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Complete S0(3)xSU(2) and S0(2,1) Periodic 

Systems for Diatomic and 

Triatomic Molecules 

ChrisM. Carlson 
Physics Department 

Southern College of SDA 
Collegedale, TN 37315 

Abstract 

The principles of group theory as applied to periodic systems are reviewed. 
Complete sets of possible multiplets of state vectors are tabulated for N = 2 
and N = 3 in both S0(3)xSU(2) and S0(2, 1) symmetry. Expectation values of 
~Ha, I. P., ~98, and c.>e for some of these state vectors are plotted on the 
principle axes of the two groups of interest. The consistent regularity of these 
plots gives validity to this theory. The structures of the periodic systems for N 
= 2 and N = 3 in both S0(3)xSU(2) and S0(2,1) are then described and 
shown in 3-D figures. 
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I. Introduction. 

Ever since Mendeleev proposed the periodic system of the elements in 1869, the 

tantalizing prospect of extending its principles to molecules lay before physicists and chemists 

alike. This goal was realized in 1979 when Hefferlin et al completed a diatomic molecular 

periodic system which could be generalized to triatomic and larger molecules. 1 Hefferlin 

used entirely empirical methods in obtaining this system and a subsequent system for 

triatomic molecules. 2 Empirical methods become increasingly difficult as higher order 

periodic systems are constructed due to lack of data for any significant number of molecules 

of a given N-atomic species. Thus, a more theoretical approach is necessary. 

The beginning of such an approach in the early twentieth century was the 

demonstration by Fock that the orthogonal group 0( 4) describes the structure of energy 

levels in hydrogen. 3 Inspired by this result, it was shown in 1972, independently by Rumer 

and Fet, and by Barut, that 0(4) can also render a classification scheme for the atoms. Fet 

went on to demonstrate that the cartesian product of the special orthogonal group S0(4,2) 

with the special unitary group SU(2) describes the complete periodic system of atoms, 

including the Madelung rules for neutral atoms. 4 If a second SU(2) group is included, the 

period doubling of the Mendeleev chart can be closely, aithough not exactly, described. 

In 1983, Zhuvikin and Hefferlin proposed that group theory could be applied to N-

atomic molecular periodic systems by means of the repeated multiplication of the atomic 

symmetry group with itself. 5 This lead to N-atomic molecular periodic systems which are 

2N-dimensiona1. Then, the theory was revised to include the repeated multiplication of bases 

of irreducible representations instead of groups, thereby allowing the dimensionality of the 

periodic system to remain constant for all N-atomic molecules. The idea was revised further 



2 

in 1992 w~en Zhuvikin and Hefferlin proposed that since a given molecule may contain more 

than one identical atom, bosonic symmetry must be employed. 6 

This paper is a effort to substantiate the validity of this theory. The group theoretical 

constructs of Zhuvikin and Hefferlin are summarized, and the results of the theory are 

explained. These results are the complete group-theoretical periodic systems for both 

diatomic and triatomic molecules, each in terms of two different symmetry groups, namely 

S0(3)xSU(2) and S0(2, 1). Graphs which demonstrate the clearly periodic nature of the 

systems are included along with descriptions of the structure of each individual periodic 

system. 
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n. Theory 

Section 2.1. Group theory applied to the periodic chart of the atoms. 

In order to apply the principles of group theory, the atoms are assumed to be particles 

which have an inherent, internal symmetry described by a group6 G. These particles can be 

transformed into one another by the elements6 of G. Fet showed that choosing G to be the 

group S0(4,2)xSU(2), or one of its subgroups from one of three group chains, results in 

descriptions (in the form of bases for irreducible representations) of portions of the periodic 

chart of the atoms.4 These basis states for irreducible representations (or multiplets) exist in 

a Hilbert representation space :1(1). The orthonormal basis set of vectors which span 3(1) 

consists of the set of atoms together with a vacuum state. 6 Furthermore, these basis vectors 

are distinguished by at most four chemical quantum numbers, the specific combination being 

determined by the subgroup G; They are the chemical principle quantum number n, the 

chemical angular momentum quantum number l, the z-component of the chemical angular 

momentum quantum number m, and the z-component of the chemical spin p.. The group G 

describes the possible values of its associated quantum numbers, within the usual quantum 

mechanical constraints imposed by the given values of the other quantum numbers. 

Atomic multiplets for several choices of G from one particular subgroup chain of 

S0(4,2)xSU(2) are now described. A multiplet using the subgroup S0(3) describes all 

possible values of them quantum number for artificial choices of n, t, and p., i.e., m ranges 

from - t to + t. One such multiplet is {B, N, F} which has n = 2, l = 1, p. = -112, and 

allows m the values -1, 0, 1 (see Fig. 1.). Using SU(2) symmetry, a multiplet is described 

by specifying n, t, and m, then letting p. be -1/2 or + 112, e.g., {H, He}. S0(4) multiplets 

are described by selecting n, and p., then letting t range from -(n-1) to +(n-1) and letting m 
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Fig. 1. 3(1) for group chain S0(4,2)xSU(2) :J S0(4)xSU(2) :J S0(3)xSU(2). 

range from - f to + t for each value of t. An example of an SO( 4) multiplet is {Na, AI, P, 

Cl, Sc, V, Mn, Co, Cu}. A slightly more complicated subgroup is S0(3)xSU(2) for which· 

multiplets are described by varying m and 11> for given nand f, e.g., {Y, 'b, Nb, Mo, Tc, 

Ru, Rh, Pd, Ag, Cd}. The preceding subgroups are all taken from one group chain6 of 

S0(4,2)xSU(2). This chain is given by Eq. (1): 

S0(4,2)xSU(2) ::a S0(4)xSU(2) ::a S0(3)xSU(2) ::a S0{2)xSU(2) (1) 

Only one subgroup is examined from a second chain,6 which is given by Eq. (2): 



S0(4,2)xSU(2) ::) S0(2,l)xS0(3)xSU(2) ::) S0(2,1) (2) 

This particular symmetry group is S0(2, 1). Multiplets in S0(2, 1) are defined by varying n 

for given values oft, m, and p.. A typical multiplet is {H, Li, Na, K, Rb, Cs, Fr, ... } (see 

Fig. 2.). 
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Fig. 2. 3(1) for group chain S0(4,2)xSU(2) :J S0(2,l)xS0(3)xSU(2) => S0(2,1). 

Notice that there are infinitely many multiplets in S0(2, 1), each of which is infinite in size. 

This results from the noncompact nature of the group S0(2, 1) which implies that there are 

infinitely many elements. A more detailed, theoretical development of these concepts 

follows. 

5 
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Section 2.2. Basis vectors for the Hilbert representation spaces 3(1), 3(2), and :1(3). 

Let {ah ~' a3, ••• , an} be the set of atoms. Then the basis sef for 3(1) is 

{ I a1 > , I ~ > 1 IOJ > , ... , I an> 1 I 0 > } , where I 0 > is the so-called vacuum state. This 

vacuum state is defined to be normalized. 7 

<OIO> = 1 (3) 

The atomic basis vectors are created by means of creation operators which operate on the 

vacuum state. 6 Also, annihilation operators acting on the vacuum state give the scalar zero. 7 

Ia.> = b +IO> ' a, (4) 
b IO> = 0 a, 

Moreover, since there can be more than one atom of a particular species in a given N-atomic 

molecule, these creation and annihilation operators must conform to bosonic symmetry, 6 i.e. , 

they must obey these commutation relations: 

(5) 

The result of the annihilation operator acting on a basis vector is the vacuum state if the 

annihilation operator corresponds to the given basis vector, otherwise it is the scalar zero. 

This can be shown by means of the third commutator of Eq. (5). 



Also, this same commutator demonstrates the orthonormality of the basis vectors. 

In a similar manner, the basis vectors for the diatomic representation space 3(2) and 

the triatomic representation space :1(3) are defined using the atomic creation operators. 8 

laia1> = ba~b~IO> 

la1a1a1> = ba:ba:ba:IO> 

(8) 

The orthonormality of these vectors does not come about as easily as it does for the atoms, 

but a similar method (the repeated use of the commutators) is used to determine the inner 

product of a given vector with itself. This inner product is the square of the norm. The 

normalization coefficient is clearly the reciprocal of the norm. The genenil expressions of 

these concepts for diatomic and triatomic basis vectors are given in Eq. (9). 

laia112 = <a1a11a;a1> = 1 + d11 

la1a1a112 = <a1a1a1 la1a1a1> = 1 + diJ+ d11 + t511 +2d1Jd11 

For those state vectors that have norm greater than one, the normalization coefficient is 

placed inside the Dirac "ket" notation, e.g., Ill j2 BB >. 

(9) 

7 
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Section 2.3. Ladder operators for S0(3)xSU(2) and 80(2,1). 

Ladder operators are the bosonic representation of the differential generators of a 

given subgroup G of S0(4,2)xSU(2). There are two requirements for a valid bosonic 

representation of a symmetry group G. The first is that the operators exhibit the same closed 

set of commutation relations as some set of linear combinations of the differential generators. 

This means that the differential generators and the bosonic operators define abstractly 

identical Lie algebras. The second stipulation is that, when the one-parameter Lie group is 

formed from these bosonic operators, the parameter has the same range as that allowed by 

the Lie group formed from the differential generators. 9 The group S0(3)xSU(2) has six 

ladder operators, three corresponding to S0(3) and three corresponding to SU(2). 

The three operators of S0(3) transmute state vectors by changing the value of the m 

quantum number. In bosonic representation, they have the following form:8 

+t 

L. = E {(Q+m+ l)(Q-m)p;.1 b, 
M=-f 

+f 

L = E {(Q-m+ 1)(Q+m)b;_1 b., (10) 
.... -. 

+t 

Lo = E mb;b, 
•=-• 

In these equations, the creation operator b!+ 1, for example, refers to the atom having the 

same values of the quantum numbers n, l, and I' as the vector on which it is currently 

operating, except that m is one unit larger. In other words, if L+ were acting on I B >, then 

b!+ 1 would be the creation operator for IN>. The L+ operator transforms a given state 

vector into a vector with the next highest possible value of m. Analogously, L_ transf~rms 



vectors to ones with the next lowest possible value of m. Lo operating on a vector returns 

the value of m times the current vector. Here are some examples: 

L+ IB> = V21N> 

L+IF> = 0 

L_jF> = yljN> 

LoiB> = -ljB> 

(11) 

9 

The ladder operators of SU(2) change the values of the p. in the same sense that those 

for S0(3) change m. They have the following form:8 

+s 

s+ = :E J<~+P><-i-.p)b;+lbp 
Jl•-s 

+s 

s_ = "f. N-P><1+JJ)b;_1b~ (12) 

+s 

S0 = :E pb11.b~' 
p==-s 

In these equations, sis the chemical spin quantum number, i.e., s = ~~>maxĿ The operations of 

S+, S_, and S0 are analogous to those of L+, L_, and Lo, as seen in these examples: 

SJH> = jHe> 

S_IHe> = IH> 

S_jH> = 0 

(13) 
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The commutation relations for S0(3) and SU(2) are identical. Therefore, only those 

for L+, L_, and Lo are given in Eq. (14). 

[L0 , L_] = -L_ (14) 

The difference between the representations of these two groups is in the range of the Lie 

group parameter. The Lie group corresponding to S0(3) allows the parameter to range from 

-w to 1r, while that for SU(2) allows a range from -2w to 2w. 

The operators corresponding to the S0(2, 1) subgroup transform vectors by increasing 

the value of n. Their form10 is given by Eq. (15): 

.. 
r. = E v<n+Q+ t><n-Q >b:.1 b,. 

JJ=l 

... 
r_ = E v<n-Q-t)(n+Q )b;_1 b, (15) 

JJ·l 

These are analogous to the L and S operators except that r + will never return a zero result, 

since n, in principle, is unbounded. As stated in section 2.1, this unbounded characteristic of 

n corresponds to the noncompact nature of S0(2,1). Now, here are some examples: 
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r_jAl> = J!OIB> (16) 

IQINa> = 3jNa> 

The commutation relations for these operators are given in Eq. (17): 

[IQ,r+J = r+ 

tzo,r_J = -r_ 
rr+ ,r_] = -210 

The range on the Lie group parameter for the S0(2,1) operators is -w to +w. 

The coefficients generated by the raising and lowering operators in this and the 

(17) 

previous examples do not have much sig~cance when ·operating only on atoms, i.e. , they 

are lost when the necessary normalization is done. Their significance arises when operating 

on diatomic and triatomic molecules. As will be shown, the operations in these cases often 

result in state vectors which consist of linear combinations of basis vectors. Thus, the 

normalization coefficient is the inverse of the sum of the norms of the component vectors. 

Therefore, the individual coefficient for each component is not lost. 

Section 2.4. Generation of multiplets using ladder operators. 

The specifics of this discussion are limited only to ·the groups of immediate interest, 

namely S0(3)xSU(2) and S0(2,1), but the principles set forth apply in general, i.e. , they 

apply to any symmetry group and to the space :JO..N) for any value of N. The Hilbert space 

[}{{N) is generally reducible with respect to the symmetry group G. Bases for irreducible 
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representations (or multiplets) of 91/..N) corresponding toG are generated by repeated 

operation of the ladder operator(s) of G on a chemical seniority vector until a zero result is 

obtained. 8 By definition, a chemical seniority vector is a state vector which returns the zero 

result when acted upon once by either the lowering operator(s) or the raising operator(s) of 

the group. For example, the atomic state vector I B > in S0{3)xSU(2) is a legitimate 

chemical seniority vector, since L_l B> = S_l B> = 0. Some results of this process for 

the atomic case have already been introduced in a qualitative manner in section 2.1. 

First, consider S0(3)xSU(2). Operating on the diatomic chemical seniority vector 

111./2 BB>, L+ increases m from -2 to -1 and produces (after normalization) the vector 

IBN>. Repeating this process results in the vectors 11/3{ I BF> + /2 11//2 NN> }, 

INF>, and ll//2 FF>, which have m = 0, m = 1, and m = 2 respectively. Note that 

L+ l l//2 FF> = 0, which signifies the end of L+ operations. Now consider the role of S+, 

which operates on each of the above mentioned state vectors generated by L+. This 

generates the multiplet shown in Fig. 3. (fhe customary Dirac notation has been eliminated 

for convenience.) The multiplet has chemical spin multiplicity S = 3 and chemical angular 

momentum t = 2. Thus, using spectroscopic notation, the multiplet is denoted as 3D. Also, 

we can construct a state vector orthogonal to the 1//3{ I BF> + J2lllj2 NN>} vector, 

which is located at m = 0, p. = -1 in 3D. This orthogonal vector is 11/6{21 BF> -

/2111 j2 NN > } . The orthogonality is verified by calculating the inner product of the 

vectors including the proper norms values for each component. This orthogonal vector is a 

valid chemical seniority vector which leads to another multiplet, specifically a 3S. Similarly, 

there exists a vector orthogonal to 11./2{ I BO> +I CN>} which is a chemical seniority 

vector for a 1 P multiplet. For the chemical seniority vector Ill j2 BB > , therefore, the 
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mu=-1 mu=O 

m=-2 sqrt(l/2) BB BC sqrt(l/2) cc 

BN aqrt(l/2){ BO + CN} co 

m•O sqrt(l/3){ BF NN } sqrt(l/6){ BNe + 2 + CF} CNc + } 

m=l NF sqrt(l/2){ NNe + } 

m=2 sqrt(l/2) FF FNe NeNe 

Fig. 3. 3D multiplet for chemical seniority vector BB > for 

decomposition of the representation space has been shown to be the direct sum of three 

orthogonal multiplets. 

(18) 

The same process is applied to triatomic chemical seniority vectors such as Ill /6 

BBB>, resulting in the 4F multiplet given in Fig. 4. 
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BBB BBC 

BBO + + ) 

B8P + + coo ) 

BNF + ) + + + + + 

+ + + + + 2 J 

} 

Fig. 4. multiplet for chemical seniority vector bN6 BBB > for S0(3)xSU(2). 

Again, orthogonal chemical seniority vectors are determined and lead to othogonal multiplets, 

the direct sum of which is 3-(3). Thus, for. this chemical.seniority vector, 3(3) is given by 

Eq. (19): 

(19) 

Moving to S0(2, 1) symmetry, 111./2 HH > is chosen as a chemical seniority vector, 

since r _lll./2 HH > = 0. Repeated operations of r + on this vector result in the multiplet 

shown in Fig. 5. Note that the number of components in the states is monotonically 

increasing with n. The number of components does not reach a maximum and then 

symmetrically decrease, as was the case with S0(3)xSU(2). As mentioned previously, this is 

due to the noncompact nature of S0(2,1). As before, orthogonal chemical seniority vectors 
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{1}=0 

n=2 sqrt(l/2) HH 

n=J HLi 

sqrt(l/5) {sqrt(J) HNa + UU} 

n=S sqrt(l/10) {2 HK + UNa} 

n=6 {2 sqrt(S) HRb + 4 + 3 NaN a} 

n=7 sqrt(l/28) {sqrt(6) + LiRb + 2 sqrt(J) NaK} 

sqrt(l/42) {sqrt(1) HFr + 2 sqrt(J) + NaRb + 2 

Fig. 5. multiplet for chemical seniority vector Ill~ llll> for S0(2,1). 

are constructed and produce orthogonal multiplets. For example, the vector orthogonal to 

1/j5{J31 HNa> +J2Illj2 LiLi>} is the vector 11/5{./21 HNa>-J3I11J2 LiLi> }. These 

vectors are located at n = 4. An additional component is added at n = 6, n = 8, and so on, 

allowing a new orthogonal seniority vector at each of these positions. Thus, :Hi.2) is 

represented by an infmite number of orthogonal multiplets, each containing an infinite 
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number state vectors. These orthogonal multiplets are described by the chemical quantum 

number { t}. This chemical quantum number is similar, but not identical, to the chemical 

angular momentum quantum number t, hence the notation { t}. The behavior of { t} .with 

respect to atomic multiplets for S0(2,1) is identical to that oft. For example, there are two 

multiplets which are located at { t} = 0. Similarly, there are 6, 10, and 14 multiplets at { t} 

= 1, 2, and 3 respectively. This correspondence of {t} tot vanishes when molecules are 

considered. On the basis of concepts in section 2.5, molecular multiplets correspond to 

increasing values of { t}. These values depend on the number of identical atoms in the 

chemical seniority vector. The case for the chemical seniority vector Ill j2 HH > is 

expressed in Eq. (20): 

H(2) = [0] e [2] e [4] e [6] e ... (20) 

Eq. (20) indicates that ~2) is decomposed into multiplets located at { t} = 0, 2, 4, 6, etc. 

Similarly, this is accomplished for the triatomic seniority vector ll//6 HHH>, 

which leads to the following decomposition of ~3): 

Ji(3) = [0] e [2] e [3] e [4] e [5] e 2[6] e . . . (21) 

In the above equation, 2[6] signifies that there exists two multiplets located at { t} = 6. 

Also, note that there is no [1] in Eq. (21), i.e., there is no multiplet at { t} = 1. Fig. 6 

gives the [0] multiplet. This decomposition is somewhat more complex than that for ~2) in 

Eq. (20), and further details are given in section 2.5. 
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+ 2HLiLi} 

o=6 + 3 + 

{sqrt(S) + + 3 + 

+ + + 

+ + + + + 

Fig. 6. [0] multiplet for chemical seniority vector hlv'6 IDrn> for S0(2,1). 

Section 2.5. Determination of possible multiplets from Clebsch-Gordan coemeients. 

The decomposition of the representation space :J(N) with respect to the group G can 

be determined by a method other than the use of ladder operators and chemical seniority 

vectors described in section 2.4. This technique involves ·the direct product of N number of 

atomic multiplets, thereby generating N-atomic molecular multiplets. For the purposes of 

this paper, therefore, there exist two scenarios corresponding to the two symmetry groups of 

interest, S0(3)xSU(2) and S0(2, 1). 
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First, the case for S0(3)xSU(2) is discussed. Atomic multiplets in S0(3) symmetry 

are denoted as [n, s, p][t]. The chemical quantum numbers n , s, and pare grouped 

together because they have nothing to do with the action of the group once they are chosen. 

The chemical quantum number t must also be fixed, but its chosen value determines the 

range of m, the dynamical chemical quantum number of S0(3). Therefore, tis separated 

from the other chemical quantum numbers. Similarly, atomic multiplets for the spin group 

SU(2) are denoted as [n, t, m][s]. Thus, atomic multiplets for S0(3)xSU(2) symmetry are 

denoted [nj[ t][s]. The decomposition of the N-dimensional Hilbert space :H/..N) is givens by 

Eq. (22). 

N 

H(N) = II [nt1[ ~ ][si] = :E E cLS [L](S] (22) 
i=l L S 

In this equation, LandS refer to the possible results of combining the t,'s and s/s 

respectively. The notation [L](S] refers to a particular N-atomic multiplet in S0(3)xSU(2). 

The constants denoted cLS are integer Clebsch-Gordan coefficients. 

Now, consider the symmetry group S0(2,1). In the same manner as before, atomic 

multiplets for S0(2,1) are denoted [m, p][{t}]. While the values of all these chemical 

quantum numbers must be chosen, the value of { f} defines the initial value of n, namely it is 

{ t} + 1. The decomposition of the space 11/..N) for N-atomic molecules is givens in Eq. (23). 
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N 
:J!(N) = II [m, UJ£, nu,}] = E c {L} [{L}] (23) 

l•l {L} 

In Eq. (23), {L} refers to a possible combination of the { f}/s, and [{L}] denotes molecular 

multiplets located at a specific value of {L}. Presumably, the C {L} constants are, as before, 

integer Clebsch-Gordan coefficients. 

The result of these decomposition formulas allows the determination of which 

multiplets exist for a given chemical seniority vector without calculating the actual state 

vectors. That is, Eqs. (18- 21) can not only be viewed as descriptions of the results 

obtained by ladder operators and chemical seniority vectors, but also as specific cases of 

Eqs. (22) and (23). 

Section 2.6. Observable operators and expectation value identities. 

The definitions of the single-particle, two-particle, and three-particle observable 

operators, P(l), P(2), and P(3) respectively, are given by the following equations.6 

N N 
P(l) = L L P(1)11 ba:ba

1 i • l }•1 . 

(24) 

In these equations, the set of atoms is denoted {a1, tlz, ... , a"}, and the summation is over all 

possible atoms. P(l )y is a two-dimensional matrix, while P(2);pd and P(3)y,kl,mn are tensors 
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of rank four and Six respectively. By calculating the expectation value of P(l) for an atom 

llt, it becomes clear that the diagonal elements of the P(l)il matrix at least contain data for all 

properties of the atom llt· 

{25) 

Similarly, the diagonal elements of the tensors P(2)1pr~ and P(3)(J.ll.JM contain at least data for 

diatomic and triatomic molecules. 

Clearly it is possible to use the P(N) operator on anN-atomic state vector. However, 

it is also possible to use the P(M) operator on an N-atomic state vector as long as M s N. 

This process, when interference terms are dropped, leads to' a set of identities'. relating the 

expectation values of certain operatorS. The identities for P(l) are given in Eq. (i6). 

<a1IP(l) la1> = '<aJP(l) la1> 

<a;a11P(l)la1a1> = <a1IP(l)la1>+<a1IP(l)la1> = 

1[<a,a,IP(l) la1a1> +<a1a1IP(l) la1a1>] 
(26) 

The last expressions in the second and third equation strings are called diatomic homonuclear 

approximations because they recasts all observables in terms of homonuclear diatomic 
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molecules. Similarly, the third expression in the third equation string is called the triatomic 

homonuclear approximation. The .P(l) operator, in the Second expression of the second and 

third equation strings, reflects the attribute of additivity which corresponds to the theory of 

atoms in molecules. 11 

The identities for P(2) are given in Eq. (27): 

<a1a11P(2)ja1a1> • <a1a1jP(2)Ia1a1> 
(27) 

<a1a1a1 IP(2) la;a1a1> "" <a1a1jP(2) la1a1> + <a1a1 jP(2) la1a1> + <a;a1 jP(2) la1a1> 

Again, there is a suggestion of additivity in the second equation which alludes to the theory 

of diatornics in molecules. 12 Note that there are fewer identities for P(2) than for .P(l). This 

is due to the restriction of P(M) and N-atomic states mentioned earlier. Consequently, there 

is only one identity for .P(3). 

(28) 

These identities are useful in graphical analysis of multiplets of state vectors. They 

allow the plots of additional diatomic and triatomic multiplets that would otherwise be 

impossible because of a lack of data. By using the .P(M) operator on an N-atomic state for M 

< N, the N-atomic expectation values are transformed into M-atomic expectation values. 

While these identities are theoretically legitimate, any physical significance remains to be 

seen. 
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m. Computer program and data. 

Section 3.1. GI'PS (Group Theoretical Periodic Systems) computer program. 

GTPS is a symbolic manipulation program which is based on the theory set forth in 

the preceding portions of this paper. 13 Qiven a suitable chemical seniority vector, GTPS 

generates multiplets of state vectors in a selected symmetry by applying commutation 

relations and normalization procedures. GTPS was used to produce the majority of the 

multiplets studied. The remainder were calculated by hand and then verified by the program. 

Section 3.2. Data sources, errors, confidence levels, and approximations. 

In this paper, only four properties are considered, namely heat of atomization (JJHJ, 

ionization potential (J.P.), gas-phase entropy at 298K (~g), and diatomic vibration frequency 

( (A)e>· This analysis depends solely on tabulated data. 

Atomic data for I. P. were taken from the CRC Handbook of Chemistry and Physics 14 

with no errors given . .S0298 data· for atoms, diatomic, and triatomic molecules were taken 

from the JANAF Tables15 of 1974-1982. Many of the data in these tables have errol'S given 

with 95% confidence-limits. The average of these errors is approximately 1% for triatomic 

molecules2, and a similar value is assumed for diatomic molecUles. 

Diatomic data for dissociation potential (referred to as JJHa in this paper) were 

obtained from Huber and Herzberg16 • Extremely few errors are explicitly given. A few 

values are indicated as being somewhat uncertain; However, it is commonly accepted in the 

field to take the errors to be approximately 5% with 95% confidence. 

Data for (A) e and I. P. of diatomic molecules were also taken from Huber and 

Herzberg16• The description of errors is the same as for diatomic JJHa above. Additional 
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diatomic values for J.P. as well as all triatomic J.P. data were taken from Gurvich17• The 

average of the given errors for diatomic molecules is less than 4.27%. (If more than one 

datum was listed, the worst case was selected, hence the "less than" wording.) These errors 

are with 95% confidence. 

Triatomic AHa (lata were obtained from Sauva118• The individual errors for AHa are 

taken as 10% (15% for a few which Sauval2 called "doubtful") with 95% confidence. 

In an attempt to remedy the problem of a lack of data, rough approximations were 

made for the J.P., sg98, and (l)e data of certain diatomic molecules. Given that the J.P. of 

XeF is less than or equal to 10.23 eV, and given that J.P. for F is 17.41 eV~ J.P. values, for 

which one of the atoms in the diatomic molecule is a rare gas, were taken. to be one half the 

atomic value for the other constituent atom. 16 J.P • . data for N~, Ar2, and NeAr were taken 

to be equal to that for F2, Cl2, and FCI respectively. 19 .Also, J.P. for~ is taken to be 8 

eV. 19 ~98 data, for a molecule in which one constituent atom is a rare gas, were taken to be 

the average. of the ~8 data for molecules with the same constituent atomic row numbers. 20 

From observation of the data, some (l)e values which included rare gas atoms were taken to 

be a percentage of the average (l)e for each unique combination of the row numbers of the 

constituent atoms. Specifically, the data were taken as 8% of this average, uniess the 

molecule included fluorine with the requisite rare gas, in which case 42% of the average was 

taken. 



24 

IV.· Results of the mmputer experiment. 

Section 4.1. Graphical analysis of periodicity in S0(3)xSU(2) and S0(2,1) multiplets. 

Plots of expectation values of observables are constructed for multiplets in both 

S0(3)xSU(2) and S0(2,1) symmetry using various observable operators and expectation value 

identities. Four properties are discussed; They are JjH(I, J.P., ~98, and ll)e· The purpose of 

this discussion is to establish the periodic nature of the plotted surfaces. A complete set of 

graphs for S0(3)xSU(2) are located in appendix A. Similarly, a set of all constructed graphs 

for S0{2,1) are in appendix B. 

16 
13 

18 

Fig. 7. plot for 3D with (R1, = (2,2) P(2). 

First, consider AH(I for S0(3)xSU(2) symmetry. The 3D for diatomic molecules (Fig. 

7), for which constituent atoms are taken from row two on the periodic chart [denoted 

(R11Rz) = (2,2)], is constructed using the P(2) operator. This 3D has a surface which slopes 

up at first and then down with decreasing values of both m and p.. The numbers above the 
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points on this and other plots refer to the number of valence electrons in each state. 

Previous work by at this institution5 indicates a tendency for isoelectronic molecules to have 

invariant data. The fact that this is true, at least to a first approximation, for these plots 

corroborates the current observation. 

Fig. 8. liH4 plot for 3D with (R1,R2) = (3,3) using P(2). 

Now, the 3D . multiplet with (RhR~ = (3,3) is considered (Fig. 8). Although there 

are several points missing (due to lack of data), those points present follow the same shape, 

i.e., positive followed by negative slope with decreasing m and,., as the 3D with (R.,R~ = 

(2,2). 
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Fii· 9. ,iH
4 

plot for 1P multiplet with (Rt,Rl) • (2,2) using P{2). 

Furthermore, the orthogonal multipJets 1P and 3S, both with (R1,RJ = (2,2), show 

the same trends at the correspondilig positions in the 3D (see Figs. 9 and 10). 

Fig. 10. 4H
4 

plot for 3S multiplet with (R1,R2 ) == (2,2) using P{2). 
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14 
12 

16 

15 

Fig. 11. plot for 3D multiplet wilh (R1,R2 ) ~ (2,2) using P(l) diatomic boJDOBUCieat opproximaliOD· 

Also, using the 1'(1) operator and the diatomic homonuc1ear approximation identity 

given in Eq. (23), a 3D, 1P, and'S aiC generated (Pigs. 11, 12, and 13). ntis 
3

D surface is 

a •smoothed out" version of the non-homonuclear 
3
D. 11te 'Sis again similar at the 
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13. llH, plot for 3S moltiplet wilh (R1.R1 ) ~ (2,2) usiJI8 1'(1) djaWDiic ~ appro;WDalioo· 

conesJlOnding positions in the 3D, but the 1P does not conform a! the conesponding positions 

in the 3D. 
Again, the (R

1

,R,) = (3,3) homonuclear plots are sii1IiJar to the (R1,R,) = (2,2) 

homonuclear plots including the non-ronformity of the 
1 
P (onlY 

3

D shown, Fig. 14). 

Fig. 14. IJH, plol for 3D molriplel wilh (R1.Rz) ~ (3,3) usina 1'(1) diat<>IJDe hoDJilllll"ieor approximation· 
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There is also a 4F plot for triatOmic molecules with (R1,R,,R3) = (2,2,2) using 1'(3) 

which bas only a few points (Flg. 15). However, these points form a surfa.OO which 

Fig. !5. AH. plot for 4F multiplet with (R1.J!,,R3 ) • (2,2,2) using 1'(3). 

conforms to that of the diatomic 3D in the region wltet"e data exist. The plots of AH. using 

the P(l) diatomic homonuclear approximation clearlY lend themselves to more simple curve 

fitting mort so than those for 1'(2). However, the P{2) operator maintain• complete 

consistency betWeen roultiplets for JiHa in S0(3)xSU(2). 
AH. data are also plotted in S0(2,1) symmetry. In general, a graph for 50(2,1) 

contains more than one multiplet. Since multiplets are one-dimensional inn, they are placed 

side-by-side in order of increasing { t}. The combination of multiplets in a graph is 

desCribed by the chemical atomic angular momenta {denoted (£1,£,)1 and the group numberS 

(i.e., column numberS on the periodic chart) of the constituent atoms. 
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Fig. 16. 4Ha plot for [1] - [4] multiplets with (t1,t2 ) = (0,1) and groups (1,7) using P(2). 

Only three graphs have been constructed, two of which have similar surfaces, namely (l1,lJ 

= (0,1), groups (1,7) and (l~tlJ = (1,1), groups (4,4) (Figs. 16 and 17). The third, (lttlv 

= (1,1), groups (7,7), does not have the decreasing slope with increasing n that characterizes 

the first two (see Fig. 18). However, curve fits for all three graphs would be simple. 

Fig. 17. 4Ha plot for [2] and [4] multiplets with (t1,t2 ) = (1,1) and groups (7,7) using P(2). 
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Fig. 18. 4.Ha plot for [2] and [4] multiplets with (t1,lz) -= (1,1) and groups (4,4) using .P(2). 

As alluded to in the previous two paragraphs, an eventual goal of this work is the 

curve fitting of these surfaces to allow the prediction of missing state-vector expectation 

values, which, in many cases, will lead to prediction of individual molecular data. As a first 

step in this process, Tables I for JJHa (and Tables ll-IV for J.P., S0298, and "'e) is prepared and 

summarizes the relationships between atomic, diatomic, and triatomic multiplets for various 

observable operators, expectation value identities, choices of row numbers of the constituent 

atoms for S0(3)xSU(2), as well as choices of chemical angular momentum and group number 

for the constituent atoms for S0(2, 1). These tables also tabulate the location of the graph in 

the appendices, the number of states in the multiplet for which only actual data were 

included, as well as the number of states in which some approximate data were included (the 

specific approximation and the points effected are noted on the individual graphs), the 

number of data eligible for prediction (no. of missing points), and an index of fittabiUty (an 

integer from 1 to 5). The latter gives a qualitative indication of the ease of a curve fit for 

the surface. 
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The tables also indicate an inclusive relationship between surfaces (one surface being 

a portion of another) by a single, horizontal or vertical line connecting them on the table. 

Where lines would cross or detour, certain matching symbols are used. Surfaces that are 

entirely similar are connected using double lines where possible and a different set of 

matching symbols where lines would cross or detour. See the key on each of Tables I-IV for 

specific notation. It should be noted that, in a few cases, similarity is indicated although 

some approximate data are not completely consistent. The uncertainty in these 

approximations accounts for this discrepancy. As demonstrated by these tables, there are 

many multiplets for which no plots have yet been made. Nevertheless, there are enough to 

make some preliminary observations. 

An example of how to use the.se tables is now described using Table II. In this 

example, all plots are referenced by their appendix number, i.e., the first item listed for each 

plot in each table. As a general rule, it is best to choose two plots first and then use the 

tables to determine their relationship. For example, plot Al3 and A19 are completely 

similar, as are both of these to A15, as indicated by the double line connecting them in spite 

of the fact that Al5 lies between them on the double line. Furthermore, A13 and A20 are 

inclusively similar as indicated by the single line connecting them. A13 is also incbisively 

similar to A25. This is indicated by the "*" symbol which is among the set of symbols 

which show inclusive similarity. This symbol is used since it would be awkward to use a 

connecting single line. Correspondingly, A20 and A25 are marked by a"#" symbol which is 

among the set that describe complete similarity. These tables contain a complete and concise 

summary of the relationships between plots. 
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0 

, , 
, , , , , 

r , , , , , -
Fig. 19. J.P. plot for 4F multiplet with (R1,R2.R3) = (2,2,2) using P(l). 

Table n indicates that for S0(3)xSU(2), similarity exists for atomic, diatomic, and 

triatomic multiplets with all operators and identities investigated except P(2) acting on 

triatomic states. P(l) generates neMly planar surfaces for all N-atomic states considered. 

An example of this is given in Fig. 19. These conclusions (and others yet to be presented) 

can be verified by reference to the appropriate graphs (indexed in the corresponding table) in 

the appendices. 

J.P. for S0(2,1) shows surfaces sloping monotonically downward with increasing n 

values and no inflection points for P(l) acting on atomic states nor P(2) acting on diatomic 

states. Fig. 20 shows one such case. These were the .only operators and identities plotted. 
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-

Fig. 20. J.P. plot for [2] ood [ 4] ,.Wtiplels with ( t 1, t2 ) • (1,1) ood groups (7, 7) using 1'(2). 

Gtl!Phs of S',.. (see Table ID) for S0(3)xSU(2) using I'( I) for atomic, diatOmic, and 

triatomic stateS have no inflection points and bave a •smooth• surfaceS, each of which has a 

minimum at the position of maximum m and,. (see Fig. 21 for an example). Each .WO has 

J •• 
l , , r , r l r 

l l l r , r-

-
Fig. 21. plot for 4F multiplet with (R1,J!,,R3 ) • (2,2,2) using 1'(1). 



35 

a maximum at the position of maximum m and minimum p,. For decreasing m, each surface 

converges toward an intermediate value between its maximum and minimum. 

~ 

• IJ.(AAr) •A'ftnll Ill. 

Fig. 22. ~98 plot for 3D multiplet with (R1.R2) -= (3.3) using P(2). 

Forming other sets of similar graphs are those for P(2), except for (R.,R~ = (2,3), (t.,t:z) 

= (1,0), which are similar but not easily fittable, and those for diatomic homonuclear P(l), 

which are easily fittable but do not have inclusive similarity for 1P nor 3S. An example of 

this is given in Fig. 22. Another apparent irregularity is the atomic 1-D. 

All graphs prepared for ~98 in S0(2,1) using P(l) on atomic and P(2) on diatomic 

states have virtually identical surfaces (Fig. 23, e.g.) . These surfaces are characterized by 

positive slope in the direction of increasing n, but also with negative concavity with 

increasing n. 
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Fig. 23. ~8 plot for [1] - [4] multiplets with (t1,t2 ) = (0,1) and groups (1,7) using P(2). 

Next, consider (J)e for diatomic multiplets in S0(3)xSU(2) (see Table IV}. This 

property, by definition, has only vatues for diatomic molecules. Thus, the only <>Perators 

and identities used are P(2) and diatomic homon~clear P(l). ·P(2) surfaces for 3D multiplets 

frrst slope up and then down with decreasing m and I' (e.g., Fig. 24). The 1P and 3S 

Awnnpdaa 

42 

Fig. 24. CtJe plot for 3D multiplet with (R1.R2 ) = (2,2) using P(2). 



multiplets exhibit inclusive similarity to the 3D multiplets. This is not the case for the 3 P 

surfaces. The homonuclear P(l) plots have an extremely smooth nature with no inflection 

points (e.g., Fig. 25). However, the 1P is not inclusively similar to the 3D. 

A wpdae 

Fig. 25. fl>t plot for 3D multiplet with (R1,R2 ) = (2,2) using diatomic homoauclear approximation. 
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It is interesting to note the similar shape of these surfaces and ~Ha for diatomic states. 

This suggests a correlation between these properties, namcly that vibration frequency is 

related to bond energy for diatomic molecules, which we would intuitiveiy expect. 

The only observable operator used for (J)t in S0(2,1) is P(2). All constructed surfaces 

have both positive slope and concavity for increasing n (see Fig. 26, e.g.), except the plot 

for ( t 1, t~ = ( 1, 1), groups (7, 7) which has positive slope but negative concavity for 

increasing n. They all have no inflection points and would thus be easily fitted. 
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Fig. 26. (A)e plot for [1] - [3] multiplets for (£1,£2) =- (0,1) and groups (1,7) using P(2). 

As a fmal note about the periodicity of the multiplets, Tables I-IV clearly indicate 

that, for a majority of the cases, S0(3)xSU(2) demonstrates periodicity with respect to the 

row numbers of the constituent atoms (indicated: by the horizontal double lines and 

corresponding symbols), and S0(2,1) demonstrates similarity with respect to the group 

numbers (indicated in the same .manner). In spite of some cases in both symmetries where 

consistency between inclusive multiplets is ,lost, the periodicity, as just described, remains. 

Section 4.2. Structure of periodic systems for S0(3)xSU(2) and S0(2,1). 

The structure of atomic, diatomic, and triatomic periodic systems is determined by the 

location of the constituent multiplets with respect to a coordinate system. In the case of 

systems using S0(3)xSU(2) symmetry, these coordinates are the values of the n and t 

chemical quantum numbers for the states which constitute a given multiplet. As for systems 

in S0(2;1) symmetry, values of then and { t} chemical quantum numbers are ·used. In all 
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the periodic systems discussed, it is assumed that all atoms exist for n s 7 and t s 3, i.e., 

some but not all atoms are assumed to exist for Z s 156. 

Fig. 27. Atomic periodic system in S0(3)xSU(2) symmetry. 

For the group S0(3)xSU(2), the atomic periodic system consists only of multiplets 

with chemical spin multiplicity S = 2. By referring back to Fig. 1, it can be easily seen that 

there exits one and only one multiplet for each allowed combination of n and l. This is 

illustrated further by· Fig. 27. In this figure, note that the number of sections in each 

multiplet corresponds to the chemical angular momentum multiplicity. Also, any two atomic 

multiplets, denoted [n; ][ 11 ][s1 ] and ["J ][ t1 ][sJ ], are substitutable if t1 = t1 and s1 = s1• 

When this is the case, it is denoted as [n1 ][ 11 ][s1 ] - [n1 ][ t1 ][sJ ]. This means that the 

structure of the state vectors within the two multiplets are isomorphic, and to obtain one 

from the other, one must merely substitute the corresponding atomic symbol at each position 

in each state vector. 
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The molecular periodic systems for S0(3)xSU(2) symmetry are derived by means of 

this substitutability principle. Equivalence classes of N-atomic molecular multiplets are 

defmed in Eq. (29): 

[ [Lz ][Sz ]~ = { [L1 ][S1 1 I ViE I ( [nz, ][fz, ][sz,]- [n1, 1l',, ][s1, J)} (29) 

In this equation, I = {1, 2, .. . , N} is an index set. These equivalence classes require 

members to consist of direct products of substitutable atomic multiplets. An important 

further con·straint is that each member of a given equivalence class must contain an equal 

number of identical atomic multiplets in its direct product. For example, multiplets for the 

chemical seniority vectors ll/./6 BBB> and ll/./6 AWAl> belong to the same class, but 

ll/./2 BBAI> and I BAIGa> do not. For diatomic multiplets, there are 76 different 

equivalence classes. There exist 954 equivalence classes for triatomic multiplets. The 

results of this process make it necessary to determine only one multiplet for each of the 

equivalence classes in order to discern the structure of theN-atomic molecular periodic 

system. Complete sets of diatomic and triatomic multiplets for S0(3)xSU(2) periodic 

systems are included in Appendices C and D respectively. 

The diatomic molecular periodic system for S0(3)xSU(2) consists of roughly equal 

numbers of triplet and singlet chemical spin multiplets. Therefore, the periodic system is 

divided into two coordinate systems, one for each chemical spin state. These are given in 

Figs. 28 and 29. As was the case for the atomic system, the number of sections shown on 

each multiplet corresponds to the chemical angular momentum multiplicity. Note that the 

first triplet 
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Fig. 28. Diatomic singlet periodic system in S0(3):xSU(2) symmetry. 

multiplets occur along the line in the n-l plane given by t = n - 2. The most abundant state 

of chemical angular momentum is t = 2, i.e., the 3D state. Furthermore, the single position 

Fig. 29. Diatomic triplet periodic system in S0(3):xSU(2) symmetry. 
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with the largest number (21) of multiplets is t = 2 and n = 10. The system of singlets is 

similar to that of the triplets, but there are no 1 S multiplets at n = 2 and no 1/ multiplets at n 

= 8. Also, the t = 1, 2, and 3 states for n = 10 have the same number of multiplets. 

Fig. 30. Triatomic doublet periodic system in S0(3)xSU(2) symmetry. 

The diagrams for the triatomic systems of S0(3)xSU(2) are constructed in the same 

manner as those for the diatomic system~ Again, the periodic system is divided into two 

coordinate systems, one for doublet and one for quartet states (Figs. 31, 32). The first 

quartet multiplets occur along the line l = n - 3. The number of multiplets at the extreme 

allowable values of the coordinates is relatively small. Thus, these are difficult to 
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Fig. 31. Triatomic quartet periodic system in S0(3)xSU(2) sytDIIldry. 

see on the the figures. The number of quartets multiplets is only slightly greater than half of 

the number of doublets. For each value of t, the position with the maximum number of 

multiplets in both cases (doublets and quartets) is n = 15. Note the smooth nature of these 

triatomic plots which appear to be somewhat Gaussian. 

The atomic periodic system in S0(2, 1) symmetry is given in Fig. 32. Note that 

multiplets begin at given values.of nand { t}, and contain infinitely many subsequent values 

of n (only n s 11 shown). Multiplets begin along a diagonal line in then-{ t} plane, namely 

{ t} = n - 1. The number of atomic multiplets is linearly increasing for increasing values of 

nand { t} along this diagonal. Verification of this is given by reference back to Fig. 2. 
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Substitutable atomic multiplets are denoted [m1 ][1.&1 ][{ t1 }] - [m_, ][J.&i ][{ t1 }] when { t1 } = 

{ tj }. 

Fig. 32. Atomic periodic sy~m in S0(2, 1) symmetry. 

Molecular periodic systems for S0(2,1) are constructed by means of this 

substitutability principle. The definition of equivalence classes of N-atomic molecular 

multiplets is given in Eq. (30). 

As in the S0(3)xSU(2) case, each member of a given equivalence class must also contain the 

same number of identical atomic multiplets in its direct product as do the other members. 

This guarantees that all molecular multiplets from a given equivalence class are substitutable. 

There are 62 unique equivalence classes for diatomic multiplets, and 411 for triatomic 

multiplets. Appendices E and F contain complete sets of multiplets (up to substitutability) for 

diatomic and triatomic periodic systems in S0(2,1) symmetry. 
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Fig. 33. Diatomic periodic system in S0(2,1) symmetry. 

The periodic system for diatomic molecules in S0(2,1) symmetry is depicted in Fig. 

33. Diatomic multiplets begin along the line in then-{ t} plane given by { t} = n - 2. The 
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number of multiplets is maximum at { t} = 6 and monotonically decreases in both directions 

from this point. 

The triatomic molecular periodic system for S0(2, 1) contains· multiplets that begin 

along the line { t} = n- 3. The overall shape of the system is similar to that for diatomic 

molecules (See Fig. 34). The number of multiplets for a given { l} increases monotonically 

with { t} until a maximum is reached at { t} = 9 and then monotonically decreases. 

Because of the relatively small number of multiplets at { t} = 0, 1, and 2, these multiplets 

are difficult to discern in Fig. 34. 
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V. Conclusion. 

As the result of the theory proposed by Zhuvikin and Hefferlin, the group-theoretical 

molecular periodic systems for diatomic and triatomic molecules have been completed for 

two subgroups of the group S0(4,2)xSU(2), the symmetry group of the atomic periodic 

chart. These subgroups are S0(3)xSU(2) and S0(2,1). Each subgroup leads to a set of 

multiplets which constitutes its respective periodic system. These molecular .periodic systems 

have the property that their structure is 3-dimensional. This is also true for all N-atomic 

periodic systems, whereas some previously devised systems were 2N-dimensional. 

Expectation value plots for states within multiplets in each symmetry demonstrate 

periodicity. Multiplets in S0(3)xSU(2) symmetry have been shown to demonstrate 

periodicity primarily with respect to the row numbers on the atomic periodic chart of the 

constituent atoms, while periodicity in S0(2,1) is with respect to the group (column) 

numbers. Details are given in Tables I-N. It is this periodicity which will allow the curve 

fitting subsequent data prediction possible. 

The future of this project, other than curve fitting and predicting data from the plots 

already obtained, falls in three areas. First, there still remain many multiplets for which 

plots are to be constructed and their periodicity verified more generally. Secondly, the 

investigation into different subgroups of S0(4,2)XSU(2) and· even different subgroups of other 

groups which more accurately describe the periodic system of atoms can be made. Lastly, 

the principles set forth in Section 2 are completely general. Therefore, while the possibility 

of verification of results with actual data decreases for higher order molecular systems,' the 

structure of such systems is, in principle, detel'lllinilble. 
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Appendix A: 

Plots of aHa, I.P., Sl98 , and (&)e for S0(3)xSV(2) symmetry group 
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A15 

Atoms (R)=(3) Doublet 
Ionization Potential (eV) 

A16 

. 

- . 

m 

Atoms (R)=(4) Doublet F 
Ionization ( e V) 

m 
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-3 



A17 

A18 

Atoms Doublet D 
Ionization Potential ( e V) 

m 

Atoms (R)=(5) Doublet D 
Ionization Potential (eV) 

m 
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Al9 

Atoms (R)=(6) Doublet 
Ionization Potential ( e 

m 

. 

Diatomic Molecules (Rl,R2)=(2,2) Triplet D 
Ionization Potential Assumptions 

IP(!'-Ne) = 1/2 lP(A) 
for any atom A 

J,. IP(NeNe) = 16 eV 
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A21 

. 

. 

Diatomic Molecules (Rt,R2)=(2,2) Triplet 
Ionization Potential (eV) 

Assumption 

for any atom A 

. 

A22 

.1 -.1 
m 

Diatomic Molecules (Rt.R2)=(3,3) Triplet D 
Ionization Potential 

Assumptions 

for any atom A 
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A23 

(2) Diatomic Molecules 3D 
Ionization Potential (eV) 

m 

Assumptions 

= 1/2 
for any atoro A 

= .(FCl) 

Triatomic Molecules (Rt,R2,R3):(2,2,2) Quartet F 
Ionization Potential (eV) 

A24 

m 



A25 

A26 

Diatomic Molecules (Rl ,R2)=(2,2) Triplet D 
Ionization (eV) Homonuclear 

of = 
of = 16 

Both of the Above 

Diatomic Molecules (Rl,R2)=(2,2) 
Ionization (eV) Homonuclear 

Assumptions 

of SeV 
I.P. of 16 eV 
Both of the Above 

-
- 2 

m 
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A27 

Diatomic Molecules (RI,R2)=(2,2) 
Ionization Potential (eV) Homonuclear Approximation 

of = 8eV 
of Ne2 = 16 eV 

Both of the Above 

-2 
m 

Diatomic Molecules (RI,R2)=(2,2) Triplet D 
Ionization Potential (eV) Single-Particle Operator 
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A29 

Diatomic Molecules TripletS 
Ionization (eV) Single-Particle Operator 

m -2-

A30 

Diatomic Molecules (Rl ,Rz)=(3 ,3) Triplet D 
Ionization (eV) Single-Particle Operator 

-2 
m 
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A31 

Diatomic Molecules TripletS 
Ionization Potential (eV) Operator 

m 

Triatomic Molecules (Rt,R2.R3)={2,2,2) Quartet F 
Ionization Potential (eV) Single-Particle Operator 

A32 

m 
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A33 

Triatomic Molecules ,Rz,R3)=(2,2,2) Doublet D 
Ionization (eV) Operator 

m 

Triatomic Molecules (Rt,Rz,R3)=(2,2,2) Quartet F 
Ionization ( e V) Operator 

A34 Assumptions 

I.P.(ARg) 1/2I.P.(A) 
I.P.(NeNe) 
Both of the Above 
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A35 

Triatomic Molecules (Rt,Rz,R3)=(2,2,2) Doublet D 
Ionization Potential 

Assumptions 

I.P.(ARg) = 1/2 l .P.(A) 
l.P.(NeNe) = l.P.(FF) 

Atoms (R)=(2) Doublet P 
Entropy at 298K degree)) 

A36 
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A37 

A38 

. 

Atoms (R)=(3) Doublet D 
Entropy at 298K (cal/(mole degree)) 

m 

Atoms (R)=(3) Doublet 
Entropy at 298K (cal/(mole degree)) 

m -2 
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A39 

A40 

S0(3)xSU(2) Diatomic Molecules Triplet D 
Entropy at 298K (call(rnole degree)) 

Assumption 

S0(3)xSU(2) Diatomic Molecules Singlet P 
Entropy at 298K (call(mole degree)) 

Assumption 

= Average 



A41 

A42 

Diatomic Molecules TripletS 
Entropy at 298K (calf(mole degree)) 

Assumption 

=Average 

m 

Diatomic Molecules (Rt.Rz)=(3,3) Triplet D 
Entropy at 298K (calf(mole degree)) 

Assumption 

= Average 

m 
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A43 

Diatomic Molecules 
Entropy at 298K degree)) 

00 

Assumption 

= Average 

(2) Diatomic Molecules ,1 ) 
Entropy at 298K degree)) 

A44 Assumption 
=Average 

for any atom A 



A45 

(2) Diatomic Molecules ,h)=(l,l) 
at 298K 

Assumption 
Average 

for any atom A 

Diatomic Molecules ,h)=(l,l) 3p 
Entropy at 298K degree)) 

A46 
Average 

for any atom A 
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A47 

Diatomic Molecules 
Entropy at 298K (call(mole degree)) 

m 

Assumption 
=Average 

for any atom A 

-2 

Diatomic Molecules 3P 
Entropy at 298K (cal!(mole degree)) 

A48 Assumption . 
==Average 

for any atom A 

m 
-2 
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A49 

(2) Diatomic Molecules 3p 
Entropy at 298K (cal!(mole 

m 

Assumption 
=Average 

for any atom A 

Diatomic Molecules Triplet D 
Entropy at 298K (call(mole degree)) Homonu.clear Approximation 

Assumption 

= Average 

m 
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A51 

Diatomic Molecules (Rt.R2)=(2,2) 
Entropy at 298K degree)) Homonuclear 

Assumption 

= Average 

Diatomic Molecules (Rt.R2)=(2,2) Triplet 
Entropy at 298K degree)) Homonuclear 

A52 Assumption 

= Average 
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A53 

Diatomic Molecules Triplet D 
Entropy at 298K (call(mole degree)) Approximation 

Assumption 

= Average 

-2 
m 

Diatomic Molecules (Rt,R2)=(3,3) 
Entropy at 298K (call(mole degree)) Homonuclear Approximation 

A54 Assumption 

m 

= Average 
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A 55 

Diatomic Molecules TripletS 
Entropy at 298K (calf(mole degree)) Homonuclear Approximation 

Assumption 

Diatomic Molecules Triplet D 
Entropy at 298K (caV(mole degree)) Single-Particle Operator 

A56 

m 
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A57 

Diatomic Molecules (Rt,Rz)=(2,2) TripletS 
Entropy at 298K (calf(mole degree)) Operator 

Diatomic Molecules (Rt,Rz)=(3,3) Triplet D 
Entropy at 298K (caV(mole degree)) Operator 
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A59 

Diatomic Molecules (R! ,R2)=(3,3) 
Entropy at 298K (cal/(mole degree)) Single-Particle 

. 

Triatomic Molecules (R!,R2,R3)=(2,2,2) Quartet F 
Entropy at 298K (cal/(roole degree)) Single-Particle 

A60 

v v 
L J 

l v v 
v 

_j 
v 
J 

v 

If 

i/ 
J 

J 

J I ,, J 

- 3 
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A61 

Molecules (Rt.R2,R3)=(2,2,2) Doublet D 
Entropy at 298K (cal/(mole degree)) Operator 

m 

Triatomic Molecules (Rt.R2,R3)=(2,2,2) Quartet F 
Entropy at 298K degree)) Operator 

A62 Assumption 

= Average 
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A63 

Triatomic Molecules (RJ,Rz,R3)=(2,2,2) l)oublet 
Entropy at 298K (call(mole degree)) Two-Particle 

Assumption 

= Average 

Diatomic Molecules (RJ,Rz)=(2,2) Triplet D 
Vibration Frequency ( 

A64 
Assumption 

= 8% of Average 
for any atom A 

42% of Average 

m 



A65 

Diatomic Molecules Singlet P 
Vibration Frequency (cm-

1
) 

Assumption 

of Average 

for any atom A 

m 

Diatomic Molecules TripletS 
Vibration Frequency ( cm-

1
) 

A66 

8oo 

Assumption 

8% of Average 

for atom A 

m 

81 



Diatomic (Rl,R2)=(3,3) Triplet D 
Vibration Frequency (cm-

1
) 

A67 

-.2 

Diatomic TripletS 
Vibration Frequency (cm-

1
) 

A68 
Assumption 

= 8% of Average 
for any A 

______ 
-.2 

82 



A69 

(2) Diatomic Molecules (11 ,h)=(l ,l) 
Vibration Frequency 

Assumption 

Average 
for any atom A 

(2) Molecules ,R2)=(2,3) 
Vibration Frequency 

Assumption 

m 

= 8% of Average 
any atom A 
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A71 

Diatomic Molecules ,h)=(l,l) 
Vibration Frequency 

Assumption 

of Average 
for any atom A 

(2) Diatomic Molecules .h)=(l,O) 
Vibration Frequency 

A72 Assumption 

of Average 
for any atom A 

______ 
m -2 

84 



A73 

Diatomic Molecules (Rt,R2)=(2,3) 
Vibration Frequency 

Assumption 

8% of Average 
for any atom A 

-. 

m 

Diatomic Molecules (Rt.R2)=(2,2) Triplet D 
Vibration Frequency ( Homonuclear Approximation 

Assumption A74 
of A vg. 

for any rare gas Rg 
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A75 

Diatomic Molecules (Rt,R2)=(2,2) P 
Vibration Homonuclear 

m 

Diatomic Molecules {Rt.R2)=(2,2) 
Vibration Frequency Homonuclear 

A76 

m 
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A77 

A78 

Diatomic Molecules Triplet D 
Vibration Frequency Homonuclear 

Assumption 

8% 
of Average 

Diatomic Molecules 
Vibration Frequency Homonuclear Approximation 

Assumption 
8% of Average 

m 
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A79 

Diatomic Molecules (Rl,Rz)=(3,3) TripletS 
Vibration Frequency Homonuclear Approximation 

Assumption 
ro.(RgRg) 8% of Average 

m -2 

88 
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Appendix B: 

Plots of J.P., and for symmetry group 



Bl 

B2 

Diatomic Molecules Groups (1,7) 
Heat of Atomization (eV) 

Diatomic Molecules ,1) Groups (4,4) 
Heat of Atomization ( e 



B3 

B4 

S0(2,1) Diatomic Molecules (11 ,1) Groups (7, 7) 
Heat of Atomization 

S0(2,1) Atoms 1 = and 1 Groups 1 and 7 
Ionization (eV) 

F 

Cl 
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H 

-



BS 

B6 

S0(2,1) Atoms 1 = 0 and 1 Groups 2 and 6 
Ionization Potential (eV) 

0 

S0(2,1) Atoms I = 1 Group 4 
.Ionization Potential ( e V) 

c 
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He 

-

-



B7 

B8 

Diatomic Molecules (h,h)=(O,l) Groups (1 ,7) 
Ionization Potential (eV) 

80(2,1) Diatomic Molecules (h ,h)={O,l) Groups (2,6) 
Ionization Potential (eV) 

Assumption 

• IP(AHe) = 1/2 IP(A) 
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-
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B9 

BlO 

cc 
"""4 

Diatomic Molecules ,1) Groups ( 4,4) 
Ionization Potential ( e 

S0(2,1) Diatomic Molecules (It ,12)=(1 ,1) Groups (7 ,7) 
Ionization Potential ( e V) 

94 

-
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Bll 

B12 

S0(2,1) Atoms I = 0 and 1 Groups 1 and 7 
Entropy at 298K (cal/(mole degree)) 

I 

Br 

S0(2,1 ) Atoms I = 0 and 1 Groups 2 and 6 
Entropy at 298K (call(mole degree)) 

s 
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B13 

B14 

S0(2,1) Atoms 1 = 1 Group 4 
Entropy at 298K (caV(mole degree)) 

Si 

S0(2,1) Diatomic Molecules (lt ,h)=(O,O) Groups (1 ,1) 
Entropy at 298K (caV(mole degree)) 
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S0(2,1) Diatomic Molecules (h ,h)=(O,l) Groups (1, 7) 
B15 Entropy at 298K (call(mole degree)) 

B16 

S0(2,1) Diatomic Molecules (l1 ,h)=(O,l) Groups (2,6) 
Entropy at 298K (cal/(mole degree)) 

Assumption 

• ~(AHe) = Average 
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S0(2,1) Diatomic Molecules (It ,h)=(l ,1) Groups (7 ,7) 
B17 Entropy at 298K (call(mole degree)) 

B18 

S0(2,1) Diatomic Molecules (h .Iz)=(O,O) Groups (1 ,1) 
Vibration Frequency (cm·1) 
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B19 

B20 

S0(2,1) Diatomic Molecules (It ,h)=(O,l) Groups (1, 7) 
Vibration Frequency (cm·1) 

S0(2,1) Diatomic Molecules (11 ,h)=(O,l) Groups (2,6) 
Vibration Frequency (cm·1) 

Ass'umption 

• OOe(ARg) = 8% of Average 
for any atom A 
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B21 

B22 

S0(2,1) Diatomic Molecules (h ,h)=(l ,1 ) Groups (7, 7) 
Vibration Frequency (cm·1) 

S0(2,1) Diatomic Molecules (h ,h)=(l ,1) Groups (6,6) 
Vibration Frequency (cm·1) 
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TABLE I. Graphical interrelationships for heat of atomization. 
Key: Wi;X, Y,Z;N;• where Wi = plot is "i"th graph in appendix W, X= no. of actual data, 
Y = no. of points which include approx. data, Z = no. of predictable data (missing), 
N = index of fittability of surface. Inclusively similar plots are connected with single ( ---) lines. 
Completely similar plots are connected with double ( = =) lines. When lines would cross or detour, 
inclusively similar plots are labeled with one of the symbols {*, !, @}, while completely similar 
plots are labeled with one of the symbols { #, $, %} . 

(Rl, ... ,Rn) (Rl, ... ,Rn) (Rl, R2) 
Mult. (2, ... ,2) (3, ... ,3) (2,3) 

N=2 P(2) 3D 

lP 

= 

N=3 P(3) 

N=2 P(l) 
diatomic 

homonuclear 

4F 

2D 

4P 

3D 

lP 

= 

= 

= 

P(l) 4F 
triatomic 

homonuclear 2D 

4P 

N=3 P(2) 4F 

4P 



(Rl, ... ,Rn) (R1, ... ,Rn) (Rl,R2) 
Mult. (2, ... ,2) (3, ... ,3) (2,3) 

N=3 P(1) 4F 
diatomic 
homonuclear 2D 

4P 

Groups Groups Groups Groups Groups 
Oper. (ll, ... ,ln) (1, ... ,1) (1, 7) (2, 6) (4, ... ,4) (7, ... ,7) 

N=2 P(2) 

(1,1) 82;4,0,-;4;* B3;6,0,-;4 

N=3 P(3) 

(1,1,1) 

N=2 P(1) 
diatomic 
homonuclear 

(1,1) 

N=3 P(1) 
triatomic 

homonuclear 

(1,1,1) 



Groups Groups Groups Groups Groups 
(11, ... (1, ... ,1) (1, 7) (2, 6) (4, ... ,4) (7, ... ,7) 

N=3 P(2) 

(1,1,1) 

N=3 P(1) 
diatomic 
homonuclear 



TABLE II. Graphical interrelationships for ionization potential. 
Key: Y where Wi =plot is "i"th graph in appendix W, X= no. of actual 
Y = no. of points which include approx. data, Z = no. of predictable data (missing), 
N = index of fittability of surface. Inclusively similar plots are with single ( ) lines. 
Completely similar plots are with double ( = =) lines. lines would or detour, 
inclusively similar plots labeled with one of the symbols { !, @},while completely 
plots are labeled with one of the symbols { $, %} . 

(Rl, ... ... ,Rn) (Rl, ... ,Rn) (Rl, ... ,Rn) (Rl, ... ,Rn (Rl,R2 
Mult. (2, ... ,2) (3, ... ,3) (4, ... ,4) (5, ... ,5) (6, ... ,6) (2,3) 

N=l P(l) 2F 

2D = = 

2P = ================= 

N=2 P(2) 3D = A22;3,4,8;3 A23;3,4,8 

lP 

N=3 P(3) 4F 

2D 

4P 

N=2 P(l) 3D 
diatomic 
homonuclear lP 

N=3 P(l) 4F 
triatomic 
homonuclear 2D 

4P 



(Rl, ... ,Rn) (Rl, ... ,Rn) (Rl, ... ,Rn) (Rl, ... ,Rn) (Rl, ... ,Rn (Rl,R2 
Mult. (2, ... ,2) (3, ... ,3) ( 4, ... ,4) (5, ... ,5) (6, ... ,6) {2,3) 

N=2 3D = 

N=3 4F 

2D 

N=3 4F 

2D 

N=3 4F 
diatomic 

homonuclear 2D 

Ql, ... ,ln) 

N=l 1 

1 

N =2 

(1,1) 

A34;7,13,8;1 

A35;1,6,3;4 

Groups 
(1, ... ,1) 

= 

Groups 
(1,7) 

Groups 
(2, 6) 

= 

= B8;3,0,-;5 

Groups 
(4, ... ,4) 

Groups 
(7, ... ,?) 

89;4,0,-;4; = 

Groups 
(6, ... ,6) 



Oper (11, ... ,ln) 

N=3 

(1,1,1) 

N=2 
diatomic 

homonuclear 

(1,1) 

N=3 
triatomic 

homonuclear 

(1,1,1) 

N=2 

(1,1) 

N=3 P(1) 

. (1,1,1) 

(1, ... ,1) 
Groups 

(1, 7) (2, 6) (4, ... ,4) 
Groups 
(7, ... ,7) (6, ... ,6) 



S0(2,1) 
Oper (11, ... ,In) 

N=3 

(1,1,1) 

N=3 
diatomic 

homonuclear 

Groups 
(1, ... ,1) 

Groups 
(1,7) 

Groups 
(2, 6) 

Groups 
(4, ... ,4) 

Groups 
(7, ... ,?) 
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Groups 
(6, ... ,6) 



TABLE Graphical interrelationships for entropy. 
Key: Y,Z;N; where Wi = plot is graph in appendix W, X = no. of actual data, 
Y = no. of points which include approx. data, Z = no. of predictable data (missing), 
N = index of fittability of surface. Inclusively similar plots are with single ( --) lines. 
Completely similar plots are connected double ( = =) lines. Wben lines would cross or detour, 
inclusively similar plots are labeled with one of the symbols { !, @}, while completely similar 
plots are labeled with one of the symbols S, %} . 

Oper. Mult. 

N=l 2D 

N=2 3D 

3S 

N=3 4F 

N=2 
diatomic 

homonuclear 

2D 

3D 

... ,Rn) (R1, ... ,Rn) 
(2, ... ,2) (3, ... ,3) 

= 

A38;9,6,0;2;. A41;6,5,4;2 = 

= A42;1,2,0;5 

A49;9,6,0;5;! = 

= 

3S = 

N=3 4F 
triatomic 
homonuclear 

R L R L 
{2,3)(1,1) 

A43;4,7,4;2 

A46;1,1,1;5 

A45;3,4,2;3; = A47;3,2,4;3 

112 

R L 

= 
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S0(3)xSU(2) (Rl, ... ,Rn) (Rl, ... ,Rn) R L R L R L 
Oper. Mult. (2, ... ,2) (3, ... ,3) (2,3)(1,1) 

N=2 3D = 

3S 

N=3 4F 

2D 

N=3 4F A61; 

1 

N=3 4F 
diatomic 

homonuclear 

S0(2,1) Groups Groups Groups Groups Groups 
(11, ... ,ln) (1, ... ,1) (1,7) (2, 6) (4, ... ,4) (7, ... ,7) 

N=1 = B12;5,0,-;5 

1 

N=2 B14;4,0,-;5;# 

= B16;0,6,-;S 

(1,1) B17;6,0.-;S; 



... 

N =3 P(3) 

(1,1,1) 

N=2 P(l) 
diatomic 
homonuclear 

(1,1) 

N=3 P(1) 
triatomic . 

homonuclear 

(1,1,1) 

N =2 P(1) 

(1,1) 

N=3 P(1) 

(1,1,1) 

Groups 
... 

Groups 
(1, 7) 

Groups 
(2, 6) 

Groups 
(4, ... ,4) 
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Groups 
(7, ... ,?) 
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Groups Groups Groups Groups Groups 
(11, ... ,In) ... ,1) 7) (2, 6) ( 4, ... ,4) ... ,7) 

N=3 

N=3 
diatomic 

homonuclear 
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_T_:AB_LE IV=. =G_r_a ... p=hi ... _____ ____ _ 
where Wi = plot is graph appendix X = no. of actual 

Y = no. of points which include approx. data, Z = no. of predictable data (missing), 
N index of fittability of surface. Inclusively plots are connected with single ( --) lines. 
Completely similar plots are connected with double ( = =) lines. When lines would or detour, 
inclusively similar plots are labeled with one of the symbols @},while completely similar 
plots are labeled with one of the symbols { $, %} . 

Mult. 

N=2 3D 

N=2 3D 
diatomic 
homonuclear 

(11, 12) 

(R1, R2) 
(2, 2) 

-
t ' , ' ' -

A64;1,1,1;5 

A65;1,2,0;5;*@ = 

= 
= 

A *! 

Groups 
(1, 1) 

= 

N =2 

(1,1) 

N=2 
diatomic 
homonuclear 
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