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Abstract

A nonparametric Bayes estimator of the survival function is derived for right censored

data where additional observations from the residual distribution are available. The

estimation is motivated by data on contamination concentrations for chromium from

one of the EPA’s toxic waste sites. The residual sample can be produced by hot spot

sampling, where only samples above a given threshold value are collected. The Dirichlet

process is used to formulate prior information about the chromium contamination, and

we compare the Bayes estimator of the mean concentration level to other estimators

currently considered by the EPA and other sources. The Bayes estimator generally out-

performs the other estimators under various cost functions. The limiting distribution

is the nonparametric maximum likelihood estimator, which is identical to the Kaplan-

Meier estimator for concentration values observed below the residual sample threshold.

Robustness of the Bayes estimate is examined with respect to misspecification of the

prior and its sensitivity to the censoring distribution.

KEY WORDS: Censoring; Cost function; Dirichlet process; Robustness; Skewed dis-

tribution.
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1 Introduction

Due to the high cost of sampling, practitioners have an increasing need for statistical

inference of non i.i.d. data, including censored or truncated observations from the underly-

ing population. This is a serious concern for the U.S. Environmental Protection Agency’s

(EPA’s) Superfund program with regard to the clean up of hazardous toxic waste sites across

the country. Due to the expense of environmental sampling procedures, usually no more than

a small sample is taken from a site, and censored or truncated data can provide valuable

supplemental information to the data analysis.

The underlying distribution for the concentration of contaminants in many of these toxic

waste soils is positively skewed. With many right-skewed distributions (e.g., exponential

[6]), it is probable that the sample mean x̄ will underestimate the true population mean; i.e.,

P (X̄ < µ) ≥ 1/2. Consequently, the resulting health risks will be underestimated. In such

cases, special attempts are made to capture high values of concentration by sampling addi-

tionally from the “hot spots”, which are defined as high chemical concentrations representing

the upper quantiles of the population. EPA’s Superfund program data consist of about 10%

of the measurements chosen from the hot spots. Such samples might be generated by using

devices that detect only the contaminants that exceed a fixed threshold value. The hot spot

data set was called a purposive sample in the workshop held by the Office of Emergency

and Remedial Response in 1990 [16]. We refer to such data as the observations from the

residual distribution. Chen and Jernigan [5] and Chen [3, 4] analyzed the EPA data with
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special emphasis given to the skewness of the data, but did not model the hot spot data as

observations from the residual distribution.

Let F be the original distribution with support on R+ = (0,∞), and let t0 be a positive

known time. With the EPA data, the interval (t0,∞) represents chromium levels in the hot

spots. The residual distribution is given by its survival function

S(t | t0) =
S(t+ t0)

S(t0)
, t > 0, (1.1)

where for any distribution F , S ≡ 1 − F . Naturally, the underlying distribution is not

necessarily identifiable if the observations are only available from the residual distribution.

To draw inference about F , extra sample information, such as a random sample from F is

required.

Residual data appear in many settings, including manufacturing and reliability. For

example, if a product manufacturer chooses to test the manufactured item for a limited time

before making it available to the consumer, the consumer observes only the item’s residual

lifetime. This is commonly known as “burn-in”. Barlow and Proschan [1], Shaked and

Shantikumar [19], among others, emphasized the important role played by residual lifetimes

in the analysis of system reliability and aging characteristics.

Related situations also exist in medical studies. For example, the survival data on AIDS

patients might include some patients who are known to survive time t0 beyond the initial

stage of the disease and only their remaining lifetimes are observed. These observations

constitute a residual lifetime sample. Analysis of AIDS data involving residual lifetimes

with right censoring is discussed in Gross and Lai [12]. Left truncated data, combined with

right censored lifetimes also have been used in the epidemiological studies of diabetes [11].

4



Statistical literature contains numerous inferences based on combining information from

related samples. Vardi [25] obtained the nonparametric maximum likelihood estimator

(NPMLE) using a random sample from F combined with additional observations from the

distribution G(t) ∝
∫ t

0 w(x)dF (x), where w(.) is a known nonnegative bias function. A sam-

ple from the residual distribution (1.1) can be regarded as a biased sample from G with

w(x) = I(x > t0), where I(A) is the indicator function of an event A. For ease of notation,

the residual distribution is rewritten as

S̃(t) =
S(t)

S(t0)
, t > t0, (1.2)

which differs from (1.1) by a location shift.

Recently, Kvam, Singh and Tiwari [15] considered the problem of estimating the un-

derlying distribution function F using a “conventional” sample of randomly right censored

lifetimes in addition to independent observations from the residual distribution (1.2), which

were also right censored. Thus for the specific choice of the bias function w(x) = I(x > t0),

Kvam et al. [15] extended the work of Vardi [25] to the case of censored data. Their NPMLE

of S(.) is identical to the product limit (PL) estimator [13] for all t < t0, but differs for values

of t > t0.

In this paper, we consider the estimation of S(.) in a Bayes framework using the Dirichlet

process prior [7] for F with parameter α(.), a finite nonnull measure on R+. The estimator is

derived under squared error loss. In Section 2, a result about the Dirichlet process (Theorem

1) is established that in turn is used to derive the Bayes estimator of S for the case of uncen-

sored data drawn from the original distribution F as well some from its residual distribution

(1.1). In Section 3, the Bayes method is applied to EPA data in order to estimate the mean
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of the asymmetric contamination distribution. The Bayes estimator is compared to more

standard estimators using various criteria suited for an environmental remediation problem.

The performance of the estimators are based on data from one of the EPA’s toxic waste sites.

The Bayes estimator of F for censored data is derived (using Theorem 1) in Section 4, and we

examine its sensitivity to different levels of random right censoring. The estimator’s Bayes

robustness [2] is investigated in Section 5. The effect of the Dirichlet prior distribution on

the Bayes estimator is illustrated using the EPA data along with Monte Carlo simulations.

2 Bayes Estimation of the Survival Function

Let F be a Dirichlet process on (R+, B(R+)) with parameter α, denoted by F ∼ D(α),

whereB(R+) is the Borel σ -field of subsets ofR+. The role of a Dirichlet process as a prior for

the unknown underlying distribution F in solving various nonparametric problems in Bayes

setup has been elucidated in the fundamental paper of Ferguson [7]. For a comprehensive

review see Ferguson, Phadia and Tiwari [8].

Define α̃(A) = α(A ∩ (t0,∞)), for A ∈ B(R+) . Throughout we use the notation X q Y

to denote that random elements X and Y are independent. The following result is required

for the derivation of the Bayes estimator of S. We will also be using F and 1 − S or S

interchangeably. The proof is given in the Appendix.

Theorem 1. Let F ∼ D(α). Then 1 − S̃ ∼ D(α̃). Furthermore {S(t) : t ≤ t0} and{
S̃(t) : t > t0

}
are independent processes.

Under squared error loss and prior D(α), the prior guess (the Bayes estimator based on
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no sample) of S(t) for t ≤ t0, and S̃(t) for t > t0 are given by

S0(t) = ED(α){S(t)}

=
α(t,∞)

α(R+)
, t ≤ t0

and

S̃0(t) = ED(α̃){S̃(t)}

=
α̃(t,∞)

α̃(R+)
, t > t0

respectively. Invoking Theorem 1, the prior guess for S(t) with t > t0,

S0(t) = ED(α){S(t0)S̃(t)}

= ED(α){S(t0)}ED(α̃){S̃(t)}

=
α(t0,∞)

α(R+)

α̃(t,∞)

α̃(R+)

= S0(t0)S̃0(t).

Suppose that X1, ..., Xn;Xn+1, ..., Xn+m represent (m + n) independent observations of

which X1, ..., Xn given S are identically distributed as (1 − S), and Xn+1, ..., Xn+m given

(S, t0) are identically distributed as (1− S̃). Thus the data consists of a sample (X1, ..., Xn)

of size n from the original distribution F and an additional sample (Xn+1, ..., Xn+m) of size

m from the residual distribution (1 − S̃). Let n0 = Σn
i=1I(Xi > t0) be the number of

observations from F that are greater than t0.

For t ≤ t0, the Bayes estimator of S(t) under squared error loss and the sample X1, ..., Xn;

Xn+1, ..., Xn+m depends only on X1, ..., Xn. It is well known [7] that the posterior distribution

of F given a sample (X1, ..., Xn) from F is also a Dirichlet process with parameter α(t)

updated to α(t) + Σn
i=1I(Xi ≤ t). Hence the Bayes estimator of S(t) for t ≤ t0 is given by
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Sb(t) = ED(α) {S(t) | X1, ..., Xn}

= pnS0(t) + (1− pn)Sn(t), (2.3)

where pn = α(R+)/(α(R+) + n), and nSn(t) =
∑n
i=1 I(Xi > t).

For t > t0, it follows from Theorem 1 that the Bayes estimator of S(t) is given by

ED(α){S(t0) | X1, ..., Xn}ED(α̃){S̃(t) | X̃1, ..., X̃n0 , Xn+1, ..., Xn+m},

where X̃1, ..., X̃n0 are the observations among X1, ..., Xn from F that are greater than t0.

Note that among these n observations, only X̃1, ..., X̃n0 provide information for S̃(t). Let

qm+n0 = α̃(R+)/(α̃(R+) + n0 +m), and define Sm+n0(t) such that

(m+ n0)Sm+n0(t) =
∑n

i=1
I(X̃i > t) +

∑n+m

i=n+1
I(Xi > t) =

∑n+m

i=1
I(Xi > t > t0).

Then,

Ŝ(t) =


Sb(t) t ≤ t0

Sb(t0)
{
qm+n0S̃0(t) + (1− qm+n0)Sm+n0(t)

}
t > t0

(2.4)

If t0 = 0, then n0 = n and with no additional observations from the residual distribution,

(i.e., m = 0) the estimator Ŝ(t) reduces to Sb(t). The parameter α(R+) is a measure of belief

in the prior guess of F [7]. Clearly, in the limit as α(R+)→ 0, we have α̃(R+)→ 0 as well,

and the Bayes estimator of S(t), given by (2.3) and (2.4), converges weakly [18] to Sn(t) for

t ≤ t0, and to Sn(t0)Sm+n0(t) for t > t0. The limiting Bayes estimator of S(t) coincides with

the maximum likelihood estimator of S(t) obtained by Kvam et al. [15].
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3 Estimating Mean Concentration of Contaminants

For remediation decisions regarding toxic waste sites, the EPA uses particular perfor-

mance measures tailored to environmental and health risks corresponding to underestimat-

ing contamination levels as well as financial risks corresponding to overestimating levels.

The contamination level mean is of primary interest. By applying the sample mean with

right-skewed data, there is a high probability that the true mean contamination level will

be underestimated. Consequently, the public’s risk to health can be significantly underesti-

mated as well. To alleviate this problem, the EPA collects about 10% of the data from the

residual distribution and uses the upper point of a 95% normal theory confidence interval

(UCL = X̄ + 1.96σX̄) as an estimator, where X̄ is the sample mean and σX̄ is the standard

deviation of X̄. However, due to skewness of the underlying distribution, the UCL estima-

tor has a significant probability of falling above the true mean by more than two standard

deviations. It is mentioned by the EPA [9] that such large over-estimation can result in

unnecessary costs such as money spent in cleaning a site. Furthermore, excessive money

spent on one site postpones the remediation of the next site.

Several estimators have been proposed for the mean of an asymmetric distribution in-

cluding the generalized Bayes estimator for lognormal models [17], the transformed mean

obtained through use of a Box-Cox transformation [23, 20], the once-Winsorized mean [10],

the penalized mean [5] and most recently the modified penalized mean [4]. Since F has

support on R+, the mean µ of F is given by µ =
∫∞

0 S(t)dt, and the Bayes estimator of µ

under squared error loss [7] is
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µ̂ = ED(α)

{∫ ∞
0

S(t)dt|X1, ..., Xn;Xn+1, ..., Xn+m

}
= ED(α)

{∫
(0,t0]

S(t)dt|X1, ..., Xn

}

+ED(α̃)

{
S(t0)

∫
(t0,∞)

S̃(t)|X̃1, ..., X̃n0 , Xn+1, ..., Xn+m

}

=
∫

(0,t0]
Sb(t)dt+

∫
(t0,∞)

Ŝ(t)dt. (3.5)

If t0 = 0 and m = 0, the estimator µ̂ reduces to

µ̂ =
∫ ∞

0
Sb(t)dt

= pn

∫ ∞
0

S0(t)dt+ (1− pn)
∫ ∞

0
Sn(t)dt

= pnµ0 + (1− pn)X̄,

where µ0 is the prior mean.

We are constructing an estimator of the mean for which modest amounts of data (e.g.,

n ≤ 20) are combined with smaller samples from hot spots. In addition, limited subjective

prior information may be available to further characterize the contamination concentration.

The data on chromium concentrations from one of EPA’s toxic waste sites consists of 623

observations, assumed here to be the actual population in order to evaluate the performance

of µ̂. A Monte Carlo analysis is performed by repeatedly drawing samples from these 623

observations (with replacement) and comparing the resulting estimates with the mean of the

population. We denote Sepa as the empirical estimator based on these 623 values.

Concentration values range from 0.15 mg/kg to 103.975 mg/kg with a mean of 4.945

mg/kg, and the standard deviation of 10.002 mg/kg. The log-normal model is extensively
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used in statistical analysis of environmental data [26]. For this reason, we apply the log-

normal distribution as the prior with the Dirichlet process. The population of 623 values,

however, does not appear to be distributed as log-normal (see Figure 1). This can be shown

analytically using a variety of tests for goodness of fit. We compensated the goodness of fit

test (based on the Kolmogorov-Smirnov statistic) by acknowledging that the observations

listed at 0.15 mg/kg are actually left censored. However, severe lack of fit also exists in the

upper tails of the distribution.

We are interested in properties of the Bayes estimators that are constructed using tacitly

assumed prior distributions. We are also interested in the robustness of the Bayes estimators

in case the prior distribution is misspecified. We model the prior parameter α(t) using a

log-normal distribution with prior parameters µ = 0.8 and σ2 = 1.6275. In this case, the

mean and variance closely resemble the true underlying population, so any misspecification

of the Dirichlet prior is due to the choice of the log-normal distribution for S0. We take

α(R+) = 1 so that the prior guess of F (t) is α(−∞, t).

To examine the relative performance of the nonparametric Bayes estimator, we compute

µ̂ and compare it to two common estimators of the mean: the mean X̄ of the random

sample of size n, and the biased mean X̄∗ of the combined sample of size n+m. We sample

10% of the data from the residual distribution (hot spots) using the upper 95th percentile

(t0 = 23.2453) as the threshold value.

Three performance measures are used to contrast the estimators: the mean squared error

(mse) along with the modified cost function (mcf) and the EPA’s asymmetric cost function
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(acf), which are defined below. The mcf, which is also not symmetric, is defined as

mcf = 1− Pr(µx − 0.5σxn
− 1

2 ≤ θ̂ ≤ µx + 2σxn
− 1

2 ),

and differs slightly from the cost function [4] given by

cf = 1− Pr(µx ≤ θ̂ ≤ µx + 2σxn
− 1

2 ),

where θ̂ is an estimator of the population mean µx,and σx is the population standard de-

viation. Under cf, the biased mean is a useful estimator due to its conservative nature [4].

However, mcf is preferred over cf because it does not over-penalize for a small negative error.

The asymmetric cost function applied by Flatman and Englund [9] is defined as

acf =


c1|µ− θ̂| θ̂ ≤ µ

c2|µ− θ̂| θ̂ > µ.

(3.6)

As they noted, both underestimation and overestimation of the population mean can lead to

critical loss. Overestimation of the population mean, which leads to unneeded remediation,

can also lead to fewer future remediation in other critical areas of contamination. Differences

in the loss are characterized through the positive constants (c1, c2). The mcf and acf criteria

are a more suitable performance measures than the cf because they better balance these two

potential losses.

Tables 1 and 2 show the summary of the resulting estimates for the case in which (n,m)

is set at levels (9,1), (18,2), and (45,5). For Table 1, α(R+) = 1 is used, and for Table 2,

α(R+) = 20. For the acf criteria in (3.6), we assign (c1, c2)=(1, 2), assuming more serious

consequences exist for underestimating the mean contamination level. Clearly, µ̂ has the
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best overall performance among the three procedures. The improvement is more dramatic

with larger samples.

In the simulation results summarized in Table 1, little prior information supports the

Bayes estimator, so the results are very close to the MLE results in [15]. For the sample

of size n + m = 20, for example, the mse of the MLE is 4.8187, not far from mse for the

Bayes estimate of the mean. The choice of prior distribution S0 can strongly effect the Bayes

estimate if the prior weight is larger; this can be seen in the summary results of Table 2. We

will further investigate this issue in Section 5.

4 Bayes Estimation of S(t) with Censored Data

In various industrial as well as medical experiments, it is not always possible to obtain

purely uncensored lifetimes. Technological advances in these fields combined with limited

experimental budgets have made random right censoring increasingly common. In this sec-

tion we consider the problem of estimating the underlying distribution function in the Bayes

framework using a conventional sample of randomly right censored lifetimes in addition to

independent items generated from the residual distribution in (1.2), which might also be

right censored.

Let X1, ..., Xn; Xn+1, ..., Xn+m be random variables defined as before. Let Y1, ..., Yn;

Yn+1, ..., Yn+m be independent random variables such that Y1, ..., Yn are independent identi-

cally distributed (i.i.d.) H1 on R+ and Yn+1, ..., Yn+m be i.i.d. H2 on (t0,∞). We assume

that {Xi}q{Yi}. The observed right censored data consists of (Zi, δi), i = 1, ..., n+m, where

Zi = min(Xi, Yi) and δi = I(Xi ≤ Yi), i = 1, ..., n+m. The Bayes estimator of S(t) for t ≤ t0
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is given by

Ŝc,n (t) = ED(α){S (t) | (Zi,δi) , i = 1, . . . , n}.

Proceeding along the lines of Susarla and Van Ryzin [21], it can be shown that for t ≤ t0,

Ŝc,n(t) =
α(t,∞) + nSc,n(t)

α (R+) + n

n∏
i=1

(
α (Zi,∞) + nSc,n (Zi) + 1

α (Zi,∞) + nSc,n (Zi)

)I(Zi≤t,δi=0)

,

where nSc,n (t) =
∑n
i=1 I (Zi > t). For t > t0, using Theorem 1, the Bayes estimator of S(t)

is given by

Ŝc,n(t) = ED(α){S (t) | (Zi, δi) , i = 1, . . . , n+m}

= ED(α){S(t0)| (Zi, δi) , i = 1, . . . , n} × ED(α̃){S̃ (t) | (Zi, δi) , i = 1, . . . , n+m}.

Let Z̃1, . . . , Z̃n0 denote the observations from among {Z1, . . . , Zn} that are greater than

t0 and let δ̃i , i = 1, . . . , n0, be the concomitant values of δi associated with Z̃i, i = 1, ..., n0.

Also, relabel (Zi, δi) , i = n+ 1, . . . , n+m as
(
Z̃i, δ̃i

)
, i = n0 + 1, . . . ,m+ n0. Define

(m+ n0) S̃c,m+n0 (t) =
m+n0∑
i=1

I
(
Z̃i > t

)
.

Then,

Ŝc,n (t) = Ŝc,n (t0)ED(α̃){S̃ (t) |
(
Z̃i, δ̃i

)
, i = 1, . . . ,m+ n0}

= Ŝc,n (t0) S̃c,n (t) ,

where

14



S̃c,n(t) =
α̃ (t,∞) + (m+ n0) S̃c,m+n0(t)

α̃ (R+) + (m+ n0)
×

m+n0∏
i=1

 α̃
(
Z̃i,∞

)
+ (m+ n0) S̃c,m+n0

(
Z̃i
)

+ 1

α̃
(
Z̃i,∞

)
+ (m+ n0) S̃c,m+n0(Z̃i)

I(Z̃i≤t,δ̃i=0)

.

In the limit as α (R+)→ 0, the limiting Bayes estimator of S is given by

Ŝc,n(t) =
n∏
i=1

(
nSc,n (Zi)

nSc,n (Zi) + 1

)δi
, t ≤ t0,

= Sc,n(t0)
m+n0∏
i=1

 (m+ n0) S̃c,m+n0

(
Z̃i
)

(m+ n0) S̃c,m+n0

(
Z̃i
)

+ 1

δ̃i , t > t0.

This is identical to the NPMLE of S derived by Kvam et al.[15]. Note that the limiting

Bayes estimator of S, for t ≤ t0, is the usual PL estimator of S, but for t > t0 it is the

rescaled PL estimator, where the scaling factor is less than 1 (and equal to 1 when t0 = 0).

The effect of censoring on the nonparametric Bayes estimator is difficult to assess. We

investigate the effect of random right censoring by drawing repeated contamination mea-

surements from the EPA sample and coupling each observation with a randomly generated

censoring time. We modeled censoring using the exponential distribution, and left the hot

spot samples uncensored (which seems to be a realistic environmental sampling scenario),

thus H1(t;λ) = 1 − e−t/λ and H2(t) = 0 for t > 0. Figure 2 displays the risk of the Bayes

estimate Ŝ with respect to Sepa using squared error loss. The risk function, defined

R(Ŝ, Sepa;λ) =
∫ ∞
−∞

(Ŝ − Sepa)2dSepa, (4.7)

is a function of the mean λ for the censoring distribution. Naturally, the error increases as

the mean of the censoring distribution decreases (and more observations become censored).
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In this interval of 0 ≤ λ ≤ 10, the decrease in risk is approximately proportional to the

increase in the proportion of the population that becomes censored:

λ 1 2 3 4 5 6 7 8 9 10

P (censoring) .388 .505 .570 .617 .652 .680 .703 .722 .740 .754

Censoring probabilities are computed using simulations. Again, we selected n = 18 regular

observations with possible right censoring, along with m=2 uncensored hot spot samples,

and assigned t0 to be the upper 95th percentile of the EPA data.

5 Discussion

In this paper, we derived a nonparametric Bayes estimator of the survival function when

a conventional random sample was supplemented with observations from the residual dis-

tribution. The estimator was motivated by the EPA’s problem of estimating contamination

levels when i.i.d. samples are combined with hot spot samples from upper percentiles of

the contamination distribution. In Section 3, the Bayes estimator is compared to stan-

dard estimators of the mean contamination level using various loss functions. Specifically,

we examine bias, mean-squared error, and two other loss functions, including the EPA’s

asymmetric cost function [9]. The gains in using the Bayes estimate are clearly apparent in

this case, especially in terms of mse and acf. Both mcf and acf allow for a small amount

of under-estimation and help to demonstrate that subjective penalties for under-estimation

and over-estimation can be easily parameterized.
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As noted in Section 3, the choice of prior distribution can strongly affect the Bayes es-

timate if the prior weight is significant. In the Bayes framework, the prior α(.) is assumed

to be known. If errors due to prior misspecification (as discussed by Berger [2]) are in-

consequential, the estimator shows Bayes robustness. We demonstrate through simulation

that the Bayes estimator using additional information from the residual distribution exhibits

substantial Bayes robustness with respect to misspecification of the prior (S0). Using the

same sampling scheme from Section 3, where (n,m)=(18,2) and the hot spot consisted of the

upper 5th percentile of the population, three families of prior distributions were considered:

the Lognormal, Normal and Weibull. Each distribution was assigned the same mean and

variance as the underlying population, so the measure of robustness was based on other prop-

erties of the prior. Three different prior weights were used to contrast the prior distributions:

α(R+)=(1,10,20).

Robustness is measured with R(Ŝ, Sepa), as defined in (4.7), now assuming no censoring

occurs. The results, listed in Table 3, indicate that the choice of prior (among these three

considered) has little effect on the risk. Actually, none of the three distributions models the

population of EPA data particularly well. Although the lognormal is the intuitive choice for

a prior, its performance is below that of the other priors in each case. Despite the obvious

reasons the normal distribution should not characterize the underlying contamination dis-

tribution (e.g., it is symmetric, and P (X < 0) > 0.30), it produced a Bayes estimate with

slightly smaller risk than the other two distributions.

We further examine robustness as a function of the misspecified prior. Results are based

on simulated data with S(x) = e−x representing the true prior distribution. In Figures 3 and
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4, the effect of prior mean misspecification is displayed for the case in which S0(x) = e−θx,

where θε(0, 3) for the misspecified Dirichlet prior model. For this treatment, samples of

size 10 and 20 are drawn, with 10% of the data selected from the hot spot. The hot spot

is characterized by a threshold selected to be t0 = 3, approximately the 0.95 quantile for

S(x), the exponential distribution with mean equal to one. With samples of size 10, the risk

increases no more than 14% at the point where the prior mean is misspecified to be three

times smaller than the actual prior mean. If θ is between 50% and 200% of the true mean, the

increase in risk is less than 5%. With samples of size 20, the effect of mean misspecification

is further dampened; the risk is less than 8% for all values of θε(0, 3).

To deal with situations wherein the expert’s opinion about α (t) is either partially or

completely unknown, the empirical Bayes framework [14, 22, 24] is under investigation for

this particular estimation problem where additional residual observations are present. The

robustness of µ̂ with respect to the choice of the functional form of α(t) as well as with

respect to its parameters is also under further study.

6 Appendix

Proof of Theorem 1. It suffices to show that for k ≥ 1 and some measurable partition

t0 < t1 < · · · < tk+1 =∞ of (t0,∞), the distribution of

(
1− S̃ (t1) , S̃ (t1)− S̃ (t2) , . . . , S̃ (tk)− S̃ (tk+1)

)
is a singular Dirichlet with parameters (α̃(t0, t1], α̃(t1, t2], . . . , α̃ (tk, tk+1)). For any t ≤ t0, let

Z(0, t], Z(t, t0], Z(t0, t1], . . . , Z (tk, tk+1) be independent Gamma random variables (defined

on a common probability space) with common scale parameter β > 0 and shape parameters,
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respectively, α(0, t], α(t, t0],α(t0, t1], . . . , α (tk, tk+1). Note that Z (R+) = Z(0, t] +Z(t, t0] +

Z(t0, t1] + · · ·+ Z (tk, tk+1) is a Gamma random variable with scale parameter β and shape

parameter α (R+), and that Z(0, t]/Z (R+) = F (t), and Z(ti, ti+1]/Z (R+) = F (ti+1) −

F (ti) for i = 0, 1, . . . , k + 1. Furthermore, 1 − S̃ (t1) = Z(t0, t1]/Z(t0,∞), S̃ (t1) − S̃ (t2) =

Z(t1, t2]/Z (t0,∞),..., S̃ (tk)− S̃ (tk+1) = Z(ti, ti+1]/Z (t0,∞). Using a standard property of

Gamma distributions,

(
1− S̃ (t1) , S̃ (t1)− S̃ (t2) , . . . , S̃ (tk)− S̃ (tk+1)

)
d
=

(
Z(t0, t1]

Z (t0,∞)
,
Z(t1, t2]

Z (t0,∞)
, . . . ,

Z (tk, tk+1)

Z (t0,∞)

)

∼ D (α̃(t0, t1], α̃(t1, t2], . . . , α̃ (tk, tk+1)) .

That is, 1− S̃ ∼ D(α̃). Furthermore,

(
Z(t0, t1]

Z (t0,∞)
,
Z(t1, t2]

Z (t0,∞)
, . . . ,

Z (tk, tk+1)

Z (t0,∞)

)
q (Z(0, t], Z(t, t0], Z (t0,∞))

which implies that

(
Z(t0, t1]

Z (t0,∞)
,
Z(t1, t2]

Z (t0,∞)
, . . . ,

Z (tk, tk+1)

Z (t0,∞)

)
q Z(0, t]

Z(0, t] + Z(t, t0] + Z (t0,∞)

or (
1− S̃ (t1) , S̃ (t1)− S̃ (t2) , . . . , S̃ (tk)− S̃ (tk+1)

)
q F (t).

Thus {F (t) : t ≤ t0} q {S̃(t) : t > t0} or equivalently {S(t) : t ≤ t0} q {S̃(t) : t > t0}.2
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Table 1. Summary of Performance for µ̂, X̄, and X̄∗ based on data resampled

from chromium concentrations with 10% resampled from hot spots. Prior weight is

α(R+) = 1.

n+m µ̂ X̄ X̄∗

10 |bias| 0.0245 0.0113 3.2428

mse 7.9808 10.7186 23.265

acf 3.2761 3.6881 6.8814

mcf 0.3758 0.2367 0.4204

20 |bias| 0.0110 0.0071 3.2551

mse 4.4528 5.5317 17.1781

acf 2.4759 2.7286 6.6031

mcf 0.3711 0.4124 0.2776

50 |bias| 0.0031 0.0037 3.2632

mse 1.8776 2.2413 13.286

acf 1.6289 1.7751 6.5296

mcf 0.3562 0.3966 0.5678
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Table 2. Summary of Performance for µ̂, X̄, and X̄∗ based on data resampled

from chromium concentrations with 10% resampled from hot spots. Prior weight is

α(R+) = 20.

n+m µ̂ X̄ X̄∗

10 |bias| 0.1888 0.0171 3.2138

mse 1.0793 10.8609 22.879

acf 1.1514 3.6747 6.8148

mcf 0.0210 0.4206 0.1886

20 |bias| 0.0798 0.0357 3.2974

mse 1.2349 5.7759 17.700

acf 1.2810 2.7851 6.6924

mcf 0.1683 0.4149 0.2887

50 |bias| 0.0346 0.0024 3.2619

mse 0.9655 2.2111 13.275

acf 1.1594 1.7681 6.5273

mcf 0.2693 0.3906 0.5687
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Table 3. Risk (based on squared error loss) for various prior distributions, using n = 18, m

= 2 and prior weights α(R+) = (1, 10, 20).

distribution α(R+) R(Ŝ, Sepa)

Weibull 1 0.29

10 0.30

20 0.30

Normal 1 0.29

10 0.26

20 0.25

Lognormal 1 0.30

10 0.33

20 0.35
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Figure 1: Cumulative distribution function of the best fitting lognormal (bottom) vs. em-

pirical distribution function (top)

27



Figure 2: Effect of censoring on R(Ŝ, Sepa;λ). Simulation based on n = 18, m = 2, H1(t;λ) =

1−e−t/λ and H2(t) = 0, t > 0. Top curve represents α(R+)=10, and lower curve is α(R+)=1.
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Figure 3: Effect of mean misspecification on prior with n = 9, m = 1.

29



Figure 4: Effect of mean misspecification on prior with n = 18, m = 2.
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