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Complete SO(3)xSU(2) and SO(2,1) Periodic
Systems for Diatomic and

Triatomic Molecules

Chris M. Carlson
Physics Department
Southern College of SDA
Collegedale, TN 37315

Abstract

The principles of group theory as applied to periodic systems are reviewed.
Complete sets of possible multiplets of state vectors are tabulated for N = 2
and N = 3 in both SO(3)xSU(2) and SO(2,1) symmetry. Expectation values of
AH,, LP., S5, and @, for some of these state vectors are plotted on the
principle axes of the two groups of interest. The consistent regularity of these
plots gives validity to this theory. The structures of the periodic systems for N
= 2 and N = 3 in both SO(3)xSU(2) and SO(2,1) are then described and
shown in 3-D figures.



I. Introduction.

Ever since Mendeleev proposed the periodic system of the elements in 1869, the
tantalizing prospect of extending its principles to molecules lay before physicists and chemists
alike. This goal was realized in 1979 when Hefferlin et al completed a diatomic molecular
periodic system which could be generalized to triatomic and larger molecules.! Hefferlin
used entirely empirical methods in obtaining this system and a subsequent system for
triatomic molecules.? Empirical methods become increasingly difficult as higher order
periodic systems are constructed due to lack of data for any significant number of molecules
of a given N-atomic species. Thus, a more theoretical approach is necessary.

The beginning of such an approach in the early twentieth century was the
demonstration .by Fock that the orthogonal group O(4) describes the structure of energy
levels in hydrogen.? Inspired by this result, it was shown in 1972, independently by Rumer
and Fet, and by Barut, that O(4) can also render a classification scheme for the atoms. Fet
went on to demonstrate that the cartesian product of the special orthogonal group SO(4,2)
with the special unitary group SU(2) describes the complete periodic system of atoms,
including the Madelung rules for neutral atoms.* If a second SU(2) group is included, the
period doubling of the Mendeleev chart can be closely, although not exactly, described.

In 1983, Zhuvikin and Hefferlin proposed that group theory could be applied to N-
atomic molecular periodic systems by means of the repeated multiplication of the atomic
symmetry group with itself.> This lead to N-atomic molecular periodic systems which are
2N-dimensional. Then, the theory was revised to include the repeated multiplication of bases
of irreducible representations instead of groups, thereby allowing the dimensionality of the

periodic system to remain constant for all N-atomic molecules. The idea was revised further
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in 1992 when Zhuvikin and Hefferlin proposed that since a given molecule may contain more
than one identical atom, bosonic symmetry must be employed.®

This paper is a effort to substantiate the validity of this theory. The group theoretical
constructs of Zhuvikin and Hefferlin are summarized, and the results of the theory are
explained. These results are the complete group-theoretical penodlc systems for both
diatomic and triatomic molecules, each in terms of two different symmetry groups, namely
SO(3)xSU(2) and SO(2,1). Graphs which demonstrate the clearly periodic nature of the
systems are included along with descriptions of the structure of each individual periodic

system.



II. Theory
Section 2.1. Group theory applied to the periodic chart of the atoms.

In order to apply the principles of group theory, the atoms are assumed to be particles
which have an inherent, internal symmetry described by a group® G. These particles can be
transformed into one another by the elements® of G. Fet showed that choosing G to be the
group SO(4,2)xSU(2), or one of its subgroups from one of three group chains, results in
descriptions (in the form of bases for irreducible representations) of portions of the periodic
chart of the atoms.® These basis states for irreducible representations (or multiplets) exist in
a Hilbert representation space H(1). The orthonormal basis set of vectors which span F{1)
consists of the set of atoms together with a vacuum state.5 Furthermore, these basis vectors
are distinguished by at most four chemical quantum numbers, the specific combination being
determined by the subgroup G; They are the chemical principle quantum number 7, the
chemical angular momentum quantum number £, the z-component of the chemical angular
momentum quantum number m, and the z-component of the chemical spin g. The group G
describes the possible values of its associated quantum numbers, within the usual quantum
mechanical constraints imposed by the given values of the other quantum numbers.

Atomic multiplets for several choices of G from one particular subgroup chain of
SO0(4,2)xSU(2) are now described. A multiplet using the subgroup SO(3) describes all
possible values of the m quantum number for artificial choices of n, £, and m, i.e., m ranges
from -£ to +£. One such multiplet is {B, N, F} whichhasn =2, { = 1, u = -1/2, and
allows m the values -1, 0, 1 (see Fig. 1.). Using SU(2) symmetry, a multiplet is described
by specifying n, ¢, and m, then letting u be -1/2 or +1/2, e.g., {H, He}. SO(4) multiplets

are described by selecting n, and u, then letting ¢ range from -(n-1) to +(n-1) and letting m
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Fig. 1. 1) for group chain SO(4,2)xSU(2) > SO(4)xSU(2) = SO(3)xSU(2).

range from -£ to + £ for each value of £. An example of an SO(4) multiplet is {Na, Al, P,
Cl, Sc, V, Mn, Co, Cu}. A slightly more complicated subgroup is SO(3)xSU(2) for which’
multiplets are described by varying m and u for given n and ¢, e.g., {Y, Zr, Nb, Mo, Tc,
Ru, Rh, Pd, Ag, Cd}. The preceding subgroups are all taken from one group chain® of

SO(4,2)xSU(2). This chain is given by Eq. (1):

SO(4,2)xSU2) > SO@)xSU(2) > SO3)xSUQ2) > SOR)xSU(2) (1)

Only one subgroup is examined from a second chain,® which is given by Eq. (2):



SO(4,2)xSU2) > SO(2,1)xS0(3)xSU(2) > SO(2,1) )
This particular symmetry group is SO(2,1). Multiplets in SO(2,1) are defined by varying n
for given values of £, m, and p. A typical multiplet is {H, Li, Na, K, Rb, Cs, Fr, ...} (see

Fig. 2.).
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Fig. 2. 1) for group chain SO(4,2)xSU(2) > SO(2,1)xSO3)xSU(2) > SO(2,1).

Notice that there are infinitely many multiplets in SO(2,1), each of which is infinite in size.
This results from the noncompact nature of the group SO(2,1) which implies that there are
infinitely many elements. A more detailed, theoretical development of these concepts

follows.



Section 2.2. Basis vectors for the Hilbert representation spaces F{1), 742), and 743).
Let {a,, a;, G, ..., a,} be the set of atoms. Then the basis set® for F{1) is
{la;>,1a,>,|a3>,...,|a,>,]0>}, where |0> is the so-called vacuum state. This

vacuum state is defined to be normalized.”
<0j0> =1 3
The atomic basis vectors are created by means of creation operators which operate on the

vacuum state.® Also, annihilation operators acting on the vacuum state give the scalar zero.’

la,> = ba:|0>
@
b,|0> =0

Moreover, since there can be more than one atom of a particular species in a given N-atomic
molecule, these creation and annihilation operators must conform to bosonic symmetry,® i.e.,

they must obey these commutation relations:
[6,,5,1 = 0
[b,:8,] = 0 (5)
[b ‘9 ba}] = 6U

The result of the annihilation operator acting on a basis vector is the vacuum state if the
annihilation operator corresponds to the given basis vector, otherwise it is the scalar zero.

This can be shown by means of the third commutator of Eq. (5).



b

]

|a;> = b,b, 10> = 8,0> + b,b,|0> = 6,]0> + 0 = 40> 6)
Also, this same commutator demonstrates the orthonormality of the basis vectors.
<ajla> = <0[b, b, |0> = <0|4,]0>+<0|b b, |0> = §,<0[0> = &, (7))

In a similar manner, the basis vectors for the diatomic representation space J{2) and
the triatomic representation space H{3) are defined using the atomic creation operators.®
+q +
|aiaj> = bc,ba_,|0>

@®

|a,a,a> = b, b, b, |0>

The orthonormality of these vectors does not come about as easily as it does for the atoms,
but a similar method (the repeated use of the commutators) is used to determine the inner
product of a given vector with itself. This inner product is the square of the norm. The
normalization coefficient is clearly the reciprocal of the norm. The general expressions of
these concepts for diatomic and tria_tomic basis vectors are given in Eq. (9).
la, gl = <a,a)la,a> = 1+,
0]
la,a,a,° = <aa;a,la,8,0,> = 1+8,,+8,+8,+26,5,
For those state vectors that have norm greater than one, the normalization coefficient is

placed inside the Dirac "ket" notation, e.g., |1//2 BB>.



Section 2.3. Ladder operators for SO(3)xSU(2) and SO(2,1).

Ladder operators are the bosonic representation of the differential generators of a
given subgroup G of SO(4,2)xSU(2). There are two requirements for a valid bosonic
representation of a symmetry group G. The first is that the operators exhibit the same closed
set of commutation relations as some set of linear combinations of the differential generators.
This means that the differential generators and the bosonic operators define abstractly
identical Lie algebras. The second stipulation is that, when the one-parameter Lie group is
formed from these bosonic operators, the parameter has the same range as that allowed by
the Lie group formed from the differential generators.” The group SO(3)xSU(2) has six
ladder operators, three corresponding to SO(3) and three corresponding to SU(2).

The three operators of SO(3) transmute state vectors by changing the vaiue of the m

quantum number. In bosonic representation, they have the following form:®

+
L, =Y J{U+m+1)(t-m)b,.,b,

+{ ‘
_= Y J-m+1){+m)b, b, (10)

b~
1]

In these equations, the creation operator b ., for example, refers to the atom having the
same values of the quantum numbers n, {, and u as the vector on which it is currently
operating, except that m is one unit larger. In other words, if L, were acting on |B>, then
b} ., would be the creation operator for |[N>. The L, operator transforms a given state

vector into a vector with the next highest possible value of m. Analogously, L_ transforms



vectors to ones with the next lowest possible value of m. L, operating on a vector returns

the value of m times the current vector. Here are some examples:

L,[B> = /Z|N>
L|F> =0
1n
L_|F> = 2|N>

L,/B>

-1|B>

The ladder operators of SU(2) change the values of the p in the same sense that those

for SO(3) change m. They have the following form:®

S,

u=-s

Y (GIG-Kbanb,

U
Il

p=-s

= X GRGMbb,

12)

So = Y Kb,.b,

p=-s

In these equations, s is the chemical spin quantum number, i.e., s = g,... The operations of

S,, S_, and S, are analogous to those of L, L_, and L, as seen in these examples:

S, [H>

S_|He>

= |H>

|He>

13)

S_|H> =0
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The commutation relations for SO(3) and SU(2) are identical. Therefore, only those

for L,, L_, and L, are given in Eq. (14).

[L,, L] =L,
[L,, L.] = -L. (14)
[L,, L] =2L,

The difference between the representations of these two groups is in the range of the Lie
group parameter. The Lie group corresponding to SO(3) allows the parameter to range from
-w to &, while that for SU(2) allows a range from -2x to 2x.

The operators corresponding to the SO(2,1) subgroup transform vectors by increasing

the value of n. Their form'® is given by Eq. (15):

I'+ o i: \/(n +£!+l)(n—& )b;-rl bu

n=1

I = Y DG b, b, s

n=1
+
I = ¥ nb;b,
n=1
These are analogous to the L and § operators except that ', will never return a zero result,
since n, in principle, is unbounded. As stated in section 2.1, this unbounded characteristic of

n corresponds to the noncompact nature of SO(2,1). Now, here are some examples:
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I,|H> = y2|Li>
I' |Al> = /10|B> 16)
I|Na> = 3|Na>

The commutation relations for these operators are given in Eq. (17):

[I})!rq.] = I.‘+

[I5,I"] = -I. a7
[l.,I] = -2I

The range on the Lie group parameter for the SO(2,1) operators is -x to +x.

The coefficients generatéd by the raising and lowering operators in this and the
previous examples do not have much significance when operating only on atoms, i.e., they
are lost when the necessary normalization is done. Their significance arises when operating
on diatomic and triatomic molecules. As will be shown, the operations in these cases often
result in state vectors which consist of linear combinations of basis vectors. Thus, the
normalization coefficient is the inverse of the sum of the norms of the component vectors.

Therefore, the individual coefficient for each component is not lost.

Section 2.4. Generation of multiplets using ladder operators.

The specifics of this discussion are limited only to the groups of immediate interest,
namely SO(3)xSU(2) and SO(2,1), but the principles set forth apply in general, i.e., they
apply to any symmetry group and to the space JH{N) for any value of N. The Hilbert space

H(N) is generally reducible with respect to the symmetry group G. Bases for irreducible
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representations (or multiplets) of JH{N) corresponding to G are generated by repeated
operation of the ladder operator(s) of G on a chemical seniority vector until a zero result is
obtained.® By definition, a chemical seniority vector is a state vector which returns the zero
result when acted upon once by either the lowering operator(s) or the raising operator(s) of
the group. For example, the atomic state vector |B> in SO(3)xSU(2) is a legitimate
chemical seniority vector, since L_|B> = §_|B> = 0. Some results of this process for
the atomic case have already been introduced in a qualitative manner in section 2.1.

First, consider SO(3)xSU(2). Operating on the diatomic chemical seniority vector
|1//2 BB>, L, increases m from -2 to -1 and produces (after normalization) the vector
| BN>. Repeating this process results in the vectors 1//3{| BF> + /2|1//2 NN>},
|[NF>, and | 1//2 FF>, which have m = 0, m = 1, and m = 2 respectively. Note that
L.|1//2 FF> = 0, which signifies the end of L, operations. Now consider the role of S,
which operates on each of the above mentioned state vectors generated by L,. This
generates the multiplet shown in Fig. 3. (The customary Dirac notation has been eliminated
for convenience.) The multiplet has chemical spin multiplicity § = 3 and chemical angular
momentum £ = 2. Thus, using spectroscopic notation, the multiplet is denoted as *D. Also,
we can construct a state vector orthogonal to the 1//3{| BF> + /2|1//2 NN >} vector,
which is located at m = 0, g = -1 in ®D. This orthogonal vector is 1//6{2 | BF> -
J2|1//2 NN>}. The orthogonality is verified by calculating the inner product of the
vectors including the proper norms values for each component. This orthogonal vector is a
valid chemical seniority vector which leads to another multiplet, specifically a 3S. Similarly,
there exists a vector orthogonal to 1//2{| BO> + | CN>} which is a chemical seniority

vector for a 'P multiplet. For the chemical seniority vector |1//2 BB>, therefore, the



m=-2

m=-1

mu=-1 mu=0 mu=]
sqrt(1/2) BB BC sqri(1/2) cc.

BN sqrt(1/2){ BO + CN} co
sqri(1/3){ BF + NN} | sqrt(1/6){ BNe + 2NO + CF} | sqrt(1/3){ CNe + 00 }
NF sqrt(1/2){ NNe + OF } ONe
sqrt(1/2) FF FNe sqrt(1/2) NeNe

Fig. 3. 3D multiplet for chemical seniority vector [1/v2 BB> for SO(3)xSU(2).
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decomposition of the representation space F{2) has been shown to be the direct sum of three

orthogonal multiplets.

HQ2) =De3Se!'P

(18)

The same process is applied to triatomic chemical seniority vectors such as | 1//6

BBB >, resulting in the *F multiplet given in Fig. 4.
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mye=-3/2 mu=-1/2 mu=1/2 mu=372

sqri(1/6) BEB sqei(1/2) BBC sqri(1/2) BCC sqri(1/6) CCC

sqrt(1/72) BEN sgri{1/6){ BBO + 2 BCN } sqrt{1/6}{ 2BCO + CCN } Brt(1/2) 000
sqri{I/10{ BBF + 2BNN} | sqr(uan){ BBNe + 2BCF + 43RO + 200N} mzmmcl-_nmuam sqri( 1/10){ CCNe + 2000 }
8qet(1/15){ 3 BNF + NNN } sgri(1/5){ ENNe 4 BOP + CNF + NNO ) ri(LS){ BONe + CiNe + COF + NOO} | sqee(1/15)( 3 CONe + 000 }
sqrt{/10){ BFF + 2NNF } | eqr(1/30){ 2 BFNe + CPF + 2000Ns + 4 NOF } mmazmumuwlumm{m+zom€c)r

sqri(12) NFF sqri(1/6){ 2 NFNe + OFF } sqri(1/6)}{ NNeNe + 2 OFNe } sqei(1/2) ONeNe

qri(1/6) FFF 8qrt(1/2) FFPNe sqri(1/2) FNeNe sqet(1/6) NeNeNe

Fig. 4. 4F multiplet for chemical seniority vector [1/V6 BBB> for SO(3)xSU(2).

Again, orthogonal chemical seniority vectors are determined and lead to othogonal multiplets,

the direct sum of which is J{3). Thus, for this chemical seniority vector, H{(3) is given by

Eq. (19):

HQ3) =*Feoe*Po?e?P

19)

Moving to SO(2,1) symmetry, |1//2 HH> is chosen as a chemical seniority vector,

since I'_| 1//2 HH> = 0. Repeated operations of I', on this vector result in the multiplet

shown in Fig. 5. Note that the number of components in the states is monotonically

increasing with n. The number of components does not reach a maximum and then

symmetrically decrease, as was the case with SO(3)xSU(2). As mentioned previously, this is

due to the noncompact nature of SO(2,1). As before, orthogonal chemical seniority vectors



n=2

n=3

n=4

n=>5

n=7

n=_§

are constructed and produce orthogonal multiplets. For example, the vector orthogonal to

{1}=0

sqri(1/2) HH

sqrt(1/5) {sqrt(3) HNa + LiLi}

sqrt(1/10) {2 HK + sqrt(6) LiNa}

sqrt(1/70) {2 sqrt(5) HRb + 4 sqrt(2) LiK + 3 NaNa}

sqrt(1/28) {sqrt(6) HCs + sqrt(10) LiRb + 2 sqrt(3) NaK}

sqrt(1/42) {sqrt(7) HFr + 2 sqrt(3) LiCs + sqrt(15) NaRb + 2 KK}

Fig. 5. [0] multiplet for chemical seniority vector |I/V2 HH> for SO(2,1).
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1//5{/3| HNa> +/2| 1//2 LiLi>} is the vector 1//5{/2|HNa>-/3|1//2 LiLi>}. These

vectors are located at n = 4. An additional component is added at n = 6, n = 8, and so on,

allowing a new orthogonal seniority vector at each of these positions. Thus, H(2) is

represented by an infinite number of orthogonal multiplets, each containing an infinite
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number state vectors. These orthogonal multiplets are described by the chemical quantum
number {f}. This chemical quantum number is similar, but not identical, to the chemical
angular momentum quantum number £, hence the notation {£}. The behavior of {£} with
respect to atomic multiplets for SO(2,1) is identical to that of £. For example, there are two
multiplets which are located at {f} = 0. Similarly, there are 6, 10, and 14 multiplets at {£}
= 1, 2, and 3 respectively. This correspondence of {{} to { vanishes when molecules are
considered. On the basis of concepts in section 2.5, molecular multiplets correspond to
increasing values of {£}. These values depend on the number of identical atoms in the
chemical seniority vector. The case for the chemical seniority vector |1//2 HH> is

expressed in Eq. (20):

H2)=[0]e[2] e [4] o [6] & ... (20)
Eq. (20) indicates that J42) is decomposed into multiplets located at {£} = 0, 2, 4, 6, etc.
Similarly, this is accomplished for the triatomic seniority vector |1//6 HHH>,

which leads to the following decomposition of F{3):

H3) =101 e [2] ©[3] @ 4] © [5] @ 2[6] & ... @1)
In the above equation, 2[6] signifies that there exists two multiplets located at {£} = 6.
Also, note that there is no [1] in Eq. (21), i.e., there is no multiplet at {¢} = 1. Fig. 6
gives the [0] multiplet. This decomposition is somewhat more complex than that for H{2) in

Eq. (20), and further details are given in section 2.5.
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{1}=0
n=3 sqri(1/6) HHH
n=4 sqri(1/2) HHLI
n=5 | sqrt(1/14) {sqrt(3) HHNa + 2 HLiLi}
n=6 sqrt(1/84) {3 HHK + 3 sqri(6) HLiNa + sqrt(2) LiLiLi}
n=7  sqrt(1/84) {sqrt(5) HHRb + 4 sqrt(2) HLiK + 3 HNaNa + 2sqrt(3) LiLiNa}
n=8 qam&){qn(s)ng&+zqna0)mm+4qnmmax + 4 LILIK + 3sgr1(2) LiNaNa}
n=9 mm(mm‘rummnmu)muwm-l_mbumeﬂm-hwmm

Fig. 6. [0] multiplet for chemical seniority vector live HHH> for SO0(2,1).

Section 2.5. Determination of possible multiplets from Clebsch-Gordan coefficients.
The decomposition of the representation space H{N) with respect to the group G can
be determined by a method other than the use of ladder operators and chemical seniority
vectors described in section 2.4. This technique involves the direct product of N number of
atomic multiplets, thereby generating N-atomic molecular multiplets. For the purposes of
this paper, therefore, there exist two scenarios corresponding to the two symmetry groups of

interest, SO(3)xSU(2) and SO(2,1).
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First, the case for SO(3)xSU(2) is discussed. Atomic multiplets in SO(3) symmetry
are denoted as [n, s, p][f]. The chemical quantum numbers 7 , 5, and g are grouped
together because they have nothing to do with the action of the group once they are chosen.
The chemical quantum number ¢ must also be fixed, but its chosen value determines the
range of m, the dynamical chemical quantum number of SO(3). Therefore, f is separated
from the other chemical quantum numbers. Similarly, atomic multiplets for the spin group
SU(2) are denoted as [n, ¢, m][s]. Thus, atomic multiplets for SO(3)xSU(2) symmetry are
denoted [n][£][s]. The decomposition of the N-dimensional Hilbert space H{N) is given® by

Eq. (22).

N
HW) = [ [%1410s;] = ;Zs: CEY[LIS] @2)
i=1

In this equation, L and § refer to the possible results of combining the £,’s and ;s
respectively. The notation [L][S] refers to a particular N-atomic multiplet in SO(3)xSU(2).
The constants denoted C5 are integer Clebsch-Gordan coefficients.

Now, consider the symmetry group SO(2,1). In the same manner as before, atomic
multiplets for SO(2,1) are denoted [m, p][{£}]. While the values of all these chemical
quantum numbers must be chosen, the value of {£} defines the initial value of », namely it is

{£} + 1. The decomposition of the space H{N) for N-atomic molecules is given® in Eq. (23).
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N
HNW) =[] [m,1e,10{, 1] = Y, CH[{L]] 23)
i=1 {L}

In Eq. (23), {L} refers to a possible combination of the {£},’s, and [{L}] denotes molecular
multiplets located at a specific value of {L}. Presumably, the C{* constants are, as before,
integer Clebsch-Gordan coefficients.

The result of these decomposition formulas allows the determination of which
multiplets exist for a given chemical seniority vector without calculating the actual state
vectors. That is, Egs. (18 - 21) can not only be viewed as descriptions of the results
obtained by ladder operators and chemical seniority vectors, but also as specific cases of

Egs. (22) and (23).

Section 2.6. Observable operators and expectation value identities.
The definitions of the single-particle, two-particle, and three-particle observable

operators, P(1), P(2), and P(3) respectively, are given by the following equations.®

P =3 P, b

i=1 j=1

N N
PQ) = 1Y P@)yy bibab, b, (24)
i2k j2l

N N
P3)= Y Y PQ3)y; x1mn s b,,,;bfx ba ba ba

izkzm j2l2n

In these equations, the set of atoms is denoted {a,, @, ..., 4,}, and the summation is over all

possible atoms. P(1), is a two-dimensional matrix, while P(2); ;, and P(3); ., are tensors
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of rank four and six respectively. By calculating the expectation value of P(1) for an atom

a;, it becomes clear that the diagonal elements of the P(1); matrix at least contain data for all

properties of the atom a,.

<P(1)>, = “alPMla> _ oy, 25)

<a;|a;>

Similarly, the diagonal elements of the tensors P(2);,, and P(3); ., contain at least data for
diatomic and triatomic molecules.

Clearly it is possible to use the P(N) operator on an N-atomic state vector. However,
it is also possible to use the P(M) operator on an N-atomic state vector as long as M < N.
This process, when interference terms are dropped, leads to a set of identities® relating the

expectation values of certain operators. The identities for P(1) are given in Eq. (26).

<a;|P(1)|a;> = <a;|P(1)|a;>

<a,a|P(D|a,a> = <a;|P(1)|a>+<a;|P(D)]a> =

%[< a,6;|P(1)|a;a,> +<a,a/|P(1)|a;a,>]

(26)
<aiajath(1) |aiajak> = <a,|F(1)[a,> “%IPUJ |aj> +<a;|P(1)|a,> =
%[«:a,a,ai]P(l) |a;a,8,> +<a,6,a,|P(1)|a,a,a,> +<a,0,0,|P(1)|a;0,0,>] =
%[*f a,0,|P(1)|a,a,> +<a,a)|P(1)|a;a,> + <a,a,|P(1) |a,a,>]

The last expressions in the second and third equation strings are called diatomic homonuclear

approximations because they recasts all observables in terms of homonuclear diatomic
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molecules. Similarly, the third expression in the third equation string is called the triatomic
homonuclear approximation. The P(1) operator, in the second expression of the second and
third equation strings, reflects the attribute of additivity which corresponds to the theory of
atoms in molecules.’! '

The identities for P(2) are given in Eq. (27):

<a,a,|P(2) |a,a_,> = <a,aI|P(2) |a,aj>

27
<a,0,0,|P(2)|a;0,0,> = <a,a,|PQ2)|a,a,>+<a;a,|P(2)|a;a,> + <a,a,|P(2)|a,a,>
Again, there is a suggestion of additivity in the second equation which alludes to the theory
of diatomics in molecules.!? Note that there are fewer identities for P(2) than for P(1). This

is due to the restriction of P(M) and N-atomic states mentioned earlier. Consequently, there

is only one identity for P(3).

<a,0,0,|P(3)|a,a;a,> = <a,a,a,|P(3)|a,a;a,> (28)
These identities are useful in graphical analysis of multiplets of state vectors. They
allow the plots of additional diatomic and triatomic multiplets that would otherwise be
impossible because of a lack of data. By using the P(M) operator on an N-atomic state for M
< N, the N-atomic expectation values are transformed into M-atomic expectation values.
While these identities are theoretically legitimate, any physical significance remains to be

seen.
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IIl. Computer program and data.
Section 3.1. GTPS (Group Theoretical Periodic Systems) computer program.

GTPS is a symbolic manipulation program which is based on the theory set forth in
the preceding portions of this paper.'® Given a suitable chemical seniority vector, GTPS
generates multiplets of state vectors in a selected symmetry by applying commutation
relations and normalization procedures. GTPS was used to produce the majority of the

multiplets studied. The remainder were calculated by hand and then verified by the program.

Section 3.2. Data sources, errors, confidence levels, and approximations.

In this paper, only four properties are considered, namely heat of atomization (4H,),
ionization potential (I.P.), gas-phase entropy at 298K ($9%;), and diatomic vibration frequency
(w,). This analysis depends solely on tabulated data.

Atomic data for 1. P. were taken from the CRC Handbook of Chemistry and Physics'
with no errors given. S$% data for atoms, diatomic, and triatomic molecules were taken
from the JANAF Tables" of 1974-1982. Many of the data in these tables have errors given
with 95% confidence-limits., The avérage of these errors is approximately 1% for triatomic
molecules?, and a similar value is assumed for diatomic moleciles.

Diatomic data for dissociation potential (referred to as 4H, in this paper) were
obtained from Huber and Herzberg!®. Extremely few errors are explicitly given. A few
values are indicated as being somewhat uncertain; However, it is commonly accepted in the
field to take the errors to be approximately 5% with 95% confidence.

f)ata for w, and L. P. of diatomic molecules were also taken from Huber and

Herzberg!®. The description of errors is the same as for diatomic AH, above. Additional
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diatomic values for I.P. as well as all triatomic I P. data were taken from Gurvich!’. The
average of the given errors for diatomic molecules is less than 4.27%. (If more than one
datum was listed, the worst case was selected, hence the "less than" wording.) These errors
are with 95% confidence.

Triatomic AH, data were obtained from Sauval'®. The individual errors for AH, are
taken as 10% (15% for a few which Sauval? called "doubtful™) with 95% confidence.

In an attempt to remedy the problem of a lack of data, rough approximations were
made for the I P., §3, and w, data of certain diatomic molecules. Given that the L P. of
XeF is less than or equal to 10.23 eV, ;md given that LP. for F is 17.41 eV, LP. values, for
which one of the atoms in the diatomic molecule is a rare gas, were taken to be one half the
atomic value for the other constituent atom.'s Z.P. data for Ne,, Ar,, and NeAr were taken
to be equal to that for F,, Cl,, and FCl respectively.’® Also, L P. for B, is taken to be 8
eV."? 9%, data, for a molecule in which one constituent atom is a rare gas, were taken to be
the average, of the 5%, data for molecules with the same constituent atomic row numbers.2
From observation of the data, some w, values which included rare gas atoms were taken to
be a percentage of the average w, for each unique combination of the row numbers of the
constituent atoms. Specifically, the data were taken as 8% of this average, unless the
molecule included fluorine with the requisite rare gas, in which case 42% of the average was

taken.
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IV. Results of the computer experiment.

Section 4.1, Graphical analysis of periodicity in SO(3)xSU(2) and SO(2,1) multiplets.
Plots of expectation values of observables are constructed for multiplets in both
SO(3)xSU(2) and SO(2,1) symmetry using various observable operators and expectation value
identities. Four properties are discussed; They are 4H,, I.P., 5%, and @,. The purpose of

this discussion is to establish the periodic nature of the plotted surfaces. A complete set of
graphs for SO(3)xSU(2) are located in appendix A. Similarly, a set of all constructed graphs

for SO(2,1) are in appendix B.
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Fig. 7. 4H, plot for >D with (R,, R, ) = (2,2) using P(2).
First, consider 4H, for SO(3)xSU(2) symmetry. The *D for diatomic molecules (Fig.
7), for which constituent atoms are taken from row two on the periodic chart [denoted
(R;,R,) = (2,2)], is constructed using the P(2) operator. This *D has a surface which slopes

up at first and then down with decreasing values of both m and p. The numbers above the
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points on this and other plots refer to the number of valence electrons in each state.
Previous work by at this institution® indicates a tendency for isoelectronic molecules to have
invariant data. The fact that this is true, at least to a first approximation, for these plots

corroborates the current observation.

R

-
Fig. 8. AH, plot for 3D with (R;,R, ) = (3,3) using P(2).

Now, the >D multiplet with (R;,R,) = (3,3) is considered (Fig. 8). Although there
are several points missing (due to lack of data), those points present follow the same shape,
i.e., positive followed by negative slope with decreasing m and p, as the °D with (R,,R,) =
2,2).
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Fig. 9. AH, plot for 1p multiplet with (Ry,R2) = (2,2) using P(2)-

1p and *S, both with R,RY) = (2,2), show

Furthermore, the orthogonal multiplets
{he same trends at the corresponding positions :n the 2D (see Figs. 9 and 10).
=

o

Fig. 10. AH, plot for 35 multiplet with (Ry,Rz ) = (2,2) using P2)-
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Fig. 11. 4H, plot for 3D multiplet with (RyRy) = 2:2) using P(1) diatomi
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Also, using the P(1) operator and the diatomic homonuclear approximation identity
given in Eq. (23),2°D; 1p, and *S are generated (Figs- 11, 12, and 13)- This

a "smoothed out" version of the non-homonuclear 3p. The

3p surface is

3§ is again similar at the

~ ¢

5 T
S
5]
S -
2 o /
SR -

2 / /

o - J_

Fig. 12. AH, plot for 1P multiplet with R .Ry) = @2 using P(1)

diatomic homonuclear approximation.
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Fig. 13. AH, plot for
corresponding positions in the 3D, but the 1p does not conform at the corresponding positions
in the *D. |

are similar to the R,R) = 2,2

Again, the (R,R) = 3,3) homonuclear plots
homonuclear plots including the non-conformity of the 1p (only *D shown, Fig. 14).

<

Fig. 14. AH,plot for 3D multiplet with ®RRy) = (3 using P(1) diatomic homonuclear SpproXimation.
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Fig. 15. AH, plot for 4F multiplet with (Rj,R2,R3) = (2,2,2) using PQ3)-
4F plot for triatomic molecules with (R,R2:Ra) = (2,2,2) using P(3)

There is also @
points form a surface which

(Fig. 15)- However, these
3D in the region where data exist. The plots of AH, using

which has only a few points
ly lend themselves to More simple curve

to that of the diatomic
the P(1) diatomic homonuclear approximation clear
However, the P(2) operator

conforms

more so than those for P(2)- maintains complete

fitting
multiplets for AH, in SOB3)xSUQR)-

consistency between
AH, data are also plotted

an one multiplet. Since multiplets are one-dimensional inn,

{£}. The combination

momenta [denoted (£,,£»)] and

in SO(2,1) symmetry. In general, a graph for SO2,1)

contains more th they are placed
side-by-side in order of increasing
the chemical atomic angular
periodic chart) of the con

of multiplets in 2 graph is
described by the group numbers

(i.e., column numbers on the

stituent atoms.



30

HtAt.(eV)

Fig. 16. 4H, plot for [1] - [4] multiplets with (¢;,f, ) = (0,1) and groups (1,7) using P(2).
Only three graphs have been constructed, two of which have similar surfaces, namely (£, £,)
= (0,1), groups (1,7) and (¢,,%,) = (1,1), groups (4,4) (Figs. 16 and 17). The third, (£,,£,)
= (1,1), groups (7,7), does not have the decreasing slope with increasing n that characterizes

the first two (see Fig. 18). However, curve fits for all three graphs would be simple.

Fig. 17. AH, plot for [2] and [4] multiplets with (£;,£, ) = (1,1) and groups (7,7) using P(2).
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Fig. 18. AH, plot for [2] and [4] multiplets with (£;,¢, ) = (1,1) and groups (4,4) using P(2).

As alluded to in the previous two paragraphs, an eventual goal of this work is the
curve fitting of these surfaces to allow the prediction of missing state-vector expectation
values, which, in many cases, will lead to prediction of individual molecular data. As a first
step in this process, Tables I for AH, (and Tables II-IV for 1.P., Sk;, and w,) is prepared and
summarizes the relationships between atomic, diatomic, and triatomic multiplets for various
observable operators, expectation value identities, choices of row numbers of the constituent
atoms for SO(3)xSU(2), as well as choices of chemical angular momentum and group number
for the constituent atoms for SO(2,1). These tables also tabulahe the location of the graph in
the appendices, the number of states in the multiplet for which only actual data were
included, as well as the number of states in which some approximate data were included (the
specific approximation and the points effected are noted on the individual graphs), the
number of data eligible for prediction (no. of missing points), and an index of fittability (an
integer from 1 to 5). The latter gives a qualitative indication of the ease of a curve fit for

the surface.
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The tables also indicate an inclusive relationship between surfaces (one surface being
a portion ;)f another) by a single, horizontal or vertical line connecting them on the table.
Where lines would cross or detour, certain matching symbols are used. Surfaces that are
entirely similar are connected using double lines where possible and a different set of
matching symbols where lines would cross or detour. See the key on each of Tables I-IV for
specific notation. It should be noted that, in a few cases, similarity is indicated although
some approximate data are not completely consistent. The uncertainty in these
approximations accounts for this discrepancy. As demonstrated by these tables, there are
many multiplets for which no plots have yet been made. Nevertheless, there are enough to
make some preliminary observations.

An example of how to use these tables is now described using Table II. In this
example, all plots are referenced by their appendix number, i.e., the first item listed for each
plot in each table. As a general rule, it is best to choose two plots first and then use the
tables to determine their relationship. For example, plot A13 and A19 are completely
similar, as are both of these to A15, as indicated by the double line connecting them in spite
of the fact that A15 lies between them on the double line. Furthermore, A13 and 420 are
inclusively similar as indicated by the single line connecting them. A13 is also inclusively
similar to 425. This is indicated by the "*" symbol which is among the set of symbols
which show inclusive similarity. This symbol is used since it would be awkward to use a
connecting single line. Correspondingly, 420 and 425 are marked by a "#" symbol which is
among the set that describe complete similarity. These tables contain a complete and concise

summary of the relationships between plots.
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LP.(eV)
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Fig. 19. LP. plot for *F multiplet with (R;,Rp.R; ) = (2,2,2) using P(1).

Table II indicates that for SO(3)xSU(2), similarity exists for atomic, diatomic, and
triatomic multiplets with all operators and identities investigated except P(2) acting on
triatomic states. P(1) generates nearly planar surfaces for all N-atomic states considered.

An example of this is given in Fig. 19. These conclusions (and others yet to be presented)
can be verified by reference to the appropriate graphs (indexed in the corresponding table) in
the appendices.

LP. for SO(2,1) shows surfaces sloping monotonically downward with increasing »
values and no inflection points for P(1) acting on atomic states nor P(2) acting on diatomic

states. Fig. 20 shows one such case. These were the only operators and identities plotted.
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a maximum at the position of maximum m and minimum u. For decreasing m, each surface

converges toward an intermediate value between its maximum and minimum.

Asmmption
B Siu(AAr) = Average 5,

L
v/
zzjd -

3

$%(298K)
52 54 56 58 60
-

=

-_'5 e
Fig. 22. 893 plot for 3D multiplet with (R,R; ) = (3,3) using P(2).

Forming other sets of similar graphs are those for P(2), except for (R,R,) = (2,3), (£;,£)
= (1,0), which are similar but not easily fittable, and those for diatomic homonuclear P(1),
which are easily fittable but do not have inclusive similarity for 'P nor 3S. An example of
this is given in Fig. 22. Another apparent irregularity is the atomic 2D.

All graphs prepared for S, in SO(2,1) using P(1) on atomic and P(2) on diatomic
states have virtually identical surfaces (Fig. 23, e.g.). These surfaces are characterized by
positive slope in the direction of increasing n, but also with negative concavity with

increasing n.
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*a

Fig. 23. $og plot for [1] - [4] multiplets with (£;,, ) = (0,1) and groups (1,7) using P(2).
Next, consider w, for diatomic multiplets in SO(3)xSU(2) (see Table IV). This
property, by definition, has only values for diatomic molecules. Thus, the only operators
and identities used are P(2) and diatomic homonuclear P(1). "P(2) surfaces for °D multiplets

first slope up and then down with decreasing m and u (e.g., Fig. 24). The 'P and 3§

I%AMAW 4
A @ FRg) = 42% of Averge Q
’
-8 !
sV / 7
L/ T 77

Fig. 24. w, plot for D multiplet with (R,R, ) = (2,2) using P(2).
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multiplets exhibit inclusive similarity to the *D multiplets. This is not the case for the *P

surfaces. The homonuclear P(1) plots have an extremely smooth nature with no inflection

points (e.g., Fig. 25). However, the 'P is not inclusively similar to the *D.

Assamption @ s ’
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Fig. 25. @, plot for D multiplet with (R,R, ) = (2,2) using diatomic homonuclear approximation.

It is interesting to note the similar shape of these surfaces and AH, for diatomic states.
This suggests a correlation between these properties, namely that vibration frequency is
related to bond energy for diatomic molecules, which we would intuitively expect.

The only observable operator used for @, in SO(2,1) is P(2). All constructed surfaces
have both positive slope and concavity for increasing n (see Fig. 26, e.g.), except the plot
for (£,,%,) = (1,1), groups (7,7) which has positive slope but negative concavity for

increasing n. They all have no inflection points and would thus be easily fitted.
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Fig. 26. ®, plot for [1] - [3] multiplets for (£;,¢, ) = (0,1) and groups (1,7) using P(2).

As a final note about the periodicity of the multiplets, Tables I-IV clearly indicate
that, for a majority of the cases, SO(3)xSU(2) demonstrates periodicity with respect to the
row numbers of the constituent atoms (indicated by the horizontal double lines and
corresponding symbols), and SO(2,1) demonstrates similarity with respect to the group
numbers (indicated in the same manner). In spite of some cases in both symmetries where

consistency between inclusive multiplets is lost, the periodicity, as just described, remains.

Section 4.2. Structure of periodic systems for SO3)xSU(2) and SO(2,1).

The structure of atomic, diatomic, and triatomic periodic systems is determined by the
location of the constituent multiplets with respect to a coordinate system. In the case of
systems using SO(3)xSU(2) symmetry, these coordinates are the values of the n and ¢
chemical quantum numbers for the states which constitute a given multiplet. As for systems

in SO(2,1) symmetry, values of the n and {£} chemical quantum numbers are used. In all
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the periodic systems discussed, it is assumed that all atoms exist for n < 7 and £ < 3, i.e.,

some but not all atoms are assumed to exist for Z < 156.

Fig. 27. Atomic periodic system in SO(3)xSU(2) symmetry.

For the group SO(3)xSU(2), the atomic periodic system consists only of multiplets
with chemical spin multiplicity § = 2. By referring back to Fig. 1, it can be easily seen that
there exits one and only one multiplet for each allowed combination of » and £. This is
illustrated further by Fig. 27. In this figure, note that the number of sections in each
multiplet corresponds to the chemical angular momentum multiplicity. Also, any two atomic
multiplets, denoted [»; ][¢; 1[s; ] and [n; 1[¢; [s; 1, are substitutable if ¢, = {; and 5; = ;.
When this is the case, it is denoted as [n, 1[¢, 1[s; ] = [#, ][{; ][s; ]. This means that the
structure of the state vectors within the two multiplets are isomorphic, and to obtain one
from the other, one must merely substitute the corresponding atomic symbol at each position

in each state vector.
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The molecular periodic systems for SO(3)xSU(2) symmetry are derived by means of
this substitutability principle. Equivalence classes of N-atomic molecular multiplets are

defined in Eq. (29):

[z, 305,1] = {IL,30S,1] ¥ ie (In 0t 10s, ] = [n, 200, 2is, D)} 29)

In this equation, I = {1, 2, ..., N} is an index set. These equivalence classes require
members to consist of direct products of substitutable atomic multiplets. An important
further constraint is that each member of a given equivalence class must contain an equal
number of identical atomic multiplets in its direct product. For example, multiplets for the
chemical seniority vectors | 1//6 BBB> and |1//6 AlAlAl> belong to the same class, but
[1//2 BBAlI> and |BAlGa> do not. For diatomic multiplets, there are 76 different
equivalence classes. There exist 954 equivalence classes for triatomic multiplets. The
results of this process make it necessary to determine only one multiplet for each of the
equivalence classes in order to discern the structure of the N-atomic molecular periodic
system. Complete sets of diatomic and triatomic multiplets for SO(3)xSU(2) periodic
systems are included in Appendices C and D respectively.

The diatomic molecular periodic system for SO(3)xSU(2) consists of roughly equal
numbers of triplet and singlet chemical spin multiplets. Therefore, the periodic system is
divided into two coordinate systems, one for each chemical spin state. These are given in
Figs. 28 and 29. As was the case for the atomic system, the number of sections shown on
each multiplet corresponds to the chemical angular momentum multiplicity. Note that the

first triplet
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Fig. 28. Diatomic singlet periodic system in SO(3)xSU(2) symmetry.

multiplets occur along the line in the n-£ plane given by £ = n - 2. The most abundant state

of chemical angular momentum is £ = 2, i.e., the *D state. Furthermore, the single position

Fig. 29. Diatomic triplet periodic system in SO(3)xSU(2) symmetry.
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with the largest number (21) of multiplets is £ = 2 and n = 10. The system of singlets is
similar to that of the triplets, but there are no 1§ multiplets at » = 2 and no I multiplets at

= 8. Also, the £ = 1, 2, and 3 states for n = 10 have the same number of multiplets.

Fig. 30. Triatomic doublet periodic system in SO(3)xSU(2) symmetry.

The diagrams for the triatomic systems of SO(3)xSU(2) are constructed in the same
manner as those for the diatomic system. Again, the periodic system is divided into two
coordinate systems, one for doublet and one for quartet states (Figs. 31, 32). The first
quartet multiplets occur along the line £ = n - 3. The number of multiplets at the extreme

allowable values of the coordinates is relatively small. Thus, these are difficult to
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78

Fig. 31. Triatomic quartet periodic system in SO(3)xSU(2) symmetry.

see on the the figures. The number of quartets multiplets is only slightly greater than half of
the number of doublets. For each value of £, the position with the maximum number of
multiplets in both cases (doublets and quartets) is n = 15. Note the smooth nature of these
triatomic plots which appear to be somewhat Gaussian.

The atomic periodic system in SO(2,1) symmetry is given in Fig. 32. Note that
multiplets begin at given values of n and {¢}, and contain infinitely many subsequent values
of n (only n < 11 shown). Multiplets begin along a diagonal line in the n-{¢} plane, namely
{¢} = n- 1. The number of atomic multiplets is linearly increasing for increasing values of

n and {f} along this diagonal. Verification of this is given by reference back to Fig. 2.
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Substitutable atomic multiplets are denoted [m; 1[g; 1[{¢; }1 = [m; 1[n; 1[{¢; }] when {¢, } =

{4}

Fig. 32. Atomic periodic system in SO(2,1) symmetry.

Molecular periodic systems for SO(2,1) are constructed by means of this
substitutability principle. The definition of equivalence classes of N-atomic molecular

multiplets is given in Eq. (30).

(0L, 1] = { UL, 1| VieX(m, M, e, 1= In, 1w, 2018, 1)} (30)

As in the SO(3)xSU(2) case, each member of a given equivalence class must also contain the
same number of identical atomic multiplets in its direct product as do the other members.
This guarantees that all molecular multiplets from a given equivalence class are substitutable.
There are 62 unique equivalence classes for diatomic multiplets, and 411 for triatomic
multiplets. Appendices E and F contain complete sets of multiplets (up to substitutability) for

diatomic and triatomic periodic systems in SO(2,1) symmetry.
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Fig. 33. Diatomic periodic system in SO(2,1) symmetry.

The periodic system for diatomic molecules in SO(2,1) symmetry is depicted in Fig.

33. Diatomic multiplets begin along the line in the n-{f} plane given by {£} = n-2. The

Fig. 34. Triatomic periodic system in SO(2,1) symmetry.
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number of multiplets is maximum at {£} = 6 and monotonically decreases in both directions
from this point.

The triatomic molecular periodic system for SO(2,1) contains- multiplets that begin
along the line {{} = n - 3. The overall shape of the system is similar to that for diatomic
molecules (See Fig. 34). The number of multiplets for a given {£} increases monotonically
with {¢} until a maximum is reached at {£} = 9 and then monotonically decreases.

Because of the relatively small number of multiplets at {£} = 0, 1, and 2, these multiplets

are difficult to discern in Fig. 34.
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V. Conclusion.

As the result of the theory proposed by Zhuvikin and Hefferlin, the group-theoretical
molecular periodic systems for diatomic and triatomic molecules have been completed for
two subgroups of the group SO(4,2)xSU(2), the symmetry group of the atomic periodic
chart. These subgroups are SO(3)xSU(2) and SO(2,1). Each subgroup leads to a set of
multiplets which constitutes its respective periodic system. These molecular periodic systems
have the property that their structure is 3-dimensional. This is also true for all N-atomic
periodic systems, whereas some previously devised systems were 2N-dimensional.

Expectation value plots for states within multiplets in each symmetry demonstrate
periodicity. Multiplets in SO(3)xSU(2) symmetry have been shown to demonstrate
periodicity primarily with respect to the row numbers on the atomic periodic chart of the
constituent atoms, while periodicity in SO(2,1) is with respect to the group (column)
numbers. Details are given in Tables I-IV. It is this periodicity which will allow the curve
fitting subsequent data prediction possible.

The future of this project, other than curve fitting and predicting data from the plots
already obtained, falls in three areas. First, there still remain many multiplets for which
plots are to be constructed and their periodicity verified more generally. Secondly, the
investigation into different subgroups of SO(4,2)xSU(2) and even different subgroups of other
groups which more accurately describe the periodic system of atoms can be made. Lastly,
the principles set forth in Section 2 are completely general. Therefore, while the possibility
of verification of results with actual data decreases for higher order molecular systems, the

structure of such systems is, in principle, determinable.
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Appendix B:

Plots of AH,, I.P., 8%, and o, for SO(2,1) symmetry group
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Entropy at 298K (cal/(mole degree))

Bl11

S°(298K)
L 30 35 40

SO(2,1) Atoms 1 =0 and 1 Groups 2 and 6

Entropy at 298K (cal/(mole degree))
B12

sl

S*(298K)
L 34 36 3% AQ A2
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SO(2,1) Atoms 1 =1 Group 4
Entropy at 298K (cal/(mole degree))

B13

49

S(298K)
38

| 36

SO(2,1) Diatomic Molecules (l1,12)=(0,0) Groups (1,1)
Entropy at 298K (cal/(mole degree))
B14

'

S*(29%K)
36
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SO(2,1) Diatomic Molecules (I1,12)=(0,1) Groups (1,7)
B15 Entropy at 298K (cal/(mole degree))

@

SO(2,1) Diatomic Molecules (13,12)=(0,1) Groups (2,6)
Entropy at 298K (cal/(mole degree))
B16

|
Assumption

[ B S%;(AHe) = Average S,

(298K)
L 42 45 A% 51
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B18

®elcm™)
i SQQ 3 QQO

S*(298K)

v

SO(2,1) Diatomic Molecules (11,12)=(1,1) Groups (7,7)
Entropy at 298K (cal/(mole degree))

@

6
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SO(2,1) Diatomic Molecules (11,12)=(0,0) Groups (1 3
Vibration Frequency (cm™?)
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SO(2,1) Diatomic Molecules (11,12)=(0,1) Groups (1,7)

Vibration Frequency (cm?)

B19
2
g ¢
g
8 -
SO(2,1) Diatomic Molecules (I1,12)=(0,1) Groups (2,6)
Vibration Frequency (cm™)
B20 '
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e [ | for any atom A
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SO(2,1) Diatomic Molecules (11,12)=(1,1) Groups (7,7)
' Vibration Frequency (cm™)

B21

AQ0 800

We(cm™)

V

SO(2,1) Diatomic Molecules (l1,12)=(1,1) Groups (6,6)
Vibration Frequency (cm?)

B22

600 1200 1800
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TABLE I. Graphical interrelationships for heat of atomization.

Key: Wi;X,Y,Z;N;* where Wi = plot is "i"th graph in appendix W, X = no. of actual data,

Y = no. of points which include approx. data, Z = no. of predictable data (missing),

N = index of fittability of surface. Inclusively similar plots are connected with single (---) lines.
Completely similar plots are connected with double (==) lines. When lines would cross or detour,
inclusively similar plots are labeled with one of the symbols {*, !, @}, while completely similar
plots are labeled with one of the symbols {#, $, %}.

SO(3)xSU(2) (R1, ...,Rn) (R1,..,Rn) (R1,R2)
Oper. Mult. (2 ..:2) (3, 63) (2,3)
N=2 P(2) 3D Al1;14,0,1:3;*# = A4;10,0,5;3
I

1P A2;3,0,0;5

3S A3;3,0,0;5* = AS52015
N=3 P(3) 4F  A66,0222#

2D

4P
"N=2 P 3D AT;1500:5#1 = A10;150,0,5
diatomic
homonuclear 1P A83,005 = Al11;3,00;5

3S A9;3,0,0;5:*! = A12;3,0,0;5
N=3 P(1) 4F
triatomic
homonuclear 2D

4P
N=3 P(2) 4F

2D

4p
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SO(3)xSU(2) (R1,..,Rn) (R1,..,Rn) (R1,R2)
Oper. Mult. 2, ..,2) (3, ...,3) (2,3)
N=3 P(1) 4F
diatomic
homonuclear 2D
4P
SO(2,1) Groups Groups Groups Groups Groups
Oper. (ILugln) (1, .,1) LY 26 (et (L)
N=2 P(2) (0,0
(0,1) B1;7,0,-;4;*
( 1 ; 1 ) B2 ;4;05';4; o B3;6’0’ ';4
N=3 P(3) (00,0
(0,0,1)
(0,1,1)
(1,1,1)
N=2 P(1) (0,0
diatomic
homonuclear  (0,1)
(L,1)
N=3 P() (0,0,0)
triatomic
homonuclear  (0,0,1)
(0,1,1)

(1,1,1)
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SO(2,1) Groups Groups Groups Groups Groups
Oper. (I1,...n) (1,..,1) 1,7 (2,6) (4, ...4) (7,7
N=3 P(2) (00,0
(0,0,1)
(0,1,1)
(1,1,1)
N=3 P(1) (0,0,0)
diatomic
homonuclear (0,0,1)
(0,1,1)

(1,1,1)
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TABLE II. Graphical interrelationships for ionization potential.

Key: Wi;X,Y,Z;N;* where Wi = plot is "i"th graph in appendix W, X = no. of actual data,

Y = no. of points which include approx. data, Z = no. of predictable data (missing),

N = index of fittability of surface. Inclusively similar plots are connected with single (---) lines.
Completely similar plots are connected with double (==) lines. When lines would cross or detour,
inclusively similar plots are labeled with one of the symbols {*, !, @}, while completely similar
plots are labeled with one of the symbols {#, $, %]}.

(R1,..,Rn) (R1,..,Rn) (R1,..,Rn) (R],..Rn (R1,R2

SO(3)xSU(2) (R1,...,Rn)
Oper Mult. (2, 52) 3, ...,.3) (4, ..,.4) (3.5:.5) (6, ...,6) (2,3)
N=1 P(1) 2F A16;12,0,2;2;*
2D A14;10,0,0; = A17;10,0,0; = A18;9,0,1;4
I "
2P Al3;6,0,0;5* = Al156,0,0;5 ================= A19,6,0,0;5
I
N=2 P(Z) 3D A20;7,6‘2;3;# = A22;3,4,8,3 T I A O R e A23;3,4,8
I
1P |
|
3S A21;1,2,0;4
N=3 P(3) A4F A244,024;3;#
2D
4P
N=2 P(1) 3D A255,0,0;5;#*
diatomic |
homonuclear 1P A26;1,2,0;5
3S A27;1,2,0;5;*
N=3 P(1) 4F
triatomic
homonuclear 2D

4P



109

SO(3)xSU(2) (R1,..,Rn) (R},..,Rn) (R],..,Rn) (RY,..,Rn) (R],..Rn (R1,R2
Oper Mult. (2, ss2) (3,...3) (4, ...,4) (5,.,5)  (6,...6) (2,3)
N=2 P(1) 3D A2815005# = A30;150,0;5
P
35S A29;3!,0,0;5 = A31;3,0,0;5
N=3 P(1) 4F A322800;5#
2D A33;8,:),0;5;#
4P
N=3 P(2) 4F A347,1381
2D A35;11,6,3;4
4P
N=3 P(1) 4F
diatomic
homonuclear 2D
4P
SO(2,1) Groups Groups Groups Groups  Groups  Groups
Oper (1,..,1n) (1,..,1) €1, 7) (2, 6) 4,.4) ((1,..7) (6,..6)

N=1 P(1) 0&1
1
N=2 P(2) (0,0)
01)

(1,1)

B4;8,0,-4; = B5;8,0,-;4

B6;4,0,-4;#

B%4,0,-4; = B10;6,0,-;4
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SO(2,1) Groups Groups Groups Groups  Groups  Groups
Oper (11,..,1n)  (1,..,1) (1,7 (2,6) (4,..4) - (7,..,.7) (6,..6)

N=3 P(3) (0,0,0)

(0,0,1)
(0,1,1)
(1,1,1)
N=2 P(1) (0,0)

diatomic
homonuclear (0,1)

(1,1)
N=3 P(1) (0,00)
triatomic
homonuclear (0,0,1)
(0,1,1)
(1,1,1)
N=2 P(1) (00)
01)
(L1)
N=3 P(1) (0,0,0)
(0,0,1)
(0,1,1)

(1,1,1)
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SO(2,1) Groups Groups Groups Groups  Groups  Groups
Oper (1,..n) (1,..,1) 1,7 (2, 6) 4,..9 (1,..,7) (6,..6)

N=3 P(2) (0,0,0)

(0,0,1)

(0,1,1)

(1,1,1)
N=3 P(1) (0,0,0)
diatomic
homonuclear (0,0,1)

(0,1,1)

(1,1,1)
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TABLE III. Graphical interrelationships for entropy.

Key: Wi;X,Y,Z;N;* where Wi = plot is "i"th graph in appendix W, X = no. of actual data,

Y = no. of points which include approx. data, Z = no. of predictable data (missing),

N = index of fittability of surface. Inclusively similar plots are connected with single (---) lines.
Completely similar plots are connected with double (==) lines. When lines would cross or detour,
inclusively similar plots are labeled with one of the symbols {*, !, @}, while completely similar
plots are labeled with one of the symbols {#, $, %}.

SO(3)xSU(2) (R1,..,Rn) (RL,..Rn) R L R L R L
Oper. Mult. 2, ..,2) (3, ..3) (23)3,1)  (23)(1,00  (2,3)0,1)
N=1 P(1) 2D A367,032

2P A35;6,0,0;5;@# A37:6,0,0;5

N=2 P(2) 3D  A389602*
|

AdL6542 = Ad34,7,42

1P A39,12,0;5 ========== Ad4;120;5 Ad6;1,1,1;5
3S Ad0;1,2,0,5:* = A421,205
3P Ad5342:3; = A473243 = A482253

N=3 P(3) 4F

4P

N=2 P(l) 3D A49.96,0;5;! = AS52,96,0;5
diatomic
homonuclear 1P AS0;1,2,0,5

AS53;1,2.,0;5

3S AS51;1,2,0;5;! A54;1,2,0;5

N=3 P() 4F
triatomic
homonuclear 2D

4P
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SO(3)xSU(2) (R1,.,Rn)  (R1,..,Rn) R L R L R L
Oper. Mult. 2, ..2) (3, ...3) (23)(1,1) (230 (2,3)0,1)
N=2 PQ@1) 3D  AS5;1500;5;@# = AS57;150,0;5
P
3S A56;3|,0,0;S = A583,00;5
N=3 P(1) 4F AS92800;5@#
2D Aa},m,(l,o,s;@#
4P
N=3 P(2) 4F A61;13,15,0;2
2D A62;2,8,0;1
4P
N=3 P(l) 4F
diatomic
homonuclear 2D
4P
SO(2,1) Groups Groups Groups Groups Groups
Oper. (11, ..,In) (1,:651) (1,7) (2,6) (4, ...4) (7 i520)
N=1 P(1) 0&1 B11;8,0,5;# = B12;50,55
1 B13;2,0,5;#
N=2 P(2) (0,00 B144,05#
0,1) B15;10,0,55;:# = B16;0,6,;5
(1,1) B17;6,0,55;
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SO(2,1) Groups Groups Groups = Groups  Groups
Oper. (I1,..n) (1, ..,1) 1,7 (2,6) (4l (TaD
N=3 P@3) (0,00)
©01)
(0,1,1)
1,1,1)
N=2 P(1) (00)
diatomic
homonuclear  (0,1)
(1,1)
N=3 P(1) (0,00)
triatomic .
homonuclear  (0,0,1)
(0,1,1)
(1,1,1)
N=2 P(1) (00)
1)
(L1)
N=3 P(1) (0,00)
(0,0,1)
(0,1,1)

(1,1,1)
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SO(2,1) Groups Groups Groups Groups Groups
Oper. (11,...In) (1,..,1) (1, 7} (2, 6) (4, ...,4) (7, =7}
N=3 P(2) (0,,0)
(0,0,1)
0,1,1)
(1,1,1)
N=3 P(1) (0,0,0)
diatomic
homonuclear  (0,0,1)
(0,1,1)

(L1,1)
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TABLE IV. Graphical interrelationships for vibration frequency.

Key: Wi;X,Y,Z;N;* where Wi = plot is "i"th graph in appendix W, X = no. of actual data,

Y = no. of points which include approx. data, Z = no. of predictable data (missing),

N = index of fittability of surface. Inclusively similar plots are connected with single (---) lines.
Completely similar plots are connected with double (==) lines. When lines would cross or detour,
inclusively similar plots are labeled with one of the symbols {*, !, @}, while completely similar
plots are labeled with one of the symbols {#, §, %}.

SO(3)xSU(2) (R, R2) (R1,R3) R L R L R L
Oper. Mult.  (2,2) (3,3) AL  @2HA0 (2301
N=2 P(Z) 3D A§3;8,S,2;3;#' = A666093 = A6854,6;3
l
1P A64;1,1,1;5
3S  A651205*@ = A67:12,05 = A691,1,1;5
3P AT0:4232@ ATI2L65 = A722253
N=2 P(l) 3D A73;96,0;5:#! = A7696,0;5
diatomic
homonuclear 1P  A743,005*@ = A77;12,0;5
3S  A753,00;5* = A781205
3P
SO(2,1) Groups Groups Groups Groups Groups
Oper. (1IL12) (1,1 1,7 (2,6) (1,1 (6,6)
N=2 P(2) (0,0) B186,0,4;#
(0,1) B19;8,0,4;# = B20;0,5;4
(1,1) B21;6,0,-;4 B22:6,0,-:4;#

N=2 P(1) (0,0)
diatomic
homonuclear (0,1)
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