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Common Cause Failure Prediction Using Data Mapping

Paul H. Kvam and J. Glenn Miller

Georgia Institute of Technology, Atlanta, GA, USA

Abstract

To estimate power plant reliability, a probabilistic safety assessment might combine failure data

from various sites. Because dependent failures are a critical concern in the nuclear industry,

combining failure data from component groups of di®erent sizes is a challenging problem. One

procedure, called data mapping, translates failure data across component group sizes. This

includes common cause failures, which are simultaneous failure events of two or more components

in a group. In this paper, we present methods for predicting future plant reliability using

mapped common cause failure data. The prediction technique is motivated by discrete failure

data from emergency diesel generators at U.S. plants. The underlying failure distributions are

based on homogeneous Poisson processes. Both Bayesian and frequentist prediction methods are

presented, and if non-informative prior distributions are applied, the upper prediction bounds

for the generators are the same.

Key Words: Bayesian Prediction, Poisson Distribution, Upper Prediction Bounds
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1 Introduction

External events that can cause the simultaneous failure of a network of components are called

common cause failures (CCFs). These failure events play a crucial role in maintaining high stan-

dards of system reliability for nuclear power plants. Because CCFs occur only rarely in a nuclear

power plant's day to day operations, simultaneous failure data are sparse and di±cult to quantify

for probabilistic safety assessments (PSAs). This can be a serious consequence in some plant as-

sessments because high target reliabilities are sometimes achieved by building redundancy into a

system; e.g., if an emergency diesel generator (EDG) does not meet target reliability for the plant's

safety goals, one or more additional generators might be brought in to provide stand-by backup,

in case the main EDG fails to start or run properly. Obviously, the potential improvement due to

built in redundancy can be negated if the system of EDGs is susceptible to common cause failures.

The size of the system under study (i.e., the number of components in the system) can actually

a®ect the common cause failure probabilities for various reasons, so problems exist if the size of

the system under study is di®erent from groups represented in the available CCF data. If such a

di®erence exists, one might choose to translate the existing CCF data so it appears as if the size

of the system represented in the data is the same as the size of the system under study in the

PSA. This procedure, called mapping, is not uncommon in reliability studies for power plants. See

Mosleh, et al. [10], for example.

As an example, suppose the PSA includes plans for a working set of two EDGs, but existing

failure data exist from a nuclear power plant in which three EDGs are used to back up the existing
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power supply. In the event that two out of three EDGs failed to start in a test at that plant, it

is logged as a common cause failure with three items on test and two failing simultaneously. If we

imagine only two of the three EDGs were chosen to represent this group (matching the number in

the PSA), then one or two failures would have occurred, depending on which EDGs were selected.

If the EDGs were chosen randomly, then the probabilities of recording one or two failures are 2=3

and 1=3, respectively.

This is the essence of data mapping, but general procedures for mapping data are not so

straightforward. In the case where the data originate from a common cause group larger than the

group in the PSA, mapping equates to a simple application of the hypergeometric distribution. We

call this mapping down. However, if the PSA group is larger, the mapping procedure is essentially

extrapolating, and more information is needed to make the transformation sensible. This is called

mapping up. Problems in mapping data were ¯rst recognized by Doerre [4] and Poucet, et al. [12].

Mapping algorithms for small common cause groups are listed in Chapter 3 of Mosleh, et al. [10]

and more re¯ned mapping techniques are outlined in Kvam [7].

A primary goal of the PSA is to predict the frequency of core damage in future operations at

the power plant. The future number of component failures is more important to the PSA than the

parameters that characterize their failure distributions, which are arguably meaningless by them-

selves, especially if lifetimes are modeled with common reliability distributions such as Weibull,

Log-normal or Inverse-Gamma. Additionally, one might in practice be tempted to substitute pa-

rameter estimates in the failure distribution and to then use the resulting estimated distribution

for predictive inferences. Though intuitively appealing, this specious approach ignores uncertainty

related to the parameter estimate.

Rather than drawing inference on these distributions that underlie common cause failures,
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prediction regions for future simultaneous failures should be a factor in PSA. In this paper, we

rely on mapped CCF data to make predictive inference (e.g., upper prediction bounds) on the

number of future failures at a power plant. Although some exact prediction bounds can be derived

for simpler reliability problems (see Kvam and Miller [8], for example), in general no closed form

solutions exist.

2 Prediction of CCF events

For data from operating power plants, failures are aggregated over ¯xed time intervals. The fail-

ure rates of most components in the PSA are extremely low and stay relatively constant between

maintenance operations. Because of this, analysts commonly model the failure times with homoge-

neous Poisson processes. Statistical prediction with Poisson data is elementary; if Y » P(¸), then

Ŷnew = ^̧, where the hat-notation represents an estimate. Prediction uncertainty is not as easy to

obtain. We consider the following case from Kvam and Miller [8].

From a homogeneous Poisson process with unknown recurrence rate µ1 > 0, let X represent the

number of occurrences in time interval (0; T1), and denote Y the future number of occurrences of

an independent process with unknown recurrence rate µ2 > 0 in the time interval (T1;T1 + T2). It

is our goal to predict Y » Poisson(µ2T2) using X » Poisson(µ1T1), assuming the processes have

identical recurrence rates; i.e., µ1 = µ2. Our solution approach is best understood in terms of a

related hypothesis test. Consider the test based on H0 : µ1 = µ2 vs. Ha : µ1 < µ2. The rejection

region for the ®-level test of H0 has form f(x; y) : y > U (x)g, where U (x) serves as a (1 ¡ ®) upper

prediction bound (UPB) for Y , given X. Lower prediction bounds are constructed similarly by

switching the inequality in the alternative test hypothesis.

4



Under H0, the conditional distribution of X given N = X + Y is distributed binomial with

parameters N = n and p = T1=(T1+T2), thus XjN = n forms a pivotal quantity, and we can use this

binomial distribution to construct exact prediction intervals for Y. Because exact 1 ¡ ® con¯dence

levels are generally not achievable with discrete random variables, the prediction intervals will have

con¯dence levels that are no less than 1¡ ®. The rejection region for the one-sided hypothesis test

consists of all pairs (x;y) for which y is considered too large relative to x. For a ¯xed ®, the lower

bound of this rejection region is the smallest value of y such that P (Y ¸ yjX + Y = n) · ®: If we

denote this lower bound as y¤ +1, then y¤ is the upper bound of the acceptance region for the test.

Since the size of the rejection region does not exceed ®, the probability measure of the acceptance

region can be no less than 1¡®. That is, under the null hypothesis, P(Y · y¤) ¸ 1¡® which holds

for all µ = µ1 = µ2. (It is important to keep in mind that both Y and y¤ are random variables in

the probability expression.) Since y¤ +1 is the smallest value of y in the rejection region, [0; y¤] is

the narrowest interval such that P(Y 2 [0; y¤]) ¸ 1 ¡ ®. Thus, from a frequency theory viewpoint,

we can take y¤ as a 1 ¡ ® UPB on Y given X = x has been observed.

As a simple example, suppose that in one (reactor) year, a group of containment cooling fans

at a power plant experiences no failures or signi¯cant degradation during continuous service. The

competing risks for cooling fans might include broken blades, fan belt slippage and loss of motor-

bearing lubrication which causes degradation and low °ow. We can form a 95% UPB for the

number of future failures experienced by the cooling fans in the next (reactor) year if we assume

the failure rate remains the same (that is, the Poisson process for failure events is homogeneous).

If we denote X = 0 as the number of observed failures and Y as the (Poisson distributed) number

of future failures, the pivotal statistic is distributed binomial with n = 0+Y , and p = T1=(T1+ T2)

= 0.5. Because P(Y ¸ 4jX + Y = 4) = 0:0625 > ® and P (Y ¸ 5jX + Y = 5) = 0:0313 · ®, y = 5
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is the lower bound of the rejection region which means we take y¤ = 4 to be the 95% UPB.

Table 1 below lists 95% upper prediction bounds for future (Poisson) failure counts given we

observe x failures in a past time interval of the same length. Other prediction methods for PSA

are described in detail in Kvam and Miller [8]. General methods for standard prediction limits are

described further in various sources for the reliabilitypractitioner, including Nelson [11] and Cox and

Hinkley [3], where quicker, approximate methods are usually prescribed. A normal approximation,

presented in Chapter 6 of Nelson [11], is not complicated and sometimes e®ective for this Poisson

prediction problem. For example, the (1¡®)-UPB for Y in the case T1 = T2 is x +z1¡®
p

2x, where

zq is the qth quantile of the standard normal distribution. However, the bounds are not accurate

unless the mean values µiTi are large, which is uncommon with typical CCF analyses.

3 Prediction with mapped data

In this paper, we consider the problem of predicting future CCF frequency for a system of com-

ponents by using mapped failure data from similar systems of equal size or larger. The failure

counts are from an aggregated data set involving simultaneous failures of EDGs in domestic (U.S.)

power plants. The failure data for CCF events between 1980 and 1995, listed in a report for the

U.S. Nuclear Regulatory Commission, IEEL [5], are summarized in Table 2 below. Failures include

natural disasters, shared design °aws, or machine maintenance errors, to name a few. The data-

base also lists incipient failures, which include observations where a single diesel failed, but it was

determined that its cause of failure could potentially cause the failure of other EDGs in the near

future. In such cases, these potential failures are conservatively listed as actual CCFs. Component

group sizes range from 2 to 5. Each group size refers to one or more nuclear power plants, and they
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are not considered identical.

To show how prediction bounds are generated with mapped data, we assume the PSA is for

a group of two EDGs, so the data will be mapped down (or not at all). The consequences of

extrapolation due to mapping up data present a serious problem to PSA in cases where parametric

failure models cannot be justi¯ed; see, for example, Kvam [7].

The time on test for each component group is not available for public disclosure. As a conse-

quence, we do not investigate the overall failure frequencies for the di®erent systems. Instead, we

naively assume the rates are identical for every group (this is almost certainly not the case) and

assume the total time on test for the group of systems with k components is Tk reactor years. For

illustrative purposes, we will seek a 95% and 99% UPB for a future (T=1) reactor year. Any future

CCF will refer to the simultaneous failure of both EDGs from this group of two diesels in the PSA.

Each failure frequency can be mapped to an expected number of CCFs of both EDGs using the

mapping technique described in the last section. In general, suppose we have observed failure data

for a group of size m that we wish to map to a PSA group of size k < m. Using the method described

in Kvam [7], denote the observed data with the m £ 1 impact vector y(m) and the estimated or

mapped expectations with the k £ 1 vector ŷ(k). We can then take

ŷ(k)
j = E

³
y(k)

j jy(m)
´

=
mX

r=1
Cj;ry(m)

r ;

for j = 1; : : : ; k where

Cj;r =

0
BBB@

r

j

1
CCCA

0
BBB@

m ¡ r

k ¡ j

1
CCCA

0
BBB@

m

k

1
CCCA

I(j · r · m ¡ k + j):
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The third column in Table 2 lists these expected CCFs based on the mapping procedure, which

sum to 35.54. In the ¯rst row, no data transformation is necessary, but in the next three rows,

where common cause group sizes are (3,4,5), the data are mapped down to the PSA group of size

two using hypergeometric probabilities. For example, a multiple failure of two EDGs in a group

of four is mapped to (2=4)(1=3) = 1=6, so from 10 such failures, we expect 10=6 = 1:67 failures of

both EDGs from an equivalent group of size two.

From the mapping procedure, the estimated number of failures is a simple linear combination

of Poisson random variables. If the failure counts are independent, it is noted in Kvam [7] that the

variance of the linear estimate is less than the actual Poisson variance based on an equal failure

rate parameter. Obviously, to make prediction bounds for the future failure estimate, the simple

Poisson prediction interval method described in the last section is inadequate for a linear estimator

that is not distributed as Poisson.

To compute an upper prediction bound, mapped failure counts cannot be used in a practical way.

Instead, we will manipulate the time on test and ¯x the number of failures to what was observed

in the data. For Poisson distributed data, this has intuitive appeal because of the constant rate of

the Poisson process that generates the failure data. That is, a process with rate µ measured over

time span Ta is equivalent to a process with rate Taµ=Tb measured over time span Tb. For mapped

data we can use this to conclude that mapping y(m)
r Cj;r common cause failures to the interval Tk

is equivalent to mapping y(m)
r failures to the interval Tk=Cj;r.

To illustrate this mapping procedure, consider the ¯ve observed simultaneous failure events

involving 2 out of 3 components listed in Table 2. In the same time frame, the expected number

of future CCFs would be 5/3. Equivalently, for a group of two EDGs, we would expect ¯ve such

CCFs in a time interval three times larger than the time frame used for the systems with three
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components (i.e., T = 3T3). Rather than aggregating the expected number of CCFs based on

the observed time on test, we sum the expected time on test (implied by the mapping procedure)

required to observe the actual number of simultaneous failures.

To predict future failures using the mapped test times, we count 54 failure events in the total

time aggregated from the ¯fth column of Table 3:

T = T2 + 4T3 + 9T4 +16T5:

The predicted number of CCFs equals 54/T, which is the same answer one would get with the

mapping procedures described in Mosleh, et al. [10] and Kvam [7]. More importantly, an upper

prediction bound on the future number of CCFs can be calculated using the method described in

Section 2.

For example, suppose T2 = 75 reactor years, T3 and T4 = 50 reactor years, and T5 = 10 reactor

years (these are completely ¯ctitious). Then T= 885 reactor years, and we predict 0.0610 CCFs

per year for the system of two EDGs. Note that if we used only data from two-component systems,

we predict 14/75 = 0.1867 CCFs. A 99% UPB for this point estimate, based on T= 885, is equal

to one (the 95% UPB is also equal to one). For this example, the approximations in Chapter 6 of

Nelson [11] yield the same answers.

4 Bayesian Prediction

Up to this point, we have presented the frequentist viewpoint for predictive inference with mapped

data. In many probabilistic safety assessments, Bayesian methods have been preferred over frequen-

tist methods, in part because Bayesian methods allow a convenient avenue for the input of expert
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opinion into the data analysis. Unlike the frequentist prediction procedure, the Bayesian approach

to the prediction problem is straightforward. Given the density f(xjµ) of the observed failure

counts and the prior distribution ¼(µ) that characterizes our uncertainty about the parameter, the

updated posterior distribution for the unknown parameter µ is computed as

¼(µjx) = ¼(µ)f(xjµ)R
£ ¼(µ)f(xjµ)dµ

;

where £ represents the parameter space for µ. The predictive density of a new observation Y from

f(xjµ) is then de¯ned as

PY jX(yjx) =
Z

£
f(yjµ)¼(µjx)dµ:

The posterior ¼(µjx) serves as a mixing distribution which combines the updated parameter uncer-

tainty with the original prediction uncertainty.

For Poisson data, if we specify a Gamma prior (integer shape parameter = r, scale parameter

= ¸) for the failure rate parameter µ, it is possible to show the predictive density of Y (given x

failures) is negative-binomial with parameters r+x and p = (¸+Tx)=(¸+Tx +Ty), where Tx and Ty

are test times, respectively, for the observed and predicted number of failures. If we choose a more

general Gamma prior in which r can be non-integer, the predictive distribution is Poisson-Gamma,

which can be found in Section 8.3 of Johnson, Kotz and Kemp [6]. In this case the Poisson-Gamma

parameters are r+x, ¸+Tx and Ty. Of course, other reasonable prior distributions can be chosen for

µ; the Gamma distribution is emphasized here only because it is a conjugate family for the Poisson

distribution; that is, by using a Poisson likelihood with a Gamma prior, the posterior distribution

of µ is also Gamma.
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Unlike prediction intervals outlined in the previous section, one-sided Bayesian prediction

bounds are made simply by using appropriate percentiles from the predictive density. Two-sided

prediction intervals are constructed in the same manner as regular Bayesian credible sets. If one

can apply prior information with a sensible conjugate prior distribution, the resulting Bayesian

analysis is simple and analytically convenient. However, nonconjugate priors are sometimes more

appropriate, including in PSAs of domestic nuclear power plants where log-normal distributions

are sometimes used for Poisson rate parameters. Without conjugacy, we lose the simple and ele-

gant solutions for predictive densities, but given available computing algorithms (i.e., Markov chain

Monte Carlo, numerical integration methods), the selection of a prior from the more general class

of proper distributions no longer precludes the feasibility of Bayesian inference.

With little or no prior information about µ, a noninformative prior distribution can be used to

represent our knowledge of µ. For the Poisson case, µ is a scale parameter, which has a Je®ries

noninformative prior distribution of ¼(µ) = 1=µ; µ > 0. See Berger [1] for further explanation of

noninformative priors, including Je®ries priors. Although ¼(µ) is not a proper distribution, as long

as at least one failure is observed (i.e., X ¸ 1), the resulting predictive probability density of Y is

negative binomial with parameters x and p = Tx=(Tx + Ty). However, if we observe no failures in

the observed data, the improper prior will produce an improper predictive distribution for Y . This

can limit Bayesian methods in safety assessments for which zero-failure experiments are common.

In our example, if we choose an improper Bayesian prior distribution, the predictive density is

Negative Binomial with x = 54 and p = 885=(885+1). The 95% UPB, based on the 95th percentile

of the predictive distribution, equals 1. The 99% UPB also equals 1, which means we are over 99%

con¯dent of observing no more than one CCF in the upcoming reactor year, despite observing 54

in the data. In the case in which noninformative priors are applied, the frequentist and Bayesian
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methods produce identical answers.

5 Discussion

Mapping procedures allow practitioners to combine di®erent sources of data without making strong

assumptions about the failure mechanisms and their corresponding probability distributions. In

this case, we avoid having to characterize the simultaneous failures with a parametric model, such

as the binomial-failure rate model suggested by Vesley [13]. Unlike past mapping procedures, we

suggest transforming the test time instead of the failure frequency. Although the point estimation

method is the same, upper prediction bounds can be more easily generated from the mapped data.

Our analysis is more intricate if we consider the non-homogeneous failure environments at the

di®erent power plants where failure data was solicited. Although the uncertainty associated with

plant to plant variability has an e®ect on estimated and predicted reliability, we have set this up

as a separate problem. Complexities of combining plant data to estimate component reliability

was approached with an empirical Bayes framework in Martz, et al. [9], and a similar problem was

worked out using a hierarchical Bayes approach in Chen and Singpurwalla [2].

Predictive inference is not a standard approach in the engineering industry, but upper predic-

tion bounds tend to have more credence than con¯dence statements about unknown parameters

or distribution functions. Clearly, prediction intervals have a place in probabilistic safety assess-

ment. An account of needs and methods for predictive inference with discrete data (e.g., Poisson,

Binomial) can be found in Kvam and Miller [8].
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Table 1.

failures 0 1 2 3 4 5 6 7 8 9

95 % UPB 4 6 8 9 11 12 14 15 17 18

failures 10 11 12 13 14 15 16 17 18 19

95 % UPB 19 21 22 23 25 26 27 29 30 31

failures 20 21 22 23 24 25 26 27 28 29

95 % UPB 32 34 35 36 37 39 40 41 42 44

95 % Upper Prediction Bounds for Poisson Events.
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Table 2.

Group Size Impact Vector Expected Failures

2 (17,14) (0,14)

3 (9,5,6) (0, 1.67, 6)

4 (11,10,7,6) (0, 1.67, 3.5, 6)

5 (2,2,1,2,1) (0, 0.2, 0.3, 1.2, 1)

Common Cause Failure Data for Emergency Diesel Generators.
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Table 3.

type of observed frequency time on test P(CCF) translated

multiple failure time on test

1 out of 2 17 T2 0

2 out of 2 14 T2 1.0 T2

1 out of 3 9 T3 0

2 out of 3 5 T3 1/3 3T3

3 out of 3 6 T3 1.0 T3

1 out of 4 11 T4 0

2 out of 4 10 T4 1/6 6T4

3 out of 4 7 T4 1/2 2T4

4 out of 4 6 T4 1.0 T4

1 out of 5 2 T5 0

2 out of 5 2 T5 1/10 10T5

3 out of 5 1 T5 3/10 10T5/3

4 out of 5 2 T5 3/5 5T5/3

5 out of 5 1 T5 1.0 T5

Transformed time on test for EDG failure data.
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