
Southern Adventist University
KnowledgeExchange@Southern

Senior Research Projects Southern Scholars

2004

Calculating the unrestricted partition function
Towards an investigation of its arithmetic
properties
Robert Jacobson

Follow this and additional works at: https://knowledge.e.southern.edu/senior_research

Part of the Applied Mathematics Commons

This Article is brought to you for free and open access by the Southern Scholars at KnowledgeExchange@Southern. It has been accepted for inclusion
in Senior Research Projects by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact
jspears@southern.edu.

Recommended Citation
Jacobson, Robert, "Calculating the unrestricted partition function Towards an investigation of its arithmetic properties" (2004). Senior
Research Projects. 43.
https://knowledge.e.southern.edu/senior_research/43

https://knowledge.e.southern.edu?utm_source=knowledge.e.southern.edu%2Fsenior_research%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/senior_research?utm_source=knowledge.e.southern.edu%2Fsenior_research%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/southern_scholars?utm_source=knowledge.e.southern.edu%2Fsenior_research%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/senior_research?utm_source=knowledge.e.southern.edu%2Fsenior_research%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=knowledge.e.southern.edu%2Fsenior_research%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/senior_research/43?utm_source=knowledge.e.southern.edu%2Fsenior_research%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

Calculating the unrestricted partition
function

Towards an investigation of its arithmetic properties

Robert Jacobson
Southern Adventist University
December 7, 2004

Robert Jacobson

• Contents

Introduction
Preliminaries

Elementary Series-Product Identities
A Brief Survey of Inefficient Methods of Calculating p(n)

Using The Generating Function Directly
An Algorithm
Complexity Analysis
A Refined Algorithm
Complexity Analysis

A Method Involving A Recurrence
Mathematical Development
Algorithm
Complexity Analysis

Considerations
Euler's Recurrence

Euler's Pentagonal Number Theorem
Recurrence Algorithm
Complexity Analysis
Considerations

The Hardy-Ramanujan-Rademacher Formula
A Brief Mathematical Exploration

Preliminaries
Farey Fractions
Evaluating Cauchy's Integral Formula

An Implementation of the Hardy-Ramanujan-Rademacher Formula
Pseudo-code
Complexity Analysis
Considerations

Other Methods of Determining Arithmetic Properties
Conclusion
Appendix A: Big-0 Notation
Appendix B: Source Code Listing for GeneratingFunct.java
Appendix C: Source Code Listing for SigrnaRecurrenc.java
Appendix D: Source Code Listing for EulerRecurrence.java
Appendix E: Source Code Listing for HRR.java
Bibliography

2

Robert Jacobson

• Introduction

A partition of a positive integer n is a set of positive integers, called parts, that sum to n. For example, 4 has the
partitions:

4
3+1
2+2
2+1+1
1+1+1+1.

The unrestricted partition function p(n) counts the number of partitions of n. Thus p(4) = 5, since there are 5 partitions of
the number 4. We can restrict the partitions in various ways. For example, we may wish to count the number of partitions of
n into distinct parts, that is, in a given partition no part occurs more than once. The number of such partitions of 4 is 2,
namely 4 and 3+1, since each other partion repeats parts. For the most part, however, we will be concerned with the
unrestricted partition function.

Many interesting questions can be asked about the arithmetic of this special function. For example, when is it even,
or when is it odd? When is it evenly divisible by 29? What is its congruence distribution modulus certain prime numbers? In
1938 G.H.Hardy remarked, "In spite of the simplicity of p(n), very little is known about its arithmetic properties" [1]. We
might begin by writing down p(n) for the first few values of nand looking for patterns, as Ramanujan and Hardy did about
80 years ago to develop some striking results. After the fust, say, eight terms counting the number of partitions of n as we
did above becomes too cumbersome. We have already learned two things: first, p(n) grows approximately exponentially,
and second, we need an efficient method of calculating p(n) without enumerating each partition of n. If we wish to
investigate the arithmetic properties of p(n), we need to be able to compute p(n) efficiently, perhaps for several hundred, a
few thousand, or millions of values of n.

In this paper several methods for calculating p(n) will be explored with the motivation of determining p(n)'s

arithmetic properties. Also, an exposition of the Hardy-Rarnanujan-Rademacher method will be given, and indirect methods
of determining some arithmetic properties will be discussed.

• Preliminaries

First, some elementary definitions and theorems must be understood. This section developes the mathematical
foundations assumed in subsequent sections.

• Generating Functions

Definition 1: The generating function f(q) for the sequence ao. a1o az, a3, ... is the power series f(q) = Ln;.D an if.

As an example, (q + 1)m is a generating function for the sequence {ai}~0 = {(":)}co since
l i=O

3

Robert Jacobson

Remarks: Note that this sum may still be regarded as an infinite series as in the definition since an =(:) = 0 for

n > m. We say that f(q) generates {ail:o·

• Elementary Series-Product Identities

Theorem 2: The infinite product n (1 - if)-1 is a generating function for the sequence an = p(n) (n ~ 1).
n;;o1

Proof. Recalling the identity 1 ~q = 1 + q + q2 + tj3 + q4 + ,the infinite product becomes an infinite product of
infinite sums,

n (1 - qn)-1 = (1 + q + q2 + q3 + .. .)
n;;o1

X (l+tT+q4+q6+ . ..)

X (1 + tT + q6 + l + · ..)

The first "row", that is, the first infinite sum can be thought of as contributing "parts" (the numbers in the exponent) that
occur once, the second row parts that occur twice, etc. It can now be seen that when this product is expanded the coefficient
of qn will be the number of ways to add nonnegative integers (the exponents of q) to sum to n. 1

Theorem 3: The infinite product Tin.,1 (1 +if) is a generating function for the number of partitions of n into distinct parts.

Referring to the list of unrestricted partitions of 4 in the introduction, observe that there are 2 partitions in which
each part is distinct, that is, only used once, namely, 4 and 3+1.

Definition 4: Let p(m, n) be the number of ways to partition n such that in a given partition no part occurs more than m

times.

Again, referring to the list of unrestricted partitions of 4 in the introduction, observe that there are 3 partitions that
have 2 or fewer parts. Thus, p(2, 4) = 3.

Theorem 5: The infinite product lln>-1 (1 +if+ q2n + q3n + ··· + q"'n) = n (1- q<m+1ln)(l - if)-1 is a generating
~ n;;o1

function for p(m, n).

Notice that theorem 3 is just a special case of theorem 5, namely, theorem 3 is a generating function for p(1, n).

The proofs of theorems 3 and 4 procede as that of 2 and are left as an exercise to the reader.

Note: We have not been careful with the question of convergence. Suffice it to say that all of our sums and products
converge for I q I < 1. Questions of convergence will generally be proscribed since our considerations usually deal only
with functions' forms.

4

Robert Jacobson

• Inefficient Methods of Computing p(n)

If p(n) is to be investigated empirically, the first problem that must be solved is, how can p(n) be computed? This
section surveys several methods one might use and discusses associated issues.

• Using the Generating Function Directly

An Algorithm

The most obvious way to compute p(n) is to use theorem 5, expanding enough terms to determine the coefficient of
qn . Clearly p(m, n) = p(n) when m 2:: n. Thus, the coefficient of q" in

is p(n). In fact, the coefficient of q; for every i :o; n is p(i). The following pseudocode algorithm performs the expansion of
the above product.

p(lnput n)
Begin p:
1) If n < 0 then
2) output 0
3) halt
4) If n = 0 then
5) output 1
6) halt

7) Allocate Coefficients Array with Length n2<;+1
> + 1

8) Allocate Coefflclents2 Array with Length n2<;+1> + 1

9) Initialize Coefficients to 0
10) Initialize Coefflclents2 to 0
11) Set Coefficients[O] to 1

12) Form=1ton
Do:

13) Fori=Oton
Do:

14) For I= 0 to n("';
1
)m

Do:
15) Set Coefficients2[j + i m] to Coefficients2[j + i m] + Coefficients[/]

Loop
Loop

16) Copy Coefflclents2 to Coefficients

5

Robert Jacobson

17) Reset Coefficients2 to 0
Loop

End p

The array holding the coefficients needs to have as many spaces as the largest exponent plus one. The innermost loop need
only go ton(m(~+l)), the largest exponent so far.

Complexity

Theorem 6: The above algorithm is O(n5).

Proof To determine the running time, we must determine how many times line 15 executes. Now, line 15 executes a
total of

n n i n<m-l)m

II I 1
m=l i=O j=O

= t t (n(m- 1) m + 1)

m=l i=O
2

~(n(m-1)m) = LJ
2

+ 1 (n + 1)
m=l

In [(n(n + 1)) 2(n(n + 1))] = n+1-m +m . 2 2
m=l

(
n(n + 1))2

(n(n + 1)(2 n + 1)) (n(n + 1)) = n(n + 1) - 2 + 6 2

1 5 1 4 1 5 = - n + - n - - n3 + - n2 + n
6 6 6 6

times. Thus this algorithm is O(n5). 1

A Refmed Algorithm

This can be refined significantly by realizing that any qc with c > n does not contribute to the coefficient of if . Thus
the inner sum need only be over 0 ::=; i m ::=; n, or, more precisely, until i = Ln/ mj. We may thus use

In addition, we need not multiply two terms a qa · b qP if a + f3 > n; thus the inner loop need only go from 0 to n - i m.

p(lnput n)
Begin p:
1) If n < 0 then
2) outputo
3) halt
4) If n = 0 then
5) output 1
6) halt

6

Robert Jacobson

7) Allocate Coefficients Array with Length n + 1
B) Allocate Coefflclents2 Array with Length n + 1

9) Initialize Coefficients to 0
10) Initialize Coefficlents2 to 0
11) Set Coefficients[O] to 1

12) Form=1ton
Do:

13) For I = 0 to l ; J
Do:

14) For} = Oton-im
Do:

15) Set Coefficients2[j + i m] to Coefficients2[j + i m] +Coefficients[}]

16)
17)

Loop
Loop

Copy Coefficients2 to Coefficients
Reset Coefflclents2 to 0

Loop
End p

Since we no longer are concerned with coefficients of qi (i > n), the array holding the coefficients (lines 7 and 8) need only
be n + 1 in length.

Complexity

Theorem 7: The above algorithm is O(n2 Log(n)).

Proof We proceed as before:

n L ;i; J n-i m n L ;i; J
2: 2: 2: 1 = 2: 2: (n + 1 - i m)
m=l i=O j=O m=l i=O

= t[(n + ll([:J+l)-m~il

= t[(n+n([:J+l)-m~il

= ~ ((n + 1) (l : J + 1) - m ~ (l : J)(l : J + 1))

= ~ (n + n l: J - m ~ l: r -m ~ l: J + l: J + 1). (1)

) (We expand (1) for the sake of simplicity.) We now obtain an upper bound:

7

Robert Jacobson

(1) s ~ (n + n (:) - m ~ (: - 1 f-m ~ (: - 1) + : + 1)
n 3 1 1

= ~((2 n + 1) + (n + 2 n2) m)

1 3
s 2 n

2 Log(n) + n Log(n) + 2 n
2 + n,

where the last line follows from the inequality

n 1 I ;- s Log(n) + 1.
m=l

Again using (1), we obtain a lower bound:

(1) ~ ~ (n + n(: - 1) - m ~ (: t-m ~ (:) + :)

n 1 1 1
= ~ (- 2 n + (n + 2 n

2
) ;-)

1 1
~ 2 n

2 Log(n + 1) + n Log(n + 1) - 2 n
2

,

where the last line follows from the inequality

n 1
I ;- ~ Log(n + 1).
m=l

Hence,

1 1
n L ;i; J n-i m 1 3

- n2 Log(n + 1) + n Log(n + 1) - - n2 s I I I 1 s - n2 Log(n) + n Log(n) + - n2 + n.
2 2

m=l i=O j=O
2 2

Thus this algorithm is O(n2 Log(n)).l

Note: A "tighter" bound is possible by algebraic manipulation of terms involving Ln I mJ before applying an
inequality, though the resulting bound will of course still be O(n2 Log(n)).

The running time of this algorithm is a large improvement over 0(n5).

8

Robert Jacobson

• A Method Involving A Recurrence

Mathematical Development

A fundamentally different technique for computing p(n) uses a recurrence relationship we now develop. (This
development follows work done in [11].)

Theorem 8: p(n) = ~ ~k=I £T(k) p(n- k), where £T(k) is the sum of factors of k.

Proof. Let P(q) = IT;;. I 1 I (1 - qi) be the generating function for p(n) as in theorem 2. Taking the log of both sides
gives

"" 1
Log(P(q)) = ~Log(.). f::t (1 - q')

Differentiating both sides with respect to q and moving P(q) to the right hand side yields

~ iqi-1
P' (q) = P(q) D (1 - qi) .

i=l

00

= L: (i qi-1)(1 + qi + li + q'i + ···)
i=l

= !iqi-1 tqji

i=l j=O

=! i qi-1 i: q(j-l)i

i=l j=l

(2)

(3)

In (3), any term qii-l with i j - 1 = k contributes ito the coefficient of qk. That is, any i that is a factor of k + 1 contributes
ito the coefficient of qk. Thus, the coefficient of¢ is £T(k + 1). We may rewrite (3) as

00

L:£T(k + 1)/.
k=O

Rewriting (2) now gives

9

Robert Jacobson

00

P' (q) = p{1) + 2 q p(2) + 3 q2 p(3) + · · · = I (n + 1) p(n + 1) q"

00

= P(q) I cr(k + 1) t/
k=O

= (~ p(r) q7)(~ cr(k + 1) t/)
= ~[~<T(k+ l)p(n -k+"

n=O

Equating the coefficients of tf in the extremes of the above yields

n-1

n p(n) = I cr(k + 1) p(n - k - 1).
k=O

Hence

1 n
p(n) = - I cr(k) p(n - k). I

n k=I

) Algorithm

To construct an algorithm to exploit this recurrence we note that to compute p(n) we must first compute p(i) for
0 s i < nand cr{i) for 1 s i s n.

p(input n)
Begin p:
1) If n < 0 then
2) output 0
3) halt
4) If n = 0 then
5) output 1
6) halt

7) Allocate Sigma Array with Length n
B) Allocate PV Array with Length n + 1

9) Initialize Sigma to 0
10) Initialize PV to 0
11) Set PV[O] to 1

12) Fori = 1 ton
Do:

13) Fork= 1 to i
Do:

14)
15)

If k = 0 (mod i) then
Set Sigma[i - 1] = Sigma[i -1] + k

Loop

10

Robert Jacobson

Loop

16) Initialize variable partialsum to 0

17) For i = 1 to n
Do:

18) Fork= 1 to i
Do:

19) Set partialsum = partialsum + Sigma[k - 1]*PV[i- k]

20)
21)

Loop

Set PV[J] = partialsum I i
Reset partialsum to 0

Loop
Endp

Sigma[k] holds cr(k + 1) and PV[k] holds p(k) at the end of this algorithm.

Complexity

Theorem 9: This algorithm is O(n2).

Proof. Clearly lines 14-15 and line 19 execute the same number of times, namely

~ ~ _ ~ . _ n(n + 1) _ 1 2 1
LJ LJ 1 - LJ 1 - - - n + - n.
i=l k=l i=l 2 2 2

Thus this algorithm is O(n2). 1

• Considerations

All of these algorithms have the property that they compute all p(i) for 1 :::; i s n which is useful for investigating
p(n)'s arithmetic properties, since often a survey of properties of p(n) for many different n is desired. The last algorithm has
the added benefit that, as can easily be shown, if its arrays are retained after computing p(n), p(n + 1) can be computed in
O(n) time. Still, they are far too inefficient to be used for large n.

• Euler's Pentagonal Recurrence

Euler's pentagonal recurrence formula is the standard method for computing p(n) for small n. For example, the
mathematical software packages Mathematica and Maple both use Euler's recurrence for small n. (In the case of
Mathematica, "small n" means n < 5000.) Since this method sits on the cutting edge of several efforts to empirically
investigate p(n), we shall look at it in detail.

11

Robert Jacobson

• Euler's Pentagonal Number Theorem

In order to prove Euler's Pentagonal Number Theorem an additional theorem is required. The interested reader,
however, must be satisfied to consult, for example, page 10 of [7] for the proof of this additional theorem, as it is omitted
here.

Theorem 10: Let pe(n) and p 0 (n) be the number of partitions of n into an even number of distinct parts and an odd number
of distinct parts respectively. Then

{
(-1) if n = + m(3 m ± 1),

Pe(n) - Po(n) = O
otherwise.

Theorem 11 (Euler's Pentagonal Number Theorem):

00 00 00 n (1 _ q") = I +.I: (-1)m qt m(Jm-ll(I + q"') = .I: (-l)m qt m(J m-1).

n=l m=l m=-oo

Proof. (This proof is found in [7].) Clearly

00 oo -oo .I: (-l)m qtm(Jm-1) = 1 + .L:(-1)m qtm(Jm-1) +.I: (-l)m qtm(3m-l)

m=-oo m=l m=-1
00 00

= 1 +.I: (-l)m qt m(3 m-1) +.I: (-I)m qt m(3m+l)

m=l m=l
00 00 = I +.I: (-l)m qt m(3 m-1) +.I: (-I)m qt m(3m-l)+m

m=l m=l
00 = 1 +.I: (-l)m qt m(Jm-1)(1 + q"')

m=l
00

= I + .I: (pe(n) - Po(n)) q"
n=l

by theorem 10. We now must show that

00 00

I +.I: (pe(n) - Po(n)) q" = n (I - q").
n=l n=l

Now

oo I I I n (I - q") =.I: .I: .I: ···(-I)a.+az+aJ+··· ql·a.+2·az+3·a3+···.

n=l a•=Oaz=Oa3=0

Now each partition with a distinct number of parts (see theorem 3) is counted with a weight (-1t•+az+a3+··· which is+ I if
the number of parts is even and -I if the number of parts is odd. Thus

12

Robert Jacobson 13

oo l I l n o-qn) = L L L ···<-l)a1+a2+a3+··· ql-a1+2·a2+3·a3+···

n=l a1=0a2=0a3=0

00

= 1 + L (Pe(n) - Po(n)) qn. I
n=l

Theorem 12 (Euler's Recurrence): If n > 0, then

p(n) - p(n- 1) - p(n - 2) + p(n - 5) + p(n - 7) +

... + (-l)m p(n - ± m(3 m - 1)) + (-1)m p(n - ± m(3 m + 1)) + · · · = 0.

Note: p(O) = 1 and p(N) = 0 for N < 0.

Proof Let an be the left-hand side of the above equation. Then clearly

~ant/ = (~p(n)qn)-(1 + ~(-l)m qtm(3m-l)(l +qm))

= (D (1 - qn)-l) ·(D (1 - qn)) (by theorems 2 and 11)

= 1. I

• Recurrence Algorithm

If we move everything but p(n) to the right hand side of theorem 12 we obtain

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) +

To compute p(n) we need to know p(n- 1), the first term in our recurrence. But to compute p(n - 1), we need to know
p(n - 2), the first term in the recurrence for p(n- 1). Thus, our algorithm is eventually going to compute every partition
from p(n) down to p(O). We stop there because p(N) = 0 when N < 0. Now, p(O) is the base case, since p(O) is defined to be
1. It would be efficient, then, to start by computing p(O), then compute p(1), then p(2), and so on until we compute p(n).

We compute p(n) by subtracting generalized pentagonal numbers from n, so it might be useful to precompute them.
But how many pentagonal numbers are we going to need? We need as many as will make p(n- r) zero, where ris the
pentagonal number. That is, when n = r = max(-} (3 k2 + k), t (3 k2 - k)) = t (3 k2 + k). Now, n = t (3 k2 + k) when
k = t (-1 + .Y 1 + 24 n). So we will need to generate the first lt (-1 + .Y 1 + 24 n) J pentagonal numbers. Pseudocode for
the algorithm follows.

p(input n)
Begin p:
1) If n < 0 then
2) output 0
3) halt
4) If n = 0 then
5) output 1
6) halt

Robert Jacobson

7) Set MaxK = l ~ (-1 + -v' 1 + 24 n)J + 1
8) Allocate Pent Array with Length 2 x MaxK
9) Allocate Partitions Array with Length n + 1

10) Initialize Partitions to 0

/"This loop Initializes the Pent array with the pentagonal numbers"'/
11) For m = 1 to MaxK

12)

13)

Do:

Loop

Set Pent[2 m- 2] to~ m(3 m-1)
Set Pent[2 m-2 + 1] to~ m(3 m+ 1)

14) For I = 1 ton

15)
16)

17)

18)
19)

20)
21)

22)

End p

Do:

Loop

Set PartiaiSum to 0
Setjto1

While Pent[j - 1] :s; I
Do:

Loop

If i= 1 (mod4) or i= 2(mod4) then
Set PartiaiSum to PartlaiSum + Partitions[/- Pent[j- 1]]

Else
Set PartiaiSum to PartiaiSum - Partitions[/- Pent[j - 1]]

Increment j by 1

Set Partitions[i] to PartiaiSum

When the algorithm exits, Partitions[i] contains p(i). Note that one extra pentagonal number is computed as an "escape"
case.

• Complexity Analysis

Theorem 13: The above algorithm is O(n312).

Proof Clearly lines 12 and 13 execute l t (-1 + V 1 + 24 n)J + 1 times. Now, for each value of i,
l i (-1 + V 1 + 24 i)J numbers are added together, since, as previously mentioned, there are l t (-1 + Vr-1-+--:2:-:-4-:-i·)J positive
pentagonal numbers less than or equal to i. Hence, lines 19 and 20 are executed

n 1
,E l- (-1 + v1 +24t)j
i=l 6

times. It is obvious that

14

Robert Jacobson

2 In+! n
- n

3
'
2 = ~ dx <I..fi .

3 I i=l
(4)

Now,

n 1 n 1 7
I l6 (-1+~1+24i)J > I(-~1+24i --)
i=l i=l 6 6

where the last line follows from (4). Similarly,

n [+! 2 2 I {i < ,.fx dx =- (1 +n)3fl - - .
i=l I 3 3

(5)

Thus,

n 1 5 n

Il-(-1+~1+24i)J <c;I..fi
i=l

6
i=l

= ~ (1 + n)3/2 - ~
9 9'

where the last line follows from (5). Hence

2-{6 7 n l1 J 5 2 - - n3' 2 - - n < I - (-1 + ~ 1 + 24 i) < - (1 + n)3' 2 - - .
9 6 i=l 6 9 3

Therefore this algorithm is O(n3fl).l

• Considerations

This algorithm shares the advantages of the previous algorithms in that it calculates p(i) for 0 ~ i ~ n. In addition, it
can easily be shown that if p(i) for 0 ~ i ~ n have already been computed, then p(n + 1) can be computed in 0(..{;) time,
much faster than the last algorithm in the previous section. Algorithms based on this one have been developed for parallel
computers. One such algorithm running on 128 processors is able to calculate p(n) modulo all primes < 100 for 0 ~ n ~ 109

in about a day [10].

15

Robert Jacobson 16

• The Hardy-Ramanujan-Rademacher Formula

Donald Knuth, the preeminent computer scientist of our time, writes "The Hardy-Ramanujan-Rademacher formula
for p(n) is surely one of the most astonishing identities ever discovered" [16]. Indeed, otherwise stolid authors of books on
analysis and number theory rarely fail to offer a gushing remark when they treat the Hardy-Ramanujan-Rademacher formula
(HRR). George Andrews provides a restrained example when he writes that the HRR is "one of the crowning achievements
in the theory of partitions," yet cannot resist affmning that Hardy and Ramanujan's approach is "truly remarkable"
(emphasis his) [7]. Other authors simply revert to superlatives like "beautiful" [13) and "spectacular" [14]. In a curious
struggle between letting the mathematics speak for itself (as a mathematician presumably should) and a desire to express his
awe, J. E. Littlewood writes, "The reader does not need to be told that this is a very astonishing theorem ... " [171. Therefore,
this author will make no comments regarding the aesthetics of HRR, prefering rather that the reader be the judge.

where

The form of HRR as we will use it is:

2 {3 l:oo Ak(n) {(k) [v(n)] (k) [v(n)]} p(n) = _ r. 1 - - exp - + 1 + - exp -- ,
24 n - 1 v k v(n) k v(n) k

k=l

Ak(n) = l: wh,k exp[-
2
:in h],

l:sh<k,
gcd(h,k)=l

v(n) = -..ffi3 1r .../ n- 1/24,

and wh.k is a certain 24 kth root of unity given by

W
_ Jris(h,k)

h,k- e

where s(h, k) is the Dedekind sum

the last line following from the fact that LxJ = 0 when 0 ::5 x < 1. (This form along with a short survey of other equivalent
representations is found in [14].) Hardy and Ramanujan's collaboration on this problem, and Rademacher's subsequent
completion of their work has led to a powerful technique, the Circle Method, for solving certain types of additive problems.
Hardy and Ramanujan developed an asymptotic expansion for p(n) which was later proved by D. H. Lehmer to diverge [14].
Hans Rademacher later managed to identify an additional term that caused the infinite series to converge [18].

Robert Jacobson

• A Brief Mathematical Exploration

An exposition complete enough to justify the HRR would be far too cumbersome to include here. Indeed, even a
brief sketch is a daunting task. ([13] provides a sketch of the circle method, the technique used to prove HRR, though not
necessarily in the context of the partition function. [7], from which much of our discussion is derived, provides a detailed
discussion of the Hardy-Ramanujan-Rademacher formula and its mathematical justification. See also [16] for a slightly
different approach.) Thus we will hint at some of the most important highlights, the major facts which contribute to the
result.

Let P(q) = n (1 - t/')-1 as in theorem 2. It is then obvious that pCnl(O) = n! p(n). Computing this directly is
n;.1

clearly more difficult than expanding the generating function, but recall Couchy's Integral Formula:

(n) n! L f(s) d f (z) = - s
21f i c (s- z)n+1

where C is any simple closed contour around the origin, we see that

n - _1_ L P(q) d
p() - 2 · n+1 q,

1rt c q
(6)

17

where Cis a contour within the unit circle. But how can (6) be evaluated? The problem with evaluating (6) is that P(q) has
an infinite number of factors. Notice also that P(q) has a singularity at every integral root of unity. By exploiting a fact about
these singularities, specifically the behavior of P(q) "near" these singularities, we can work toward a formula for (6).

The key is to see that P(q) is a modular form. Specifically, it can be shown that

([
2tri(h+iz)]) [tr(z-

1
-z)] ([2tri(h

1

+iz-
1
)])

P exp k = wh,kexp 12 k P exp k , (7)

where Re(z) > 0, the principle branch of z112 is selected, h' is a solution of the congruence h h 1 = - 1 (mod k), and wh, k is a
24 kth root of unity defined in the previous section. Now when z is small, the argument of P on the LHS is near an integral
root of unity, whereas the argument of P on the RHS is very close to zero (and thus Pis close to 1). In other words, as z ~ 0
with Re(z) > 0, it is clear that exp[2 1r i (h 1 + i z-1) I k] = exp[2tr(i h 1

- +.)I k] -+ 0 very quickly. Therefore, the contour C of
integration should in some way be "centered" near these integral roots of unity in such a way as to leverage (7) so that the
contribution of P(z) is negligible.

Robert Jacobson

Farey Fractions

Before the contour C is dissected, it will be quite useful to discuss our approach to these integral roots of unity. Let
us call exp[21f i hI k] a rational point if ~ is rational. (Note that the rational points are simply the integral roots of unity.)

Clearly the rational points are dense on the unit circle. But recall the product expansion for P. The partial product

n:=l (1- rf)-1 (NEZ+) has a pole of order Nat q = 1, a pole of order [N 12] at q = -1, poles of order [N 13] at

q == exp[2tr i 13] and q = exp[41f i I 3], etc. Just as in our generating function algorithm above, we notice that factors
appearing "early" in our product contribute more to the result. Indeed, were we to fix n, we might calculate p(n) by simply
selecting N large enough, and hence our set of relevant rational points would not be the countably infinite set of roots of
unity, but {exp[2tr i ~] : 0 ;s; h s k, 1 ;s; k ;s; N}. Hence our strategy will be to divide the unit circle in such a way as to in
some way "center" our curve of integration near all rational points exp[2 1r i hI k] with 0 s k :$ N, where N is fixed. Our
guiding principle is that rational points with least denominator are most important to our calculations.

We now develop some useful theorems which will be useful in dissecting the contour of integration, which will be
helpful in building an algorithm, and which are fascinating in their own right. (The proofs of theorems 15 and 16 can be
found in [1].)

Definition 14: The ascending series of all irreducible fractions ~. 0 ;s; h ;s; k and 1 s k s N, is called the Farey series of
-----· order N, denoted F N. The fractions ~ are called Farey fractions .

Informally, we often take F N to be a set. Thus,

Theorem 15: If~ and f. are two successive terms of Fn, then k h' - h k' = 1.

Proof: Since gcd(h, k) = 1, the equation

k x- hy==1 (8)

has integer solutions. If (xo, Yo) is a solution, then (xo + r h, Yo + r k) is also a solution for any positive or negative integer
r. We can chooser so that

n - k < Yo + r k s n.

There is therefore a solution (x, y) of (3) such that

gcd(x, y) == 1, 0 :$ n- k < y ;s; n. (9)

Since ~ is in lowest terms, andy ;s; n, ~ is a fraction ofF,. Also, rearranging (8) yields
y y

X h 1 h
-= -+- > -,
y k ky k

so that 1 comes later in F n than ~ . If f * f. then 1 comes later than f., and

18

Robert Jacobson

while

Hence

X h' k'x-h'y 1
- - - = > -·
y k' k'y - k'y'

hi h kh 1 - hk 1 1
- - - = ~-.
k' k kk 1 kk 1

1

ky

kx-hy x h 1 1 k+ y n 1 = __ ___::_ = ---2:: --+- = -- > -- 2:: -
ky y k k 1 y k k 1 k k' y k k 1 y k y

by (9). But this is a contradiction. Thus it must be that-} = f., and k h 1
- hk 1 = 1. I

h h' h" . h" h+h' . h h' Theorem 16: If T• 71 , and 71 are three successive terms F11 , then 71 = k+k', the medtant ofT and 71·

Proof: From theorem 15, we have kh" - hk" = 1, and k" h i - h" k 1 = 1. Solving these two equations for h" and k",

we obtain

h"(kh 1 - hk') = h + h', and
k"(kh' - hk 1

) = k+k 1
•

Dividing equations, we obtain

h"(kh 1 -hk 1
) h" h+h'

k"(kh 1 -hk 1
) = ""0 = k+k 1

••

Theorem 17: If f, and f. are two successive terms of F11_ 1 but z: separates them in F11 , then h" = h + h 1 and k" = k + k ',

th . h+h' . . d d & at 1s, k+k" 1s m re uce ~orm.

Proof: Clearly z: = z:z: by theorem 16. Suppose d > 0 divides both h + h' and k + k 1
• Then d divides

k(h+h') + (-h)(k+k 1).But

k(h + h 1
)- h(k + k') = k h' - hk 1 = 1

by theorem 15, since f and f. are two successive terms in Fn-1· Hence d = 1, and thus gcd(h + h', k + k') = 1.1

The curve of integration C will be dissected into arcs which are "centered" on the rational points associated with
Farey fractions of order N in the sense that the endpoints of each arc are the rational points associated with the mediants of
these Farey fractions. Hence if hoI ko, hI k, and h 1 I k1 are three consecutive terms ofF N, then the arc containing the
rational point e2"if has endpoints i"i(f-~) and i"i(~-f l.

19

Robert Jacobson

The associated rational points of F6

1/2

' 2/5

\
1/3

2/3
I

Evaluating Cauchy's Integral Formula

1/4

3/4

1/5

4/5
\

j
1/6

5/6
\

0

We continue to evaluate (7). The following divides the a circle into segments as described above: if
hoI ko, h/ k, hlf k1 are three consecutive terms of FN, then defme

' 1 e. - --o,J - N+l'

, h ho+h
(}h k = - - -- for h > 0,

' k ~+h

" hi+ h h
oh,k = k! +h - I ·

20

Robert Jacobson

Let C be the curve f(¢1) = pexp[211' i ¢1], 0 ::5 ¢1 ::5 1. (An appropriate p will be selected shortly.) Then we have

p(n) = _ 1_ I P(s) ds
211'i csn+l

= _ 1_. r' P(f(¢1)) r (¢1) d¢1
211' z Jo f(ifJ)n+l

1 L' P(p exp[211' i ifJJ) = -- p211'iexp[211'if/J]d¢J
211'i 0 pn+1pexp[211'i¢(n+1)]

= p-n l' P(pexp[211' i ifJJ) exp[-211'i n¢] d¢

N

= p-n 2:
k=l

GCD(h,k)=l
Oshsk

where the final sum merely enumerates f EF N, Farey fractions of order N . Now to take advantage of {7), the argument of P

must be

[
211' i(h + i z) J [211' i h 2 n z J exp k = exp -k- - -k-,

yet in (10), the argument of Pis

[
2nih J [211'ih J pexp -k- +2ni¢1 = exp -k- +2niifJ+ln[pJ.

By selecting p = exp[=j;;i-] and z = ~ - k i ¢1, the above becomes

exp[
2
:ih +271'iifJ+ln[p]J = exp[

2
:ih -

2
k11' (! -iiflk)]

[
211'ih 211']

= exp -k- -k z.

Rewriting (10), we have

N

p{n) = exp[
2
; 2n] .2::: exp[-

2
:ihnJ£::P(exp[

2
:ih -

2
k11' z])exp[-2nin¢]d¢J.

k=l
GCD(h,l:)=l

Oshsk

Now (7) may finally be applied to obtain

21

)

Robert Jacobson

p(n) =
N

[
27rn] exp N2 ~ [

-27rihn] fl~; [JT(z-1 -z)] ([27ri(h'+iz-1
)])

exp k wh,k J_dh./12exp 12 k P exp k exp[-27rin¢>]d¢.
k=l

GCD(h,k)=l
O:os;h!fk

Recalling that z = ~ - k i ¢>,when N ~ oo, z ~ 0, thus exp[2 11'i(h~+iz-1)] ~ 0 and hence P(exp[2 "i(h~+iz-
1

)]) ~ 1. Thus it is
expected that

N

~
k=l

GCD(h,k)=l
O,;;hsk

[
-27rihn] £~.k [JT(z-1 -z)] exp wh,k . z112 exp - 2 1r i n ¢ d ¢

k -9u 12 k

is an estimate for p(n) with error that approaches 0 as N ~ oo.

(11)

What is left is to transform the integral in (11) so that Cauchy's theorem can be applied. The integral will then be
segmented into managable peices. Let w = N-2 - i ¢.Thus the integral in (11) becomes

where

Now, g has a branch cut along the negative real axis and is analytic and single valued everywhere. Thus, applying Cauchy's
theorem, (12) may be evaluated as

with contours according to the following figure:

22

Robert Jacobson

- £ + i 8' r-
! ,,

------~~~-----~~
-~W~-~~+~~~~~~~

~ L------~
-2 / • 11 , N · a"

,- £ -I uh,k -I uh,k
. ---~

Fortunately, it can be shown with some work that h. h, !4, Is, and 16 are all negligible [7]. Moreover, it turns out that
L" and h are able to be evaluated. Specifically, it is shown in [7] that as N -+ oo,

Rewriting (11) by evaluating this differential, letting N -+ oo and substituting Ah,k yields the HRR in the form presented at
the beginning of this section.

23

Robert Jacobson

• An Implementation of the Hardy-Ramanujan-Rademacher Formula

The outer most sum of HRR must have a finite number of terms for the algorithm to halt. Thus the sum will be over
1 ::5 k ::5 w, where the value of w will be justified later. Note that k may be regarded as the denominator and h the numerator
of Farey fractions of order F w·

We will now develop a useful theorem. Let f be an arbitrary function over Q. Let a, b, c, andd be in
Z withgcd(a, b) = 1 and gcd(c, d)= 1. Define Sn(f, -;7) to be

Theorem18:

f (
a a+c) (a+c c)

s(!!.- ~) = Snb' b+d +Snb+d'd

n b' d ' (c)
[f d

sn(~. +) = L L t(~).
Isksw Ish<k

gcd(h,k)=I

ifb+d :S n

ifb+d > n

Note: The right hand side is merely a sum over Fn - { f }, all Farey fractions of order n except 0. Our recursive
function Sn is just a way to enumerate each Farey fraction without having to determine if gcd(h, k) = 1 for every 1 ::5 h < k.

24

Proof Sketch. Let f, -;7 be successive terms in some Farey series. The fraction with least denominator lying strictly
between them is thus :!~ by theorem 17. Repeating this operation for the left interval [f , ::;] , we see that :!:!~ is the
fraction with least denominator in this left interval. Continuing in this fashion for both left and right intervals while the
denominator is less than or equal to the order n clearly yields all Farey fractions in the interval (0, 1]. Now consider points
f, -;7 such that b + d > n. Then there are no more Farey fractions of order n lying strictly between f, -;7. Hence, Sn(f, -;7)
computes f(-;7), and f(-;7) is only ever computed once.l

• Pseudocode for the Hardy-Ramanujan-Rademacher Formula

Pseudocode for s(h, k)

s(input h, input k)
Begins:
1) Initialize result to 0

2) For m = 1 to k- 1
Do:

3) Set result to result + (; - i)(h; - l h; J- i)
Loop

Ends

Line (3) clearly executes k- 1 times. Thus this algorithm is O(k - 1).

Robert Jacobson

Pseudocode to compute Farey fractions

We ultimately compute a real number for Ak(n). Thus recalling Eu1er's formula we have

Re(ei8) = Re(cos[O] + i sin[O]) = cos[B),

and hence

Ak(n) = 2:: exp[1r i s(h, k)] · exp[-
2
:in h]

!:Sh<k,

gcd(h.k)=l

= 2:: exp[1Ti(s(h,k) -
2:h)]

!:Sh<k,

gcd(h,k)=l

= 2:: cos[1T(s(h,k) -
2:h)J.

l:Sh<k,
gcd(h,k)=l

However, k is merely the denominator and h the numerator of an element in F w· Thus, using the same strategy as in theorem
18 we shall compute the outer sum over each ordered pair (h, k) such that~ E Fw, instead of using a double sum. First, we
calculate the ordered pairs (h, k) using theorem 18. The following pseudocode, which includes the function F and a
supporting function RecurseF, generates Forder in a number of steps proportional to the number of elements in Foroer+l·

F(input order)
Begin F:
1) Return Recursef[order, 0, 1, 1, 1]
Endf

RecurseF(input order, a, b, c, d)
Begin R,curseF:
2) If b + d > order then return {}
3) Otherwise, return Recursef[order, a, b, a+ c, b + d] U { :;:: } U RecurseF[order, a+ c, b + d, c, d]
End Recursef

25

Line (1) clearly executes once, while lines (2) and (3) each execute once for every call to RecurseF. How many times is
RecurseF called? Once for each element in F order and once more for each pair of consecutive elements in F order to reach the
escape case in line (2). According to [15], if N(n) is the number of terms in Fn, then limn->oo N(n) = ; 2 n2 • Hence this
algorithm is O(n2). (Note: then here is not the argument to the partition function. Indeed, we need only compute Fw where w

is the number of terms of outer sum in the Hardy-Ramanujan-Rademacher formula we need to take in order to compute p(n).

Typically w is very small. For p(200), we may take w = 5. Thus perhaps we should say this algorithm is O(w2).)

Pseudocode to compute p(n)

There is one final issue before an algorithm can be written: how many terms of the outer sum must we take? It is
trivial to show Ak(n) is 0(k), a constant (at least in the context of At). Now,

Robert Jacobson 26

(1 - ~) exp[v(n)] + (1 + ~) exp[- v(n)]
v(n) k v(n) k

< (1 - ~) exp[v(n)]
v(n) k

< exp[vr)]

for sufficiently large n. Thus each term is o(exp[...[2[3 rr .Y n - 1 I 24 I k]), or simply o(exp[c Vn I k]). Now if c and l are
constants with 0 s l < 1, asymptotically we desire 1 > l ec ..;n fk, and hence k > -emf . Thus we must only take a number of
terms proportional torn.

We are ready to put the pieces together.

p(input n)
Begin p:
1) If n < 0 then
2) output 0
3) halt
4) If n = 0 then
5) output 1
6) halt

7) Initialize maxK to Max[1, l 1
3
0 Vn J]

8) Initialize FareySet to F[maxK, 0, 1, 1, 1]
9) Allocate KCoefficients Array with Length maxK

10) Fork= 1 to maxK

11)
12)

13)
14)

15)

Do:

Loop

Set v to V2/3 trV n-1/24
Set KCoefficients[k) to

{(1- ~)exp[f]+(1 + ~)exp[-f]}/k

Initialize result to 0
For each ~ e FareySet
Do:

Set result to
result+ cos[tr(s<h, k) - 2Zh)] . KCoefficients[k]

Loop

16) Set result to Round(~1 • result)

End p

Robert Jacobson

• Complexity Analysis

Clearly lines (11) and (12) execute l (0 Vn J times. Our concern will be line (15). Now there are a number of
2

elements proportional to maxK2 < (1~ Vn) < n in FareySet. Moreover, s(h, k) is O(k). To make a simplifying assumption
we may let s(h, k) be O(maxK) = o(Vn). Hence line (15) represents a number of steps proportional to L:::t Vn = n213•

But this is misleading, for the arithmetic operations can be carried out in nearly O(log p(n)) = o(Vn) steps, that is, "the
number of bit operations is not much larger than the number of bits of p(n)" [19]. After the first few terms, the terms of the
series "are of order k-312 and usually of order k-2• Furthermore, about half of the coefficients Ak(n) tum out to be zero." For
example, for p(106), 123 of the required 250 Ak(106)terms are zero [16] .

• Considerations

27

The advantages of using the Hardy-Ramanujan-Rademacher formula (HRR) are hardly limited to its running time,
although its running time is nearly as fast as the fastest alternative algorithms. Indeed, for extremely large values of n, HRR
is often the only option, for all other algorithms have significant memory requirements in comparison. Consider, for
example, Euler's recurrence, which must hold in memory not only the pentagonal numbers but also every p(m), 0 s m :S n.

Moreover, HRR can be used to generate symbolic results involving an undefined variable n with k terms of the formula. The
symbolic output may be used to calculate p(n) in only the time it takes to evaluate the symbolic expression. Additional terms
may be generated on the fly without reference to a fixed nor k. (Remember: It is a simple matter to generated Fw+! very
quickly from Fw.)

Why, we might ask, would anyone ever use any other aglorithm? For small values of n, HRR tends to have slightly
more overhead than Euler's recurrence. Indeed, HRR is significantly harder to understand and implement, as the
mathematics behind it are orders of magnitude more sophisticated. In addition, HRR requires high-precision arithmetic
sooner than does Eu1er's recurrence. (See the Java source code listings in the appendices. An implementation of both
algorithms using Java's double and long primitive data types has HRR giving inaccurate results for n = 246, whereas Euler's
recurrence does not fail until n = 405.)

Robert Jacobson

• Other Methods of Determining Arithmetic Properties of p(n)

There are a few methods of determining the distribution of p(n) modulus certain prime numbers without actually
computing p(n).

28

Davis and Perez have developed an algorithm that computes p(n) modulus a prime number in O(N log~ N) time [13].
Their algorithm begins with the polynomial in theorem 11, then uses a Fast Fourier Transform algorithm to invert it. Thus
p(n) can be computed by picking the prime number large enough. The details of the algorithm are yet unpublished, but see
[13] for an outline of the technique.

The special case of determining the congruence mod 2 of p(n) is particularly simple. (The proof, omitted here, is
found in [7].)

Theorem 19:

p(4n) = p(n) + p(n - 7) + p(n - 9) + ·· · + p(n - ai) + ··· (mod2),
p(4n + 1) = p(n) + p(n- 5) + p(n - 11) + ·· · + p(n- f3i) + ... (mod2),
p(4 n + 3) = p(n) + p(n - 3) + p(n - 13) + · ·· + p(n- n) + · · · (mod 2),
p(4 n + 6) = p(n) + p(n - 1) + p(n - 15) + · .. + p(n- 8i)+ ···(mod 2),

where ai = i(S i ± 1), f3i = i(S i ± 3), 'Yi = i(8 i ± 5), and 8i = i(S i ± 7).

Note that o(-..{;) terms must be taken on the RHS, while each term requires O(lo~ k) recursive calls. Compare this to
Euler's recurrence, where there are also o(-..{;) terms on the RHS, but where each term requires O(k) recursive calls. Thus
an algorithm that exploits this recurrence is significantly faster than Euler's recurrence. Yet in spite of the simplicity of this
special case, there are many unanswered questions about the parity of p(n). (See [20].)

• Conclusion

With the techniques discussed, the question of the umestricted partition function's arithmetic properties may be
attacked computationally. Indeed, p(n)'s distribution mod certain prime numbers has been calculated on super computers for
millions of values of n [10], and questions regarding the parity of p(n) have been vigorously investigated [12]. Naturally,
however, results tend to be merely suggestive. Ultimately a rigorous proof is desired. Nonetheless, data produced by
empirical investigation often reveals patterns which cry out for explanation, and new, groundbreaking questions arise. Thus,
these techniques will continue to be invaluable to the study of the partition function.

Robert Jacobson

• Appendix A: Big-0 Notation

Big-0 notation is a way of describing an asymptotic upper bound on the running time of an algorithm. For a given
function g(n) we denote O(g(n)) (that is, "big 0 of g of n") by

O(g(n)) = {f(n): 3 c > 0 3 no > 0 V n ~ no(O ~ f(n) ~ c g(n))}.

In other words, O(g(n)) is the set of all functions that eventually always remain below a fixed positive multiple of g(n). The
variable n is interpreted as the size of the input to the algorithm. For our purposes, n is the integer for which p(n) is
calculated. To take an example, the algorithm based on Euler's recurrence takes time proportional to n312 to execute.
Traditionally, one writes that an algorithm's running time f(n) is O(g(n)), or alternatively, that f(n) = O(g(n)), even though
O(g(n)) is a set of functions. Note that if f(n) is O(n), then f(n) is also O(n2).

Most of the algorithms discussed are really asymptotically tightly bounded, that is, bounded above and below by g.

We denote O(g(n)) (that is, "big theta of g of n") by

O(g(n)) = {f(n): 3 c1 > 0 3 cz > 0 3 no > 0 V n :=:: no(O ~ c1 g(n) ~ f(n) ~ Cz g(n))}.

In other words, O(g(n)) is the set of all functions that always remain between fixed positive multiples of g(n). Thus the
algorithm based on Euler's recurrence is in fact O(n312). This paper is only really concerned with the upper bound. The
asymptotic tightness of the bounds is usually obvious.

29

•Appendix B: Source Code Listing for GeneratingFunct.java

1: /* Robert Jacobson
2:
3:
4:
5:
6:

*Expands the generating function to compute p(n) ,
* the number of unrestricted partitions of n. The
* generating function is adjusted to exclude any
* qAi with i > n, since such a term would not
* contribute to the coefficient of qAn. The new

7: * function is
8: *
9: * Prod[Sum[qA(i m)]]

10: *
11: *where the sum goes from i=O to Floor[n/m] and
12: * the product goes from m=1 ton.
13: *
14: *This algorithm is 0(nA2 Log(n)) .
15: *
1 6: * For the sake of comparison, an algorithm that
1 7: *does not take advantage the above fact, that is,
18: * that merely expands the usual generating function,
19: *is given as p2(n). This inefficient algorithm is
20: *0(nA5).
21: *
22: * Both algorithms can calculate upton= 405 before
23: * failing due to overflow. However, the O(nA5)
24: *algorithm is almost guaranteed to fail far sooner
25: * since it must allocate a tremendous amount of
26: * memory.
27: *
28: */
29:
30: import java.lang.Math;
31:
32 : public class GeneratingFunct{
33: public static void main(String[] args) {
34: System.out.println(p(405));
35: }
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

//Refined algorithm: 0(nA2 Log(n)
public static long p(long n){
//trivial special cases.
if(n<O) return 0;
if(n==O) return 1;

int i, m;
int j = 0;
long steps = 0;

//This array holds coefficients of qAi
long coeffs1[] =new long[(int)n+1];
//Init this array :)
coeffs1[0] = 1;
//This array is initially zeroed
long coeffs2[] =new long[(int)n+1];

//perform the expansion
for(m = 1; m <= n; m++){

in the ith position

//This loop multiplies one factor by another.
//If i went to n instead of n/m, n-i*m would
//become < 0 in the innermost loop and an
//assignment would never be made.
for(i • 0; i <= (n/m) ; i++){

61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71 :
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
12 1 :
122:
123:
124: }

}

//This innermost loop multiplies the intermediate
//polynomial (initially 1) by a single term,
//namely qAi*m, and adds the result to the prev poly.
//We set coeffs=O for every qAi with i>n.

}
}

for(j = 0; j <= (int)n-i*m; j++){
coeffs2[j+i*m] += coeffsl[j];

//the destination becomes the source for the next iteration.
for(j = 0; j <= n; j++){
coeffsl[j] = coeffs2[j];
coeffs2[j] = 0;
}

return coeffsl[(int)n];

}

//Inefficient algorithm: 0(nAS
public static long p2(long n){
//trivial special cases.
if(n<O) return 0;
if(n==O) return 1;

int i, m;
int j = 0;
long max= (n*n*n + n*n)/2;
long steps = 0;

//This array holds coefficients of qAi in the ith position
long coeffsl[] =new long[(int) (n*n*n + n*n)/2 + 1];
//Init this array :)
coeffsl[O] = 1;
//This array is initially zeroed
long coeffs2[] =new long[(int) (n*n*n + n*n)/2 + 1];

//perform the expansion
for(m = 1; m <= n; m++){

}

//This loop multiplies one factor by another.
//If i went to n instead of n/m, n-i*m would
//become < 0 in the innermost loop and an
//assignment would never be made.
for(i = 0; i <= n; i++){
//This innermost loop multiplies the intermediate
//polynomial (initially 1) by a single term,
//namely qAi*m, and adds the result to the prev poly.

for(j = 0; j <= n*(m-l)*(m)/2; j++){
coeffs2[j+i*m] += coeffsl[j];

}
}

steps++;

//The destination becomes the source for the next iteration.
//Naturally there are more clever ways to do this.
for(j = 0; j <= n*(m)*(m+l)/2; j++){
coeffsl[j] = coeffs2[j];
coeffs2[j] = 0;
}

return coeffsl[j];

}

•Appendix C: Source Code Listing for
SigmaRecurrence.java

1: /*Robert Jacobson
2 : *Uses a recurrence to compute p(n), the number
3 : * of unrestricted partitions of n. The recurrence is
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

*
* p(n) = 1/n Sum(siqma(k) p(n-k))
*
* where siqma(k) is the sum of factors of k and the
* sum is from k=1 to n.
* * This algorithm is O(nA2) . This implementation can
* calculate up to p(316) = 28305020340996003 before
* giving garbage results due to overflow.
*
*I

public class SigmaRecurrence {
public static void main(String[]
System.out.println(p(316));
}

public static long p(long
//trivial special cases.
if(n<O) return 0;
if(n==O) return 1;

int i = 0;
int k = 0;
long partialsum
float temp = 0;

- 0;

n){

//sigma[k] holds sigma(k+1)
long sigma[] =new long[(int)n];
//pv[k] holds p(k)
long pv[] =new long[(int)n + 1];
//initialize pv
pv[O] = 1;

args){

//Initialize sigma. Perhaps this could be done
//more efficiently, but it's faster than
//the rest of the method anyway.
for(i = 1; i <= n; i++){

----'l2_: _ /1ca.l-culate- sigma-(i)' _________________________ _
43:
44:
45:
46:
47:
48:
49:
SO:
51:
52:
53:
54:
55:
56:
57:
58:

}

for(k = 1; k <= i; k++){
if ((float) (i) I (float) k - (float) ((i) /k) == 0) {

sigma[i-1] += k; //SUM of factors, not COUNT
}
}

of factors

//Now calculate p(i) for 1 <= i <= n. (i=O is already done.)
for(i = 1; i <= n; i++){

}

for(k = 1; k <= i; k++){
partialsum += siq.ma[k-1]*pv[i-k];
}
pv[i] = partialsum/i;
partialsum = 0;

J

59:
60:
61:
62:
63: }

return pv[(int)n];
}

)

•Appendix D: Source Code Listing for EulerRecurrence.java

1 :
2:
3:
4:
S:
6:
7:
8:
9:

10:
11:
12 :
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
SO:
51:
52 :
53:
54:
SS:
56:
57:
58:
59:
60:

II Robert Jacobson
II Uses Euler's recurrence to compute p(n), the number
II of unrestricted partitions of n. The recurrence is
II
II p(n)=p(n-1)+p(n-2)-p(n-S)-p(n-7)+ ...
II
II where the numbers subtracted are the generalized
II pentagonal numbers. This algorithm is 0(nA(3/2)) .
II
II This code can calculate up to p(40S) before it fails
II due to overflow.
II
II Future improvements:
II Subsequent calls could be significantly expedited
II if partNums was cached. The algorithm would then
II be O[Sqrt(n)] if (n-1) has already been computed.

import java.lang.Math;

public class EulerRecurrence {
public static void main(String[] args) {
System.out.println(p(40S));
}

public static long p(long n){
//trivial special cases.
if(n<O) return 0;
if(n==O) return 1;

//important things
//K is in 1/2*3kA2+k
II
//we need at least one extra K to stop loops.
long maxK = (long) ((Math.sqrt(1+24*(double)n)-1)/6) + 1;
long pentNums[] =new long[2*(int)maxK];
long parts[] =new long[(int)n+1]; //From 0 ton means n+1 elements.
long partialSum • 0;
int i, j;
int sign = 1;

parts[O] = 1;

//generate all the pentagonal numbers we need.
for(i = 1; i<=maxK; i++){

pentNums[2*i -2] = (3*i*i-i)/2; //the -2 in the array index is to zero-base
pentNums[2*i+1 -2] = (3*i*i+i)/2;

}

//calculate p(i) for i<=n.
for(i = 1; i<=n; i++){

partial Sum = 0;
//sum p(n-1) + p(n-2)- p(n-S) - ...
for(j = 1; pentNums[j-1]<=i; j++){
//determine j's residue class mod 4. Signs come in pairs: +, +, -
sign = (int) (((float) j/4 - (float) (j/4)) *4);
switch (sign){
case 1:

partialSum += parts[i-(int)pentNums[j-1]];
break;

case 2:

I • •

61:
62:
63:
64:
65 :
66 :
67 :
68 :
69 :
70:
71:
72:
73:
74: }

}

partialSum += parts[i-(int)pentNums[j-1]];
break;

case 3:
partialSum -= parts[i-(int)pentNums[j-1]];
break;

case 0:

}
}

partialSum -= parts[i-(int)pentNums[j-1]];

parts[i] = partialSum;

return partialSum;
}

•Appendix E: Source Code Listing for HRR.java

1: //
2 : //
3: //
4: //
5: //
6: //
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Robert Jacobson
Uses the Hardy-Ramanujan-Rademacher formula to
compute p(n), the number of unrestricted
partitions of n.

See paper for the formula and discussion.

This algorithm first fails at p(247) due to
inadequate precision of Java's primitive double.

Future improvements:
The number of terms {maxk) is limited by
size(int) and accuracy of results is limited
by the precision of double. Arbitrary
precision arithmetic would allow arbitrary
accuracy (up to memory) .
Calculating the terms symbolically would
allow all p(n) to be calculated in constant
time.
Caching symbolic terms would allow the next
term to be computed very quickly.

17:
18:
19:
20:
21:
22:
23 :
24:
25:

import java.lang.Math;

public class HRR {
26:
27: public static void main(String[] args) {
28: System.out.println(p(246));
29: }
30:
31: public static long p(long n){
32: //trivial special cases.
33: if(n<O) return 0;
34: if(n==O) return 1;
35:
36: double nd = (double)n; //convenience
37: double result = 0; //convenience
38: double dummy1 = 0;
39: double dummy2 = 0;
40: ListNode zero= new ListNode();
41: ListNode one = new ListNode{);
42:
43: zero.h = Od;
44: zero.k = 1d;
45: one.h = 1d;
46: one.k = 1d;
47: zero.next = one;
48: one.next = null;
49:
50: //Each term is O(exp[pi*sqrt(2n/3)/k]), so we only
51: //need to take a*sqrt(n) where a is a carefully
52: //selected constant. We carefully select a = .4
53: //and take Max[Floor[a*sqrt{n)], 1] terms .
54:
55: long maxk = (long) (0.4d*Math.sqrt(n));
56: if(maxk == 0) maxk = 1;
57:
58: //Compute Farey fractions of order maxk.
59: ComputeFarey(maxk, zero, one);
60:
61: //Calculate the coefficients of A_k(n) in the outer sum.
62: double[] kcoeff = new double [(int)maxk];
63: for(double k=1; k<=maxk; k++){
64: dummy1 = Math.sqrt(2d/3d)*Math.PI*Math.sqrt(nd-1d/24d)/k;
65 : dummy2 = Math. exp (dummy1) ;
66: kcoeff [(int)k- 1] = ((1d- 1d/dummy1)*dummy2 + (1d + 1d/dummy1)/dummy2)/Math.sqrt(k);

67:
68:
69: //We don't want 0/1 in our computations.
70: ListNode cursor = zero.next;
71:
72: //enumerate through each (h,k) pair
73: while(cursorl=null){
74: result+= Math.cos(Math.PI*(s(cursor.h, cursor . k)
75: - 2*nd*cursor.h/cursor.k))
76: *kcoeff[(int) (cursor.k) -1];
77:
78:
79:
80:
81:
82 :
83:
84:
85:
86:
87:
88 :
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:

cursor = cursor.next;

//Coefficient of the outermost sum.
result= Math.sqrt(12}/(24*nd-l)*result;

return Math.round(result);
}

public static double s(double h, double k){
II This function calculates its result in O(k-1) time.
double result = 0;
double temp = 0;
for(double m = 1; m < k; m++){

temp = h*m/k;
result+= (m/k - 0.5d)*(temp- Math.floor(temp)-0.5d);

return result;
}

public static void ComputeFarey(long order,
ListNode left, ListNode right){

if(left.k + right.k > order) return;

ListNode middle= new ListNode();
mid~e.k = left.k + right.k;
middle.h = left.h + right.h;

left.next = middle;
middle.next = right;

ComputeFarey(order, left, middle);
ComputeFarey(order, middle, right);

112: return;
113: }
114:
115:

Robert Jacobson 38

• Bibliography

1. Hardy, G. H. and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1962.

2. S. Ahlgren and K. Ono, Congruences and conjectures for the partition function, Contemporary Math. 291 (2001), 1-9

3. Ahlgren, Scott, The partition function modulo composite integers M, Mathematische Annalen 318, no.4 (2000), 795-803.

4. Ahlgren, Scott, and Ken Ono, Congruence Properties for the partition function, Proceedings of the National Academy of
Sciences, U.S.A. 98 no. 9 (2001), 978-984.

5. Ono, Ken, Distribution of the partition function modulo m, Annals of Mathematics, 151 (2000), 293-307.

6. S. Ramanujan, Congruence properties of partitions, Proc. London Math. Soc. 19
(1919), 207-210, cited in Ono, Ken, Distribution ofthe partitionfunction modulo m, Annals of Mathematics, 151 (2000),
293-307.

7. Andrews, George E., The Theory of Partition Functions, Cambridge University Press, Pennsylvania, 2003.

8. Ono, Ken. Arithmetic of the partition function.

9. S. Ahlgren and K. Ono, Congruences and conjectures for the partition function, Contemporary
Math.291 (2001), 1-9.

10. Swannack, Charles. Personal correspondence.

11. Pemmaraju, Sriram, "Integer Partitions and Generating Functions", lecture notes for Computational Combinatorics, fall
2001, The University of Iowa. Location: <http://www.cs.uiowa.edu/-sriram/196/fall01/>.

12. Davis, Jimena, and Elizabeth Perez, "Computations of the Partition Function, p(n)", July 18, 2002, Clemson University.
Available online at: <http://www.math.clemson.edu/-kevja/REU/2002/JDavisAndEPerez.pdf>.

13. Miller, Steven, and Ramin Takloo-Bighash, The Circle Method, July 14, 2004, Ohio State University. Available online
at: <http://www.math.ohio-state.edu/-sjmiller/reu/handouts/circlemethod.pdf>.

14. Finch, Steven R., Integer Partitions, unpublished note, September 22, 2004. Available online at:
<http://pauillac.inria.fr/algo/csolve/prt.pdf>

15. Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 155, 1991.

16. Knuth, D. E., "pre-fascicle" 3b of Combinatorial Algorithms, Vol. 4 of The Art of Computer Programming

(unpublished), Addison-Wesley. Available online at: <http://www.cs-faculty.stanford.edu/-knuth/fasc3b.ps.gz>

)

Robert Jacobson 39

17. Littlewood, J. E., Collected Papers of Srinivasa Ramanujan in the Mathematical Gazette, Vol. 14 (1929, pp. 427 -428),
as cited in Andrews, George E., The Theory of Partition Functions, Cambridge University Press, Pennsylvania, 2003.

18. Rademacher, H., "On the Partition Function p(n)." Proc. London Math. Soc. 43, 241-254, 1937.

19. Odlyzko, Andrew, "Asymptotic enumeration methods," in Handbook of Combinatorics, Vol. 2, R. L. Graham, M.
Groetschel, and L. Lovasz, eds., Elsevier, 1995, pp. 1063-1229. Available online at:
<http://www.dtc.umn.edu/-odlyzko/doc/asymptotic.enum.pdf>.

20. Berndt, Yee, and Zaharescu, "New Theorems on the Parity of Partition Functions," to be published in J. Reine Angew.

Math. Available online at: <http://www.math.uiuc.edu/-bemdt/articles/a2.pdf>.

0 I

SOUTHERN SCHOI....t\RS SENIOR PR~ECi

Name: P. o bc-1 + \fc;c c,~ c .s o- .·1 Date: 9 IZ-5/o:s Major: f\ ... 1 hoMo-+ ,·c..r / Co/11\f· 5:"ci

SENIOR P~ECT
A sigrri6amt scbolariy projccr. mwl"liag tCSCII'd29 wribug, or special~ appropriare to the major in qucstiaa.
is antilurily camplc:tcd. die scaior yar. The project is expo Did to be of saJ4icirmty bigl1 quality to WllmiDl a grade of A
axi to jusliff public Pl"""'ftrimL

UDder me gnici"'Ce of a facully advisr. tbc Scaior Proja:c sbauld be m oripw wort. sbauld use primary sources wb=
~pplicable. sbauld have a table of mntm" axi \lab circd. page. sbauld give caaviDciag eWiazce to support a Sll'ODg
tbcsis. md sbauld use dw: IDCf.borls aad wrUiDg style appropriare to tbc discip~

The cgmpleled, pmicq. tp be mmcd in iD duplie'C Cll!!t be IIZili"QYPi by the Hgnoa Cgmmjttc;e in cgmu!taticm with tbe
cnx!rnt•, mpqyimtg profm' tbree W!!Sb pripr m srndn•tjgn.. Please iDcludt: the ~s ll8111C on the title page.
The 2-3 hours of credit fer this project is doae as direacd srudy or in a rcscarch class..

Keeping in mind the above senior project description, please describe in as much detail as
you can the project you will undertake. You may attach a separate sheet if you wish:

I will e.,tplora. tke V.V\riLS.fr-rc+ecl pov-1-i+iOA .f\AAC·I-/oA pC,)

(whlc~ co"'"tr -fhe- o.JJ.u-;ve._ po.r-+-i+io"s of n) O..V~.ol its

res~r;c..+iOI\S o..."'-J ~e.l\ero...lit:.cA·ioA..S'a S;/\ce, il\. spite c9-r:
tke. siMplici-1---; of -thll- +"'"c.+ioA, liftle o+ i+s o..rr'-lhJVJe-fic -

proper+ie.r is kY\o'WA
1

I will po..y .SfeciCAI cx·Hel\+lool'\ +o
p (i\) ~ o..r i+ h tv~efi c. fro to er+ I e.s:, vt.s- i 1\3 co/Ill pwl o. + i OA o. J

tools o.11.J creo..+il\j o..lsef'i-fh~~~J..r for Jt.!covert/1..5

~,1\.J col\+ii'NI i~ -~~~roper+--ies.
Signature offaculty adviso_! ~ ---- Expected date ofcompletionit'Oct Zoott

(Gro..JJA.e.ii"'t Dec "l Ocl()

Approval to be signed by faculty advisor when completed:

This project has been completed as planned: A ~-

This in an .. A'" project: __ Y::..:;t'~=----------

This project is wonh 2-3 hours of credit: ~ -- \v~

/.p' ~///7 -
Advisor's Final Signature __ ,...£=--zj~~;;--~-------------

/
Chair, Honors Corrunittee. ___________ Date Approved: ____ _

D~ar Advuol". pl~cu~ wnt~ _vor~r JiJ:!g1 ~lr~ollon on th~ proJeCt on th~ ~ru srd~ of this pag~. C umm~nt on th~
chtliTZcunstia thot moirlrhu ·•.--1 •• quality worlc.

Beverley Self

From:
Sent:
To:
Subject:

rljacobson frljacobson@southern.edu]
Friday, October 31, 2003 11:05 AM
Beverley Self
RE: Senior Southern Scholars Important Information

I will be graduating in December of 2004. I HAVE turned in the proposal form
to Dr. McClarty. I assumed that my project l,.Tould not be due until some time in
the fall of 2004, but your email made me realize that nobody actually told me
this. Since I will be graduating in December of next year, when is my project
due? {The issue of me graduating "late" has already been approved by the
honors committee.)

In the case that you want my medallion information now {as opposed to fall
'04), it should read: Robert Lawrence Jacobson. If this is too long, have it
read: Robert L. Jacobson.

--Robert

>===== Original Message From "Beverley Self" <bdself@southern.edu>
>Hello Senior Southern Scholars,
>
>
>
>This message contains some very important information. Please pay
>attention.
>
>
>
>As seniors, I'm sure you realize you must turn in a senior project. I
>need to have you turn in a proposal for your project. This requires
>some thought. There is a form that needs to be completed and your
>advisor needs to sign it before you turn it in to me or Dr. Wilma
>McClarty.
>
>
>
>Your completed proposal MUST be turned in by Wednesday, December 10,
>2003.
>
>
>
>Many of you have spoken with Dr. McClarty and received t he necessary
>form. If you have not, please come by her office, Brock Hall 322, as
>soon as possible .
>
>
>
>Just as a reminder:
>
>
>
>Your final project is due, April 16, 2004. You must turn in two (2)
>copies of your final project.
>
>
>

On Tuesday, April 27, 2 004, is the Dean's Luncheon where select
>Southern Scholars present their projects to the faculty.
>Unfortunately, there is not time for all of you to present but four or
>five of you will have an opportunity to share your projects. Just

1

	Southern Adventist University
	KnowledgeExchange@Southern
	2004

	Calculating the unrestricted partition function Towards an investigation of its arithmetic properties
	Robert Jacobson
	Recommended Citation

	tmp.1376335096.pdf.3GZRX

