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Computational Problems with the Binomial Failure Rate Model and 
Incomplete Common Cause Failure Reliability Data 

Paul H. Kvam 

Los Alamos National Laboratory 

Los Alamos, NM 87545 

Absh·act 

In estimating the reliability of a system of 
components, it is ordinarily assumed that the 
component lifetimes are independently 
distributed. This assumption usually alleviates 
the difficulty of analyzing complex systems, 
but it is seldom true that the failure of one 
component in an interactive system has no 
effect on the lifetimes of the other components. 
Often, two or more components will fail 
simultaneously due to a common cause event. 
Such an incident is called a common cause 
failure (CCF), and is now recognized as an 
important contribution to system failure in 
various applications of reliability. We 
examine current methods for reliability 
estimation of system and component lifetimes 
using estimators derived from the binomial 
failure rate model. Computational problems 
require a new approach, like iterative solutions 
via the EM algorithm. 

Introduction 

Simultaneous failures of components due to 
the same cause or initiating event are called 
common cause failures. Indusuies that require 
low risk and high reliability, like nuclear 
power plants, depend on highly reliable 
components and redundancy built into the 
system to maintain a high overall reliability. 
In this setting, common cause failure is an 
important contributor to risk, since the 
advantages of redundant component 
configurations can be negated by a single 
common cause event. Examples of such 
events include natural disasters, like 
earthquakes or lightning su·ikes that can fail an 
entire group of components that were designed 
to work independently. Components that 
inherit the same design flaw may also be 
stochastically dependent if a common cause 

event exploits the flaw by failing the group 
simultaneously. 

Formulation and analysis of CCF models are 
essentially rooted in statistics, but for the most 
part, common cause problems have been 
overlooked by the statistics community. 
Marshall and Olkin (1967) derived a 
multivariate exponential model with an added 
"shock" variable that allows dependence 
between the exponential random variables. 
This model permits lifetimes to be 
stochastically dependent by adding a random 
shock event that will eiti1er fail a random 
number of components in the group (called a 
non lethal shock) or will fail all the 
components at once (called a lethal shock). 
Later, Vesley (1977) adapted the shock model 
to applied problems in the nuclear industry. 
To illustrate Vesley's model, consider a group 
of m identical components with exponential 
lifetimes, each of which possesses a common 
failure rate (A,) reflecting the frequency of 
single component failures that are detennined 
to be independent of the other component 
lifetimes in the group. An additional non 
lethal common cause shock occurs to the 
system at a Poisson rate (µ) independent of the 
individual component failure probabilities. 
Once a common cause shock occurs, each of 
the m components can fail according to the 
results of an independent Bernoulli trial with 
unknown parameter p. As a result, the number 
of components failing due to a common cause 
shock is distributed binomial, hence this was 
termed the binomial failure rate (BFR) 
model. 

The three-parameter BFR model conu·ibuted 
greatly to reliability inference problems for 
complex systems of components. In many 
systems, however, the model failed to 
adequately describe the underlying reliability. 
Applications that were not modeled well 



included systems for which shocks and CCF 
events occun-ed with different intensities. That 
is, some systems may typically withstand 
frequent minor shocks that contribute to the 
simultaneous failure of few or no components, 
but can also persevere a rare event that will 
likely fail all the components in the same CCF 
group. Atwood (1986) resolved this problem 
by adding an independent lethal shock variable 
modeled with a Poisson rate (ro). This four­
parameter BFR model has been more readily 
accepted as a means to reliability estimation in 
the nuclear industry. In terms of this updated 
model, the failure rate of components within 
the group is written as 

mlt + µmp(1-p) 111
•
1 for failures of a 

single component 

µ ( ~· )Pk(l-p)111
-k for simultm1eous failures 

involving k-ont-of-m 
components (2s;;ks;;m-1) 

(I) + µp 111 for simultaneous failure of all 
components. 

The overall failure rate of one or more 
components is e = mA. + (J) + µ(1-(1-p)m). 
Notice that 9 reflects our inability to record 
non lethal shocks that fail no components. 
More complex models cm1 be derived from the 
basic BFR model. For instance, if data 
originate from different plants, plant-to-plant 
variability may be viewed as an important 
feature in tlle study. Also, if common cause 
events are distinguishable and meaningful to 
the reliability planner, they can be 
parmneterized as separate shock events, given 
an mnple mnount of reliability data. 

Typical reliability studies of a nuclear power 
plant are limited to simple attribute data tlmt 
reflects single and multiple failures of 
components under study. We assume that data 
are generated from tl1e smne system or tl1e 
same type of systems with m identical 
components, and a simultm1eous failure of k 
units out of m fail is represented using an mxl 
vector witl1 a 1 in the kth position (and zeros 
placed elsewhere), and is called an impact 
vector. The sum of the impact vectors is 
denoted !! = (n1, n1, .. . , nm) where Ilk = 
number of failure events in which k out of m 
components failed simultaneously. In some 
data sets, no may also be available if failures 
are tabulated for fixed time lengths, so impact 
vectors cm1 be of lengtl1 m+ 1. If shocks that 

cause component failure can be distinguished, 
we can further partition the impact vectors by 
defining a = number of failure events 
involving a single component that are caused 
by independent shocks, bk =number of failure 
events involving k components caused by non­
lethal shocks (1 s;; k s;; m), and c = number of 
failure events affecting all m components due 
to lethal shocks. Notice that nl =a+ bl and 
nm = c + bm . If no is observable, bo is 
defined and d denotes the number of times no 
shock occurs in a fixed interval of time (so no 
= d + bo). Let N and B as the sum of all 
failure m1d CCF events, respectively. 

Non-shock models 

The goal of this paper is to exmnine and 
extend the methodology of the BFR model. 
Since its introduction as a four-parameter 
model, very little research has focused on BFR 
model theory for use in CCF analysis, mainly 
because tlle nuclear industry, which is a major 
beneficiary of CCF research, has accepted 
alternative models for most of its CCF 
investigations of component failures in nuclear 
power plants. The alternatives include the 
beta-factor estimator, the alpha-factor 
estimators and the multiple Greek letter 
estimators. The beta-factor estimator, simplest 
mnong the tlll'ee, was developed by Fleming 
(1975), and gave rise to the otl1er two. All 
tl1ree metl1ods are derived in a similar way, 
and differences mnong the tlll'ee are subtle 
compared to contrasts witl1 tl1e BFR model and 
cmrnsponding estimators. We will highlight 
only the beta-factor estimator, since it is the 
simplest mnong all non shock models. The 
other models are discussed in length in 
Mosleh, et. al. (1988). The beta-factor method 
addresses tlm special case in which m = 2, and 
tl1e model consists of just two parmneters : 

A.* = overall component failure rate 

~ = proportion of a component failure 
rate shm·ed by tl1e otl1er 
component. 

This method produces conservative (biased) 
estimates of parmneters if m>2, unless the only 
possible common cause failures are letl1al. 

Analyses involving non shock models (NSMs) 
m·e usually simple and short, giving the 
experimenter one or two estimators he or she 
considers critical in tl1e assessment. If tl1e 



component group size is kept fixed (i.e., m is a 
constant), these methods allow a general 
distribution on the number of common cause 
events that can occur, while the BFR model 
constrains the failure count from non lethal 
shocks to an augmentation of the binomial 
distribution. However, if complications arise, 
the NSM estimators have possibly severe 
shortcomings. Because the NSM pmameters 
are component based and no modeling of 
shocks occurs in the estimation method, it is 
unknown how exactly CCF events may change 
for varying component group sizes. 
Interpolation and extrapolation schemes based 
on the BFR model ru·e cmmnonly used in these 
non BFR models when results do not 
accommodate the pru-ticular component group 
sizes of interest to the experimenter. These ad 
hoc procedures, called "mapping rules" (see 
chapter 3 of Mosleh, et. al. (1988)) ru·e used to 
estimate conditional probabilities for group 
sizes (m) different than group sizes available 
in the data. 

The BFR model, on the other hand, allows 
interpretation of failure events independent of 
the component group size. This claim is 
conu·ru·y to statements made in Mosleh, et. al. 
(1988) and Atwood (1986), but the assumption 
that the shock rate and concurring failure 
probability cru1 be independent of group size is 
hru·dly eirnneous or unrealistic. This quality 
makes the BFR model especially useful in 
reliability studies for nucleru· power plants in 
which plans include the use of redundancy 
configurations unlike those in existing plants, 
or for plants in which components ru·e grouped 
in conll·ast to other plru1ts that produce much of 
the CCF data. 

Estimation using the BFR Model 

As mentioned eru·lier, we assume independent 
Poisson processes detennine the occuffence of 
shocks, and we observe the system over a 
fixed time period (T) for which repair time and 
imperfect repair ru·e negligible. For the 
likelihood based on observing ,.n , the four 
basic pru·runeters of the BFR model ru·e not 
necessru·ily identifiable. Maximum likelihood 
estimation leads to estimates outside the 
pruwneter space for several combinations of 
failure data. For exrunple, if ro = 0 and p is 
fixed, the MLE for A, is negative when 

___ n~1 __ <--~P_t __ where 
n2 + · · · + nm p2 + · · · + Pm 

(
/II ) j(l )111-j . 1 Pj = j P -p , J = ,. · .,m. 

With no information about no or bO, the 
likelihood can be increased dramatically by 
choosing a value of p close to zero, which 
allows µ to become lru·ger. From this example 
we can see that MLEs and corresponding 
Bayes estimators (without shmp priors) should 
not be used directly to estimate the basic 
pru-mneters of the BFR model in this case. 

To sidestep this problem, Atwood (1986) 
substituted a pruwneter A+ = µ(1-(1-p)"') for the 
non shock parameter µ. This indirect 
inference of the modified pruwneter set uses 
Bayes techniques, assuming the joint 
distribution for the parameter set is 
independent. The resulting methods require 
knowledge of (a, ~ c) in the estimation 
scheme. The paper also provides an overview 
of related inference problems involving the 
BFR model, including estimation of other 
pru·runeters that are of interest to practitioners 
in the nucleru· indusu·y. However, very little 
research on the BFR model exists outside 
Atwood's paper. 

If no or bo are observed, estimation is 
straightforwru·d and easy using maximum 
likelihood or other classical techniques. The 
MLEs ru·e 

/'.. r.. A 111 

?. = ..JL, µ = lL m = .£, p = -1-I, k bk , 
mT . T' T 1118 k=I 

and several available methods can be used to 
consu·uct confidence intervals or hypotheses 
tests. 

EM Algorithm : If the non failure data is not 
observable, direct estimation of the basic 
parameters is more difficult. The eru-lier 
exrunple exploited problems inherent in the 
MLE. Even in situations where the MLE can 
be solved (e.g., if m, p me lru·ge ru1d A, is small 
relative to µ), a direct solution from the 
likelihood equations is unlikely. If explicit 
solutions cannot be derived, the EM algorithm 
(see Dempster, Laird, and Rubin, (1977)) can 
be used to solve for the MLEs. 

If bo is missing, the EM algorithm provides a 
two-step procedure from which we alternate 
estimating bo using pmruneter estimates (from 



the previous step) and then maximizing the 
likelihood using our estimate of bo in place of 
the missing data. By the assumptions of the 
shock model, 

A ~ Am 
bo = E(bo I b1, b2, · ·., bm-1, bm) = Tµ(l-p) . 

The performance of the iterative estimator is 
promising, except for certain combinations of 
parameters and for small data sets. 

Method-of-Moments .· As an alternative to 
maximum likelihood, we can use a method-of­
moments scheme to estimate the parameters. 
By equating the statistics 

with their respective expected values 
(µmpT, µmp(l+(m-l)p)T, J..niT, mT), we 
derive moment estimators 

111 m 
A L, k(k-l)bk A L, kbk 
A=_g_ ~=£ p =k=O , µ.=k=O A 

mT ' r' 111 
" 

(m-1) L, kbk mp 
k=<J 

For small samples, we sustain the same bias 
problems commonly found in quotient 
estimators. Behaviors of estimatotors for p 
and µ are erratic. The bias causes ve1y few 
problems in larger samples, where µTis much 
larger than one. 

In tl1e figure below, comparisons between the 
metl1od-of-moments estimator, the iterative 
form of tl1e MLE and the (NSM) beta-factor 
estimator are made wit11 respect to estimating 
tl1e parameter ~, as defined in the section on 
NSM alternatives. As a function of the BFR 
model parameters, 

")<: 
- (0 + µp 2 . /" 

/3 - / .. ~r)~ m+µp(J 

for the case m=2. Model adequacy is 
measured in terms of mean squared error; 
values of the BFR model parameters were 
chosen from typical values found in 
component data sets from a nuclear power 
plant. For group sizes (m) larger than two, the 
data are mapped down to accommodate the 
beta-factor estimator. For each sample size 
(m), 10,000 simulations were run. 

-10 

Mean Squared Error : % Decrease 
Beta-Facto1· vs BFR Estimators 

(shocks distinguishable) 

2 3 4 5 6 7 8 9 10 

Component Group Size 

• Method-of-Moments Estimators 

D EM Estimators 

If only !1. = (n1, 112, .. ., llm) is observable (so 
cause of failure is not distinguishable in the 
data), the estimation problem becomes even 
more difficult. The method-of-moments 
estimators are not applicable, and the EM 
algorithm converges even less frequently to a 
sensible solution. In this case, four additional 
statistics need to be estimated : 

~ 
~ 

a=E(a I 111, b2, · ·., bm-1, 11111) = ---'11_,_lA~--
..,,,...., ,-...A " m~l 
J.. + µp(l-p) 

~ 

~ = E(c I 111, b2, · ·., bm-1, n111 ) = -11~1~11 m __ 
.,,...... /'V'\.lll 

m+ µp 

witl1 estimates of bl, bm dete1mined by the 
constraints bl= (n1- a) and bm = (nm - c). 
Though tl1e direct iterative solution perfonns 
inconsistently, we can greatly enhance the 
iterative estimators by adjusting the missing 
data estimates. By shrinking bo toward zero 
(so that B is more stable), resulting estimators 
typically converge to satisfactory solutions. It 
is not certain, however, what amount of 
shrinking is optimal, given tl1e parameter set. 
The improvements possible with this iterative 



method are demonstrated in tl1e final figure 
below. Again, MSE is recorded for both tl1e 
NSM estimator and tl1e quasi-EM result, using 
a fixed shrinkage amount. Altl10ugh the 
results here are not conclusive, we have shown 
tllat alternative solutions to the problem of 
parameter estimation for tlle BFR model are 
feasible, and further research is wairnnted. 

Percent Decrease in MSE 
Beta-factor vs EM-estimator 

(shocks not distingushable) 

2 3 4 5 6 7 8 9 10 

Component Group Size 
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