

at the optimal cutoff point is (k01(1− p)) / (k10p).

Theoretical results for ROC curves are well established. Pepe [7] developed

a semiparametric estimator for ROC curves within the generalized linear model

framework for binary regression. Hsieh and Turnbull [8] consider nonparametric es-

timators based on empirical distribution functions and derive asymptotic properties.

Lloyd and Yong [9] showed smooth kernel-based estimators outperform this strictly

empirical estimator. Claeskens et al. [10] and Hall et al. [11] study nonparametric

methods, e.g. empirical likelihood method or bootstrap, for constructing confidence

intervals and confidence bands for estimators of ROC curves.
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1.2 Applying the ROC

There are numerous ways of summarizing the ROC curve into an objective test

statistic. The area under the ROC curve (AUC), defined as
∫ 1
0 R(t)dt was one of

the first commonly used measures of test quality. It can be easily shown that if

Z0 ∼ F and Z1 ∼ G are independent, then

∫ 1

0
R(t)dt = P (Z0 ≤ Z1). (2)

For continuous data, AUC is equivalent to the probability that a random observation

coming from the diseased population (Z1) is larger than that from the non-diseased

population (Z0). A diagnostic test that produces AUC ≤ 1/2 is considered non

informative.

The AUC is the most commonly used method of summarizing a diagnostic test’s

overall accuracy. However, the AUC summarizes test performance over regions of

the ROC space that may be of no practical interest. The partial area under the

curve (PAUC) restricts the AUC-integration to an area of interest, based on FPRs

that are considered clinically relevant:

A(t0, t1) = PAUC =
∫ t1

t0

ROC(t)dt, (3)

where the interval (t0, t1) denotes the false-positive rates of interest. Corresponding

to the case in which F = G, if a diagnostics test has an A(t0, t1) which equals to

(t21 − t20)/2, it has no ability for classifying patients correctly.

Dodd and Pepe [3] describe the significance of the PAUC through the odds,

Λ(t0, t1) =
A(t0, t1)

(t1 − t0)−A(t0, t1)
. (4)

This is the odds of the probability of a correct classification to the probability of an

mistaken classification, given the test result is from the healthy population in the

region (t0, t1). Note if the test has an odds of (t0 + t1)/(2− (t0 + t1)), then the test

conveys no information. If the test is perfect, the odds will increase to infinity.
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1.3 Subjectivity in Diagnostic Tests

Dodd and Pepe [3] emphasized that although the partial AUC is a more clinically

relevant summary measure of test accuracy, the choice of the appropriate restricted

region may be controversial. Reasonable choices depend on information about the

cost associated with true- and false-positive diagnoses. For example, if a diagnostic

test is not particularly efficient at screening a disease that has affected most of the

at-risk set, the naive guess that every patient has the disease might actually be cost

effective.

The PAUC can, in fact, be deliberately misused. FPRs could be unscrupulously

chosen in such a way as to maximize the significance of the PAUC statistic, for

example. Choices for acceptable FPRs are implicitly a function of the relative loss

associated with the type I error (healthy patient diagnosed as diseased) and type II

error (diseased patient diagnosed as healthy).

In this paper, we introduce a more objective method of selecting relevant FPRs,

based on utility/loss criteria associated with the type I and type II errors. Although

this advantage is evident, there is added uncertainty to the diagnostic statistics due

to estimation based on the known loss functions. We do not expound on choices

for loss functions here. Instead, we refer the reader to Schervish [12], where loss

functions are addressed along with their affect on diagnostic tests.

In Section 2, we investigate the “skill statistic” and consider tests at FPRs that

produce skillful tests. That is, the PAUC will use FPR values that correspond with

skillful diagnostic tests. Properties of the skill statistic are investigated in Section

3. In Section 4, we introduce the motivating example to this research, featuring

data for 5, 662 women being diagnosed for osteoporosis. In Section 5, we discuss

the practical use of skill scores in diagnostic tests by pointing out its strength and

weaknesses with respect to traditional tests.
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2 The Skill Score

Mozer and Briggs [13] developed a skill score as a method to evaluate probabilistic

forecasts of binary events as “skilled” or “not skilled” by integrating the loss from

misclassification. Properties for the skill score were further developed in Briggs

and Ruppert [14]. They define a diagnostic test as skillful if it is more effective in

screening disease than the optimal naive guess. As mentioned earlier, the optimal

naive guess will classify all patients as healthy or all patients as diseased based solely

on the cost functions. It makes sense to use only threshold values that correspond

to skillful tests, and the skill score is useful because it considers both the cost of the

forecast and the loss of making incorrect forecasts. The skill plot [1] summarizes the

diagnostic skill over a range of threshold values and offers a novel alternative to the

ROC curve for describing disease diagnosis.

The skill score is based on simple loss function. If we define

θ =
k01

k01 + k10
,

then θ is the (relative) loss when Y = 0 and X ≥ c, and 1−θ is the loss when Y = 1

and X < c. Without loss of generality, we will assume the misclassification cost of

k01 is less than k10, so that θ ≤ 1/2.

Recall p = p1+ = P (Y = 1) is the proportion of diseased patients in the total

population. Let p+1 = P (X ≥ c) = pḠ(c) + (1 − p)F̄ (c) = proportion of people

classified as diseased, where Ḡ(c) ≡ 1 − G(c) = P(correctly classify patient, given

they have the disease), and F̄ (c) ≡ 1 − F (c) = P(classify as diseased person given

patient is actually healthy). Probabilities of individual outcomes are summarized in

Table 1.

Y = 1 Y = 0
X ≥ c p11 p01 p+1

X < c p10 p00 p+0

p = p1+ 1− p = p0+

Table 1: Contingency table.
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Without information from X, the optimal naive classification rule is based solely

on comparing p and θ. There are two possible actions: classify all subjects as healthy

people if p < θ or classify all subjects as diseased patients if p ≥ θ. The expected

loss for this rule is EN = p(1− θ)I(p < θ) + (1− p)θI(p ≥ θ). With the information

from X, the expert classification rule is based on a critical cutoff point c. Subjects

with X ≥ c are classified as diseased, and the others as healthy. A skill score can be

constructed based upon the relative difference in expected loss between the optimal

naive and the expert classification:

Kp,θ(c) =
EN − EE(c)
EN −EP

, (5)

where EE(c) is the expected loss from the expert guess based on the a cutoff point

c, and EP is the expected loss from a perfect classification (we will assume EP = 0).

If EE is based on a diagnostic classification with threshold c, then EE(c) = p01θ +

p10(1− θ), and the skill score simplifies to

Kp,θ(c) =
p11 − p+1θ

p(1− θ)
I(p < θ) +

p+0θ − p10

(1− p)θ
I(p ≥ θ). (6)

The skill plot simply plots Kp,θ(c) versus threshold value of c.

Briggs and Zaretski [1] applied the skill score to achieve an optimal threshold

value by finding the value of c that maximizes K̂(c). In a similar vein, Baker [15]

considered a simple linear utility function of FPR and TPR in order to create an

optimal test. While the maximum skill score provides an optimal decision tool

regarding an individual, in this research we are more interested in the quality of the

overall inference, and for this purpose we focus on the AUC and PAUC statistics.

2.1 Skillful Diagnostic Tests

Because the skill score provides an effective loss-based metric for diagnostic test

performance, it seems intuitive that the PAUC should be based only on skillful

tests. Instead of integrating the ROC over an arbitrarily chosen range of threshold

values, we use only the set of values c for which Kp,θ(c) ≥ 0. This seems at first to
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be an obvious objective, but we will see not all rational diagnostic tests are skillful,

especially if asymmetric costs of misclassification are involved. Note that, if p < θ,

a positive skill score occurs if TPR ≥ θp+1/p1+, or FPR ≤ (1−θ)p+1/p0+. In terms

of Y , Kp,θ(c) ≥ 0 if

P (Y = 1|X ≥ c) =
Ḡ(c)

pḠ(c) + (1− p)F̄ (c)
=

p11

p+1
≥ θ. (7)

For the case p < θ, the PAUC in (3) becomes

∫

Kp,θ(t)≥0
R(t)dt.

In the less common scenario when p ≥ θ, a positive skill score occurs if TPR ≥
1 − θp+0/p1+, or equivalently, if P (Y = 1|X < c) = p10/p+0 < θ. Figure 1 shows

a skill score based on F (t) = Φ(t), G(t) = Φ((t− 1.5)/1.2), where Φ represents the

standard Normal CDF. For this figure, the distribution G was chosen to match the

simulated distributions in Dodd and Pepe [3]. The relative loss associated by the

costs of misclassification determines the range of FPR values (t0, t1), which in turn

determine the PAUC statistic.

−2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

K(c)

C

Figure 1: Skill scores based on F (t) = Φ(t), G(t) = Φ((t − 1.5)/1.2), and θ = 0.5.
From left to right, K(c) corresponds to p = 0.5, 0.2, 0.05.
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3 Diagnostic Statistics

Suppose we observe {(X1, Y1), · · · , (Xn, Yn)} as a training sample consisting of n

paired observations where Yi equals one if the ith person has the disease and equals

zero otherwise. The empirical distribution function (EDF) for G, denoted by Gn1(t),

is based on n1 =
∑n

i=1 Yi < n, and the EDF for F , denoted by Fn0(t), is based on a

sample of n0 =
∑n

i=1(1− Yi). Note that p̂+1 = n−1
∑n

i=1 I(Xi ≥ c). In this paper,

we will assume that the sample sizes are such that n1/n → p > 0 as n →∞.

The plug-in estimator for the ROC, R̂(t) = 1 − Gn1(F
−1
n0

(1 − t)) simplifies to

the proportion of the sample designated as diseased that have marker scores larger

than n0p out of n0 sample observations that were classified as healthy (i.e., the

pth percentile of Fn0). The nonparametric plug-in estimator R(t; Fn0 , Gn1) creates

a jagged ROC curve (see Figure 3) due to the discrete jumps of Fn0 and Gn1 at

the observations. From (2), the AUC’s empirical analog is the Mann-Whitney U-

statistic [8, 16]. We construct the empirical analog to the skill score, K, in a similar

manner. In terms of F and G, we can write (6) as

Kp,θ(c) =
(

Ḡ(c)− (1− p)θ
p(1− θ)

F̄ (c)
)

I(p < θ) +
(

F (c)− p(1− θ)
(1− p)θ

G(c)
)

I(p ≥ θ). (8)

Because we are assuming the healthy population has lower marker scores, if F (c) ≥
G(c) and θ = p, then Kp,θ(c) = F (c) − G(c) ≥ 0. Let Hn be the EDF of the full

sample (ignoring group membership) so that

H̄n(c) = p̂+1 =
1
n

n∑

i=1

I(Xi ≥ c) =
1
n

(
n1Ḡn1(c) + n0F̄n0(c)

)
.

Then the plug-in estimator to (8) is simply

K̂p̂,θ(c) =
(

Ḡn1(c)−
(1− p̂)θ
p̂(1− θ)

F̄n0(c)
)

I(p̂ < θ) +
(

Fn0(c)−
p̂(1− θ)
(1− p̂)θ

Gn1(c)
)

I(p̂ ≥ θ),

=
Ḡn1(c)p̂− H̄n(c)θ

p̂(1− θ)
I(p̂ < θ) +

Hn(c)θ −Gn1(c)p̂
(1− p̂)θ

I(p̂ ≥ θ), (9)

9



where p̂ = n1/n.

Unlike the smooth curves in Figure 1, the estimated skill score is generally jagged.

Although it is typically concave around its peak, there can also be small anomalies

that defy concavity, especially with small samples. Because the skill score is the key

for extending the skill test for disease diagnosis, we will investigate some of its basic

properties before applying it in the evaluation of the ROC.

3.1 Properties of the Skill Statistic

Confidence intervals for the skill score can be constructed using normal approxima-

tions, and examples in the next section show these intervals to be effective with suf-

ficiently large samples. In the following theorems, we describe the asymptotic prop-

erties of K̂p̂,θ(c) along with estimators for P (Y = 1|X ≥ c) and P (Y = 0|X < c).

The proof is relegated to the appendix.

Theorem 1. Assume F and G are continuous distributions and twice differen-

tiable, have finite mean and variance, and for some ε > 0, ε ≤ θ < 1/2. Then
√

n(K̂p̂,θ(c)− E[K̂p,θ(c)]) → N(0, σ2), where

E[K̂p̂,θ(c)] ≈ Ḡ(c)p− H̄(c)θ
p(1− θ)

I(p < θ) +
H(c)θ −G(c)p

(1− p)θ
I(p ≥ θ),

and

σ2 ≈ 1
p(1− θ)2

(
(1− 2θ)Ḡ(c)G(c) +

θ2

p
H̄(c)H(c) +

1− p

p2
H̄2(c)θ2

)
I(p < θ)

+
1

(1− p)2

(
p− 2pθ

θ2
Ḡ(c)G(c) + H̄(c)H(c) +

p

(1− p)θ2
(H(c)θ −G(c))2

)
I(p ≥ θ).

The conditional probability from (7) provides an alternative way to characterize

a skillful diagnostic test. The probability of observing a diseased patient conditional
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on positive diagnosis results η1(c) = P (Y = 1|X ≥ c) is expressed in terms of F and

G as

η1(c) =
Ḡ(c)p

Ḡ(c)p + F̄ (c)(1− p)
. (10)

Theorem 2. Under the regularity conditions of Theorem 1, for the plug-in

estimator of η1(c) in (10)

η̂1(c) =
Ḡn1(c)p̂

Ḡn1(c)p̂ + F̄n0(c)(1− p̂)
, (11)

we have
√

n (η̂1(c)−E(η̂1(c))) → N(0, σ2
η1

), where E(η̂1(c)) ≈ η1(c) and

σ2
η̂1 (c) ≈

Ḡ(c)F̄ (c)p(1− p)
(Ḡ(c)p + F̄ (c)(1− p))4

(
G(c)F̄ (c)(1− p) + Ḡ(c)F (c)p + Ḡ(c)F̄ (c)

)
.

When p < θ, recall that K̂ ≥ 0 occurs if η̂1(c) ≥ θ. Similarly, when p ≥ θ,

the probability of observing a healthy subject conditional on observing a negative

diagnosis is expressed in terms of F and G as

η0(c) = P (Y = 0|X < c) =
F (c)(1− p)

G(c)p + F (c)(1− p)
. (12)

Theorem 3. Under the regularity conditions of Theorem 1, for the plug-in

estimator of η0(c) in (12)

η̂0(c) =
Fn0(c)(1− p)

Gn1(c)p + Fn0(c)(1− p)
, (13)

we have
√

n(η̂0(c)− E(η̂0(c))) → N(0, σ2
η0

), where E(η̂0(c)) ≈ η0(c) and

σ2
η̂0 (c) ≈

G(c)F (c)p(1− p)
(G(c)p + F (c)(1− p))4

(
Ḡ(c)F (c)(1− p) + G(c)F̄ (c)p + G(c)F (c)

)
.
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In this case, we assess the skill of a diagnostic test based on whether η̂0(c) > 1− θ.

The skill score from (5) has a more general form called the Total Expected Mis-

classification Cost (TEMC). For example, TE , the TEMC from the expert forecast,

is np01k01 + np10k10. Under p < θ, the naive guess is that all subjects are healthy,

and TEMC based on the naive guess, TN = npk10. The skill score is alternatively

expressed as

K̂T,p̂,θ(c) =
np11k10 − np01k01

npk10
=

p11k10 − p01k01

pk10
(14)

= Ḡn1(c)−
(1− p̂)k01

pk10
F̄n0(c).

Note that (14) is the skill score defined by Expected Misclassification Cost Per

Person (EMCPP), which does not depend on the total sample size. These skill

score outcomes are summarized in Table 2. The estimates of σ2
T0

and σ2
T1

in Table

2 are

σ̂2
T0
≈ 1

np

(
Ḡ(c)G(c) +

1− p

p

k2
01

k2
10

F̄ (c)F (c) +
1− p

p2

k2
01

k2
10

F̄ 2(c)
)

,

and

σ̂2
T1
≈ 1

n(1− p)

(
1− p

p

k2
01

k2
10

Ḡ(c)G(c) + F̄ (c)F (c) + p(1− 2p)2
k2

01

k2
10

Ḡ2(c)
)

.

3.2 Estimating PAUC

We know from (1) that the PAUC is estimated based on a subjectively chosen

set of FPR. Dodd and Pepe [3] admit that controversy is unavoidable with such a

subjective choice. With this in mind, the skill score K(c) offers a more objective and

coherent way of selecting the subset of FPR according to these fixed loss functions.

To eliminate the inherent subjectivity in the PAUC, we consider the set of FPR such

that K(c) ≥ 0, which corresponds to FPR ≤ (1 − θ)p+1/p0+. The corresponding

empirical estimator of PAUC,

12



Expert Forecast
Expected loss p10(1− θ) + p01θ

TEMC np01k01 + np10k10

EMCPP p01k01 + p10k10

Situation p < θ p ≥ θ

Naive guess all healthy all diseased
Expected loss p(1− θ) (1− p)θ
TEMC npk10 n(1− p)k01

EMCPP pk10 (1− p)k01

Skill score by TEMC p11k10−p01k01

pk10

p00k01−p10k10

(1−p)k01

Estimator Ḡm(c)− F̄n0(c)
1−p

p
k01
k10

Fn0(c)−Gn1(c)
p

1−p
k10
k01

Variance σ̂2
T0

σ̂2
T1

Skillful p11

p01
≥ k01

k10

p00

p10
≥ k10

k01

Table 2: The skill score defined by TEMC and EMCPP.

ÂK =
∫

K̂p,θ(t)≥0
R(t)dt, (15)

is based on the estimated skill score in (14).

To show how the estimator is constructed, we introduce a practical application

in the following section. The results show that the skill score can vary greatly

depending on the loss function, so costs for misclassification should not be chosen

arbitrarily by the practitioner.

With this infusion of extra empirical information on the skill score comes added

uncertainty. In turn, this new estimator would be an inferior choice to the regular

PAUC estimator based on expert opinion, as long as the expert opinion is accurate.

While this is not the norm, Pepe [6] includes actual case studies in which past data

can aid in deciding valid FPR values. To make a fair examination of ÂK , in Section

5 we construct examples using different costs and populations.

4 Osteoporosis Study

We illustrate the PAUC estimator with an EPIDOS prospective study of 5,662

elderly French women for diagnosis of osteoporosis [2]. Hip bone mineral density
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(BMD) is the considered the “gold standard” in detecting osteoporosis by using

dual photon X-ray absorptiometry (DPXA) technology. Expert analysis can model

osteoporosis as a function of multiple factors via statistical learning techniques (e.g.,

discriminant analysis, tree classifiers, neural networks). However, diagnostic tests

must sometimes rely on single markers to present a simple and effective diagnostic

tool for practitioners. Given this approach, we focus on BMD as a primary marker.

The EPIDOS study group was recruited for a 2-year follow-up study between

January 1992 and January 1994. There were 115 fractures recorded during two

years (a 2.07 % rate), and Figure 2 shows density plots for BMD scores grouped by

whether fractures occurred or not. Density estimates are based on the R function

density to generate kernel density estimates with a Gaussian smoothing kernel and

the default (rule-of-thumb) bandwidth selection.
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0
1
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BMD

Figure 2: Density plots for BMD scores. The solid line represents hip fracture group
and the dashed line is non hip fracture group.

Figure 3 shows the ROC curve for the fracture data. The AUC statistic is

0.6949, and for testing the hypothesis of equal distributions (i.e., the ROC is a 45◦

14
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Figure 3: ROC curve for BMD for hip fractures.

line), the p-value corresponding to the Mann-Whitney test is 5.38e−13. Using the

variance estimation method of De Long et al. [17], the variance estimate for the

AUC is approximately

V ar(P (Z0 ≥ Z1))
n1

+
V ar(P (Z1 ≥ Z0))

n0
.

An approximate 95% confidence interval for the AUC is calculated to be (0.6099,

0.7799).

Figure 4 shows the Skill plots for the BMD hip fracture marker under three

different relative loss values: θ= 0.01, 0.02 and 0.1. Depending on the relative loss,

the test can be nearly everywhere skillful (θ = 0.02), skillful for half the values

(θ = 0.01) and almost nowhere skillful (θ = 0.10).

Figure 5 shows the Skill Plot for θ= 0.01 along with an approximate 95% con-

fidence interval based on various estimates from Section 3.1. The lower half of the

figure displays density plots of BMD for hip fractures under θ= 0.01. The solid line

15



represents hip-fracture group and the dashed line is for the non hip-fracture group.

From the plot, we see that the test is skillful for to values of c ≥ 0.68. The

skillful region (K̂(c) ≥ 0) corresponds to the set FPRs ∈ (0.388, 1). By integrating

the ROC only over the FPR values that produce a skillful test, we calculate the

PAUC to be Â(0.388, 1) = 0.5235. To estimate the variance of PAUC based on

DeLong et al. [17],

V ar(Â(t0, t1)) ≈ V ar(P (Z0 ≥ Z1, Z0 ∈ (u0, u1))
n1

+
V ar(P (Z1 ≥ Z0, Z0 ∈ (u0, u1)))

n0

≈ Â(t0, t1)(1− Â(t0, t1))/n1 + Â(t0, t1)(1− Â(t0, t1))/n0,

where t0 = P (X ≥ u1|Y = 0), and t1 = P (X ≥ u0|Y = 0).

The corresponding 95% confidence interval for the PAUC is (0.4313, 0.6157). If

the test conveys no information, the PAUC would be 0.4248, which is not included

in the 95% confidence interval (the p-value for this test hypothesis is 0.01797). The

PAUC odds Λ defined in (4) equals 5.9018, compared to the odds for a test that

conveys no information which is 2.2668. K̂(c) is maximized at c = 0.73, correspond-

ing to FPR = 0.575 and TPR = 0.861. A 95% confidence interval for maximized

skill score is (−0.0006, 0.2800).

5 Discussion

By using a proper loss function to decide where a diagnostic test is skillful, we can

also construct a more objective test based on the PAUC. The traditional method

involves subjectively choosing sensible FPR values that correspond to a region of

the ROC, which in turn is used to compute the PAUC. Information from the loss

function, along with the necessary information from the sample (required to estimate

the prevalence of the disease in the population) combine to make up the skill statistic.

The region of interest corresponds to where the skill statistic is positive, and the

diagnostic test is considered skillful. In regions where the test is not skillful, the

cost-saving naive classification rule is preferred (i.e., either treat or not treat the
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Figure 4: The Skill Plot of BMD for hip fractures under θ= 0.01, 0.02 and 0.1. The
wide solid line represents θ= 0.01, the dash line is θ= 0.02 and the dot line is θ=
0.1.
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Figure 5: Top:The Skill Plot and 95 % CI for θ= 0.01. Bottom: Density plots of
BMD for hip fractures for hip fractures group (solid line) and non hip fracture group
(dashed line).
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entire population).

The skill score hinges on the relationship between the disease prevalence (p) and

the assigned loss (θ). It is easy to show that if p À θ, the skill score will always be

less than zero, meaning the test is nowhere skillful, and it will be cost efficient to

treat every patient, no matter what results from the diagnostic test.

The four typical sets of FPR that are considered in Dodd and Pepe [3] are (t0, t1)

= (0.0,0.1), (0.0,0.2), (0.1,0.2), (0.1,0.3). By choosing to minimize the false-positive

rate, we are implying a loss function where θ is close to zero, so the disease prevalence

might be larger (p ≥ θ). Since the ROC curve plots TPR versus FPR, by restricting

FPR to values close to zero also will restrict the TPR to its lowest values. If the

θ is large enough, compared to p, increasing the TPR becomes more crucial than

lowering the FPR, and we can end up using intervals such as (0.5,1) or (0.8,1).

Figure 6 shows the range of values (t0, t1) that are considered skillful for the case θ

= 0.50 and different factors of prevalence (0 ≤ p ≤ 1). Although most realistic cases

would lead to a smaller value of θ, this figure illustrates the relationship between

loss and prevalence in terms of determining the skillful region. The bars indicate

the FPR values used for the PAUC, so in the case p ≤ θ, large FPR values are

preferred (and with the trade-off, rates for the true-positive rate increase). The bar

at p=θ=0.5 is darkened to show that when the prevalence matches the relative loss,

the PAUC will consider all values between (0,1).

The criteria for constructing the PAUC was based on requiring skillful tests, i.e.,

K̂ ≥ 0. However, alternative criteria might be preferred, such as requiring more skill

(K̂ ≥ ε) or just eliminating the more unskilled tests (K̂ > −ε). Figure 7 displays

the values of the ROC curve considered for the PAUC that meet a slightly higher

skill requirement (K̂ ≥ 0.05) resulting in narrower intervals compared to those in

Figure 6.

The properties discussed in Section 3 suggest that estimating the skill score will

provide satisfactory results with large samples. However, with smaller samples, the

variability from K̂ can have a great affect on the values (t0, t1) chosen for the PAUC

computation.
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Figure 6: Skillful values used to compute PAUC (vertical bars) based on θ=0.5 and
varying prevalence values.
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Figure 7: PAUC values of (t0, t1) for which the skill score K̂ ≥ 0.05, based on θ=0.5
and varying prevalence values.
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In Table 3, we summarize simulation results on the comparison of the mean

squared error (MSE) for the PAUC estimate versus the MSE of the Dodd and Pepe

[3] estimator. We consider prevalence values of p = 1/6 and p = 1/2, where expected

sample sizes for the healthy population are 50, 100 and 500. Each result in Table 3 is

based on 1000 simulations, which are based on F (t) = Φ(t), G(t) = Φ((t−1.5)/1.2),

chosen to match the simulated distributions in Dodd and Pepe [3] (see Figure 1 in

Section 2.1). Because they use different interval values under the ROC curve, the

ratio of the MSEs do not necessarily converge to one with large sample size, but

Table 3 indicates that the regular Dodd and Pepe estimator has better MSE with

smaller samples.

Briggs and Zaertski [1] pointed out advantages of the skill score in regard to

finding optimal cutoff points for a diagnostic test, but this paper shows the skill

score can also be used in assessing the test. Although the PAUC statistic can

be criticized for leading the practitioner to choose false-positive rates arbitrarily,

the skill score can be used to guide this choice by using objectively constructed

loss functions. The skill plot, in fact, makes the interpretation of the relative loss

function easier because it also includes the effect of disease prevalence in the plot.

p = 1/6 p = 1/2
MSE(ÂK)/MSE(ÂDP ) MSE(ÂK)/MSE(ÂDP )

θ n=60 n=120 n=600 n=60 n=120 n=600
0.01 1.68 1.68 1.20 0.13 0.05 0.01
0.05 1.52 1.52 1.12 0.21 0.12 0.10
0.1 1.06 1.06 1.00 0.52 0.51 0.64
0.167 0.92 0.96 1.00 0.13 0.05 0.01
0.2 0.96 0.96 1.00 0.99 1.15 1.09
0.3 1.12 1.12 1.01 0.86 0.96 0.99
0.5 2.27 2.36 1.08 0.71 0.84 0.96
0.6 2.94 2.99 1.15 0.81 0.89 0.98

Table 3: MSE for skill-based PAUC estimator (ÂK) over the MSE of the Dodd and
Pepe [3] estimator (ÂDP ), based on various values of θ and sample size n.

Appendix: Asymptotic Properties of the Skill score
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Under standard regularity conditions for probability densities (p293, [18]), by

the Central Limit Theorem,

√
n[Fn(x)− F (x)] → N [0, F (x)(1− F (x))],

Therefore, E(Ḡn1(c)) = Ḡ(c), and V ar(Ḡn1(c)) = Ḡ(c)(1−Ḡ(c))/(n1) = Ḡ(c)G(c)/(n1).

The same applies to E(H̄n(c)) = H̄(c), and

V ar(H̄n(c)) =
1
n

H̄(c)(1− H̄(c)) =
1
n

H̄(c)H(c).

Cov(Ḡn1(c), H̄n(c)) = Cov{Ḡn1(c), [[(n1)Ḡn1(c) + (n0)F̄n0(c)]/n]}

=
n1

n
V ar(Ḡn1(c)) =

1
n

Ḡ(c)G(c).

Let p̂ = n1/n ∼ Binomial(p), E(p̂) = p, V ar(p̂) = p(1 − p)/n, Cov(p̂, H̄n(c)) = 0,

and Cov(p̂, Ḡn1(c)) = 0. Let W ∗T
n = [H̄n, Ḡn1 , p̂], therefore,

√
n(W ∗T

n −E[W ∗T
n ]) →

N [0, Σ], where E[W ∗T
n ] = [Ḡ(c), H̄(c), p], and,

Σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




,

with σ11 = Ḡ(c)G(c)/p, σ22 = H̄(c)H(c), σ12 = σ21 = Ḡ(c)G(c), σ33 = p(1− p),

σ13 = σ31 = 0, and σ23 = σ32 = 0.

Using a Taylor expansion, E[f(X, Y, Z)] ≈ f(X0, Y0, Z0), we have conditional on

X = X0, Y = Y0, Z = Z0,

V ar[f(X,Y, Z)] ≈
(

∂f
∂X

∂f
∂Y

∂f
∂Z

)
Σ




∂f
∂X

∂f
∂Y

∂f
∂Z




,

Thus,
√

n(K̂p,θ(c)− E[K̂p,θ(c)]) → N(0, σ2),
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where,

E[K̂p,θ(c)] ≈ Ḡ(c)p− H̄(c)θ
p(1− θ)

I(p < θ) +
H(c)θ −G(c)p

(1− p)θ
I(p ≥ θ),

and

σ2 ≈ 1
p(1− θ)2

(
(1− 2θ)Ḡ(c)G(c) +

θ2

p
H̄(c)H(c) +

1− p

p2
H̄2(c)θ2

)
I(p < θ)

+
1

(1− p)2

(
p− 2pθ

θ2
Ḡ(c)G(c) + H̄(c)H(c) +

p

(1− p)θ2
(H(c)θ −G(c))2

)
I(p ≥ θ).
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