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Reliability Modeling in Spatially Distributed Logistics System

Ni Wang, Jye-Chyi Lu and Paul Kvam

The School of Industrial and Systems Engineering,
Georgia Institute of Technology, GA 30332-0205

August 23, 2005

Abstract: This article proposes methods of modeling reliability of delivering products to meet de-
mands in supply-chain’s logistics system. The system usually consists of thousands of retail stores
and many distribution centers (DCs) at various locations. Products are transported through nu-
merous routes between DCs and stores. The service reliability depends on layout of DC locations,
distance between DCs to stores, product-replenish time requirement at stores, DCs’ capability for
supporting store demands and probability of routes being smoothly operated. Contingency events
such as labor dispute, bad weather, road condition and traffic situation and terrorist threats have
great impact to system’s reliability. Because the large number of store locations and many combi-
nations of routing schemes, this article applies an approximation technique for developing first-cut
reliability analysis models. The approximation relies on multi-level spatial models to describe pat-
terns of store locations and demands. These models support several types of reliability evaluation of
the logistics system under different probability scenarios and contingency situations. Examples with
data taken from a large-size logistics system of an automobile company illustrate the importance of

studying supply-chain system reliability.

Keywords: Contingency, Degradation, Distribution Centers, Service Reliability, Supply-chain
Systems.

Acronyms

CA Continuum Approximation



DC Distribution Center

GDC Global Distribution Center

LDC Local Distribution Center

SC Supply-Chain

Notation

Ax) Spatial density function at location @

d(x) Distance between a DC and the store at location @

r(x) Service reliability of a DC to a store for meeting time requirement
i Failure probability for GDC; due to some contingency

1 Introduction

Logistics systems are designed to move goods, energy (e.g., electricity and gas), water, sewage, money
or information from origins to destinations in a timely manner. A typical logistics system in large-
size supply-chains has thousands of stores, many global or regional level distribution centers (DCs)
and even local transshipment points. The service reliability of such logistics system depends on the
strategy of how stores are supported by DCs and capabilities of these DCs in replenishing materials
in a timely fashion for meeting demands. The probability of smooth operations in transportation
routes to support time-guaranteed supplies also plays an important role. Moreover, there are cases
that uncertainties may disrupt logistics operations significantly. For example, the labor dispute at
Long Beach in 2002 shut down the port for 10 days, and the estimated cost was in the range of $2
billion - $20 billion [9]. However, there are very few analytical models for supply chain reliability,
despite the calling for designing and operating supply chains that are resilient to disruptions [15].
Many studies examine problems in network reliability [1], system performance degradation and
workload re-routing for telecommunication, power and transportation networks [13], [14]. Most
of these concentrated on evaluating network reliability based on probability of functioning in net-
work links. Meeting the delivering time requirement is seldom the focus. Past studies [4] on road-
transportation reliability did address the travel time issues for trucks routing through connected links

of stops. However, the size of the network in these studies is much smaller than the logistics systems



considered in this article. Thus, their detailed probability-based reliability models have limited use
in our supply-chain logistics systems.

Reliability studies in the logistics service system is also different from reliability research of
product designs [11], where there is no DCs and stores and no connectivity problems exist between
them. The characteristics of supply-chain’s system reliability are discussed in a few literature. For
example, Bundschuh et al. [3] considered an integrated inbound supply chain with many potential
suppliers for products. Their concern is to choose proper suppliers such that the supply-system is
reliable with a low failure probability in getting needed supplies. Focusing on logistics cost but not
service reliability, Snyder and Daskin [15] studied situations where logistics facilities (e.g., DCs) fail
at times, and they used mixed integer programming method to find a solution such that the increase
of transportation costs under failure scenarios is minimized. Thomas [16] proposed probability
models for quantifying reliability of supply chains under contingency situations. However, he only
considered simple probability models of supply meeting demand, Pr(supply > demand), based on
assumed parametric distributions of supply and demand quantities. The complicated network issues
between DCs and stores were not discussed.

This article focuses on developing “first-cut” reliability models for very large-size logistics systems
to support strategic planning decisions (e.g., DC location allocation and serving area optimization
([6])). Our key contribution is to bring statistical spatial modeling techniques to approximate store
location and demand data. Then, system reliability models can be built on these approximations for
entertaining various scenarios of DC location designs and DC capacity constraints, and for evaluating
impact of contingency causing DC partially or fully shut down. Some of these issues are touched in
the above literature, but none of them integrates spatial models with network reliability calculations
together. The following provides more details of introducing our multi-level modeling and reliability
evaluation procedures in handling very large-size networks.

Continuum approximation (CA) [7] is the usual tool for modeling logistics systems for support-
ing strategic decisions in transportation and supply-chain management [8]. The CA approach first
simplifies logistics network by assuming that spatial locations (of stores, facilities, etc.) are modeled
via a density function A(x) which describes the number of points per unit area as a function of po-
sition &. This article extends their homogeneous Poisson intensity function to the nonhomogeneous
case capable of handling variations in store counts and demands at different locations such that DC
allocation and serving area can be decided more realistically. In our system reliability evaluation,

distance between store and the nearest DC is the key factor for meeting product’s time-guaranteed



replenish requirement. Given a set of DC locations and capacities, reliability of the entire SC-ogistics
system is then an average of reliability over all store locations and demands based on approximation
models. Our illustration example has eight DCs serving stores in the entire U.S. continent. Section
4.1 shows that when one of the DCs breaks down, the entire system reliability could drop 10.2%.
We also provide reliability degradation paths as a function of demand growth in DC’s serving area.

For the tactical level decisions in choosing most reliable and cost-effective routes, a similar approx-
imation model is built on regional store locations and demands. The reliability of regional logistics
system is more concerned with whether certain routes are functioning or not. Thus, the experi-
ence learned from telecommunication network reliability is utilized to develop reliability evaluation
procedures at this level. Section 4.2 provides examples with stores in Texas.

Section 2 presents a general framework for modeling reliability of global-level logistics networks
and evaluates effect of degradation in GDC’s capacity. Section 3 defines regional-level logistics
reliability measures. In both sections, well-known spatial smoothing methods with software available
commercially are utilized to obtain spatial intensity function for supporting CA approximation and
reliability evaluation. Numerical illustrations with real-life data are provided in Section 4. Conclusion

and future work are offered in Section 5.

2 Reliability Modeling for Global SC-Logistics Systems

Uncertainty is of main concern in many logistics planning activities. Often, safty stocks are utilized
to accommodate uncertain demand or shipping delay. The logistics facilities such as DCs are also
subject to many types of risk. Snyder and Daskin [15] considered a situation where facilities fail
time to time due to poor weather, labor dispute or other factors, and applied the mixed integer
programming method to find a contingent logistics solution. The focus of this article is to develop
procedures for evaluating whether a large-size SC-logistics system is capable of handling certain
contingency for meeting deadlines of product replenishment. Hereafter, the “stores” refer to stores
in retail chains or dealers in automobile distribution networks.

This paragraph rigorously defines the logistics service reliability. Consider a store located at x,
and assume it is served by a GDC d(x) miles away. Model speed of trucks transporting goods on

routes from GDC to surrounding stores as a random variable V' with a distribution function Fy ().



Figure 1: The service reliability r(x) as a function of d(x), where d(x) is the distance of  from the

serving DC

Then, the service reliability at & for meeting the deadline ¢y is defined and calculated as

r(@) = P(I<t)=Pld()/V <t (1)

= PV >d(z)/to) = 1 — Fyld(z)/to],

where T is the traveling time. Many distributions are suitable for V. The next example shows that
the normal distribution with a reasonable choice of mean and variance produces a nice reliability
function. Figure 1 shows that the service reliability of a GDC to stores within a certain distance
(e.g., 400 miles) is near one, i.e., the logistics system can meet the deadline without much troubles.
Then, for those stores beyond the certain distance, the reliability starts to drop in a reversed-S shape
gradually and reach zero for stores very far away. These stores should be served by other GDCs.
Example 1: Suppose V is normal distributed with mean 40 and standard deviation 10 miles
per hour. Because the routes between GDC to stores could include highways and local streets,
this article sets the mean and standard deviation conservatively for accommodating possible varying
factors such as road congestions, bad weather and so on. Then the service reliability can be calculated
as a function of distance d(x) as shown in Figure 1. Notice that within 400-mile distance, the
reliability is very close to one. It drops to 80% when the distance is around 650 miles. The reliability
is close to zero when the distance reaches 1300 miles from GDC. One can image that when the
deadline is more loose (e.g., 24 hours), the system is more reliable. In this case, the region of near
100% service reliability can be larger than the current region (about 400 mile radius distance) with

to = 20 hours.

2.1 Service Reliability for Large-size Logistics Systems

If one assigns specific stores to specific DCs, there will be tremendous number of combinations in
store-to-DC assignments. This makes the calculation of system reliability very complicated. This
section extends the reliability defined in Eq. (1) to many stores at locations & = (1, z2) modeled by
a smooth density function A(z). The demand for stores is also assumed to be a spatial function with
mean p(z). This makes the system-reliability calculation easier and allows flexibility of handling
many variations in the logistics system with stores and DCs organized differently. Our procedure

explained in Eq. (2) below integrates the reliability of Eq. (1) over the serving region of a DC for



assessing the service reliability in that region. Then, extend this idea to all DCs’ serving regions.

The reliability for the entire system with many DCs is then obtained.

rsten = [ Mua(w)r(u)du/ [ Mu)n(w)du, @
A A

Section 2.2 shows that this procedure allows us to easily handle problems with limited capacities
in certain DCs. If there are more DCs added into the system (or some DCs dropped) to handle
certain demand growth or contingency, the system reliability can always be evaluated in the same
method as long as the serving regions are designated. It is possible to include reliability or other
measures in the objective function (e.g., [6]) for deciding the serving region and then calculate the
resulted system reliability. However, up to this point, practitioners usually decide the serving region
for a DC based on logistics and facility cost concerns (e.g., [7]) and other “political” reasons. Thus,
the scope of this article will be limited to evaluating the reliability based on a given set of serving
regions for DCs provided by practitioners. That is, we do not discuss how to optimize DC locations
and serving regions.

It is common that in strategic planning of supply chain networks, exact store-location and demand
information is often not available or is projected based on aggregate planning or forecasting (see Eq.
(9) and its description in Section 2.3 for details). Thus, this section follows the idea used in the
Continuous Approximation (CA) approach for large-scale facility design problems by modeling store
locations with a spatial Nonhomogeneous Poisson Process [5]. Its intensity function at the location
x = (z1,z2) is A(x), which can be interpreted as an expected number of stores within unit area
around z. By using the CA approach, facility-location (e.g., DC location) allocation problems can
be transformed to problems of finding the optimal size of DC’s service regions supporting the demands
of stores in the regions. Managers can change the intensity function (or the expected store counts
(in Eq. (9)) for projecting future situations when demand grows (or diminishes) in certain regions.
Then, the system reliability will be changed according to the change of the intensity function. This
allows managers to evaluate if more DCs are needed to improve its system reliability.

Next, let us illustrate the flexibility of the above setup in evaluating system reliability by consid-
ering that some DCs might be shut down due to certain contingency. Suppose there are ny GDCs
serving the whole region A. Let 9; = 1 or 0 be indicating parameters for the functioning status
of GDC;, i = 1,...,n7. If the GDC; is shut down (i.e., ¥; = 0), the stores served by GDC; will
be served by closest DC available. No matter how many GDC;s are available, all the stores in the

entire region will be served by only one of the GDC. Using the minimal distance concept, the serving



regions of the GDC;s are then defined. Thus, Eq. (2) can be used to evaluate the system reliability
in this situation. See the algorithm presented in the end of this section for details of the calculation
steps. See Example 2 in Section 4.1 for a numerical illustration.

To elaborate, denote ¥ = {t1,%2,...,%n,} as a scenario of the indicating parameters. For
example, if ¢ = (1,1,0,0) for four DCs. It means that the first two DCs are functioning and the
other two are not. Different contingency will lead to distinct values of these indicating parameters.
Notice that this setup allows us to evaluate cases with multiple DCs shut down easily.

Similar to Eq. (1), we define the service reliability 7% (x) as the service reliability for stores at

location & served by DC; under the scenario 1,
r¥(@;d% (@) = 1 = F,[d¥ (z) /to), 3)

where d¥(z) is the distance of  from the closest functioning GDC under the scenario 1. Then, the

reliability under this scenario is r¥ which is the same as Eq. (2), with a replacement of ()

system?

by r¥(x; d¥ (z)). Finally, the expected service reliability of the logistics system under many possible

scenarios is the weighted average of the reliability r:,/;stem

with weights given as the probability of

that scenario occurred. That is,

E(rsystem) = Z rﬁstemp(¢)’ (4)

Pevw

where ¥ is the state space of all the scenarios, p(9) = [, (1 — pi)qpip; “¥i and p; is the probability
of the GDC,; being shut down.

Remark on Computing the Expected System Reliability: Enumerating all the possible
scenarios may be cumbersome, however, Eq. (1) can be further simplified by changing the sequence

of summation and integration. Thus, one can work on the GDC;s one at a time. Then,
Braten) = [ M@u@)rien(@)de/ [ Awp(a)dz, (5)
where the calculation of rgysem () can be simplified as follows:
e Consider each location z. Denote GDCy) as its serving GDC;

e Order other GDCs according to their relative distance from . Denote them as GDC(y),

GDC(3), ey GDC(m) with relative distances d(g), d(3), cee d(nz);

e Let p(;) be the failure probability for GDC;). Denote 7(z,d(;)) as the service reliability at x
when it is served by GDC;), which means that GDCy), ..., GDC(;_1) are all failed;
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o The 74ystem(x) inside the integration can be evaluated as

Tsystem(m) = Zp(¢)r¢($) (6)

= (I —-pa)r(z,du)) +pay(1 = pa)r(z,de)) + - (7)

+ Py Pn—1) (1 = Pnp))T(®, d(ny)),

where only one term in Eq. (6) is used. For example, if the nearest GDC, namely GDC ), is
available, the reliability is the success probability (1—p;)) multiplied by the reliability r(z, d(,))

based on the distance d(;) from store location & to GDC(yy. Others are defined similarly.

For practical reasons, a grid can be laid on the focused region such that Eq. (5) can be calculated

by replacing integrals with summations as follows: Tsystern = >2; D25 Aij uijrij (®)/ 22: 225 Nijbigs

system
4]
system

where \;j, p;j is the total intensity and demand within (4, j)th block in the grid, and r () is

the service reliability evaluated at the center of the grid by Eq.(6).

2.2 Service Reliability in Logistics Systems with Capacitated DCs

The reliability models discussed so far dealt with problems of un-capacitated DCs. That is, no
matter how large the demand in a region is grown, the responsible DC can still handle its products
replenishment, packing and loading tasks without losing any efficiency. This section extends the
reliability models described in the previous section to the case where each DC can only handle
limited demand. Denote that each GDC; serving the region A; has a fixed capacity &,i=1,...,ny,
and the union of all non-overlapped A4;’s is the whole region A.

Suppose that some contingent event (or demand growth) cause a “degradation” of GDC;’s ca-
pacity from &; to & that the GDC; can only handle the demands from stores in a subregion of A;.
The unserved stores need to go to other nearby GDCs for service (if those GDCs have available
capacity to serve them). In implementing this idea, we start with each GDC and revise its serving
region based on its capacity to meet demands in nearest stores grid by grid as described in the above
computing remarks. When all the stores in the original region assigned to a particular GDC are
all served, and if this GDC still has extra capacity to serve other stores, the reliability computing
algorithm will pick up the unserved stores in grids nearest to this GDC. Finally, all the capacities
at all GDCs are all used. If there are still some stores unserved, the system reliability will drop. In
this case, the managers might consider adding capacity to certain GDCs or adding some temporary

GDCs. See Example 3 in Section 4.1 for numerical illustrations.



Remark:

The above idea is simple, but might not be optimal in the sense of maximing the system reliability.
For example, consider two neighboring DCs, where DC; has available capacity for handling the
demands from one unserved store at location a responsible by DCy originally. Suppose that the
distance from this store to DCsy is dy, = 5 miles and to DC; is di, = 8 miles. According to the idea
described above, this store should be served by DC;. However, suppose that there is another store
(at location b) responsible by DCy with equal demands, and its distance to DCy is dop = dog +1 =6
miles and to DC; is d1p = d14 + 10 = 18 miles. Although the store at location b is slightly farer away
from DCQCo, its distance to DC; is much farer away than that from the store at location a. Thus, if we
let DC, serve the store b, the “saved” traveling distance (9 miles) gained by using DC; to serve the
store a will increase the system reliability, which is a monotone function of traveling distance. That
is, we should look for the case that the store gains the most saving in traveling distance for keeping
it in the original DC’s serving responsibility, but not the nearest store. Thus, the algorithm should
first calculate the differences for stores traveling to two DCs. Then, choose the most saving case for
deciding the service responsibility. For example, the difference for the store a to DC; and DG, is
diff, = 8 — 5 = 3 miles. Similarly, this difference for the store b is 18 — 6 = 12, which is much larger
than diff,. Thus, the store b should be served by DCs and the store a should be served by DC;.

This modified idea only works for equal demands in these two stores. The issue for the unequal
demands becomes very complicated, especially in pooling demands from a few stores together to
match the demand for another store to calculate the total distance saved. Because this article
develops beginning work to introduce service-reliability in large-size supply-chain logistics systems,
the scope of such an in-depth study is beyond the mission of this article. We will leave it to future

research.

2.3 Global-level Spatial Density Modeling

In logistics planning at corporate level, many strategic plans utilize data projected in aggregated
forms. For example, the manager who handles marketing departments might forecast a total demand
for many stores in a region, e.g., Georgia State or South Eastern region. This section employes a
commonly used smoothing technique for estimating the intensity function A(z) described in Section
2.1 based on constraints of from the total store counts in a region set by the marketing manager.

This technique can be applied to both store intensity or mean demand functions.



Figure 2: The counts w(B;) of stores for each B; in USA

As an example, consider the state, B; (j = 1,...,ny), as a region that the marketing manager
has some aggregated store counts. Figure 2 illustrates these aggregated counts for states in the
continental U.S. (region A), where darker colors indicate larger counts. Because Texas State has the
largest number of stores in this data set, its color is the darkest. See Table 2 for details of the data.

Tobler [17] constructed an estimator A(z) to minimize the following smoothness function (in second

//A [(aal(m)) * (@?)rdﬂﬂdw (8)

subject to constraints: A(z) > 0 and

derivatives),

/B' Ma)de = E(W(B,)), for j =1,...,ny, )

where E(W (B;))’s are the expectation of projected store counts in each subregion B; and & = (1, z2)
is the two-dimensional coordinate for the region A. Because the procedure is a nonparametric
smoothing method making interpolations of given data. The assumption needed is that there exists
a density function, which is non-negative and has a finite value for every location in the domain.
For the logistics data we are working on (see Section 4), this assumption is hold. Moreover, Since
we only consider stores within continental U.S., the spatial density at the boundary is fixed at zero.
See Tobler [17] for showing the existence and uniqueness for this constrained optimization problem.

See Figure 4 in Section 4.1 for the fitted smooth intensity function.

3 Reliability Evaluation of Regional Logistics Systems

In regional logistics operations, one needs to conduct more detailed decision analyses such as which
local DC and which routes to use for serving what stores. The time constraints become more
stringent. In this situation, local distribution centers (LDCs) or transit points are closer to stores,
and thus being able to provide more timely service. In strategic decision, failure of GDCs is a primary
concern. However, at the regional-level, one is more concerned about weather conditions, road traffic
or other factors that might affect tactical decisions on truck-routing and product-inventory. Thus,
in this section we assume that the transportation links are subject to failure, and contingent events
may disrupt a specific route connecting the GDC to LDCs and between LDCs and stores. To keep

the study focused, we do not discuss inventory issues. See Dandamudi and Lu [6] for such studies.
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Figure 3: DC Locations and Service Regions

For the illustration purpose consider the LDCs shown in Figure 3, where the “Origin” could be
a GDC or some supply-source of products. There are four LDCS, LDCy, k& = 1,2, 3,4, located in
populated areas. These LDCs are transportation “stop-points” for aggregating and mixing products
from different sources. Stores at location & will be served by these LDCs. Denote the “long-haul”
transportation lines (called “links”) between GDCs and LDCs as ¢, | = 1,...,n; as illustrated in
Figure 3 with n; = 5. Thus, we model the regional logistics system as a stochastic network G, where
the links e;s have independent failure probability pe,, [ = 1,...,n;. A scenario s of the network
indicates availability for each links e;, where s = (1,...,0;,...,1) if /th link fails. Denote S as the
space of the logistics network G for all possible scenarios. Let Pr(s) = Pr(S = s) be the probability
of the scenario s, where s € S.

After products being transported to LDCy in a speed Vp¢ through long-haul links (e.g., regional
highways or railways), local trucks will deliver the products to stores at @ at a speed V;. Compared
with transportation speed V;, the long-haul transportation speed Vp¢ usually has less variation due
to more stable traffic and road conditions. For simplicity, we assume that the travel speed Vpco
is deterministic, and V; is a random variable with distribution function Fs(-), which has similar
form as Fy(-) described in Eq. (1), but with possible different mean and variance. Section 4.2’s
example sets Vpe as 60 miles per hour and uses 40 and 10 miles/hour as the mean and standard
deviation, respectively, for the normal distribution of Fi(-). Because in this article both V' described
in Example 1 and V; defined here are set at the same speed, we use the same distributions to keep
our presentation brief. Thus, to the end of this article, we set Vs as V.

Before defining the regional-level service reliability 7system, r, We need to state several assumptions
for bringing telecommunication’s network-reliability definitions and procedures here. First, a minimal
path [10] is a minimal set of links whose simultaneous functioning ensures the functionality of a
regional logistics network. Define shortest path between origin (GDC) and destination (store) to
be the available minimal path which takes the least amount of time to pass for minimizing the
transportation cost. In our model, unless some routes have failed, we assume the flow of products
will always go through the shortest path to maximize the service reliability of a region. Let us use the
following example to illustrate these concepts and prepare for the latter applications (e.g., Section
4.2).

Example 2:  Focus on the region of Texas State with four LDCs receiving products from a GDC

11



Figure 4: Minimal Path Sets for Node Pairs

and shipping them to surrounding stores as shown in Figure 3. From these LDC locations, the lengths
of links (in miles) are calculated as: (l¢,,le,, les, ey, les) = (500,296,300, 350,356). For simplicity,
assume every store has the same demand (ug) during the unit time studies.

Denote MP;1, ..., MP;,, the ordered minimum paths (MPs) from the origin (GDC) to the LDC,
LDC;, according to the total link transportation cost and link mean transportation time. See Figure 4
for a summary of all minimum paths in the four LDCs. To make it clear, consider LDCj, there is only
one minimal path, e, which is also the shortest path. Consider LDCs, it has two minimum paths,
(e1,€2) and (e1,eq,e3). In this case, go = 2. According to the distance calculation, the minimum
path M Pyy = (e1,ez) is the shortest path. The other path M P,y = (e1, e4, e3) will be used when
the critical link such as ey is failed. Similarly, LDC3 has two minimum paths, M Py(;) = (e1, e4) and
M P35y = (e1, €2, €3), where M Py(1) is the shortest path here. Finally, LDC4 has one minimum path,
MPy,y = (e1,¢es5).

Denote s;() the scenario that MPjy) is the shortest minimum path from origin to DC;. For
example, when the link ey is failed, M Py(5) = (e1, €4, e3) is the shortest path only under this scenario
52(2)-

Let pe;, be the failure reliability of link e;. Then we can calculate the system reliability for a
given scenario s;y). When the system reliabilities under all possible scenarios are evaluated, an
expected system reliability can be obtained as a weighted average of these reliabilities with the
weight set as the probability of scenario occurred. For example, the scenario sy(1) is for the route e;
to be functioning for products moving from GDC to LDC;. Thus, the probability of this scenario
is Pr(sy1)) = (1 — pe,). Follow this idea. The probability of routing from MPy) = (e1,e4) is
Pr(s3(1)) = (1—pe;)(1—pe,) for both routes e; and e4 to function simultaneously. On the other hand,
for another minimum path of LDC3, M Py(5) = (e1, e, ¢e3), for the trucks to take this longer route
than the shortest path M Py, e4 must have been failed. Thus, the probability in this special scenario
s3(2) With a failure of e4 and functioning of e1, e and e3 is Pr(s3()) = (1 —pey ) (1 — Pey) (1 — Peg)Pes-
By applying this idea, we can calculate all the other scenario-probabilities as follows: Pr(sy)) =
(1 = Pper) (X = pes)s Prsz2) = (1 = per)(1 = Pes) (1 — pey)Pes, Prisaa)) = (1 — pe,)(1 — pes)- These
probabilities will be used in Section 4.2 for evaluating the system reliability.

Under scenario s for some functioning and failed links, define r*(x) as the service reliability,

which is the probability of delivering products from the GDC to store at & before deadline ¢3. That
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is, r°(x) = Pr(T < ty), where T is the total transportation time calculated below. Denote ¢}, the
minimum long-haul transportation time from the origin O (GDC) to LDCy through the shortest
path. This #J, is equal to the distance dp ; between O to LDCy divided by the deterministic long-
haul traveling speed Vpc. Denote the distance between the LDCy, and its serving store at & as di ().
Then, the transportation time between the LDC and store is di(x)/V. Note that for simplicity, the
local and short-distance routes between the LDCs and stores are assumed to be always functioning.
This implies that the total transportation time between the origin to the store is T' = d(x)/V +t3,.
Thus, the service reliability for a store at x is 7*(x) = Pr(T < t9) = 1 — Fy[di(x)/(to —t5;)]- Apply
the store location and demand smoothing idea described in Section 2. The total service reliability
under scenario s for the entire region Ay (e.g., State of Texas) is
Toystem,r = | A@)p(@)r’(@)de/ [ Mz)u(w)de. (10)
Ao Ao
Consider all the possible scenarios s with different occurrence probability Pr(s). The expected
system reliability for this region is then E(rgystem,r) = ). Pr(s)rgystem’R.
For the modeling of A(z) and p(x) in the local regi;erlss, because there is no such constraints as
aggregated region store counts given in Eq. (9) for the regional studies here, the following well-known

kernel smoothing technique [2] is used.

. 1 M
Au) = — " w(uy — Bim; h1)w(ug — Tam; ha),
nm m=1
where u = (u1,u2) is the evaluation point of the intensity and x,, = (Z1m,Zom), m = 1,...,nn

are the available store locations for smoothing. w(-) is a symmetric univariate density function
(Gaussian) with [w(u)du = 1. The specification of the bandwidth h;s is important for practical
implementation; however, it is beyond the scope of this paper to present the details of selection h.
Thus, we will use the following well-known estimate ([18], page 60) in our implementation in Section

42
opt = {87r1/2 / w(w)2du/[3ra / u2w(u)du)2]}1/5 5, (11)

where ¢ is an estimate of standard deviation of store locations. This estimator is known as the optimal
bandwidth estimator to minimize the mean integrated squared error, when the store locations are

from Normal distributions. See [2] for a discussion on computation issues.
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Figure 5: Spatial Density Function from Global-Level Model

Figure 6: The Locations of 8 Regional DCs in US

4 Applications of System Reliability Measures

4.1 Global-level Modeling and Reliability Analysis

The data used for illustrating the proposed reliability measures are contributed from a major U.S.
automobile manufacturing company. The stores in this case represent car dealers. The store counts
per state are provided in an aggregated form as shown Table 2 and Figure 2. This company has
eight global DCs serving the whole U.S. See Figure 6 for their locations. Based on the count data
W (By), a smooth function A(z) is obtained using the constrained interpolation method discussed in
Section 2.3, where a 100 x 50 grid is overlaid on the U.S. continent map. All the computations are
implemented using R [12]. Figure 5 presents the intensity function of store density. Note that New
York and Boston city areas have the highest intensities contributed from the most amount of stores
in the relatively small regions. Texas has the most number of store counts, but the size of the state

is relatively large. Thus, its store intensity is not as large as the New York and Boston areas.

Example 3: In this example, we calculate system reliability under the scenario of single DC shut-
down and possibly multiple DC shutdowns. Follow the assumption of distribution of the speed V and
the product delivery time given in Example 1. When all GDCs are available, i.e., ¥, = (1,...,1),
the original system reliability is calculated as 7gystem = r%o = 0.926, using Eq. (2).

When only one GDC is fully shutdown, i.e., ¢ = (1,...,0;,...,1) and p; = 1 for the case of
GDC; shutdowns, the Eq. (2) and Eq. (6) gives the resulted system reliability as reported in Table 1.
Notice that GDCg near Boston is the only GDC in the North-Eastern region with a lot of demands.
Its shutdown should greatly affect the system reliability. According to our calculation given in Table
1, its shutdown does have the largest impact to the system reliability; a 10.2% drops of the system
reliability. The GDCj3 near Atlanta has the second largest impact with about 7.7% drop in the
system reliability. On the other hand, GDC7 near Detroit has the least amount of drop (0.4%) in

the system reliability. One might wonder if that GDC is really needed from the system reliability
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DC 1 2 3 4 5 6 7 8
r¥ |1 0.914 | 0.890 | 0.855 | 0.907 | 0.903 | 0.917 | 0.922 | 0.832

Table 1: The System Reliability after a particular DC fails

point of view.

Next, consider the case with possible multiple GDC shutdowns. For an illustration, suppose
GDC; and GDC,4 shutdown simultaneously, which means that there is no GDCs in the West including
the highly populated California regions. Our calculation shows that the system reliability reduces
to 0.834, which is about 9.9%, slightly small than the drop of GDC near Boston area. Consider
another extreme case, where three GDCs in the North, GDCg, GDC; and GDCg, are all shutdown
simultaneously. Then, the system reliability reduces to 0.698, which is about 24.6% drop from the
original system reliability.

Our procedure allows one to entertain probability of being shut down for many GDCs simulta-
neously to evaluate the impact of certain contingency. For example, if we assign the probability of
every GDCs being shutdown as 0.1 (= p;), the system reliability is 0.896, which is about 3.2% drop
from the original system reliability.

Remark: Most of the existing CA application in logistics-planning literature assumes constant
intensity function (e.g., [7]), and thus the spatial density issues addressed in this article are not con-
sidered. Then, the evaluation of service reliability may not be accurate due to the mis-representation
of store information. For a comparison purpose, the following provides a few reliability calculations
based on this constant intensity model. First, the service reliability for the whole region becomes
Tsystem = 0.750, which is much lower than the 0.926 system reliability calculated from the spatial
model. One can image that when there are clusters of stores near DCs, the reliability will be higher.
This is what the spatial model represent. When the stores are assumed to be uniformly distributed,
the distance from stores to DCs will be larger, and thus, the system reliability will be lower.

When only the ith GDC fails, 1 = 1,2,...,8, the service reliabilities presented in Table 1 in
the constant intensity case become lower and their values are 0.711, 0.699, 0.708, 0.715, 0.708,
0.745, 0.749, 0.720. More importantly, the “ranks” of these reliabilities are changed. For example,
shutting down GDC; has a larger impact to the system reliability than shutting down GDCg. Their
reliabilities are 0.914 and 0.832, respectively, as shown in Table 1. However, when the constant
intensity model is used, their values become 0.711 and 0.720, and shutting down GDC; has a smaller

impact to the system reliability then. A wrong reliability evaluation could result to less attention
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Figure 7: The Reliability degradation Paths for each DC when its capacity decreases. z-axis is the

available capacity

Figure 8: A snapshot of store Locations in Texas

in maintaining GDC;’s functionality. That is, resource could be wrongly allocated to maintain high

system reliability.

Example 4: This example considers the capacitated GDCs and evaluate the deterioration of sys-
tem reliability when one GDC’s capacity is degraded gradually due to demand growth or certain
type of contingency, e.g., labor dispute. For keeping our presentation simple, assume all stores has
homogeneous expected demand p, and total expected stores demand pu; served by GDC; is then,
Y = fAj poA(x)dx. Suppose each GDC is built with capacity § = 1.2 x p;. Thus, neighboring
GDCs can share the load to counteract the degradation of one GDC’s capacity. Figure 7 shows the
reliability degradation path for each GDC when its capacity decreases from zero (no capacity change)
to one (complete shutdown of the GDC).

According to these path patterns, the service reliability in GDCg and GDCj3 degrade the most;
much larger than the others, especially after about a 50-60% capacity degradation in these two GDCs.
The reason is that those DCs are further away from neighboring DCs and have relative larger store
demands. On the other hand, the capacity degradation of RDCg and RDC7; serving Chicago and
Detroit regions have little impact on the system reliability due to their closer distance from each

other.

4.2 Regional-level Modeling and Reliability Analysis

Figure 8 shows store locations in Texas. Using normal kernel spatial smoothing method described in
Section 3, the bandwidth estimator is calculated as h = (hy, he) = (0.604,0.522). In this article, we
lay a 50 x 50 grid on this region and obtain the estimated smooth spatial density of store locations

as illustrated in Figure 9.

Example 5: By using the minimum and shortest paths and many scenarios described in Example

Figure 9: DC Locations and Service Regions
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2, we can calculate the probability of routing through each minimal path, and its corresponding
service reliability for stores. For example, consider a grid block of stores represented by the block
center (34, 10), its distance to LDC3 and LDCj5 are 186.3 and 253.36 miles, respectively. Thus, based
on transportation cost and reliability concerns, stores located at this block will be served by LDCs.
Assume all the links have same failure probability p.; = 0.05. The probability of the scenario for
routing through the first minimal path MP3(;y = (e1,e4) from GDC to LDCj3 is Pr(s31)) = 0.90.
Consider a grid block (34,10) in the spatial density at the region served by LDC3, and its distance
from LDCj3 is d3(x) = 186.3 miles.

Next, we use Eq. (10) to calculate the service reliability. Consider the deadline ¢y = 24 hours
from GDC to a store in the block (34,10) (represented by a triangle pointing upward in Figure
3). The transportation time on the M P31y with link distances e; = 500 and eq = 350 miles
is tzg(l) = (ley + ley)/vpe = 14.17 hours, where vpc = 60 miles per hour is the deterministic

transportation speed between GDC and LDCs. Then, the service reliability is
() () = Pr(ds(z)/V + 14.17 < 24) = 1 — Fy/(d3(x)/9.83) = 0.98

, where the location in this example is @ = (34, 10) and the distribution of V' is normal with mean
and standard deviation equal to 40 and 10 miles per hour, respectively.

Similarly, the probability of routing through the second minimal path MPy5) = (e1,22,e3) is
Pr(s3e)) = 0.95 x 0.95 x 0.95 x 0.05 = 0.04, and it will take (le, + le, + leg)/vpc = 18.27 hours to

pass the long-haul distance. Under this scenario, the service reliability is then
32 () = Pr(ds(z)/V +18.27 < 24) = 1 — Fy (ds(x)/5.73) ~ 0.77.

Thus, the service reliability for serving the store at & = (34, 10) is r(x) ~ 0.98-0.90+0.04-0.77 = 0.92.

Consider another grid block &’ = (32,5), which is shown as a triangle pointing downward in
Figure 3. Tts distance (283 miles) to LDCj is shorter than distances from other LDCs. Thus, LDCj3
will serve this block of stores. Because the distance from LDCj3 to this location is much larger than
the distance (186.3 miles) from the same LDC to location = (34, 10), the following shows that the
service reliability to this location is lower (0.79 versus 0.92) due to the larger distance here. Using
the same procedure as illustrated in the paragraph above, we can calculate the service reliability
routing through its first and second minimal paths as 0.87 and 0.17, respectively. Thus, the service
reliability evaluated at this block &' is r(z') = 0.90 - 0.87 + 0.04 - 0.17 = 0.79.

After enumerating all the store at grid-locations within service region of LDC3, we can calculate

the regional-level system reliability using Eq. (10) as rsystem,r3 =~ 0.87. By going through all detailed
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calculations for all LDCs and minimum paths, the total regional service reliability can be calculated
as Tsystem,R = on r(z)A(z)p(x)dz/ on Az)p(z)dx = 0.90.

Now, let’s consider a few other examples with different link failure probabilities. Choose p,, =
0.15 while keeping other probabilities the same as above. Then, the total system reliability drops to
0.80. If pey = 0.15 and keep others the same, the service reliability will drop to 0.87. Similarly, we
change pe, to 0.15, then r4ysem, R becomes 0.89. This example shows the relative importance of these
links in affecting regional system service reliability. The link e; is involved in all the LDC service-
regions, so it is most critical. Thus, its failure will lead to a larger drop of the system reliability. The
link e5 is slightly more important than the link e, which can be regarded as a backup links between

LDCQ and LDC3

5 Conclusion and Future Work

This article employes a spatial approximation method to characterize patterns of store locations (and
demands) in a large-size supply-chain logistics system. Based on the approximation models, different
reliability evaluation schemes are proposed for logistics planning at global and regional levels. Service
degradation patterns are examined to understand their relationship with DCs’ capacity limitation.
When we consider the transportation costs, facility, labor and other costs of DC operations, the
optimal locations of DCs and the re-routing strategy would be more complicated. How to design a
system with minimal cost and robust against possible capability degradations (or fully shut down)
under unexpected contingency is a challenging problem. In addition, if the connectivity between
DGCs and stores is not fully guaranteed, the system reliability evaluation and robust system design
issues become even more interesting. This article sets the foundation of research in these directions
and shows the potential of research in the service sector focusing on logistics-network reliability

evaluation issues.
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Acronym | Counts | Acronym | Counts
AL 85 A7 46
AR 78 CA 306
CcO 61 CT 63
DE 14 FL 166
GA 159 IA 150
ID 31 IL 275
IN 143 KS 94
KY 86 LA 87
MA 99 MD 74
ME 40 MI 210
MN 150 MO 154
MS 76 MT 48
NC 158 ND 43
NE 75 NH 33
NJ 125 NM 30
NV 18 NY 273
OH 238 OK 101
OR 62 PA 279
RI 11 SC 72
SD 48 TN 100
TX 349 UT 36
VA 126 VT 24
WA 80 WI 161
wv 55 WY 24

Table 2: Store Counts for the 48 States in the Continental United States
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