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Adjusted Empirical Likelihood Models with Estimating Equations

for Accelerated Life Tests

Ni Wang+, Jye-Chi Lu+, Di Chen∗, Paul Kvam+

*: Biostatistics, UCB Pharma, Inc. Symrna, GA 30080

+: School of Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta, GA 30332-0205

SUMMARY

This article proposes an Adjusted Empirical Likelihood Estimation (AMELE) method to model and

analyze accelerated life testing data. This approach flexibly and rigorously incorporates distribution

assumptions and regression structures by estimating equations within a semi-parametric estimation

framework. An efficient method is provided to compute the empirical likelihood estimates, and

asymptotic properties are studied. Real-life examples and numerical studies demostrate the advan-

tage of the proposed methodology.

KEY WORDS: Asymptotics; Maximum Likelihood Estimation; Percentile Regression; Random Cen-

soring; Reliability.
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1 Introduction

In evaluating the reliability of durable products, accelerated life testing (ALT) is commonly applied

by stressing specimens at harsher conditions than in normal use, thereby hastening failure time in

tests with short duration. Regression models of replicated data at several stress levels are built to

provide extrapolated estimates of distribution properties (e.g., 5th or 10th percentile, mean, variance

and lifetime distribution function) in the normal-use condition for warranty management, product

improvement and risk analysis. For newer products where the physics supporting regression models

is not clearly understood for extrapolation, the stress levels are usually set closer to the normal-use

condition. Due to high durability of products and limited testing time, this practice results in heavily

censored data. For example, in Meeker and LuValle (1995), tests of printed circuit boards revealed

that 68.5% of the data in the lowest stress level are censored after 4,078 hours (169.9 days) of testing.

This creates challenges in deriving statistical inference procedures for lifetime quantities.

Various parametric approaches have been introduced to solve this inference problem. Typical

parametric approaches assume that failure time distributions under various stress levels belong to

the same parametric family and there is a (transformed) linear regression structure of the location

parameters of these distributions. Most ALT procedures assume a constant variance. There are

some exceptions, such as Meeter and Meeker (1994), where it is assumed that the logarithm for

each of the scale parameters has a linear regression relationship. In some cases, the traditional ALT

models cannot accurately represent the failure time data; the commonly used acceleration function

for regression might not be suitable. For example, Meeker and LuValle (1995) used chemical-kinetic

knowledge to derive an intricate failure time model which does not fit into the ALT model structure.

Because the traditional regression-over-the-mean approach is questionable (especially in the case

that the means might not exist), Meeker and LuValle constructed log-linear regression models based

on two key chemical-reaction parameters found in differential equations that characterize the failure

evolution processes. Although this physics-based approach provides a well-justified ALT model,

explicit physical relations are rarely available to aid the data modeling so directly. Thus, there is

a need for developing a data exploration approach to entertain potential regression models and to

examine the goodness-of-fit of the assumed lifetime distribution.

Other than parametric approaches, the semi-parametric accelerated failure time (AFT) (Kalbfleisch

and Prentice, 2002) model regresses the logarithm of the survival time on the stress levels, which

is an attractive alternative due to its intuitive physical interpretation. Many approaches have been
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proposed to estimate the regression parameters, including the nonparametric estimator of Shaked,

Zimmer, and Ball (1979), the Buckley-James estimator (Buckley and James, 1979), rank-based es-

timators (Kalbfleisch and Prentice, 2002), and so on. Lai and Ying (1991) provided theoretical

justification and asymptotic properties of rank estimators, which were solved from rank estimating

functions. Recently, semiparametric transformation models have been generalized, including the PH

model, the AFT model and proportional odds model as special cases (Cheng, Wei, and Ying (1997),

Murphy, Rossini and Vaart (1997)), where the parameters are estimated using generalized estimating

equations and likelihood based methods. There are also semiparametric inference procedures pro-

posed for median regression models. Ying, Jun and Wei (1995) proposed a method to estimate the

parameters by solving from a set of estimating equations, which has similar feature as the least ab-

solute deviation estimator. Yang (1999) approached this problem by specifying estimating equations

based on a weighted empirical hazard.

This article considers a semiparametric approach with parameter inference based on empirical

likelihood. This has two advantages: first, failure times at different stress levels are not required to

have the same underlying distribution; second, the confidence regions are automatically determined

using likelihood ratio based methods without estimating the variance of test statistics, which can be

difficult in the case of the rank-based regression estimators in censored ALT models.

Empirical likelihood (EL) was developed by Owen (1990) as a general nonparametric inference

procedure which combineed the reliability of nonparametric methods with the effectiveness of like-

lihood methods. It has been extended to more difficult inference problems involving censored or

truncated data Owen (2001). (Owen, 2001). Pan and Zhou (2000) studied the EL procedure when

the parameter could be written as a function of cumulative hazard functions, with additional con-

straints that the hazard function are dominated by the Nelson-Aalen estimator. In Li and Wang

(2003), the authors considered the EL approach for right censored data, and proposed a new syn-

thetic variable incorporating the failure time and censoring information, then proceeded with model

inference using standard EL methods. Chen, Lu and Lin (2005) considered the case of group censored

data, where failure time and censored data are observed at pre-specified time intervals. Estimating

quations are introduced into empirical likelihood in Qin and Lawless (1994), which demonstrated

that estimating equations (EE) can be useful in incorporating distribution knowledge to improve

estimation quality. Zhou (2005b) studied the EL inference of rank estimators by using the rank

estimating equations in the constraints. In particular, Lu, Chen and Gan (2002) showed that the

EL-EE approach is a natural extension of both Generalized Estimating Equations (GEE; Liang and
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Zeger, 1986) and Quasi-Likelihood Estimation (QLE) approaches (Wedderburn, 1974) by allowing

censored data. The computational issues of EL is also complicated due to the censoring in ALT.

Zhou (2005a) proposed an iterative EM algorithm to impute weights of censored data by the survival

probability. Here, we also address this issue by proposing an approximate solution which is shown

to be much faster.

This paper proposes an Adjusted Empirical Likelihood Estimation (AMELE) method which is

easy to implement compared to existing empirical likelihood methods for censored data, and it further

studies the asymptotic properties of the parameter estimates as well as the survival functions. Section

2 defines the empirical likelihood with estimating equations for censored data, and proposes AMELE

method. Section 3 shows the asymptotic properties for the proposed estimators. Real-life examples

and simulation studies are presented in Section 4 and 5 to illustrate and compare the proposed

methods with some existing methods. Section 6 provides the conclusion and future work.

2 The Adjusted Empirical Likelihood Estimation Methods

2.1 Empirical Likelihood with Estimating Equations

Let Tj and Cj be the failure time and censoring random variables at stress level j, where j = 1, . . . ,m.

Let xj be a p×1 vector of covariates under stress level j. We assume that Cj and Tj are independent.

Denote survival function and the distribution function for the failure time Tj and the censoring time

Cj as STj (t), FTj (t), SCj (t) and FCj (t).

Many AFT models assume the failure time (or transformed) Tj and xj are related through

regression functions E(Tj) = θ>xj , where θ is a p × 1 vector including the intercept term. We

generalize the regression functions to r−dimensional functionally independent estimating equations

G(Tj ,θ, xj), abbreviated as Gj(T,θ), which satisfies EGj(T,θ) = 0. In the following section, we set

up an estimation framework using empirical likelihood to solve for θ.

Suppose that there are nj replicates at stress level j, and kj distinct failure time t1,j < t2,j <

· · · < tkj ,j < tkj+1,j = Lj , where Lj is an upper level of failure and censoring time. Let cij be the

number of censored data in the interval (ti−1,j , tij ], and Pij be the probability point mass on each

observed failure time, we can write the (empirical) likelihood function as follows:

L =

m∏
j=1


kj+1∏
i=1

Pij

kj+1∏
i=1

kj+1∑
l=i

Plj

cij
 , (1)
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where Pij = Pr(ti−1,j < Tj ≤ tij) = STj (ti−1,j)− STj (tij).

Under the constraints of the m sets of estimating equations

E[Gj(Tj ,θ)] =

kj+1∑
i=1

PijGj(tij ,θ) = 0, (2)

the optimal parameter estimates maximize the empirical likelihood (1).

2.2 Adjusted Maximum Empirical Likelihood Estimator

For notational simplicity, we drop the subscript j in deriving the parameter estimates since it is

straightforward to extend this to multiple levels. We rewrite the original formulation as

maximize : L =
k+1∏
i=1

Pi

k+1∏
i=1

(
k+1∑
l=i

Pl)
ci , (3)

subject to :
k+1∑
i=1

Pi = 1,
k+1∑
i=1

PiG(Ti,θ) = 0, Pi ∈ [0, 1].

Using the standard Lagrange multiplier arguments in Owen (1990), Qin and Lawless (1994) and

Owen (2001), we have the following implicit intermediate results:

P̂i(λ) =
1

n(1− ai(λ) + λ>G(ti,θ))
, (4)

ai(λ) =
1

n

i∑
m=1

cm∑k+1
l=m P̂m(λ)

,

0 =

k+1∑
i=1

G(ti,θ)

1− ai(λ) + λ>G(ti,θ)
.

It is well known that when there are no constraints, the optimal P̂i maximizing the nonparametric

likelihood is the Kaplan-Meier estimator (Kaplan and Meier, 1958). We summarize this in the

following lemma:

Lemma 1 When λ=0, Pi(0) = [n(1 − ai(0))]−1 is the Kaplan-Meier estimator dF̂T,KM (Ti), and

1− ai(0) is equal to the Kaplan-Meier estimator of the censoring variable ŜC,KM (ti)

For a given θ, we can find corresponding optimal λ and P̂i(λ) to maximize the nonparametric

likelihood defined in (3). Plugging P̂j(λ) back into the likelihood function, we have a profile likelihood

of θ as L(θ). The maximum empirical likelihood estimator of θ can then be solved by maximizing
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θ over the parameter space. However, the computations for solving optimal values directly is quite

complicated since there is no explicit solution available for P̂i(λ) from the intermediate results in (4).

Zhou (2005a) proposed an EM type algorithm to solve for the mean of failure time under censoring,

and studied its asymptotic properties. In order to estimate parameters in more general settings,

we propose a simplified computational procedure in this paper, using ai(0) to approximate ai(λ).

Therefore, the previous intermediate results in (4) become:

P̃i(λ) =
1

n(1− ai(0) + λ>G(ti,θ))
, (5)

ai(0) =
1

n

i∑
v=1

cv∑k+1
l=v P̃l(0)

,

0 =

k+1∑
i=1

G(ti,θ)

1− ai(0) + λ>G(ti,θ)
.

Starting from the Kaplan-Meier estimator, we can obtain the estimator of the Lagrangian multi-

plier λ̃, and compute the P̃i(λ) from (5). Plugging the new set of intermediate results into likelihood

(3), we can obtain a new estimator θ̃ by maximizing the profile likelihood. We call this new estimator

the Adjusted Maximum Empirical Likelihood Estimator (AMELE).

The approximation of ai(λ) by ai(0) is one critical step in simplifying the derivation of asymptotic

properties. As shown in Lemma 3, λ is tightly bounded when θ is close to the true value θ0. Lemma

3 also justifies this approximation by showing the new estimator will be a consistent estimator of

true value θ0.

Remark 1. In the case of no censoring (ai = 0), the equations in (4) reduce to

Pi =
1

n(1 + λ>G(ti,θ))
, 1 ≤ i ≤ n, and

n∑
i=1

G(ti,θ)

1 + λ>G(ti,θ)
= 0,

as shown in Qin and Lawless (1994).

Three general assumptions are needed for fully characterizing the properties of the AMELE θ̃

along with S̃T (t).

(A.1) The parameter space Θ ⊂ IRp is compact, contains a neighborhood of the true parameter θ0,

and supθ∈Θ{0 < |L(θ)|} <∞.

(A.2) Given t = (t1, t2, . . . , tk, tk+1), let G(t,θ) = (G(ti,θ))(k+1)×r. For every θ ∈ Θ, assume that

the r × r matrix G>G is nonsingular.
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(A.3) E(||G(T,θ)||3) <∞ andG(T,θ) is second-order differentiable with respect to θ, i.e., ∂2G/∂θ∂θ>

exists for any θ ∈ Θ.

The assumption A.1 is needed to ensure that the maximum of |L(θ)| exists in the interior

of the parameter space. Assumptions A.2 and A.3 require the non-singularity, continuity and

differentiability of the estimating function G(t,θ) to ensure that equation (5) is well defined and the

AMELE θ̃ is in ||θ − θ0|| < n−1/2 with probability one, given that n is sufficiently large.

For notational simplicity, define

Zi(θ) =
G(ti,θ)

1− ai(0)
= nG(ti,θ)dF̂T,KM (ti), (6)

where the equivalence of [n(1 − ai(0))]−1 and dF̂T,KM (ti) is shown in Lemma 1. Then, (5) can be

rewritten as

P̃i(λ) =
1

1 + λ>Zj(θ)
dF̂T,KM (ti), (7)

k+1∑
i=1

Zi(θ)

1 + λ>Zi(θ)
= 0. (8)

Let F̂T,KM (t) be the Kaplan-Meier estimator of the distribution function and let ŜC,KM (t) be

the Kaplan-Meier survival function estimator for the censoring time. We have the follow lemma:

Lemma 2 Under the assumptions A.1-A.3, as n→∞,

(a)
1

n

k+1∑
i=1

Zi(θ) =

∫
G(t,θ)dF̂T,KM (t) = Op(n

−1/2),

(b)
1

n

k+1∑
i=1

Zi(θ)Zi(θ)> = A(θ) + op(1),

uniformly in the ball ||θ − θ0|| ≤ n−1/2, where

A(θ) =

∫
G(t,θ)G(t,θ)>

ŜC,KM (t)
dF̂T,KM (t). (9)

The vector λ and Zi are related through equation (8). For a given θ, a unique λ exists, provided

that 0 is inside the convex hull of the points Zi(θ). The following lemma quantifies the magnitude

of the λ in a small neighborhood of θ.
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Lemma 3 Let θ0 ∈ Θ be the true value of the parameter. Under the assumptions A.1-A.3, we have

the following results: For θ ∈ {θ : ||θ − θ0|| ≤ n−1/2} and λ(θ) satisfying (8), we have λ(θ)
w.p.1−→ 0,

and λ(θ) = Op(n
−1/2) uniformly, as n→∞.

Given λ(θ) and P̃i(λ) through (7), the adjusted log-likelihood is

logL(θ) =

k∑
i=1

log P̃i(θ) +

k+1∑
i=1

ci log

(
k+1∑
l=i

P̃l(θ)

)
. (10)

Following the same argument in Chen, Lu, and Lin (2003), the score function l(θ) of the adjusted

log-likelihood equation can be simplified to

l(θ) =
∂ logL(θ)

∂θ
= −λ>(θ)

k∑
i=1

P̃i(θ)
∂G(ti,θ)

∂θ
. (11)

The solution to the function l(θ) = 0 is the AMELE θ̃, and the corresponding AMELE for the

survival function ST (t) is then

S̃T (t) =
∑
ti>t

1

n
(

1− ai(0) + λ>G(ti, θ̃)
) . (12)

The following lemma justifies the AMELE θ̃ as a consistent estimator of θ0, which can be proven

using the same arguments in Qin and Lawless (1994). So, we simply state the proposition here

without detailed proof.

Lemma 4 Under the regularity conditions, as n→∞, likelihood function L(θ) attains its maximum

value at some point θ̃ in the interior of the ball ||θ − θ0|| ≤ n−1/2 with probability one. Thus, the

AMELE θ̃ is a strongly consistent estimate of θ0.

3 Asymptotic Properties of the AMELE

To understand of the asymptotic properties of AMELE, we start by investigating the large sample

properties of λ(θ̃).
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3.1 Asymptotic Distribution of λ

For θ ∈ {θ : ||θ − θ0|| ≤ n−1/2}, λ = Op(n
−1/2) according to Lemma 3. After a Taylor expansion of

(8) at λ = 0, we have

λ = −

[
1

n

k+1∑
i=1

Zi(θ)Z>i (θ)

]−1 [
1

n

k+1∑
i=1

Zi(θ)

]
+ op(n

−1/2) (13)

= −A(θ)−1
∫
G(t,θ)dF̂T,KM (t) + op(n

−1/2).

The following Theorem states the asymptotic normality of λ.

Theorem 1 For continuous lifetime T and censoring time C, suppose SC(L) > 0, and ST (t) is

continuous at t = L. Then, as n→∞, if θ ∈ {θ : ||θ − θ0|| ≤ n−1/2},
√
nλ(θ)

d−→ Nr(0,Σλ(θ)),

where

Σλ(θ) = A(θ)−1ΣG(θ)A(θ)−1, (14)

ΣG(θ) =

∫ ∞
0

{∫ ∞
x

(G(x,θ)−G(t,θ))dST (t)

}{∫ ∞
x

(G(x,θ)−G(t,θ))dST (t)

}> dFT (t)

S2
T (t)SC(t)

. (15)

Because F̂T,KM (t) is uniformly consistent and λ
w.p.1−→ 0, it is easy to see that

k+1∑
i=1

P̃i(θ)
∂G(ti,θ)

∂θ
=

∫
∂Gjh(t,θ)

∂θ

1

1 + λZi(θ)
dF̂T,KM (t) (16)

→
∫
∂G(t,θ)

∂θ
dF̂T,KM (t) (17)

→
∫
∂G(t,θ)

∂θ
dFT (t) = E

∂G(t,θ)

∂θ
, (18)

as n → ∞, for θ ∈ {θ : ||θ − θ0|| ≤ n−1/2}. The asymptotic normality of l(θ) follows directly from

Theorem 1. We state it as the following corollary.

Corollary 1 Under the conditions of Theorem 1, for given θ ∈ {θ : ||θ − θ0|| ≤ n−1/2}, then
√
nln(θ) is asymptotically normal with mean zero, and covariance matrix

Σl(θ) = E

(
∂G

∂θ

)
Σλ(θ)E

(
∂G

∂θ

)>
, (19)

where Σλ(θ) is given by (14), and

E

(
∂G(t,θ)

∂θ

)
= E

(
∂G

∂θ

)
.
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3.2 Asymptotic Normality of the AMELE of Model Parameters

The partial derivative of l(θ) with regard to θ can be expressed as

−∂l(θ)

∂θ
= λ>(θ)

∂

∂θ

(
k+1∑
i=1

P̃i(θ)
∂G(ti,θ)

∂θ

)
+
∂λ>j (θ)

∂θ

(
k+1∑
i=1

P̃i(θ)
∂G(ti,θ)

∂θ

)
.

As n → ∞, the first term of right side in the above equation goes to zero in probability (since

λ(θ)
w.p.1−→ 0), and the convergence of the second part is shown in (16). Thus,

lim
n→∞

−∂l(θ)

∂θ
= lim

n→∞
E

(
∂G

∂θ

)> ∂λ
∂θ

.

It follows from (13) that

lim
n→∞

−∂λ(θ)

∂θ
=

∂A(θ)−1

∂θ
E(G(t,θ)) +A(θ)−1E

(
∂G

∂θ

)
= A(θ)−1E

(
∂G

∂θ

)
.

Therefore,

lim
n→∞

−∂l(θ)

∂θ
= E

(
∂G

∂θ

)>
A(θ)−1E

(
∂G

∂θ

)
.

Applying Taylor’s expansion to l(θ) around θ0, we have

0 = l(θ̃) = l(θ0) +
∂l(θ0)

∂θ
(θ̃ − θ0) + op(‖θ̃ − θ0‖), (20)

which leads to the following theorem.

Theorem 2 Under the assumptions A.1 - A.3, as n→∞,
√
n(θ̃ − θ0)

d−→ Np(0,Σθ0), where

Σθ = B(θ)−1Σl(θ)B(θ)−1,

B(θ) = E

(
∂G

∂θ

)>
A(θ)−1E

(
∂G

∂θ

)
,

and A(θ) and Σl(θ) are given by (9) and (19).

Remark 2. Here, we compare our asymptotic results against some well-known benchmark results

in the literature. When θ is the population mean and the estimating function is G(t, θ) = t − θ,

∂G/∂θ = 1, B(θ) = A(θ)−1 and Σl(θ) = Σλ(θ), Σθ(θ) reduces to

ΣG(θ) =

∫ ∞
0

(∫ ∞
x

(x− t)dST (t)

)2 dFT (x)

S2
T (x)SC(x)

=

∫ ∞
0

(∫ ∞
x

(1− FT (t))dt

)2 dFT (x)

S2
T (x)SC(x)

,
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which is the same result as obtained by Breslow and Crowley (1974).

In the complete-sample case where SC(t) = 1 and G(θ) is differentiable, it is easy to verify that

the asymptotic covariance matrix reduces to

Σθ =

[
E

(
∂G

∂θ

)
E[GG>]−1E

(
∂G

∂θ

)>]−1
,

which is the same result as obtained by Qin and Lawless (1994).

The asymptotic properties for the AMELE of the survival function ST (t) can be proved in the

similar manner with the detailed proof in the Appendix.

Theorem 3 Under the conditions of Theorem 1, as n→∞,
√
n(S̃T,(t)−ST (t))

d−→ N(0,ΣS(t)),

where

ΣS(t) = S2
T (t)

∫ t

0

dFT (x)

ST (x)2SC(x)
+∫ ∞

0

[∫ ∞
x
γ>(t,θ)(G(x,θ)−G(t,θ))dST (t)

]2 dFT (x)

S2
T (x)SC(x)

+

2ST (t)

∫ t

0

(∫ ∞
s
γ>(t,θ)(G(s,θ)−G(x,θ)dST (x)

)
dFT (s)

SC(s)
, and

γ(t,θ) = A(θ)−1
∫ ∞
t

G(x,θ)dFT (x)

SC(x)
.

4 Examples

In the following example, a set of real-life data from accelerated life tests is analyzed, and we compare

the results of our AMELE estimates with results from a more traditional Weibull regression. Meeker

and LuValle (1995) reported on this experiment for testing printed-circuit-boards (PCB) at four high

relative humidity (RH) conditions: 49.5% RH, 62.8% RH, 75.4% RH and 82.4% RH. The normal-use

condition in this case has RH at 10%. Figure 1 shows the Weibull probability plot of the data from

three higher stress levels. The curvature in the plot indicates that the Weibull lifetime distribution

does not adequately fit these data. Note that there are only 22 (out of 70) failures in the lowest

stress level with 68.6% of data censored after 169.9 days of testing.

Since a lower percentile (such as 5%) of lifetime is observed for all stress levels and lower per-

centiles are important in reliability applications, we explore the regression structures based on them.

Figure 2 shows that a linear relationship between the logarithm of failure times and the logit trans-

formation of RH is plausible.
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Because 25th percentiles are also available for all stress levels, we explore the trend of the differ-

ence of the logarithm of the 25th and 5th percentiles over changing stress levels. Figure 2 shows that

this percentile-difference is not constant, but rather a linear function with much larger difference in

the normal-use condition. For estimating the lifetime distribution, one approach is to assume that

after a proper “re-scaling” of the data using the percentile and percentile-difference, the lifetime

distributions at all stress levels would be approximately the same. Then, the AMELE gives the

estimate and its point-wise confidence intervals.
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Figure 1: Weibull probability plot for the failure time data under different stress levels with RH =

49.5, 62.8, 75.4% (from right to left)

Remark 3. In previous sections, we consider a generic smooth function G in order to have desirable

properties. In situations when many observations are being censored, especially at lower stress levels,

estimating equations can be constructed on lower percentiles. Consider the qth percentile of T as

θ>x, and then specify the structural relationship in estimating functions:

G(T,θ) = I(T < θ>x)− q, (21)

where q is the percentile of the lifetime, and I(·) denotes the indicator function.

In order to smooth the non-differentialable constraint fuctions G, we introduce a kernel function

to smooth the estimating equations. Similar to the techniques proposed in Chen and Hall (1993),
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Figure 2: Empirical sample quantiles at different levels and the regression lines
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and Whang (2006), we use the kernel K (rth-order) that is bounded and compactly supported on

[-1,1], satisfying

∫
ujK(u)du =


1 if j = 0,

0 if 1 ≤ j ≤ r − 1,

κ if j = r,

(22)

where r ≥ 2 and constant κ 6= 0. Define K(x) =
∫
y<xK(y)dy, and Kh(x) = K(x/h). Then, we can

have a smoothed version of constraint function G, given by

Gh = Kh(θ>x− T )− q. (23)

In our experiment, we use a fourth-order kernel given by

K(u) =


0, if u < −1

0.5 + 105
64 [u− 5

3u
3 + 7

5u
3 − 3

7u
7], if |u| ≤ 1

1 otherwise

(24)

The smoothing parameter h can be chosen using cross-validations, it is fixed at 0.2 for simplicity

based on our preliminary studies.

Remark 4. Let T be the survival time from location-scale families with parameters µ and σ, and

Z = (T − µ)/σ is the standardized survival time. In general, the pth quantile of any location-scale

family ηp is µ+ cpσ, where cp is the pth quantile for the standardized variable Z. For example, the

extreme-value distribution has cp = log(− log(1− p)). For the location-scale family, the difference of

two percentiles is ηp2− ηp1 = (µ+ cp2σ)− (µ+ cp1σ) = (cp2− cp1)σ, which is a linear function of the

scale parameter σ. Thus, the percentile-difference is a simple and proper replacement of the scale

parameter σ for the heavy censoring case.

Now, we compare our procedure with the commonly used Weibull regression model. Following

Meeker and LuValle’s formulation (1995),

FTj (t;β0, β1, σ) = ΦEV (Tj), Z = (Tj − µ(xj))/σ,

where

µ(xj) = β0 + β1logit(xj), xj = RH/100, logit(p) = log[p/(1− p)], (25)

and ΦEV is the cdf of the standard extreme-value distribution. In this model, σ is the same at all

levels, and the logit-transformation is justified (Meeker and LuValle, 1995). The parametric MLEs

for model parameters are calculated as β̂0 = 9.10, β̂1 = −3.78, σ̂ = 0.93, respectively.
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Figure 3 shows the profile likelihood plots for each of the three Weibull regression parameters.

The horizontal lines on Figure 3 are drawn such that the their intersection with the profile likelihood

provide approximate 95% confidence intervals (CIs) based on inverting the likelihood-ratio (LR)

test. Using these plots, one can obtain the 95% LR-based CIs for β0, β1 and σ as (8.82, 9.43),

(−4.17,−3.43) and (0.83, 1.05), respectively.

The estimate of the pth quantile ηp of T is η̂p(x) = β̂0+β̂1logit(x)+wpσ̂, where wp = log[− log(1−

p)]. Confidence intervals for ηp(x) can be obtained by using the large-sample normal approximation

with the asymptotic variance calculated from the Fisher information matrix (Lawless 1982). Under

the normal-use condition (RH=10%), the point estimate and CIs for the 5th percentile η0.05 are

calculated as 14.64 and (13.54, 15.70), where the scales are in hours after the log-transformation.
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Figure 3: Profile likelihoods of β0, β1 and σ using the Weibull regression model

Figure 4 compares the confidence intervals using the AMELE method, where the percentile

regression coefficients γ0 and γ1 are specified directly through regression functions ηp(x) = γ0 +

γ1logit(x). Using the delta method, the corresponding point estimate and CI of the 5th percentile

lifetime at the normal-use condition are 12.30 and (11.83, 12.78), where the units are in hours after

log-transformation. Note that the width of this CI is only about 44% of the width for the CI

calculated using the Weibull regression model. After back-transforming the estimate to the original

time scale, the 5th percentile lifetime is predicted as 25 years. The result that relies on the physics-

based kinetics model given in Meeker and LuValle (1995) cannot produce a proper prediction for the

5th percentile, since the proportion of product failing is less than 1% under the normal-use condition.

Next, we explore the difference in predicting the survival functions. Specifically, we examine
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Figure 4: Profile empirical likelihoods for γ0 and γ1 using the AMELE method

the survival function of the failure time at the normal-use condition under different distribution

assumptions. The data exploration analysis in Figure 2 shows that the 5th percentile regression and

the percentile-difference regression provide possible adjustments for location and scale of the lifetime

distributions at three stress levels. Consider the following two cases for this comparison.

• Case (i) − After adjusting the 5th percentiles, lifetime distributions are the same.

• Case (ii) − After adjusting the 5th percentiles and re-scaling with the percentile-difference

(25th - 5th percentile), lifetime distributions are the same.

Both cases can be justified by applying the nonparametric two-sample Wilcoxon-test to the

adjusted-data at the higher stress levels. In Case (i), we have one regresson function on the 5th

percentile with values computed in the previous paragraph. In Case (ii), we have two regression

functions on both the 5th and the 25th percentiles. The AMELE in Case (i) estimates the 5th

percentile regression parameters (γ0, γ1) as (6.25, -2.71). Correspondingly, the AMELE in Case (ii)

leads to (6.30, -2.68). The lifetime prediction of the 5th percentile lifetime are 20 and 22 years for

Case (i) and (ii), respectively. Note that with the adjustment from the scale, the lifetime distribution

in Case (ii) should be much more spread out than the one in Case (i). This shows in the estimates

of the survival function plotted in Figure 5. Figure 6 provides the point-wise confidence intervals
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for the survival function in Case (ii). Because there are more censored observations in the right tail,

those intervals are larger than the ones in the left tail.
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Figure 5: AMELE of survival functions under different assumptions.

5 Simulation Study

For the first example, we present more extensive simulation study on the finite-sample properties

of the proposed methods by varying the sample sizes. Then, we compare our methods with two

well-known median regression methods when failure times are less frequently censored. Finally,

to examine the computational efficiency, we compute median failure time to compare the AMELE

method with an iterative EM-type algorithm.

Our simulation studies will focus on the location-scale family of failure time distributions. Let

ηp,k be observed pth quantiles of survival times Tk at the stress level k. Since we do not observe

the location and scale parameters directly, it is more sensible to apply regression functions on lower

percentiles, ηp1,k = β01 + β11xk and ηp2,k = β02 + β12xk, where xk is the stress at the level k. Thus,

after the following transformation:

17



10 12 14 16

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Log Failure Time at the Normal−Use Condition

S
u

rv
iv

a
l 
F

u
n

c
ti
o

n
 

Figure 6: AMELE of survival function of the failure time
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(Tk − ηp2,k)/(ηp2,k − ηp1,k) = (Tk − µk − cp2σk)/[(cp2 − cp1)σk]

= Z/(cp2 − cp1)− cp2/(cp2 − cp1),

where Z = (Tk − µk)/σk is the standardized survival time. Note that the pth percentile of any

location-scale family ηp is µ + cpσ, where cp is the pth quantile for the standardized variable Z.

With this transformation we are able to normalize the survival data at different levels, thus improve

the estimation quality for the survival function. In all these simulation examples, we use the same

smoothing function G. The first two examples simulate data from extreme-value distribution, while

the third example uses log-normal distribution.

5.1 Simulation of Accelerated Life Test

In this simulation study, we consider three levels with xk = k, and assume the failure times are gov-

erned by the extreme-value distribution with 10th and 25th percentiles following regression function

η0.1,k = −5 + xk, and η0.25,k = −2 + 0.5xk. The censoring variable is simulated from an exponential

distribution such that failure times are censored at 50% under different stress levels. An iterative

algorithm is used to search for the optimal level of a particular β, while fixing the values of others.

The following table shows the performance of parameter estimates with increasing sample size n.

Bias and MSE are computed from bootstrap sampling with 1000 samples.

Sample size β01 = −5 β11 = 1 β02 = −2 β12 = 0.5

n = 20 -0.122(0.940) -0.051(0.309) -0.142(0.548) -0.069(0.23)

n = 50 -0.015(0.547) -0.012(0.203) -0.018(0.344) -0.007(0.140)

n = 100 -0.053(0.368) -0.035(0.155) -0.018(0.260) -0.010(0.109)

Table 1: Bias(MSE) of AMELE parameter estimates for simulated accelerated life test data with

different sample sizes

By transforming observations using (T −ηp2)/(ηp2−ηp1), we compute the AMELE of the survival

curves using all the observation at different levels. In Figure 7, we show the 95% confidence bands

from the survival curves of 200 bootstrap samples with sample size n = 50. For comparison, we also

plot the confidence bands from the Kaplan-Meier estimates at one level. We see that the AMELE

survival bands are narrower, especially in the lower percentiles. The AMELE incorporates more
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information than the one-level estimate, so it is not surprising that it produces narrower confidence

bands. The regression functions are setup for 10th and 25th percentiles, so the estimation quality is

better in that area than high percentile area.
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Figure 7: Comparison of confidence bands of survival functions using AMELE and Kaplan-Meier

methods

5.2 Comparison of Several other Semiparametric Methods

In the previous section, we demonstrated that the AMELE method can estimate the regression

parameters and the distribution function simultaneously. In the case of infrequent censoring when

we observe median failure times at different levels, we can compare our methods with some benchmark

results of semi-parametric median regressions from Ying (1995) and Yang (1999).

Consider four stress levels: x = -1, 1, 2 and 3, which correspond to normal, low, medium and high

stress levels. The failure time data are simulated from the extreme-value distribution with shape

20



parameter u = 4− x, and scale parameter b = 3− x/2. Then the regression function on the median

η is η = u + b × log(− log(0.5)). The censoring time is chosen such that the censoring proportions

are: 10%, 20% and 30% at different stress levels. After calculating the regression parameters, we

compute the estimated median at the normal-use condition (x = −1) through extrapolation. In Table

2, results based on 1000 iterations of different sample sizes show that the finite-sample properties

of median estimates using different methods. The performance of different methods are quite close,

which shows that AMELE achieves comparable results to those specialized median regression models.

Sample AMELE Ying95 Yang99

Size Bias(MSE) Bias(MSE) Bias(MSE)

20 0.055(0.149) 0.071(0.120) 0.01(0.119)

50 0.007(0.059) 0.024(0.049) 0.004(0.053)

100 -0.006(0.029) 0.003(0.025) -0.001(0.027)

Table 2: Performance comparison of median regression using AMELE and several nonparametric

methods with different sample sizes

5.3 Comparison of AMELE and MELE

In Zhou (2005a), an EM-based method is proposed to compute the estimator directly for censored

data. Here, we compare the median estimates using our AMELE estimator with the MELE estimator

which has been implemented in emplik package in R (2009).

We consider the case of median estimation for right-censored failure times, and compare the

estimates properties such as coverage, length of confidence intervals and mean square error (MSE)

from simulation of 1000 iterations. In each iteration, we first simulate n random samples of failure-

times from a normal distribution, in which the mean equals the median. We then generate censoring

times from the exponential distributions, where the rates are chosen to ensure a certain proportion

of censoring occurs. For each iteration, a grid search is used to locate the optimal estimate, and we

also compute the 95% profile likelihood-ratio based confidence intervals.

Table 5.3 shows the performance comparison of the two methods. We see that overall, the MSE

and CI length of MELE is about 82% of the MSE and CI length of AMELE. Although AMELE

does not have the estimation efficiency as the MELE, it does offers more efficient computational

steps, which does not increase as we have higher censoring. We test the speed of two approaches
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based on 10000 iterations of function calls. In each function call, it computes the empirical likelihood

estimates of survival probability from simulated samples with size 50. In the case of no censoring,

the computation time for the MELE is 60% greater than that of the AMELE, which is a significant

increase. With 20% censored data, however, it takes over 15 times as long due to the slow convergence

of the EM algorithm. This demonstrates that AMELE is an efficient alternative to compute the

empirical likelihood estimator, especially during cases of heavy censoring.

Censoring Sample AMELE MELE

proportion size Coverage CI Length MSE Coverage CI Length MSE

0% 20 0.98 1.729 0.248 0.94 1.4380 0.185

50 0.91 1.261 0.147 0.97 1.071 0.077

100 0.97 0.917 0.056 0.93 0.762 0.041

10% 20 0.97 1.701 0.278 0.89 1.428 0.210

50 0.89 1.284 0.165 0.95 1.109 0.081

100 0.94 1.017 0.068 0.95 0.774 0.044

20% 20 0.975 1.679 0.277 0.92 1.466 0.230

50 0.940 1.380 0.134 0.96 1.158 0.079

100 0.960 1.070 0.063 0.97 0.833 0.041

Table 3: Performance comparison of MELE versus AMELE for median estimates under different

censoring rate

6 Concluding Remarks

In the ALT experiment for printed ciruit boards, the AMELE method provides a reasonable es-

timator for PCB lifetime and has important advantages over previous estimators. The proposed

data-exploration based percentile and percentile-difference regressions are effective in overcoming the

difficulty of observing mean lifetimes in the heavily censored data case for constructing commonly

used mean and variance regression models in ALT studies. Numerical studies show that the AMELE

is reasonably competitive against other semi-parametric MLE methods, and also compares favorably

to the MELE method. Based on the properties derived in this article, the AMELE method should

be a strong candidate for handling challenging data modeling and statistical inference problems.

22



Appendix: Proof of Lemmas and Theorems

Proof of Lemma 1: If we set λ = 0 such that constraint is imposed on the empirical likelihood,

we have:

ai(0) =
1

n

i∑
j=1

cj∑k+1
l=j Pl,0

, (26)

Pi,0 =
1

n(1− ai(0))
,

k+1∑
i=1

Pi,0 = 1, i = 1, 2, . . . , k.

Let Si = 1−
∑i

j=1 Pj be the survival probability, and hi = (Si−1 − Si)/Si−1 be the hazard rate,

where i = 1, 2, . . . , k + 1, and S0 = 1. We have Pi = hiSi−1 = hi
∏i−1
j=1(1 − hj). Thus, (26) can be

rewritten as

hi

i−1∏
j=1

(1− hj) =
1

n−
∑i

j=1 cj/Sj−1
. (27)

Denote by ni = n −
∑i

j=1 cj − i + 1 the number of subjects at risk at time ti. By further

simplification of (27), it is easy to see H1 = P1/S0 = 1/(n − c1), and Hi = 1/ni. So, the survival

function is expressed as

ST,0(t) =
∏
ti≤t

(1− hi) = ŜT,KM (t). (28)

Following similar arguments, we can show that

1− ai(0) = ŜC,KM (ti), (29)

which is the Kaplan-Meier estimate of the survival function SC(t) at time ti.

Proof of Lemma 2: Because E[G(T,θ)] =
∫∞
0 G(t,θ)dFT (t) = 0, we know∫ ∞

0
G(t,θ)dF̂T,KM (t) =

∫ ∞
0

G(t,θ)d(F̂T,KM (t)− FT (t)) = −
∫ ∞
0

G(t,θ)d(ŜT,KM (t)− ST (t)).

Using integration by parts, it follows that∫ ∞
0

G(t,θ)dF̂T,KM (t) =

∫ ∞
0

(ŜT,KM (t)− ST (t))dG(t,θ). (30)

According to Breslow and Crowley (1974, Theorem 5),
√
n(ŜT,KM (t)−ST (t)) converges to a Gaussian

process W (t), with E(W (t)) = 0 and

Cov(W (s),W (t)) = ST (s)ST (t)

∫ min(t,s)

0

dFT (x)

ST (x)2SC(x)
. (31)
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In the neighborhood of θ0,

1

n

k+1∑
i=1

Zi(θ) =

∫
G(t,θ)dF̂T,KM (t)

=

∫
G(t,θ0)dF̂T,KM (t) +

∫
∂G(t,θ0)

∂θ
(θ − θ0)dF̂T,KM (t) +O(n−1/2)

=

∫
G(t,θ0)dF̂T,KM (t)−

∫
G(t,θ0)dFT (t) +O(n−1/2)

=

∫
(ŜT,KM (t)− ST (t))dG(t,θ0) +O(n−1/2),

which proves the part (a) of the lemma.

As shown in Lemma 1, 1− ai(0) = ŜC,KM (ti), and we can write

1

n

k+1∑
i=1

Zi(θ)Zi(θ)> =

∫
G(t,θ)G(t,θ)>

ŜC,KM (t)
dF̂T,KM (t) (32)

→
∫
G(t,θ)G(t,θ)>

SC(t)
dFT (t). (33)

Following the uniform consistency of Kaplan-Meier estimate and the bounded derivatives of G(t,θ),

part (b) is proved.

Proof of Lemma 3: λ is solved implicitly from
∑k+1

i=1 Zi(θ)/(1 + λ>Zi(θ)) = 0. Since we have

1
n

∑k+1
i=1 Zi(θ)Zi(θ)> < ∞, it is easy to verify that maxi||Zi(θ)|| = o(n−1/2). Following the steps

used in Owen (1990), we can establish that

||λ||
1 + ||λ|| maxi||Zi(θ)||

= Op(n
−1/2),

which implies that ||λ|| = Op(n
−1/2).

Proof of Theorem 1:

According to (13), λ = −A(θ)−1
[∫∞

0 G(t,θ)dF̂T,KM (t)
]
+op(n

−1/2). It follows from (30) that (under

condition A3) as n→∞,

√
n

∫ ∞
0

G(t,θ)dF̂T,KM (t)
p−→
∫ ∞
0

W (t)dG(t,θ).

Using Gaussian process properties, we know that
∫∞
0 W (t) dG(t,θ) is distributed normal with

mean zero and covariance matrix ΣG(θ) defined as

ΣG(θ) =

∫ ∞
0

{∫ ∞
x

(G(x,θ)−G(t,θ))dST (t)

}{∫ ∞
x

(G(x,θ)−G(t,θ))dST (t)

}> dFT (t)

S2
T (t)SC(t)

.
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Thus,
√
nλ is asymptotically normal with mean zero and covariance matrix

Σλ(θ) = A(θ)−1ΣG(θ)A(θ)−1,

where A(θ) is given by (9).

Proof of Theorem 3:

Again, consider θ in a ball {θ : ||θ−θ0|| ≤ n−1/2}. Because λ(θ) = Op(n
−1/2), we can construct

a Taylor expansion of S̃T (t) at λ = 0 following a similar procedure in Qin and Lawless (1994), which

results in

S̃T (t) =
∑
ti>t

(
1

n(1− ai(0))
+
G>(ti,θ)λ(θ)

n(1− ai(0))2
+ op(n

−1/2)

)

= ŜT,KM (t) +

∫ ∞
t

G>(x,θ)dF̂T,KM (x)

ŜC,KM (x))
λ(θ) + op(n

−1/2),

where F̂T,KM (t) = 1 − ŜT,KM (t), and ŜT,KM (t) and ŜC,KM (t) are the Kaplan-Meier estimates of

ST (t) and SC(t). By replacing λ(θ) with −A−1(θ)

∫ ∞
0

G(t,θ)dF̂T,KM (t),

S̃T (t) = ŜT,KM (t) +

(∫ ∞
t

G>(x,θ)dF̂T,KM (x)

ŜC,KM (x))

)
A−1(θ)

∫ ∞
0

G(t,θ)dF̂T,KM (t) + op(n
−1/2).

It follows that

√
n(S̃T (t)− ST (t)) =

√
n(ŜT,KM (t)− ST (t)) +

√
n

(∫ ∞
t

G>(x,θ)dF̂T,KM (x)

ŜC,KM (x)

)
A−1(θ)

∫ ∞
0

G(t,θ)dF̂T,KM (t).

Denote

γ(t,θ) = limn→∞A
−1(θ)

∫ ∞
t

G(x,θ)dF̂T,KM (x)

ŜC,KM (x)
= A−1(θ)

∫ ∞
t

G(x,θ)dFT (x)

SC(x)
,

then we have

√
n(S̃T (t)− ST (t)) =

√
n(ŜT,KM (t)− ST (t)) +

√
nγ>(t,θ)

∫ ∞
0

G(x,θ)dF̂T,KM (x) = Wn1(t) +Wn2(t),

which are decomposed into summation of two Gaussian processes, with

lim
n→∞

Wn2(t) = lim
n→∞

√
nγ>(t,θ)

∫ ∞
0

G(x,θ)dF̂T,KM (x)

= lim
n→∞

γ>(t,θ)

∫ ∞
0

√
n(ŜnT,KM (x)− ST (x))dG(x,θ)

= γ>(t,θ)

∫ ∞
0

W1(x)dG(x,θ).
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Note that E(W1(t) +W2(t)) = 0, so that the asymptotic variance of
√
n(S̃T (t)− ST (t)) reduces

to

σS̃(t) = Var(W1(t)) + Var(W2(t)) + 2Cov(W1(t),W2(t)),

which could be proven following derivation of standard Gaussian process properties.
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