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Abstract

Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast 

cancer subtypes and no effective targeted therapies are currently FDA-approved. Recent data 

indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential 

therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-

androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical 

model. In this study we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-

polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and 

Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. 

AR protein expression was examined in late-stage primary tumors and lung metastases from 

MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of 

Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined 

using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage 

primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant 
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nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to 

DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists 

inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT 

model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in 

disease progression and how anti-androgens affect the tumor microenvironment.

Keywords

Androgen receptor; MMTV-PyMT; Met-1; triple-negative breast cancer; enzalutamide; 
dihydrotestosterone

INTRODUCTION

Even though the 5-year survival rate for non-metastatic breast cancer is nearly 99%, a lack 

of effective treatments means that only approximately a quarter of women diagnosed with 

metastatic breast cancer will survive to 5 years [1]; thus, understanding the progression of 

this disease is critical. Triple-negative breast cancer (TNBC), which accounts for 

approximately 15–20% of newly diagnosed breast cancers, is the most clinically aggressive 

subtype with a peak rate of metastasis in the first three years post-diagnosis [2, 3]. These 

tumors are especially difficult to treat since, by definition, they lack expression of the most 

common breast cancer molecular biomarkers/therapeutic targets: estrogen receptor-alpha 

(ERα), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2).

Interestingly, the androgen receptor (AR) is expressed in up to 50% of TNBCs [4] and is 

currently being investigated as a potential therapeutic target [5, 6]. Inhibition of AR activity 

in TNBC cells decreases migration, invasion, and anchorage-independent growth, indicating 

that AR may promote the metastatic potential of TNBC cells in culture [5]. In addition, 

single cell sequencing of TNBC patient-derived xenograft models indicates that AR is 

upregulated in early-stage metastases as compared to primary tumor cells [7]. Furthermore, 

in breast cancer patient tumors, AR levels are often maintained from the primary tumor to 

metastases [8-10]. Together these data suggest that AR may promote the metastatic spread of 

breast cancer by supporting the survival of breast cancer cells during the metastasis.

Metastasis to distant organs is dependent on the microenvironment both at the primary and 

metastatic sites [11]. In order to fully understand the potentially complex mechanisms by 

which AR contributes to TNBC metastasis and how AR+ cells within the microenvironment 

respond to anti-androgen therapies, an immunocompetent preclinical model of breast cancer 

is needed. However, AR protein expression has not been examined in any of the well-

established, commonly used transgenic mouse models of breast cancer.

The MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse 

model of breast cancer is widely used and well characterized. MMTV-PyMT mice develop 

spontaneous mammary tumors that closely resemble the progression and morphology of 

human breast cancers [12-14]. MMTV-PyMT tumors lose expression of ERα and PR as they 

progress [14], and though MMTV-PyMT primary tumors are reported to express HER2 [14], 

levels are low compared to human HER2+ cell lines that have amplified HER2 (data not 
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shown). Notably, gene expression profiling clustered MMTV-PyMT tumors with ERα-

negative ‘luminal’ human breast cancers [15], which is a gene signature similar to the 

luminal-AR (LAR) TNBC subtype characterized by high AR expression [16] and the 

molecular apocrine ER/PR negative, but AR+ tumors described prior to molecular subtyping 

[17, 18]. In order to determine whether the MMTV-PyMT mouse model might serve as a 

useful tool to study the role of AR in breast cancer progression, we characterized AR 

expression and function using late-stage MMTV-PyMT primary mammary tumors and lung 

metastases as well as the Met-1 cell line generated from a late-stage MMTV-PyMT primary 

tumor [19].

MATERIALS AND METHODS

Mouse Tissue

MMTV-PyMT: Formalin-fixed, paraffin-embedded (FFPE) MMTV-PyMT mouse mammary 

tumors and metastatic lung tissue generated by JLC was kindly provided by Susan Kane 

(City of Hope, Duarte, CA). Tissue was collected from 20-week-old hemizygous, mixed 

background (C57BL/6 and FVB/NJ) MMTV-PyMT females with multiple mammary 

tumors. For a detailed description of background and breeding strategy refer to [20]. AR 
control tissue: Liver and testis were collected from mixed background adult male mice 

obtained from the University of Colorado Center for Comparative Medicine (Aurora, CO) in 

accordance with the NIH Guidelines of Care and Use of Laboratory Animals. Mice were 

euthanized by carbon dioxide (CO2) inhalation followed by cervical dislocation. Tissue was 

immediately frozen whole in liquid nitrogen.

Cell Culture and Reagents

The mouse mammary tumor cell line Met-1 was derived from a MMTV-PyMT mammary 

tumor (FVB/N) by Alexander Borowsky [19]. This cell line was kindly provided in 2015 by 

Donald McDonnell (Duke University, Durham, NC) with permission granted by Alexander 

Borowsky (University of California – Davis, Davis, CA). Met-1 cells were maintained in 

DMEM with 10% FBS in 5% CO2. The human TNBC cell lines MDA-MB-231, 

SUM159PT and MDA-MB-453 were cultured in 5% CO2. MDA-MB-231 cells were 

purchased in 2008 from the American Type Culture Collection (ATCC, Rockville, MD) and 

maintained in MEM with 5% FBS, 1% non-essential amino acids and insulin. SUM159PT 

cells were obtained in 2013 from the University of Colorado Cancer Center (UCCC) Tissue 

Culture Core (Aurora, CO) and maintained in Ham’s/F-12 with 5% FBS, 1% HEPES, 1 

μg/mL hydrocortisone and 5 μg/mL insulin. MDA-MB-453 cells were purchased from 

ATCC and maintained in DMEM with 10% FBS. Only cells of under 10 passages were used 

in this study. All cell lines were routinely tested for mycoplasma contamination, and the 

human cell lines were authenticated in 2014 by short tandem repeat analysis in the UCCC 

Tissue Culture Core. The androgen dihydrotestosterone (DHT; Sigma-Aldrich Corporation, 

St. Louis, MO) was diluted in 100% ethanol (EtOH). The AR antagonist enzalutamide 

(Enza) was provided by Medivation, Inc. (San Francisco, CA). JRK-01 and JRK-04 are 

structurally novel AR degraders that are, respectively, non-competitive and competitive with 

AR agonists. All AR antagonists were diluted in dimethyl sulfoxide (DMSO).
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Immunohistochemistry (IHC)

For the analysis of cell pellets, cells were fixed in 10% buffered formalin, pelleted in 

Histogel from ThermoFisher Scientific Inc. (Waltham, MA) and the UC Denver Tissue 

Biobanking and Processing Core performed tissue processing and paraffin embedding. 5 μm 

sections of FFPE tissue or cell pellets were deparaffinized in a series of xylenes and 

ethanols, and antigens were heat retrieved in either 10 mM citrate buffer pH 6.0 or 10mM 

Tris/1mM EDTA pH 9.0 (ERα). Antibodies used include: rat monoclonal antibody specific 

for PyMT (#NB-100-2749; Novus Biological LLC, Littleton, CO), mouse monoclonal 

antibody specific for ERα (#M7047 clone 1D5; Agilent Technologies Inc., Santa Clara, 

CA), rabbit polyclonal antibody specific for PR (#A0098, Agilent) and rabbit polyclonal 

antibody specific to AR (#RB-9030-P0, ThermoFisher). ERα and AR antibodies were 

detected with Envision-HRP (Agilent) and PyMT and PR with biotinylated goat anti-rat 

(Jackson ImmunoResearch, West Grove, PA) and biotinylated goat anti-rabbit (Agilent), 

respectively, each followed by streptavidin HRP (Agilent). Tris-buffered saline with 0.05% 

Tween 20 was used for all washes. Representative images were taken using a BX40 

microscope (Olympus, Center Valley, PA) with a SPOT Insight Mosaic 4.2 camera and 

software (Diagnostic Instruments, Inc., Sterling Heights, MI). Expression levels, presented 

as the percentage of positive cells, were scored visually for the entire sample/tumor/

metastasis or measured per field in five non-overlapping fields per sample using ImageJ 

software measuring the percentage of positive pixels.

Western Analysis

A homogenizer was used to extract protein from frozen tissue in ice-cold RIPA buffer 

supplemented with 1X protease inhibitor cocktail from Roche Applied Science 

(Indianapolis, IN). Whole cell lysates were collected on ice in SDS Lysis Buffer (1% SDS, 

10mM EDTA, and 50mM Tris-HCl, pH 8.1) supplemented with 1X protease inhibitor 

cocktail. Protein concentrations were determined with the BioRad RC DC protein assay 

(Hercules, CA). Proteins (40 μg) were separated on an 8% SDS-PAGE gel and transferred to 

a polyvinylidene fluoride membrane. 5% non-fat dry milk was used for blocking buffer and 

for primary antibody incubation. Primary antibodies included: rabbit polyclonal antibody 

that recognizes both human and mouse AR (#RB-9030-P0) from ThermoFisher and mouse 

monoclonal antibody to α-Tubulin (#T5168) from Sigma-Aldrich. Secondary antibodies 

were horseradish peroxidase-conjugated anti-rabbit and anti-mouse IgG antibodies from Cell 

Signaling Technology (Danvers, MA). Secondary antibodies were detected using an ECL 

Plus kit from ThermoFisher. Each experiment was repeated a minimum of two times.

Drug Sensitivity Assays

Met-1 cells were plated at a density of 350 cells per well in 96-well plates (for cell viability 

assays; SUM159PT cells at a density of 500 cells per well and MDA-MB-453 cells at 5 × 

103 cells per well) and 5 × 104 cells per well in 60-mm plates (for AR cellular localization 

IHCs). For experiments involving DHT-induced proliferation or localization of AR, cells 

were cultured in media containing hormone-stripped serum (using dextran-coated charcoal, 

DCC) for 48 hours prior to supplementation with 0.1% ethanol (EtOH) or 10 nM DHT. For 

dose-response experiments, cells were cultured in media containing 10% FBS. Cells were 
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treated with either DMSO or AR antagonists (Enza, JRK-01 and JRK-04) at concentrations 

ranging from 1-100 μM for 3-5 days. Crystal violet cell viability assay: Cells were fixed 

with 10% formalin, stained with 5% crystal violet dye and the dye was then solubilized with 

10% acetic acid. Absorbance was measured at 540 nm. Data are presented as relative cell 

number or percent cell viability and normalized to the mean absorbance of EtOH- or 

DMSO-treated cells. Each experiment was run in quintuplicate and repeated a minimum of 

three times. AR cellular localization: Cell pellets were collected and AR protein was stained 

by IHC (see details above).

Migration and Invasion Scratch Wound Assays

5 × 104 cells were plated per well in a 96-well plate. The following day a wound was made 

in each well, and cells were treated with media containing 1% FBS and 5 μg/mL mitomycin 

C (for migration assays) or 10% FBS (for invasion assays) with 0.3% DMSO, 30 μM Enza 

or 10 μM JRK-01. Migration across an empty wound or invasion across a wound filled with 

100% Matrigel from BD Biosciences (Franklin Lakes, NJ) was measured every 4 hours 

using the IncuCyte ZOOM Live Cell Imaging apparatus (Essen BioScience, Ann Arbor, 

MI). Data are presented as percent wound density and normalized to empty wound area from 

time 0 hours for each drug treatment. Each experiment was run in quintuplicate and repeated 

a minimum of three times.

Anchorage-Independent Growth Assay

Soft agar colony formation assays [21] were performed in 0.5% bottom and 0.3% top layer 

agar (Difco Agar Noble, BD Biosciences) containing 0.2% DMSO, 20 μM Enza, 10 μM 

JRK-01 or 10 μM JRK-04. 2 × 103 cells were plated per well in a 6-well plate. Fresh media 

was added to each well weekly. Colonies were photographed using a Canon PowerShot 

A470 digital camera. Colony count and size were quantified using ImageJ software. Each 

experiment was run in triplicate and repeated a minimum of two times.

Statistical Analysis

Statistically significant differences, p values < 0.05, were calculated using GraphPad Prism 

6.0 statistical software. Differences between groups were determined by two-tailed Student’s 

t-test.

RESULTS

AR protein is expressed in the MMTV-PyMT mouse model

Similar to the molecular biomarker expression patterns observed in human TNBC cells, late-

stage MMTV-PyMT tumors and derived Met-1 cells have previously been shown to express 

little to no ERα and PR and relatively low HER2 [14, 19]. In order to determine if the 

MMTV-PyMT mouse model could be used to study AR in an immunocompetent system 

analogous to TNBC, AR protein was examined in matched primary mammary tumors and 

metastatic lungs collected from 20-week-old MMTV-PyMT females. While few PyMT-

positive primary tumors and metastases expressed ERα and PR at this late-stage in tumor 

development (0-2% of primary tumors and 0% of metastases), a high percentage were 

positive for AR (95-99% of primary tumors and 85-100% of lung metastases; Fig. 1). 
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Furthermore, micrometastases showed consistent AR expression when compared to the 

expression levels of larger metastases (Supplemental Fig. 1).

AR is functional in Met-1 cells

AR protein was expressed in Met-1 cells (Fig. 1 and 2a). To determine if AR is functional 

and whether Met-1 cells rely on it for growth, the response of Met-1 cells to AR agonists 

and antagonists was examined. Met-1 cells cultured in hormone-stripped serum were treated 

with the AR agonist dihydrotestosterone (DHT). DHT caused an increase in AR expression 

(p = 0.004) as well as a translocation to the nucleus, an indicator of AR activation (Fig. 2b). 

It is important to note that DHT did not alter PyMT protein expression in Met-1 cells 

(Supplemental Fig. 2). DHT also induced Met-1 cell proliferation relative to control treated 

cells (p = 0.041; Fig. 2c). The AR antagonists enzalutamide (Enza) and JRK-01 significantly 

decreased AR protein expression and nuclear localization when compared to control treated 

cells (p = 0.004 for Enza, p < 0.0001 for JRK-01; Fig. 3a). AR antagonists inhibited Met-1 

cell viability, both DHT-induced proliferation (p = 0.044 for 20 μM Enza, p = 0.0001 for 30 

μM Enza; Fig. 3b), as well as the viability of cells cultured in full serum media (Fig. 3c), 

with Met-1 IC50 values similar to those observed in human TNBC cell lines (Fig. 3d and 

Supplemental Table S1).

AR inhibition decreases Met-1 metastatic potential

AR has been shown to promote the metastatic potential of human TNBC cells in vitro [5]. In 

order to investigate the role of AR in the metastatic potential of Met-1 cells, we examined 

the effects of AR inhibition on the classic in vitro markers of metastatic potential: migration, 

invasion and anchorage-independent growth. AR antagonists had little effect on Met-1 cell 

migration (Fig. 4a), but significantly decreased Met-1 cell invasion when compared to 

control treated cells (p = 0.0002 for Enza, p = 0.031 for JRK-01; Fig. 4b). In soft agar 

colony formation assays, AR antagonists significantly decreased Met-1 anchorage-

independent growth relative to control treated cells (colony count: p = 0.0002 for JRK-01, p 
= 0.003 for JRK-04; colony size: p = 0.032 for Enza, p = 0.0004 for JRK-01, p = 0.002 for 

JRK-04; Fig. 4c).

DISCUSSION

Evidence from preclinical studies suggest that AR expression in breast cancer cells promotes 

a metastatic phenotype [5, 7]. We previously demonstrated that inhibition of AR 

dramatically decreased proliferation, migration, invasion, anchorage-independent growth, 

and tumor formation in multiple human TNBC cell lines [5, 22]. Our data in the MMTV-

PyMT model and Met-1 cells is consistent with this, showing that AR is retained in MMTV-

PyMT lung metastases and that AR antagonists inhibit Met-1 proliferation and invasion as 

well as anchorage-independent growth, a well-established predictor of the capacity for 

metastasis in vivo [23]. Met-1 cells are highly migratory, which may explain why we did not 

observe the decrease in migration by AR antagonism that we previously observed in human 

TNBC cells. AR may promote expression of factors responsible for degradation of the 

extracellular matrix (ECM), a critical early step in the metastatic cascade, since AR 

inhibition has a more pronounced effect on Met-1 cell invasion versus migration. In fact, AR 
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promotes metalloproteinase (MMP) expression, specifically MMP-2 and MMP-9, in a 

number of cancer types [24, 25] and this has been linked clinically to more aggressive 

tumors in patients with hepatocellular carcinoma [26]. In breast cancer patients, AR 

expression positively associates with higher expression of several MMPs [27]. Further 

research is necessary to understand the direct relationship between AR and ECM remodeling 

proteins, such as MMPs. We also demonstrated previously that the greatest effect of the anti-

androgen Enza was on human TNBC cell growth on soft agar [5], and we observe a strong 

effect on the Met-1 cells here. Our data is also consistent with recent data in a human TNBC 

patient-derived xenograft model showing an increase in AR gene expression in circulating 

tumor cells and early lung metastases as compared to the primary tumor [7] and closely 

recapitulates what is often observed in AR+ breast cancer patients where AR levels are 

maintained from the primary tumor to metastases [8-10]. Taken together, these data support 

the hypothesis that AR supports cancer cell invasion and survival during metastasis to distant 

sites.

Our data also demonstrate that the phenotypic effects following treatment with AR agonists 

and antagonists in the Met-1 model are due to changes in AR activity and not to changes in 

PyMT expression. There is some evidence that steroid hormone receptors can regulate the 

MMTV promoter, but MMTV activation by steroid receptors is known to be both cell type 

and context dependent [28-30]. DHT-induced AR activation had no effect on PyMT 

expression in Met-1 cells (Supplemental Fig. 2), suggesting that the MMTV promoter is not 

androgen responsive in this model and that the observed effects on cell viability and 

metastatic potential are a consequence of changes in AR expression and activity.

New generation anti-androgens are in clinical trials for the treatment of breast cancer, and 

there is potential for women to be on such therapy for extended periods as are men with 

prostate cancer. Consequently, further investigation into how systemically administered anti-

androgens affect stromal and immune cell populations is warranted. AR is expressed in 

various normal cells throughout the body, including cells in metastatic sites such as the lung, 

and in a wide variety of immune cells, many of which contribute to the anti-tumor immune 

response [31, 32]. There exists some controversy regarding whether new generation anti-

androgens, such as enzalutamide, promote or dampen the anti-tumor T-cell response [33-36]. 

To date this question has been examined primarily in models of prostate cancer, and since 

this is the first report of an immunocompetent AR+ mammary carcinoma model, this issue 

has not yet been examined in the context of a breast cancer in vivo model. Anti-androgens 

lead to increased susceptibility of both prostate and breast cancer cells to cytotoxic T cell 

killing in vitro, which could have positive implications for the future combination of AR 

antagonists with immunotherapies that stimulate the anti-tumor immune response [34, 36]. 

However, Yang-Xin Fu’s group used immunocompetent mouse models of prostate cancer to 

show that AR antagonists have an immunosuppressive effect on T cell priming, diminishing 

the anti-tumor immune response and eventually leading to accelerated tumor recurrence 

[35]. For anti-androgens to be effective long-term breast cancer therapeutics it is essential 

that we understand how they affect host immunity and, in particular, what effects they may 

have on the anti-tumor immune response. Ultimately, the MMTV-PyMT model and Met-1 

cells will help unravel the complex ways in which anti-androgens affect breast cancer 

progression.
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Tumor progression is not an isolated process. Complex interactions between tumor and 

stromal cells, both at the primary and metastatic sites, play a critical role in determining the 

extent of tumor progression [11]. TNBC is particularly aggressive and difficult to treat; thus, 

it is essential to better understand how the tumor microenvironment contributes to the rapid 

progression of this subtype of breast cancer. The data presented here suggest that the 

MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of 

how AR and anti-androgens affect breast cancer progression and serve as an 

immunocompetent model of progression to AR+ TNBC (LAR) metastatic disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nuclear receptor expression in MMTV-PyMT tumors and derived Met-1 cells. Primary 

mammary tumors and lungs were collected from 20-week-old MMTV-PyMT mice (n = 8 

primary tumors and n = 9-12 lung metastasis, from 2 mice). Met-1 cells were cultured in 

media with 10% FBS. Tissue and cells were formalin-fixed and paraffin embedded. 5 μm 

sections were stained for PyMT, ERα, PR and AR (1:100). The percentage of positive cells 

for each sample was scored visually and the range of expression is indicated for each stain. 

Shown are representative images; 40× objective, scale bar = 50 μm
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Fig. 2. 
Met-1 response to an AR agonist. (A) Met-1 cells were cultured in media containing 10% 

FBS. AR protein levels were measured by Western analysis. Mouse liver and testes were 

used as controls for mouse AR and the MDA-MB-231, SUM159PT and MDA-MB-453 cell 

lines were used to examine the relative levels of AR in Met-1 cells compared to human 

TNBC cells. α-Tubulin was used as a loading control. (B,C) Met-1 cells were grown in 

media with hormone-stripped serum (10% DCC) for 48 hours then treated with 0.1% EtOH 

or 10 nM Dihydrotestosterone (DHT) for 3 days. (B) Met-1 cells were formalin-fixed and 

paraffin embedded. 5 μm sections were stained for AR (1:800). Shown are representative 

images; 40× objective, scale bar = 50 μm; inset zoom ×2. The percentage of AR positive 

cells per field in five non-overlapping fields per sample; mean, ** p < 0.01. (C) Cell 

viability was determined by crystal violet assay. Data was normalized to the mean 

absorbance of EtOH-treated cells; mean ± standard deviation, * p < 0.05
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Fig. 3. 
Met-1 response to AR antagonists. (A) Met-1 cells were grown in media with hormone-

stripped serum (10% DCC) for 48 hours then treated for 3 days with 10nM DHT plus 0.2% 

DMSO, 20μM enzalutamide (Enza) or 10μM JRK-01. Cells were formalin-fixed and 

paraffin embedded. 5 μm sections were stained for AR (1:800). Shown are representative 

images; 40× objective, scale bar = 50 μm; inset zoom ×2. The percentage of AR positive 

cells per field in five non-overlapping fields per sample; mean, ** p < 0.01, **** p < 0.0001. 

(B) Met-1 cells were grown in media with hormone-stripped serum (10% DCC) for 48 hours 

then treated for 3 days with 10nM DHT plus 0.3% DMSO (-) and increasing concentrations 

of Enza. Cell viability was determined by crystal violet assay. Data was normalized to the 

mean absorbance of DMSO-treated cells; mean ± standard deviation, * p < 0.05, *** p < 

0.001. (C) Met-1 cells were cultured in media with 10% FBS. Cell viability was determined 

by crystal violet assay after a 5-day exposure to 0.1% DMSO (0) or increasing 

concentrations of Enza, JRK-01 or JRK-04. Data was normalized to the mean absorbance of 

DMSO-treated cells; mean ± standard deviation. (D) AR-positive TNBC cell lines 

SUM159PT and MDA-MB-453 were grown in full serum media (10% FBS). Cell viability 

was determined by crystal violet assay after a 4-day exposure to either 0.1% DMSO (0) or 
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increasing concentrations of AR antagonists. Data was normalized to the mean absorbance 

of DMSO-treated cells; mean ± standard deviation
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Fig. 4. 
Met-1 migration and invasion. (A) Migration was measured every 4 hours in cells cultured in 

media containing 1% FBS and 5 μg/mL mitomycin C with 0.3% DMSO, 30 μM 

enzalutamide (Enza) or 10 μM JRK-01 for 20 hours; mean ± standard deviation. (B) 
Invasion across a wound filled with 100% Matrigel was measured every 4 hours in cells 

cultured in media containing 10% FBS with 0.3% DMSO, 30 μM Enza or 10 μM JRK-01; 

mean ± standard deviation. Statistical differences were measured comparing the final time-

points. (C) Anchorage-independent growth was measured using the soft agar colony 

formation assay. Cells were grown in 0.3% agar media containing 0.2% DMSO, 20 μM 

Enza, 10μM JRK-01 or 10 μM JRK-04; mean ± standard deviation, * p < 0.05, ** p < 0.01, 

*** p < 0.001. Shown are representative images
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