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RANKED SET SAMPLING FROM LOCATION-SCALE FAMILIES OF
SYMMETRIC DISTRIBUTIONS

Ram C. Tiwari
Department of Mathematics
University of North Carolina
Charlotte, NC 28223

Paul H. Kvam
Industrial & Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205

ABSTRACT

Statistical inference based on ranked set sampling has primarily been motivated by
nonparametric problems. However, the sampling procedure can provide an improved
estimator of the population mean when the population is partially known. In this
article, we consider estimation of the population mean and variance for the location-
scale families of distributions. We derive and compare different unbiased estimators
of these parameters based on r independent replications of a ranked set sample of size
n. Large sample properties, along with asymptotic relative efficiencies, help identify
which estimators are best suited for different location-scale distributions.

Keywords: Asymptotic Relative Efficiency; Mean Squared Error; Order Statistics;
Variance Estimators.

1 Introduction

In sampling situations where the units drawn from a population are difficult or expen-
sive to quantify but can be easily ranked, the ranked set sampling procedure provides
an efficient method to estimate the population mean and variance. Developed by
McIntyre (1), the procedure involves randomly drawing a set of n units from the un-
derlying population, where n is small enough so that the units can be ranked without
judgment error. The n units are then ranked according to the characteristic of inter-
est, and then smallest unit is quantified. A second set of n units is drawn, ranked
and the unit ranked second smallest is quantified. This process is continued until a
complete cycle is accomplished wherein, at the nth stage, a set of n units is drawn,
ranked and the unit ranked the largest is quantified. The sample obtained is called a
(balanced) ranked set sample. The entire sequence can be repeated several times.

As the estimator of the population mean, one can show that the mean of a ranked
set sample is unbiased and has smaller variance than the mean of a simple random
sample of the same size. If the distribution function for underlying population is
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denoted by F with corresponding density function f(x). From an independent sam-
ple X1, ..., Xn from F , the order is discerned and the smallest out of n is quantified
as X1:n. In another independent sample of n, the second smallest is quantified as
X2:n, and so on. Although n2 units are identified, only n of them are actually mea-
sured. Each measurement is an independent order statistic, and we denote the set
by {X(1:n), ..., X(n:n)}. Suppose that the entire process is repeated r times. Then the
RSS is denoted by {X(i:n)j: i = 1, ..., n; j = 1, ..., r}. In general, we assume r is large
compared to n.

The density function of Xi:n is given by

fi:n(x) = n
(
n−1
i−1

)
F i−1(x)F̄ n−i(x)f(x), −∞ < x <∞, i = 1, ..., n, (1.1)

where F̄ ≡ 1− F . The binomial expansion yields

f(x) =
1

n

n∑
i=1

fi:n(x). (1.2)

Consistent with this notation, let µ =
∫
xf(x)dx, σ2 =

∫
(x − µ)2f(x)dx, µ(i:n) =∫

xfi:n(x)dx, and σ2
(i:n) =

∫
(x− µ(i:n))

2fi:n(x)dx. From (1.2), we have

µ =
1

n

n∑
i=1

µ(i:n),

σ2 =
1

n

n∑
i=1

(σ2
(i:n) + µ(i:n))

2 − µ2

=
1

n

n∑
i=1

σ2
(i:n) +

1

n

n∑
i=1

(µ(i:n) − µ)2. (1.3)

Let X̄rss = (nr)−1∑r
j=1

∑n
i=1 X(i:n)j, and let X̄srs denote the mean of a simple

random sample (SRS) of the same size (nr). Both X̄rss and X̄srs are unbiased. Also,
V ar(X̄rss) =

∑n
i=1 σ

2
(i:n)/(n

2r), V ar(X̄srs) = σ2/nr, and from (1.3),

V ar(X̄srs) = V ar(X̄rss) +
1

rn2

n∑
i=1

(µ(i:n) − µ)2. (1.4)

Thus X̄rss is more efficient than X̄srs. The relative precision (RP) is given by

RP =
V ar(X̄srs)

V ar(X̄rss)
=

1

1− 1
n

∑n
i=1

(µ(i:n)−µ)2

σ2

.

Note that RP does not depend on r, and satisfies 1 ≤ RP ≤ (n + 1)/2 with RP =
(n+ 1)/2 if and only if F is a uniform distribution (Takahasi and Wakimoto, (2)).

Ranked set sampling has been used in finite population by Takahasi and Futat-
suya (3) and Patil et al. ((4), (5)). Dell and Clutter (6) and David and Levine (7)

2



studied “judgment errors” in ranking the sampling units, and Stokes (8) considered
ranking the units employing a concomitant variable. See Kaur et al.(9) for a com-
prehensive review of the ranked set sampling. Kvam and Samaniego (10) derived the
nonparametric maximum likelihood estimator of the distribution function F using
an unbalanced RSS. Those results were extended to a Bayesian setup by Kvam and
Tiwari (11).

Although the concept of ranked set sampling is a nonparametric one, it has ap-
plications in sampling problems where the underlying distribution is partially known.
Sinha, et al. (12) considered normal and exponential distributions and derived the
best linear unbiased estimators (BLUEs) of their parameters based on a ranked set
sample. They provided solutions to several questions regarding selection and inclusion
of different order statistics for ranked set samples.

In this paper, we more generally consider the location-scale families of distribu-
tions given by the density function

f(x) =
1

σ
f0(

x− µ
σ

), −∞ < x <∞, −∞ < µ <∞, σ > 0, (1.5)

where f0 is a known density, symmetric about 0, and free of parameters µ and σ. In
Section 2, the location parameter µ and the scale parameter σ are estimated using a
balanced ranked set sample of size nr, where r represents the number of replications.
We seek the BLUE of µ, based on a sensible optimality criteria. We also investigate
unbiased estimators of σ. Large sample properties of these estimators, based on
allowing r to tend to infinity, are derived in Section 3. Finally, we compare the
asymptotic relative efficiency of the proposed estimator of µ with rival estimators in
Section 4.

2 Estimation of the location and scale parameters

Consider the location-scale families of distributions in (1.5), where µ is the location
parameter, and σ is the scale parameter. Examples of the density function f0 include

i) The standard normal density: f0(x) = 1√
2π
e−

x2

2 ,

ii) The double exponential density: f0(x) = 1
2
e−|x|, and

iii) The student t density with k degrees of freedom: f0(x) =
Γ( k+1

2
)

√
kπΓ( k

2
)(1+x2)

k+1
2

.

For the normal distribution, µ and σ2 are the mean and variance. For the double
exponential distribution, µ is the mean and 2σ2 is the variance. For the student t
distribution with k degrees of freedom, µ is the mean (provided k > 1) and kσ2/(k−2)
is the variance (provided k > 2).
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Let {X(1:n)j, ..., X(n:n)j}, j = 1, ..., r be a RSS of size nr, where r denotes the
number of replications. Let X ∼ f, and Y ∼ f0, then the relation X = µ + σY
implies that X(i:n)j = µ+σY(i:n)j, where {Y(1:n)j, ..., Y(n:n)j}, j = 1, ..., r is a RSS from
f0. When r=1, we shall denote the RSS from f simply by {X(1:n), ..., X(n:n)} and the
RSS from f0 by {Y(1:n), ..., Y(n:n)}. Let ν(i:n) = E(Y(i:n)) and η2

(i:n) = V ar(Y(i:n)). Let
F0 be the cumulative distribution function corresponding to the density f0. Then

ν(i:n) = n
(
n−1
i−1

) ∫
yF i−1

0 (y)F̄ n−i
0 (y)f0(y)dy

=
1

B(i, n+ 1− i)

∫ 1

0
F−1

0 (u)ui−1(1− u)n−idu

and

η2
(i:n) =

1

B(i, n+ 1− i)

∫ 1

0
F−2

0 (u)ui−1(1− u)n−idu− ν2
(i:n),

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b). Using Taylor’s expansion

F−1
0 (u) ≈ F−1

0 (
i

n+ 1
) + (u− i

n+ 1
)[f0(F−1

0 (
i

n+ 1
))]−1,

we have

ν(i:n) ≈ F0
−1(

i

n+ 1
), η2

(i:n) ≈
i(n+ 1− i)

(n+ 1)2(n+ 2)
[f0(F−1

0 (
i

n+ 1
))]−2

and the other higher central moments of Y(i:n) can be approximated in the same
manner. Also using (1.2) and the symmetry of f0,

n∑
i=1

ν(i:n) = 0,
n∑
i=1

ν(i:n)/η
2
(i:n) = 0. (2.6)

Tables 1-5 lists the values of ν(i:n) and η2
(i:n), for n=2 to 6 from the standard

normal, the standard double exponential, and the Student’s t distribution with k
degrees of freedom with k = 3, 4, 5. A more detailed list of means and variances for
order statistics from a N(0, 1) population are printed in Sinha, et al. (12) and Sarhan
and Greenberg (13). Note that because the distributions are symmetric about zero,
ν(i:n) = 0 for i = (n + 1)/2 and odd values of n, and ν(i:n) = −ν(n−i+1:n). Thus, only
η2

(i:n) values for i = 1, ..., [n/2] and ν(i:n) values for i = 1, ..., [(n+ 1)/2] are printed in
these tables.

2.1 Least Squares Estimators

In view of X(i:n) = µ+ σY(i:n), i = 1, ..., n we have

E(X(i:n)) = µ+ σν(i:n), V ar(X(i:n)) = σ2η2
(i:n), i = 1, ..., n.

4



Let β =(µ, σ)
′
, and D = diag(η2

(1:n), ..., η
2
(n:n)). Then

E(Xn) = Wnβ, V ar(Xn) = Σ = σ2D, (2.7)

where Xn = (X(1:n), ..., X(n:n)) is a single RSS cycle, Wn = (1n, νn), 1n is a n -column
vector and ν

′
n = (ν(1:n) .... ν(n:n)). The least-squares estimators of µ and σ are obtained

by minimizing

Qn(β) = (Xn −Wnβ)
′
(σ2D)−1(Xn −Wnβ)

=
n∑
i=1

(X(i:n) − µ− σν(i:n))
2/σ2η2

(i:n)

with respect to β. By extending this least squares approach to r replicates of a RSS
cycle, we obtain least squares estimates

µ̂ls =

∑r
j=1

∑n
i=1X(i:n)j/η

2
(i:n)

r
∑n
i=1 1/η2

(i:n)

, σ̂ls =

∑r
j=1

∑n
i=1(X(i:n)j − µ̂ls)2/η2

(i:n)∑r
j=1

∑n
i=1X(i:n)jν(i:n)/η

2
(i:n)

. (2.8)

For situations where both the mean vector and the variance matrix of Xn depend
on σ2, such as in (2.7), Godambe and Kale (14) discuss critical shortcomings of this
least squares approach.

2.2 Estimating Functions Approach

Godambe and Kale ((14), Chapter 1) proposed an alternative approach for estimating
the parameters, based on “estimating functions”, which yield optimal estimators, in
terms of mean squared error (MSE). For (2.7) the estimating functions are

W′
nD
−1(Xn −Wnβ) = 0.

Based on r replicates of Xn, the resulting in the estimators of µ and σ are given by

µ̂opt =

∑r
j=1

∑n
i=1X(i:n)j/η

2
(i:n)

r
∑n
i=1 1/η2

(i:n)

;

σ̂opt =

∑r
j=1

∑n
i=1X(i:n)jν(i:n)/η

2
(i:n)

r
∑n
i=1 ν

2
(i:n)/η

2
(i:n)

, (2.9)

The estimates µ̂opt and σ̂opt are optimal in the sense that both are linear unbiased
estimators for µ and σ respectively, and both have minimum variance. Thus they
are the best linear unbiased estimators (BLUEs). See Sinha, et al. (12) for another
derivation of BLUEs of µ and σ for the particular case when f0 is the standard normal
distribution. It is interesting to note that the estimators µ̂opt and σ̂opt can be obtained
by minimizing Qn(β) ignoring the factor σ2 in σ2D. As a serious drawback, both the
estimators σ̂ls and σ̂opt can be negative, more frequently with small samples.
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2.3 Stokes’ Estimator for σ2

For each of the three distributions mentioned earlier, the scale parameter is directly
related to population variance, so we interchange σ and σ2 in our discussion the scale
parameter. For the case when F is not specified, Stokes (15) proposed an estimator
for the population variance σ2 based on a balanced RSS:

σ̂2
s =

1

(nr − 1)

r∑
j=1

n∑
i=1

(X(i:n)j − X̄rss)
2, (2.10)

where X̄rss = 1
nr

∑r
j=1

∑n
i=1 X(i:n)j. Stokes showed that

E(σ̂2
s) = σ2 +

1

n(nr − 1)

n∑
i=1

(µ(i:n) − µ)2

and E(σ̂2
s) → 0 as r → ∞; that is, σ̂2

s is an asymptotically unbiased estimator of
σ2. Let s2 be the sample variance of a simple random sample of size nr. Stokes (15)
obtained the mean squared error of σ̂2

s and showed that RP = V ar(s2)/MSE(σ̂2
s) ≥ 1.

2.4 Alternative Unbiased Estimators of σ2

For the location-scale family of distributions, µ(i:n) − µ = σν(i:n), i = 1, ..., n and∑n
i=1{η2

(i:n) + ν2
(i:n)} = n so that

E(σ̂2
s) = σ2{ 1

n

n∑
i=1

η2
(i:n) +

r

nr − 1

n∑
i=1

ν2
(i:n)}.

Thus an unbiased estimator of σ2 can be constructed from σ̂2
s :

σ̂2
su =

σ̂2
s

{ 1
n

∑n
i=1 η

2
(i:n) + r

nr−1

∑n
i=1 ν

2
(i:n)}

=

∑r
j=1

∑n
i=1(X(i:n)j − X̄rss)

2

(nr − 1) + 1
n

∑n
i=1 ν

2
(i:n)

. (2.11)

However, σ̂2
s nor its unbiased alternative are necessarily optimal for estimating the

population variance with location-scale distributions. Because µ̂opt is better for es-
timating µ than X̄rss, we propose an alternative unbiased estimator of σ2 based on
µ̂opt:

σ̂2
u =

∑r
j=1

∑n
i=1(X(i:n)j − µ̂opt)2/η2

(i:n)

(nr − 1) + r
∑n
i=1 ν

2
(i:n)/η

2
(i:n)

. (2.12)

Yu, et al. (16) use this approach for the special case of variance estimation with the
normal distribution. We can easily verify the unbiasedness of (2.12) as follows. First
note that
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E[{(nr − 1) + r
n∑
i=1

ν2
(i:n)/η

2
(i:n)}σ̂2

u]

= σ2E[
r∑
j=1

n∑
i=1

Y 2
(i:n)j/η

2
(i:n) − (

r∑
j=1

n∑
i=1

Y(i:n)j/η
2
(i:n))

2/r
n∑
i=1

1/η2
(i:n)]. (2.13)

Now using ν(i:n) = E(Y(i:n)) and η2
(i:n) = V ar(Y(i:n)),

E(
r∑
j=1

n∑
i=1

Y 2
(i:n)j/η

2
(i:n)) = r

n∑
i=1

(η2
(i:n) + ν2

(i:n))/η
2
(i:n)

= nr + r
n∑
i=1

ν2
(i:n)/η

2
(i:n)

and

E(
r∑
j=1

n∑
i=1

Y(i:n)j/η
2
(i:n))

2/r
n∑
i=1

1/η2
(i:n) = 1 + r2(

n∑
i=1

ν(i:n)/η
2
(i:n))

2 = 1,

in view of (2.6). Substituting these expressions on the right hand side of (2.13), we
have E(σ̂2

u) = σ2.

2.5 Estimators based on Within-Replicate Variation

Other unbiased estimators of σ2 can be formed based on balanced ranked set samples.
Yu, et al. (16) discuss several approaches for estimating the variance of a normal
distribution, and derived different variance estimators that improve on the ordinary
Stokes (15) estimator. For example, some estimators exploit the known scale and
location properties of the normal distribution by contrasting a given order statistic
X(i:n) with its expected value µ + σν(i:n). Alternatively, one can contrast an order
statistic from the jth cycle with an estimate of the mean based on the jth cycle,
thus obtaining an estimator of σ2 based on “within replicate” variability of the RSS
sample. This is analogous to “within block” variability in a two-way analysis of
variance. Define

σ̂2
w1 =

∑r
j=1

∑n
i=1(X(i:n)j − X̄·j)2

r( 1
n

∑n
i=1 ν

2
(i:n) + n− 1)

, (2.14)

σ̂2
w2 =

∑r
j=1

∑n
i=1(X(i:n)j − µ̂(j)

opt)
2/η2

(i:n)

r((n− 1) +
∑n
i=1 ν

2
(i:n)/η

2
(i:n))

, (2.15)

where X̄·j = 1
n

∑n
i=1X(i:n)j and µ̂

(j)
opt = [

∑n
i=1X(i:n)j/η

2
(i:n)]/

∑n
i=1 1/η2

(i:n). The “within
replicate” estimators in (2.14) and (2.15) correspond to the unbiased estimators (2.11)
and (2.12), respectively.
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2.6 Comparisons of Variance Estimators

We have discussed six different estimators of σ or σ2, not including the natural RSS
variance, σ̂2

s which Stokes showed was biased for σ2. To further compare the es-
timators, we conducted several simulations to generate samples from location-scale
families of distributions. Specifically, we computed the MSE for each estimator and
compared the estimators using the relative efficiency with respect to the RSS variance;
i.e., RMSE(σ̂2

0) = MSE(σ̂2
0)/MSE(σ̂2

s).
The results are listed in Tables 6-8. The normal Distribution is featured in Table

6, The double-exponential distribution is in Table 7, and The student-t distribution
(with 3 degrees of freedom) is in Table 8. We focus on small or medium sized ranked
set samples (n = 3,5,10) and various number of replicates (r = 2, 10, 20). For each
case, 100,000 simulations are run.

¿From the results of Tables 6-8, we can see that σ̂su (the unbalanced version of the
Stokes estimator) is a relatively poor estimate of σ in a MSE sense. As σ̂u appears
superior to σ̂su, so too does σ̂w2 appear superior to σ̂w1. σ̂u does not dominate σ̂w2

as it does the other estimators, but it outperforms σ̂w2 in most sampling scenarios in
all three distributions.

3 Asymptotic Results

In this section, we focus on examining the properties of µ̂opt and σ̂u, the respective
estimators of the location and scale parameter that performed best according to the
criteria discussed in Section 2. The asymptotic normality of µ̂opt given in (2.9) and
the consistency of the estimator σ̂2

u given in (2.12) are established. First, we examine
the asymptotic normality of µ̂opt.

Throughout this section we assume that the sequence of random variables{X(i:n)j}
and {Y(i:n)j} are defined on a common probability space. Using the relation X(i:n)j =
µ + σY(i:n)j; i = 1, ..., n, j = 1, ..., r with ν(i:n) = E(Y(i:n)) and η2

(i:n) = V ar(Y(i:n)), we
have

E(µ̂opt) = µ+
σ

r

r∑
j=1

W̄.j,

where

W̄.j =

∑r
j=1

∑n
i=1 Y(i:n)j/η

2
(i:n)∑n

i=1 1/η2
(i:n)

, j = 1, ..., r.

Note that W̄.1, ..., W̄.r are independent identically distributed (i.i.d.) with E(W̄.j) = 0
(see (2.6)) and V ar(W̄.j) = [

∑n
i=1 1/η2

(i:n)]
−1, j = 1, ..., r. Similarly, we can write

X̄rss = µ+
σ

r

r∑
j=1

V̄.j

8



where V̄.j =
∑n
i=1 Y(i:n)j/n, j = 1, ..., r are i.i.d. with E(V̄.j) = 0 and V ar(V̄.j) =∑n

i=1 η
2
(i:n)/n

2, j = 1, ..., r. We have the following.

Theorem 3.1 With a ranked set sample {X(i:n)j: i = 1, ..., n; j = 1, ..., r},
√
r(µ̂opt−µ)

σ/[
∑n

i=1
1/η2

(i:n)
]1/2

d→

N(0, 1) as r →∞. Also,
√
r(X̄rss−µ)

σ[
∑n

i=1
η2
(i:n)

/n2]1/2
d→ N(0, 1) as r →∞.

Let W̄ =
∑r
j=1 W̄.j/r, and V̄ =

∑r
j=1 V̄.j/r. We can rewrite (2.12) as

σ̂2
u = σ2

∑r
j=1

∑n
i=1 Y

2
(i:n)j/η

2
(i:n) − r(

∑n
i=1 1/η2

(i:n))W̄
2

(nr − 1) + r
∑n
i=1 ν

2
(i:n)/η

2
(i:n)

. (3.16)

Lemma 3.2 W̄ 2 a.s.→ 0 as r →∞.

Proof. It follows from SLLN that W̄
a.s.→ 0 as r → ∞, and hence from Slutsky’s

theorem (cf. Sen and Singer, (17), Theorem 3.4.2) we have, W̄ 2 a.s.→ 0 as r →∞. �

Lemma 3.3 Assume that E|Y(i:n)|2+δ < ∞ for i = 1, ..., n and for some 0 < δ < 1.

Then

∑r

j=1

∑n

i=1
Y 2
(i:n)j

/η2
(i:n)

(nr−1)+r
∑n

i=1
ν2
(i:n)

/η2
(i:n)

P→ 1 as r →∞.

Proof. Note that
∑n
i=1E|

Y(i:n)j

η(i:n)
|2+δ <∞ for j = 1, ..., r and

r−1−δ/2
r∑
j=1

n∑
i=1

E|
Y(i:n)j

η(i:n)

|2+δ = c(r)
a.s.→ as r →∞.

Define Uj =
∑n
i=1 Y

2
(i:n)j/η

2
(i:n), j = 1, ..., r. Then

E|Uj|1+δ/2 = E|
n∑
i=1

Y 2
(i:n)j/η

2
(i:n)|1+δ/2

≤
n∑
i=1

E|Y(i:n)j/η(i:n)|2+δ <∞, j = 1, ..., r

and

r−1−δ/2
r∑
j=1

E|Uj−E(Uj)|1+δ/2 ≤ r−1−δ/2
r∑
j=1

n∑
i=1

E|Y(i:n)j/η(i:n)|2+δ = c(r)
a.s.→ 0 as r→∞.

Hence from the Markov WLLN (cf. Sen and Singer, (17), Theorem 2.3.7),

1

r

r∑
j=1

Uj − E
1

r

r∑
j=1

Uj =
1

r

r∑
j=1

n∑
i=1

Y 2
(i:n)j

η2
(i:n)

− (n+
n∑
i=1

ν2
(i:n)

η2
(i:n)

)
P→ 0 as r→∞.
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Thus from Slutsky’s theorem,∑r
j=1

∑n
i=1 Y

2
(i:n)j/η

2
(i:n)

(nr − 1) + r
∑n
i=1 ν

2
(i:n)/η

2
(i:n)

=
1
r

∑r
j=1

∑n
i=1 Y

2
(i:n)j/η

2
(i:n)

(n− 1
r
) +

∑n
i=1 ν

2
(i:n)/η

2
(i:n)

P→ 1 as r→∞.�

Similar to (3.16), we can also rewrite (2.11)

σ̂2
su = σ2

∑r
j=1

∑n
i=1 Y

2
(i:n)j − nrV̄ 2

{(nr − 1) + 1
n

∑n
i=1 ν

2
(i:n)}

. (3.17)

Along the lines of Lemma 3.2 we can show that V̄ 2 a.s.→ 0 as r → ∞. Also along the
lines of Lemma 3.3,

1

r

r∑
j=1

{ 1

n

n∑
i=1

Y 2
(i:n)j} −

1

n

n∑
i=1

(ν2
(i:n)j + η2

(i:n))

=
1

r

r∑
j=1

{ 1

n

n∑
i=1

Y 2
(i:n)j} − 1

P→ 0 as r→∞.

Hence from Slutsky’s theorem

1
nr

∑r
j=1

∑n
i=1 Y

2
(i:n)j

(1− 1
nr

) + 1
r

∑n
i=1 ν

2
(i:n)

P→ 1 as r→∞.

Combining Lemma 3.2 and Lemma 3.3, we have

Theorem 3.4 Under assumptions of Lemma 3.3, σ̂2
u

P→ σ2 as r →∞. Also, σ̂2
su

P→ σ2

as r →∞.

We point out that the assumption of Lemma 3.3 is usually satisfied by assuming
that the density function f0 is known and symmetric about 0, hence it is not a strong
assumption.

Theorem 3.5
√
r(µ̂opt−µ)

σ̂u/[
∑n

i=1
1/η2

(i:n)
]1/2

d→ N(0, 1) as r → ∞. Also,
√
r(X̄rss−µ)

σ̂su[
∑n

i=1
η2
(i:n)

/n2]1/2
d→

N(0, 1) as r →∞.

4 Asymptotic Relative Efficiency

In this section, we compare the different estimators of the location parameter µ using
asymptotic relative efficiency (ARE). The ARE of µ̂opt, with respect to X̄rss, is given
by

10



ARE(µ̂opt; X̄rss) =
σ2

rn2

∑n
i=1 η

2
(i:n)

σ2

r
[
∑n
i=1 1/η2

(i:n)]
−1

=
1
n

∑n
i=1 η

2
(i:n)

n∑n

i=1
1/η2

(i:n)

≥ 1. (4.18)

The asymptotic relative efficiency is bounded below by one because 1
n

∑n
i=1 η

2
(i:n) is the

arithmetic mean (A.M.) of {η2
(i:n)} and n/

∑n
i=1 1/η2

(i:n) is the harmonic mean (H.M.)

of {η2
(i:n)} and A.M. ≥ H.M. Also, if X̄srs denotes the mean of a simple random

sample of size nr from f , then

ARE(X̄rss; X̄srs) =
σ2

rn
σ2

rn2

∑n
i=1 η

2
(i:n)

=
1

1
n

∑n
i=1 η

2
(i:n)

=
1

1− 1
n

∑n
i=1 ν

2
(i:n)

≥ 1. (4.19)

Thus µ̂opt is more efficient than X̄rss, which in turn is more efficient than X̄srs. Finally,

ARE(µ̂opt; X̄srs) =
σ2

rn
σ2

r
[
∑n
i=1 1/η2

(i:n)]
−1

=

∑n
i=1 1/η2

(i:n)

n
(4.20)

and ARE(µ̂opt; X̄) = (H.M.)−1 ≥ (A.M.)−1 = ARE(X̄rss; X̄) ≥ 1.
Although the ranking is uniform across choices for f0, the relative dominance de-

pends on the underlying distribution. The AREs for µ̂opt and X̄rss (with respect to
X̄srs) are plotted in Figures 1-3 for various ranked set sample sizes (n). The estima-
tors appear close in ARE for the normal distribution (Figure 1), and the dominance
of ARE(µ̂opt; X̄srs) ≥ ARE(X̄rss; X̄srs) is more apparent in Figure 2 (f0 ∼ double
exponential) and Figure 3 (f0 ∼ student-t distribution with 3 degrees of freedom).

The efficiency gained by using µ̂opt carries over to the construction of statistical
tests and confidence intervals. For testing the null hypothesis H0 : µ = µ0 versus the
alternative hypothesis H1 : µ 6= µ0, for large r, we gain test power by using the test
statistic

Z =

√
r(µ̂opt − µ0)

σ̂u/[
∑n
i=1 1/η2

(i:n)]
1/2

and rejecting H0 if |Z| > Zα/2, where Zα/2 is the 100(1 − α/2)th percentile of the
standard normal distribution. The gain in power, of course, is a direct function of
the ARE.
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5 Concluding Remarks

It is well known that ranked set sampling improves estimation of a population mean
in situations where items are easily ranked but not easily measured. Although past
research has emphasized nonparametric methods for RSS, applications exist where the
underlying distribution is partially known. We have generalized results for the normal
distribution by Sinha, et al. (12) and Yu, et al. (16) to inference for location-scale
families of distributions.

There are various ways to derive estimators of the scale and location parameter in
this case. We have used Godambe and Kale’s (14) estimating functions approach to
obtain the optimal estimates of µ and σ based on a RSS from the location-scale fam-
ilies of distributions. According the MSE criteria, the unbiased estimator for σ based
on µ̂opt outperformed other unbiased estimators of the scale parameter. In Section
3, we focused further on two unbiased estimators of σ2 and proved their consistency.
In Section 4, we showed the optimal estimator for the location parameter, µ̂opt, is
asymptotically more efficient than its competing estimators X̄rss and X̄. Figures
1-3 show that the dominance of µ̂opt over X̄rss and X̄srs depends on the underlying
scale-location family of distributions.

Table 1. ν(i:n) and η2
(i:n), i = 1, ..., n for the standard normal distribution.

n ν(i:n) for i = 1, ..., [n2 ] η2
(i:n) for i = 1, ..., [n+1

2 ]

2 (-0.5642) (0.6817)
3 (-0.8463) (0.5595,0.4487)
4 (-1.0294,-0.2970) (0.4917,0.3605)
5 (-1.1630,-0.4950) (0.4475,0.3115,0.2868)
6 (-1.2672,-0.6418,-0.2015) (0.4159,0.2796,0.2462)

Table 2. ν(i:n) and η2
(i:n), i = 1, ..., n for the student-t distribution with 3 degrees of

freedom.

n ν(i:n) for i = 1, ..., [n2 ] η2
(i:n) for i = 1, ..., [n+1

2 ]

2 (-0.7425) (1.4031)
3 (-1.1137) (1.3345,0.7132)
4 (-1.3631,-0.3657) (1.3375,0.5795)
5 (-1.5515,-0.6094) (1.3578,0.5464,0.4061)
6 (-1.7027,-0.7955,-0.2374) (1.3840,0.5409,0.3498)

Table 3. ν(i:n) and η2
(i:n), i = 1, ..., n for the student-t distribution with 4 degrees of

freedom.

n ν(i:n) for i = 1, ..., [n2 ] η2
(i:n) for i = 1, ..., [n+1

2 ]

2 (-0.7047) (1.2110)
3 (-1.0571) (1.1302,0.6275)
4 (-1.2942,-0.3459) (1.1129,0.5078)
5 (-1.4736,-0.5764) (1.1133,0.4671,0.3696)
6 (-1.6182,-0.7510,-0.2273) (1.1206,0.4502,0.3180)
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Table 4. ν(i:n) and η2
(i:n), i = 1, ..., n for the student-t distribution with 5 degrees of

freedom.

n ν(i:n) for i = 1, ..., [n2 ] η2
(i:n) for i = 1, ..., [n+1

2 ]

2 (-0.6779) (1.0912)
3 (-1.0168) (1.0006,0.5829)
4 (-1.2442,-0.3348) (0.9705,0.4708)
5 (-1.4158,-0.5579) (0.9593,0.4267,0.3502)
6 (-1.5537,-0.7261,-0.2216) (0.9561,0.4047,0.3010)

Table 5. ν(i:n) and η2
(i:n), i = 1, ..., n for the double exponential distribution.

n ν(i:n) for i = 1, ..., [n2 ] η2
(i:n) for i = 1, ..., [n+1

2 ]

2 (-0.7495) (1.4327)
3 (-1.1243) (1.4083,0.6385)
4 (-1.3844,-0.3438) (1.4334,0.5207)
5 (-1.5873,-0.5729) (1.4604,0.5025,0.3512)
6 (-1.7548,-0.7500,-0.2188) (1.4826,0.5080,0.3033)

Table 6. Relative Mean Squared Error (RMSE)with respect to x̄rss for estimators of the
scale parameter for the normal distribution.

n r RMSE(σ̂2
su) RMSE(σ̂2

u) RMSE(σ̂2
w1) RMSE(σ̂2

w2)

3 2 1.302 0.791 0.922 0.902
3 5 1.098 0.898 1.124 1.100
3 10 1.046 0.932 1.197 1.171
3 20 1.022 0.949 1.227 1.201
5 2 1.251 0.785 0.880 0.821
5 5 1.089 0.867 0.997 0.932
5 10 1.042 0.896 1.035 0.966
5 20 1.021 0.906 1.057 0.985
10 2 1.179 0.769 0.905 0.781
10 5 1.038 0.821 0.973 0.841
10 10 1.033 0.838 0.997 0.861
10 20 1.017 0.845 1.007 0.869

Table 7. Relative Mean Squared Error (RMSE)with respect to x̄rss for estimators of the
scale parameter for the double exponential distribution.
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n r RMSE(σ̂2
su) RMSE(σ̂2

u) RMSE(σ̂2
w1) RMSE(σ̂2

w2)

3 2 1.529 0.164 0.583 0.176
3 5 1.182 0.133 0.616 0.109
3 10 1.094 0.096 0.601 0.108
3 20 1.049 0.062 0.576 0.201
5 2 1.407 0.116 0.631 0.120
5 5 1.155 0.082 0.656 0.087
5 10 1.080 0.054 0.653 0.057
5 20 1.041 0.032 0.648 0.035
10 2 1.258 0.059 0.722 0.060
10 5 1.104 0.034 0.750 0.035
10 10 1.053 0.020 0.758 0.020
10 20 1.027 0.011 0.762 0.012

Table 8. Relative Mean Squared Error (RMSE)with respect to x̄rss for estimators of the
scale parameter for the student-t distribution with ν=3 degrees of freedom.

n r RMSE(σ̂2
su) RMSE(σ̂2

u) RMSE(σ̂2
w1) RMSE(σ̂2

w2)

3 2 1.444 0.194 0.520 0.185
3 5 1.132 0.203 0.522 0.186
3 10 1.062 0.200 0.517 0.180
3 20 1.029 0.209 0.505 0.185
5 2 1.311 0.133 0.625 0.135
5 5 1.102 0.134 0.626 0.136
5 10 1.047 0.137 0.616 0.139
5 20 1.023 0.133 0.620 0.135
10 2 1.165 0.059 0.756 0.059
10 5 1.062 0.055 0.758 0.057
10 10 1.030 0.054 0.756 0.057
10 20 1.024 0.053 0.758 0.057
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Figure 1: Asymptotic Relative Efficiencies (4.19) graphed as dotted line, and (4.20)
graphed as solid line, based on the normal(0,1)distribution.
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Figure 2: Asymptotic Relative Efficiencies (4.19) graphed as dotted line, and (4.20)
graphed as solid line, based on the double exponential distribution.
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Figure 3: Asymptotic Relative Efficiencies (4.19) graphed as dotted line, and (4.20)
graphed as solid line, based on the student-t distribution.
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