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• Introduction 

A partition of a positive integer n is a set of positive integers, called parts, that sum to n. For example, 4 has the 
partitions: 

4 
3+1 
2+2 
2+1+1 
1+1+1+1. 

The unrestricted partition function p(n) counts the number of partitions of n. Thus p(4) = 5, since there are 5 partitions of 
the number 4. We can restrict the partitions in various ways. For example, we may wish to count the number of partitions of 
n into distinct parts, that is, in a given partition no part occurs more than once. The number of such partitions of 4 is 2, 
namely 4 and 3+1, since each other partion repeats parts. For the most part, however, we will be concerned with the 
unrestricted partition function. 

Many interesting questions can be asked about the arithmetic of this special function. For example, when is it even, 
or when is it odd? When is it evenly divisible by 29? What is its congruence distribution modulus certain prime numbers? In 
1938 G.H.Hardy remarked, "In spite of the simplicity of p(n), very little is known about its arithmetic properties" [1]. We 
might begin by writing down p(n) for the first few values of nand looking for patterns, as Ramanujan and Hardy did about 
80 years ago to develop some striking results. After the fust, say, eight terms counting the number of partitions of n as we 
did above becomes too cumbersome. We have already learned two things: first, p(n) grows approximately exponentially, 
and second, we need an efficient method of calculating p(n) without enumerating each partition of n. If we wish to 
investigate the arithmetic properties of p(n), we need to be able to compute p(n) efficiently, perhaps for several hundred, a 
few thousand, or millions of values of n. 

In this paper several methods for calculating p(n) will be explored with the motivation of determining p(n)'s 

arithmetic properties. Also, an exposition of the Hardy-Rarnanujan-Rademacher method will be given, and indirect methods 
of determining some arithmetic properties will be discussed. 

• Preliminaries 

First, some elementary definitions and theorems must be understood. This section developes the mathematical 
foundations assumed in subsequent sections. 

• Generating Functions 

Definition 1: The generating function f(q) for the sequence ao. a1o az, a3, ... is the power series f(q) = Ln;.D an if. 

As an example, (q + 1)m is a generating function for the sequence {ai}~0 = {(":)}co since 
l i=O 
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Remarks: Note that this sum may still be regarded as an infinite series as in the definition since an =(:) = 0 for 

n > m. We say that f(q) generates {ail:o· 

• Elementary Series-Product Identities 

Theorem 2: The infinite product n (1 - if)-1 is a generating function for the sequence an = p(n) (n ~ 1). 
n;;o1 

Proof. Recalling the identity 1 ~q = 1 + q + q2 + tj3 + q4 + .... ,the infinite product becomes an infinite product of 
infinite sums, 

n (1 - qn)-1 = (1 + q + q2 + q3 + .. . ) 
n;;o1 

X (l+tT+q4+q6+ . .. ) 

X (1 + tT + q6 + l + · .. ) 

The first "row", that is, the first infinite sum can be thought of as contributing "parts" (the numbers in the exponent) that 
occur once, the second row parts that occur twice, etc. It can now be seen that when this product is expanded the coefficient 
of qn will be the number of ways to add nonnegative integers (the exponents of q) to sum to n. 1 

Theorem 3: The infinite product Tin.,1 (1 +if) is a generating function for the number of partitions of n into distinct parts. 

Referring to the list of unrestricted partitions of 4 in the introduction, observe that there are 2 partitions in which 
each part is distinct, that is, only used once, namely, 4 and 3+1. 

Definition 4: Let p(m, n) be the number of ways to partition n such that in a given partition no part occurs more than m 

times. 

Again, referring to the list of unrestricted partitions of 4 in the introduction, observe that there are 3 partitions that 
have 2 or fewer parts. Thus, p(2, 4) = 3. 

Theorem 5: The infinite product lln>-1 (1 +if+ q2n + q3n + ··· + q"'n) = n (1- q<m+1ln)(l - if)-1 is a generating 
~ n;;o1 

function for p(m, n). 

Notice that theorem 3 is just a special case of theorem 5, namely, theorem 3 is a generating function for p(1, n). 

The proofs of theorems 3 and 4 procede as that of 2 and are left as an exercise to the reader. 

Note: We have not been careful with the question of convergence. Suffice it to say that all of our sums and products 
converge for I q I < 1. Questions of convergence will generally be proscribed since our considerations usually deal only 
with functions' forms. 
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• Inefficient Methods of Computing p(n) 

If p(n) is to be investigated empirically, the first problem that must be solved is, how can p(n) be computed? This 
section surveys several methods one might use and discusses associated issues. 

• Using the Generating Function Directly 

An Algorithm 

The most obvious way to compute p(n) is to use theorem 5, expanding enough terms to determine the coefficient of 
qn . Clearly p(m, n) = p(n) when m 2:: n. Thus, the coefficient of q" in 

is p(n). In fact, the coefficient of q; for every i :o; n is p(i). The following pseudocode algorithm performs the expansion of 
the above product. 

p(lnput n) 
Begin p: 
1) If n < 0 then 
2) output 0 
3) halt 
4) If n = 0 then 
5) output 1 
6) halt 

7) Allocate Coefficients Array with Length n2<;+1
> + 1 

8) Allocate Coefflclents2 Array with Length n2<;+1> + 1 

9) Initialize Coefficients to 0 
10) Initialize Coefflclents2 to 0 
11) Set Coefficients[O] to 1 

12) Form=1ton 
Do: 

13) Fori=Oton 
Do: 

14) For I= 0 to n("';
1
)m 

Do: 
15) Set Coefficients2[j + i m] to Coefficients2[j + i m] + Coefficients[/] 

Loop 
Loop 

16) Copy Coefflclents2 to Coefficients 
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17) Reset Coefficients2 to 0 
Loop 

End p 

The array holding the coefficients needs to have as many spaces as the largest exponent plus one. The innermost loop need 
only go ton( m(~+l) ), the largest exponent so far. 

Complexity 

Theorem 6: The above algorithm is O(n5). 

Proof To determine the running time, we must determine how many times line 15 executes. Now, line 15 executes a 
total of 

n n i n<m-l)m 

II I 1 
m=l i=O j=O 

= t t ( n(m- 1) m + 1) 

m=l i=O 
2 

~(n(m-1)m ) = LJ 
2 

+ 1 (n + 1) 
m=l 

In [ ( n(n + 1)) 2( n(n + 1) )] = n+1-m +m . 2 2 
m=l 

( 
n(n + 1) )2 

( n(n + 1)(2 n + 1)) ( n(n + 1)) = n(n + 1) - 2 + 6 2 

1 5 1 4 1 5 = - n + - n - - n3 + - n2 + n 
6 6 6 6 

times. Thus this algorithm is O(n5). 1 

A Refmed Algorithm 

This can be refined significantly by realizing that any qc with c > n does not contribute to the coefficient of if . Thus 
the inner sum need only be over 0 ::=; i m ::=; n, or, more precisely, until i = Ln/ mj. We may thus use 

In addition, we need not multiply two terms a qa · b qP if a + f3 > n; thus the inner loop need only go from 0 to n - i m. 

p(lnput n) 
Begin p: 
1) If n < 0 then 
2) outputo 
3) halt 
4) If n = 0 then 
5) output 1 
6) halt 
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7) Allocate Coefficients Array with Length n + 1 
B) Allocate Coefflclents2 Array with Length n + 1 

9) Initialize Coefficients to 0 
10) Initialize Coefficlents2 to 0 
11) Set Coefficients[O] to 1 

12) Form=1ton 
Do: 

13) For I = 0 to l ; J 
Do: 

14) For} = Oton-im 
Do: 

15) Set Coefficients2[j + i m] to Coefficients2[j + i m] +Coefficients[}] 

16) 
17) 

Loop 
Loop 

Copy Coefficients2 to Coefficients 
Reset Coefflclents2 to 0 

Loop 
End p 

Since we no longer are concerned with coefficients of qi (i > n), the array holding the coefficients (lines 7 and 8) need only 
be n + 1 in length. 

Complexity 

Theorem 7: The above algorithm is O(n2 Log(n)). 

Proof We proceed as before: 

n L ;i; J n-i m n L ;i; J 
2: 2: 2: 1 = 2: 2: (n + 1 - i m) 
m=l i=O j=O m=l i=O 

= t[(n + ll([:J+l)-m~il 

= t[(n+n([:J+l)-m~il 

= ~ ( (n + 1) (l : J + 1) - m ~ (l : J)(l : J + 1) ) 

= ~ (n + n l: J - m ~ l: r -m ~ l: J + l: J + 1 ). (1) 

) (We expand (1) for the sake of simplicity.) We now obtain an upper bound: 
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(1) s ~ (n + n (:) - m ~ (: - 1 f-m ~ (: - 1) + : + 1) 
n 3 1 1 

= ~(( 2 n + 1) + (n + 2 n2) m) 

1 3 
s 2 n

2 Log(n) + n Log(n) + 2 n
2 + n, 

where the last line follows from the inequality 

n 1 I ;- s Log(n) + 1. 
m=l 

Again using (1), we obtain a lower bound: 

(1) ~ ~ (n + n(: - 1) - m ~ (: t-m ~ (:) + :) 

n 1 1 1 
= ~ (- 2 n + ( n + 2 n

2
) ;-) 

1 1 
~ 2 n

2 Log(n + 1) + n Log(n + 1) - 2 n
2

, 

where the last line follows from the inequality 

n 1 
I ;- ~ Log(n + 1). 
m=l 

Hence, 

1 1 
n L ;i; J n-i m 1 3 

- n2 Log(n + 1) + n Log(n + 1) - - n2 s I I I 1 s - n2 Log(n) + n Log(n) + - n2 + n. 
2 2 

m=l i=O j=O 
2 2 

Thus this algorithm is O(n2 Log(n)).l 

Note: A "tighter" bound is possible by algebraic manipulation of terms involving Ln I mJ before applying an 
inequality, though the resulting bound will of course still be O(n2 Log(n)). 

The running time of this algorithm is a large improvement over 0(n5 ). 
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• A Method Involving A Recurrence 

Mathematical Development 

A fundamentally different technique for computing p(n) uses a recurrence relationship we now develop. (This 
development follows work done in [11].) 

Theorem 8: p(n) = ~ ~k=I £T(k) p(n- k), where £T(k) is the sum of factors of k. 

Proof. Let P(q) = IT;;. I 1 I (1 - qi) be the generating function for p(n) as in theorem 2. Taking the log of both sides 
gives 

"" 1 
Log(P(q)) = ~Log( . ). f::t (1 - q') 

Differentiating both sides with respect to q and moving P(q) to the right hand side yields 

~ iqi-1 
P' (q) = P(q) D (1 - qi) . 

i=l 

00 

= L: (i qi-1)(1 + qi + li + q'i + ···) 
i=l 

= !iqi-1 tqji 

i=l j=O 

=! i qi-1 i: q(j-l)i 

i=l j=l 

(2) 

(3) 

In (3), any term qii-l with i j - 1 = k contributes ito the coefficient of qk. That is, any i that is a factor of k + 1 contributes 
ito the coefficient of qk. Thus, the coefficient of¢ is £T(k + 1). We may rewrite (3) as 

00 

L:£T(k + 1)/. 
k=O 

Rewriting (2) now gives 
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00 

P' (q) = p{1) + 2 q p(2) + 3 q2 p(3) + · · · = I (n + 1) p(n + 1) q" 

00 

= P(q) I cr(k + 1) t/ 
k=O 

= (~ p(r) q7)(~ cr(k + 1) t/) 
= ~[~<T(k+ l)p(n -k+" 

n=O 

Equating the coefficients of tf in the extremes of the above yields 

n-1 

n p(n) = I cr(k + 1) p(n - k - 1). 
k=O 

Hence 

1 n 
p(n) = - I cr(k) p(n - k). I 

n k=I 

) Algorithm 

To construct an algorithm to exploit this recurrence we note that to compute p(n) we must first compute p(i) for 
0 s i < nand cr{i) for 1 s i s n. 

p(input n) 
Begin p: 
1) If n < 0 then 
2) output 0 
3) halt 
4) If n = 0 then 
5) output 1 
6) halt 

7) Allocate Sigma Array with Length n 
B) Allocate PV Array with Length n + 1 

9) Initialize Sigma to 0 
10) Initialize PV to 0 
11) Set PV[O] to 1 

12) Fori = 1 ton 
Do: 

13) Fork= 1 to i 
Do: 

14) 
15) 

If k = 0 (mod i) then 
Set Sigma[i - 1] = Sigma[i -1] + k 

Loop 
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Loop 

16) Initialize variable partialsum to 0 

17) For i = 1 to n 
Do: 

18) Fork= 1 to i 
Do: 

19) Set partialsum = partialsum + Sigma[k - 1]*PV[i- k] 

20) 
21) 

Loop 

Set PV[J] = partialsum I i 
Reset partialsum to 0 

Loop 
Endp 

Sigma[k] holds cr(k + 1) and PV[k] holds p(k) at the end of this algorithm. 

Complexity 

Theorem 9: This algorithm is O(n2). 

Proof. Clearly lines 14-15 and line 19 execute the same number of times, namely 

~ ~ _ ~ . _ n(n + 1) _ 1 2 1 
LJ LJ 1 - LJ 1 - - - n + - n. 
i=l k=l i=l 2 2 2 

Thus this algorithm is O(n2). 1 

• Considerations 

All of these algorithms have the property that they compute all p(i) for 1 :::; i s n which is useful for investigating 
p(n)'s arithmetic properties, since often a survey of properties of p(n) for many different n is desired. The last algorithm has 
the added benefit that, as can easily be shown, if its arrays are retained after computing p(n), p(n + 1) can be computed in 
O(n) time. Still, they are far too inefficient to be used for large n. 

• Euler's Pentagonal Recurrence 

Euler's pentagonal recurrence formula is the standard method for computing p(n) for small n. For example, the 
mathematical software packages Mathematica and Maple both use Euler's recurrence for small n. (In the case of 
Mathematica, "small n" means n < 5000.) Since this method sits on the cutting edge of several efforts to empirically 
investigate p(n), we shall look at it in detail. 
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• Euler's Pentagonal Number Theorem 

In order to prove Euler's Pentagonal Number Theorem an additional theorem is required. The interested reader, 
however, must be satisfied to consult, for example, page 10 of [7] for the proof of this additional theorem, as it is omitted 
here. 

Theorem 10: Let pe(n) and p 0 (n) be the number of partitions of n into an even number of distinct parts and an odd number 
of distinct parts respectively. Then 

{ 
( -1) if n = + m(3 m ± 1), 

Pe(n) - Po(n) = O 
otherwise. 

Theorem 11 (Euler's Pentagonal Number Theorem): 

00 00 00 n (1 _ q") = I +.I: ( -1)m qt m(Jm-ll(I + q"') = .I: ( -l)m qt m(J m-1). 

n=l m=l m=-oo 

Proof. (This proof is found in [7].) Clearly 

00 oo -oo .I: (-l)m qtm(Jm-1) = 1 + .L:(-1)m qtm(Jm-1) +.I: (-l)m qtm(3m-l) 

m=-oo m=l m=-1 
00 00 

= 1 +.I: ( -l)m qt m(3 m-1) +.I: ( -I)m qt m(3m+l) 

m=l m=l 
00 00 = I +.I: ( -l)m qt m(3 m-1) +.I: ( -I)m qt m(3m-l)+m 

m=l m=l 
00 = 1 +.I: (-l)m qt m(Jm-1)(1 + q"') 

m=l 
00 

= I + .I: (pe(n) - Po(n)) q" 
n=l 

by theorem 10. We now must show that 

00 00 

I +.I: (pe(n) - Po(n)) q" = n (I - q"). 
n=l n=l 

Now 

oo I I I n (I - q") =.I: .I: .I: ···(-I)a.+az+aJ+··· ql·a.+2·az+3·a3+···. 

n=l a•=Oaz=Oa3=0 

Now each partition with a distinct number of parts (see theorem 3) is counted with a weight ( -1t•+az+a3+··· which is+ I if 
the number of parts is even and -I if the number of parts is odd. Thus 

12 
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oo l I l n o-qn) = L L L ···<-l)a1+a2+a3+··· ql-a1+2·a2+3·a3+··· 

n=l a1=0a2=0a3=0 

00 

= 1 + L (Pe(n) - Po(n)) qn. I 
n=l 

Theorem 12 (Euler's Recurrence): If n > 0, then 

p(n) - p(n- 1) - p(n - 2) + p(n - 5) + p(n - 7) + 

... + ( -l)m p( n - ± m(3 m - 1)) + ( -1)m p( n - ± m(3 m + 1)) + · · · = 0. 

Note: p(O) = 1 and p(N) = 0 for N < 0. 

Proof Let an be the left-hand side of the above equation. Then clearly 

~ant/ = (~p(n)qn)-(1 + ~(-l)m qtm(3m-l)(l +qm)) 

= (D (1 - qn)-l) ·(D (1 - qn)) (by theorems 2 and 11) 

= 1. I 

• Recurrence Algorithm 

If we move everything but p(n) to the right hand side of theorem 12 we obtain 

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + .... 

To compute p(n) we need to know p(n- 1), the first term in our recurrence. But to compute p(n - 1), we need to know 
p(n - 2), the first term in the recurrence for p(n- 1). Thus, our algorithm is eventually going to compute every partition 
from p(n) down to p(O). We stop there because p(N) = 0 when N < 0. Now, p(O) is the base case, since p(O) is defined to be 
1. It would be efficient, then, to start by computing p(O), then compute p(1), then p(2), and so on until we compute p(n). 

We compute p(n) by subtracting generalized pentagonal numbers from n, so it might be useful to precompute them. 
But how many pentagonal numbers are we going to need? We need as many as will make p(n- r) zero, where ris the 
pentagonal number. That is, when n = r = max(-} (3 k2 + k), t (3 k2 - k)) = t (3 k2 + k). Now, n = t (3 k2 + k) when 
k = t ( -1 + .Y 1 + 24 n ). So we will need to generate the first lt ( -1 + .Y 1 + 24 n) J pentagonal numbers. Pseudocode for 
the algorithm follows. 

p(input n) 
Begin p: 
1) If n < 0 then 
2) output 0 
3) halt 
4) If n = 0 then 
5) output 1 
6) halt 



Robert Jacobson 

7) Set MaxK = l ~ ( -1 + -v' 1 + 24 n )J + 1 
8) Allocate Pent Array with Length 2 x MaxK 
9) Allocate Partitions Array with Length n + 1 

10) Initialize Partitions to 0 

/"This loop Initializes the Pent array with the pentagonal numbers"'/ 
11) For m = 1 to MaxK 

12) 

13) 

Do: 

Loop 

Set Pent[2 m- 2] to~ m(3 m-1) 
Set Pent[2 m-2 + 1] to~ m(3 m+ 1) 

14) For I = 1 ton 

15) 
16) 

17) 

18) 
19) 

20) 
21) 

22) 

End p 

Do: 

Loop 

Set PartiaiSum to 0 
Setjto1 

While Pent[j - 1] :s; I 
Do: 

Loop 

If i= 1 (mod4) or i= 2(mod4) then 
Set PartiaiSum to PartlaiSum + Partitions[/- Pent[j- 1]] 

Else 
Set PartiaiSum to PartiaiSum - Partitions[/- Pent[j - 1]] 

Increment j by 1 

Set Partitions[i] to PartiaiSum 

When the algorithm exits, Partitions[i] contains p(i). Note that one extra pentagonal number is computed as an "escape" 
case. 

• Complexity Analysis 

Theorem 13: The above algorithm is O(n312). 

Proof Clearly lines 12 and 13 execute l t ( -1 + V 1 + 24 n )J + 1 times. Now, for each value of i, 
l i (-1 + V 1 + 24 i )J numbers are added together, since, as previously mentioned, there are l t ( -1 + Vr-1-+--:2:-:-4-:-i· )J positive 
pentagonal numbers less than or equal to i. Hence, lines 19 and 20 are executed 

n 1 
,E l- (-1 + v1 +24t)j 
i=l 6 

times. It is obvious that 
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2 In+! n 
- n

3
'
2 = ~ dx <I..fi . 

3 I i=l 
(4) 

Now, 

n 1 n 1 7 
I l6 (-1+~1+24i)J > I(-~1+24i --) 
i=l i=l 6 6 

where the last line follows from (4). Similarly, 

n [+! 2 2 I {i < ,.fx dx =- (1 +n)3fl - - . 
i=l I 3 3 

(5) 

Thus, 

n 1 5 n 

Il-(-1+~1+24i)J <c;I..fi 
i=l 

6 
i=l 

= ~ (1 + n)3/2 - ~ 
9 9' 

where the last line follows from (5). Hence 

2-{6 7 n l1 J 5 2 - - n3' 2 - - n < I - ( -1 + ~ 1 + 24 i ) < - ( 1 + n)3' 2 - - . 
9 6 i=l 6 9 3 

Therefore this algorithm is O(n3fl).l 

• Considerations 

This algorithm shares the advantages of the previous algorithms in that it calculates p(i) for 0 ~ i ~ n. In addition, it 
can easily be shown that if p(i) for 0 ~ i ~ n have already been computed, then p(n + 1) can be computed in 0( ..{;) time, 
much faster than the last algorithm in the previous section. Algorithms based on this one have been developed for parallel 
computers. One such algorithm running on 128 processors is able to calculate p(n) modulo all primes < 100 for 0 ~ n ~ 109 

in about a day [10]. 
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• The Hardy-Ramanujan-Rademacher Formula 

Donald Knuth, the preeminent computer scientist of our time, writes "The Hardy-Ramanujan-Rademacher formula 
for p(n) is surely one of the most astonishing identities ever discovered" [16]. Indeed, otherwise stolid authors of books on 
analysis and number theory rarely fail to offer a gushing remark when they treat the Hardy-Ramanujan-Rademacher formula 
(HRR). George Andrews provides a restrained example when he writes that the HRR is "one of the crowning achievements 
in the theory of partitions," yet cannot resist affmning that Hardy and Ramanujan's approach is "truly remarkable" 
(emphasis his) [7]. Other authors simply revert to superlatives like "beautiful" [13) and "spectacular" [14]. In a curious 
struggle between letting the mathematics speak for itself (as a mathematician presumably should) and a desire to express his 
awe, J. E. Littlewood writes, "The reader does not need to be told that this is a very astonishing theorem ... " [171. Therefore, 
this author will make no comments regarding the aesthetics of HRR, prefering rather that the reader be the judge. 

where 

The form of HRR as we will use it is: 

2 {3 l:oo Ak(n) {( k ) [ v(n) ] ( k ) [ v(n) ]} p(n) = _ r. 1 - - exp - + 1 + - exp -- , 
24 n - 1 v k v(n) k v(n) k 

k=l 

Ak(n) = l: wh,k exp[ -
2 
:in h], 

l:sh<k, 
gcd(h,k)=l 

v(n) = -..ffi3 1r .../ n- 1/24, 

and wh.k is a certain 24 kth root of unity given by 

W 
_ Jris(h,k) 

h,k- e 

where s(h, k) is the Dedekind sum 

the last line following from the fact that LxJ = 0 when 0 ::5 x < 1. (This form along with a short survey of other equivalent 
representations is found in [14].) Hardy and Ramanujan's collaboration on this problem, and Rademacher's subsequent 
completion of their work has led to a powerful technique, the Circle Method, for solving certain types of additive problems. 
Hardy and Ramanujan developed an asymptotic expansion for p(n) which was later proved by D. H. Lehmer to diverge [14]. 
Hans Rademacher later managed to identify an additional term that caused the infinite series to converge [18]. 
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• A Brief Mathematical Exploration 

An exposition complete enough to justify the HRR would be far too cumbersome to include here. Indeed, even a 
brief sketch is a daunting task. ([13] provides a sketch of the circle method, the technique used to prove HRR, though not 
necessarily in the context of the partition function. [7], from which much of our discussion is derived, provides a detailed 
discussion of the Hardy-Ramanujan-Rademacher formula and its mathematical justification. See also [16] for a slightly 
different approach.) Thus we will hint at some of the most important highlights, the major facts which contribute to the 
result. 

Let P(q) = n (1 - t/')-1 as in theorem 2. It is then obvious that pCnl(O) = n! p(n). Computing this directly is 
n;.1 

clearly more difficult than expanding the generating function, but recall Couchy's Integral Formula: 

(n) n! L f(s) d f (z) = - s 
21f i c (s- z)n+1 

where C is any simple closed contour around the origin, we see that 

n - _1_ L P(q) d 
p( ) - 2 · n+1 q, 

1rt c q 
(6) 
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where Cis a contour within the unit circle. But how can (6) be evaluated? The problem with evaluating (6) is that P(q) has 
an infinite number of factors. Notice also that P(q) has a singularity at every integral root of unity. By exploiting a fact about 
these singularities, specifically the behavior of P(q) "near" these singularities, we can work toward a formula for (6). 

The key is to see that P(q) is a modular form. Specifically, it can be shown that 

( [
2tri(h+iz)]) [tr(z-

1
-z)] ( [2tri(h

1

+iz-
1
)]) 

P exp k = wh,kexp 12 k P exp k , (7) 

where Re(z) > 0, the principle branch of z112 is selected, h' is a solution of the congruence h h 1 = - 1 (mod k), and wh, k is a 
24 kth root of unity defined in the previous section. Now when z is small, the argument of P on the LHS is near an integral 
root of unity, whereas the argument of P on the RHS is very close to zero (and thus Pis close to 1). In other words, as z ~ 0 
with Re(z) > 0, it is clear that exp[2 1r i (h 1 + i z-1) I k] = exp[2tr(i h 1 

- +.)I k] -+ 0 very quickly. Therefore, the contour C of 
integration should in some way be "centered" near these integral roots of unity in such a way as to leverage (7) so that the 
contribution of P(z) is negligible. 
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Farey Fractions 

Before the contour C is dissected, it will be quite useful to discuss our approach to these integral roots of unity. Let 
us call exp[21f i hI k] a rational point if ~ is rational. (Note that the rational points are simply the integral roots of unity.) 

Clearly the rational points are dense on the unit circle. But recall the product expansion for P. The partial product 

n:=l (1- rf)-1 (NEZ+) has a pole of order Nat q = 1, a pole of order [N 12] at q = -1, poles of order [N 13] at 

q == exp[2tr i 13] and q = exp[41f i I 3], etc. Just as in our generating function algorithm above, we notice that factors 
appearing "early" in our product contribute more to the result. Indeed, were we to fix n, we might calculate p(n) by simply 
selecting N large enough, and hence our set of relevant rational points would not be the countably infinite set of roots of 
unity, but {exp[2tr i ~] : 0 ;s; h s k, 1 ;s; k ;s; N}. Hence our strategy will be to divide the unit circle in such a way as to in 
some way "center" our curve of integration near all rational points exp[2 1r i hI k] with 0 s k :$ N, where N is fixed. Our 
guiding principle is that rational points with least denominator are most important to our calculations. 

We now develop some useful theorems which will be useful in dissecting the contour of integration, which will be 
helpful in building an algorithm, and which are fascinating in their own right. (The proofs of theorems 15 and 16 can be 
found in [1].) 

Definition 14: The ascending series of all irreducible fractions ~. 0 ;s; h ;s; k and 1 s k s N, is called the Farey series of 
-----· order N, denoted F N. The fractions ~ are called Farey fractions . 

Informally, we often take F N to be a set. Thus, 

Theorem 15: If~ and f. are two successive terms of Fn, then k h' - h k' = 1. 

Proof: Since gcd(h, k) = 1, the equation 

k x- hy==1 (8) 

has integer solutions. If (xo, Yo) is a solution, then (xo + r h, Yo + r k) is also a solution for any positive or negative integer 
r. We can chooser so that 

n - k < Yo + r k s n. 

There is therefore a solution (x, y) of (3) such that 

gcd(x, y) == 1, 0 :$ n- k < y ;s; n. (9) 

Since ~ is in lowest terms, andy ;s; n, ~ is a fraction ofF,. Also, rearranging (8) yields 
y y 

X h 1 h 
-= -+- > -, 
y k ky k 

so that 1 comes later in F n than ~ . If f * f. then 1 comes later than f., and 

18 
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while 

Hence 

X h' k'x-h'y 1 
- - - = > -· 
y k' k'y - k'y' 

hi h kh 1 - hk 1 1 
- - - = ~-. 
k' k kk 1 kk 1 

1 

ky 

kx-hy x h 1 1 k+ y n 1 = __ ___::_ = ---2:: --+- = -- > -- 2:: -
ky y k k 1 y k k 1 k k' y k k 1 y k y 

by (9). But this is a contradiction. Thus it must be that-} = f., and k h 1
- hk 1 = 1. I 

h h' h" . h" h+h' . h h' Theorem 16: If T• 71 , and 71 are three successive terms F11 , then 71 = k+k', the medtant ofT and 71· 

Proof: From theorem 15, we have kh" - hk" = 1, and k" h i - h" k 1 = 1. Solving these two equations for h" and k", 

we obtain 

h"(kh 1 - hk') = h + h', and 
k"(kh' - hk 1

) = k+k 1
• 

Dividing equations, we obtain 

h"(kh 1 -hk 1
) h" h+h' 

k"(kh 1 -hk 1
) = ""0 = k+k 1 

•• 

Theorem 17: If f, and f. are two successive terms of F11_ 1 but z: separates them in F11 , then h" = h + h 1 and k" = k + k ', 

th . h+h' . . d d & at 1s, k+k" 1s m re uce ~orm. 

Proof: Clearly z: = z:z: by theorem 16. Suppose d > 0 divides both h + h' and k + k 1
• Then d divides 

k(h+h') + (-h)(k+k 1).But 

k(h + h 1
)- h(k + k') = k h' - hk 1 = 1 

by theorem 15, since f and f. are two successive terms in Fn-1· Hence d = 1, and thus gcd(h + h', k + k') = 1.1 

The curve of integration C will be dissected into arcs which are "centered" on the rational points associated with 
Farey fractions of order N in the sense that the endpoints of each arc are the rational points associated with the mediants of 
these Farey fractions. Hence if hoI ko, hI k, and h 1 I k1 are three consecutive terms ofF N, then the arc containing the 
rational point e2"if has endpoints i"i(f-~) and i"i(~-f l. 

19 
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The associated rational points of F6 

1/2 

' 2/5 

\ 
1/3 

2/3 
I 

Evaluating Cauchy's Integral Formula 

1/4 

3/4 

1/5 

4/5 
\ 

j 
1/6 

5/6 
\ 

0 

We continue to evaluate (7). The following divides the a circle into segments as described above: if 
hoI ko, h/ k, hlf k1 are three consecutive terms of FN, then defme 

' 1 e. - --o,J - N+l' 

, h ho+h 
(}h k = - - -- for h > 0, 

' k ~+h 

" hi+ h h 
oh,k = k! +h - I · 
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Let C be the curve f(¢1) = pexp[211' i ¢1], 0 ::5 ¢1 ::5 1. (An appropriate p will be selected shortly.) Then we have 

p(n) = _ 1_ I P(s) ds 
211'i csn+l 

= _ 1_. r' P(f(¢1)) r (¢1) d¢1 
211' z Jo f(ifJ)n+l 

1 L' P(p exp[211' i ifJJ) = -- p211'iexp[211'if/J]d¢J 
211'i 0 pn+1pexp[211'i¢(n+1)] 

= p-n l' P(pexp[211' i ifJJ) exp[-211'i n¢] d¢ 

N 

= p-n 2: 
k=l 

GCD(h,k)=l 
Oshsk 

where the final sum merely enumerates f EF N, Farey fractions of order N . Now to take advantage of {7), the argument of P 

must be 

[ 
211' i(h + i z) J [ 211' i h 2 n z J exp k = exp -k- - -k-, 

yet in (10), the argument of Pis 

[
2nih J [211'ih J pexp -k- +2ni¢1 = exp -k- +2niifJ+ln[pJ. 

By selecting p = exp[ =j;;i-] and z = ~ - k i ¢1, the above becomes 

exp[
2
:ih +271'iifJ+ln[p]J = exp[

2
:ih -

2
k11' (! -iiflk)] 

[
211'ih 211' ] 

= exp -k- -k z. 

Rewriting (10), we have 

N 

p{n) = exp[
2
; 2n] .2::: exp[-

2
:ihnJ£::P(exp[

2
:ih -

2
k11' z])exp[-2nin¢]d¢J. 

k=l 
GCD(h,l:)=l 

Oshsk 

Now (7) may finally be applied to obtain 
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p(n) = 
N 

[
27rn] exp N2 ~ [

-27rihn] fl~; [JT(z-1 -z)] ( [27ri(h'+iz-1
)]) 

exp k wh,k J_dh./12exp 12 k P exp k exp[-27rin¢>]d¢. 
k=l 

GCD(h,k)=l 
O:os;h!fk 

Recalling that z = ~ - k i ¢>,when N ~ oo, z ~ 0, thus exp[ 2 11'i(h~+iz-1 )] ~ 0 and hence P(exp[ 2 "i(h~+iz-
1

) ]) ~ 1. Thus it is 
expected that 

N 

~ 
k=l 

GCD(h,k)=l 
O,;;hsk 

[
-27rihn] £~.k [JT(z-1 -z) ] exp wh,k . z112 exp - 2 1r i n ¢ d ¢ 

k -9u 12 k 

is an estimate for p(n) with error that approaches 0 as N ~ oo. 

(11) 

What is left is to transform the integral in ( 11) so that Cauchy's theorem can be applied. The integral will then be 
segmented into managable peices. Let w = N-2 - i ¢.Thus the integral in (11) becomes 

where 

Now, g has a branch cut along the negative real axis and is analytic and single valued everywhere. Thus, applying Cauchy's 
theorem, (12) may be evaluated as 

with contours according to the following figure: 

22 
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- £ + i 8' r-
! ,, 

------~~~-----~~ 
-~W~-~~+~~~~~~~ 

~ L------~ 
-2 / • 11 , N · a" 

,- £ -I uh,k -I uh,k 
. ---~ 

Fortunately, it can be shown with some work that h. h, !4, Is, and 16 are all negligible [7]. Moreover, it turns out that 
L" and h are able to be evaluated. Specifically, it is shown in [7] that as N -+ oo, 

Rewriting ( 11) by evaluating this differential, letting N -+ oo and substituting Ah,k yields the HRR in the form presented at 
the beginning of this section. 
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• An Implementation of the Hardy-Ramanujan-Rademacher Formula 

The outer most sum of HRR must have a finite number of terms for the algorithm to halt. Thus the sum will be over 
1 ::5 k ::5 w, where the value of w will be justified later. Note that k may be regarded as the denominator and h the numerator 
of Farey fractions of order F w· 

We will now develop a useful theorem. Let f be an arbitrary function over Q. Let a, b, c, andd be in 
Z withgcd(a, b) = 1 and gcd(c, d)= 1. Define Sn( f, -;7) to be 

Theorem18: 

f (
a a+c) (a+c c) 

s(!!.- ~) = Snb' b+d +Snb+d'd 

n b' d ' (c) 
[f d 

sn(~. +) = L L t(~). 
Isksw Ish<k 

gcd(h,k)=I 

ifb+d :S n 

ifb+d > n 

Note: The right hand side is merely a sum over Fn - { f }, all Farey fractions of order n except 0. Our recursive 
function Sn is just a way to enumerate each Farey fraction without having to determine if gcd(h, k) = 1 for every 1 ::5 h < k. 

24 

Proof Sketch. Let f, -;7 be successive terms in some Farey series. The fraction with least denominator lying strictly 
between them is thus :!~ by theorem 17. Repeating this operation for the left interval [ f , ::; ] , we see that :!:!~ is the 
fraction with least denominator in this left interval. Continuing in this fashion for both left and right intervals while the 
denominator is less than or equal to the order n clearly yields all Farey fractions in the interval (0, 1]. Now consider points 
f, -;7 such that b + d > n. Then there are no more Farey fractions of order n lying strictly between f, -;7. Hence, Sn( f, -;7) 
computes f( -;7 ), and f( -;7) is only ever computed once.l 

• Pseudocode for the Hardy-Ramanujan-Rademacher Formula 

Pseudocode for s(h, k) 

s(input h, input k) 
Begins: 
1) Initialize result to 0 

2) For m = 1 to k- 1 
Do: 

3) Set result to result + (; - i)( h; - l h; J- i) 
Loop 

Ends 

Line (3) clearly executes k- 1 times. Thus this algorithm is O(k - 1). 
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Pseudocode to compute Farey fractions 

We ultimately compute a real number for Ak(n). Thus recalling Eu1er's formula we have 

Re(ei8) = Re(cos[O] + i sin[O]) = cos[ B), 

and hence 

Ak(n) = 2:: exp[1r i s(h, k)] · exp[ -
2 
:in h ] 

!:Sh<k, 

gcd(h.k)=l 

= 2:: exp[1Ti(s(h,k) -
2:h)] 

!:Sh<k, 

gcd(h,k)=l 

= 2:: cos[1T(s(h,k) -
2:h)J. 

l:Sh<k, 
gcd(h,k)=l 

However, k is merely the denominator and h the numerator of an element in F w· Thus, using the same strategy as in theorem 
18 we shall compute the outer sum over each ordered pair (h, k) such that~ E Fw, instead of using a double sum. First, we 
calculate the ordered pairs (h, k) using theorem 18. The following pseudocode, which includes the function F and a 
supporting function RecurseF, generates Forder in a number of steps proportional to the number of elements in Foroer+l· 

F(input order) 
Begin F: 
1) Return Recursef[order, 0, 1, 1, 1] 
Endf 

RecurseF(input order, a, b, c, d) 
Begin R,curseF: 
2) If b + d > order then return {} 
3) Otherwise, return Recursef[order, a, b, a+ c, b + d] U { :;:: } U RecurseF[order, a+ c, b + d, c, d] 
End Recursef 

25 

Line (1) clearly executes once, while lines (2) and (3) each execute once for every call to RecurseF. How many times is 
RecurseF called? Once for each element in F order and once more for each pair of consecutive elements in F order to reach the 
escape case in line (2). According to [15], if N(n) is the number of terms in Fn, then limn->oo N(n) = ; 2 n2 • Hence this 
algorithm is O(n2). (Note: then here is not the argument to the partition function. Indeed, we need only compute Fw where w 

is the number of terms of outer sum in the Hardy-Ramanujan-Rademacher formula we need to take in order to compute p(n). 

Typically w is very small. For p(200), we may take w = 5. Thus perhaps we should say this algorithm is O(w2).) 

Pseudocode to compute p(n) 

There is one final issue before an algorithm can be written: how many terms of the outer sum must we take? It is 
trivial to show Ak(n) is 0( k ), a constant (at least in the context of At). Now, 
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(1 - ~) exp[ v(n)] + (1 + ~) exp[- v(n)] 
v(n) k v(n) k 

< (1 - ~) exp[ v(n)] 
v(n) k 

< exp[ vr)] 

for sufficiently large n. Thus each term is o( exp[ ...[2[3 rr .Y n - 1 I 24 I k] ), or simply o( exp[ c Vn I k] ). Now if c and l are 
constants with 0 s l < 1, asymptotically we desire 1 > l ec ..;n fk, and hence k > -emf . Thus we must only take a number of 
terms proportional torn. 

We are ready to put the pieces together. 

p(input n) 
Begin p: 
1) If n < 0 then 
2) output 0 
3) halt 
4) If n = 0 then 
5) output 1 
6) halt 

7) Initialize maxK to Max[ 1, l 1
3
0 Vn J] 

8) Initialize FareySet to F[maxK, 0, 1, 1, 1] 
9) Allocate KCoefficients Array with Length maxK 

10) Fork= 1 to maxK 

11) 
12) 

13) 
14) 

15) 

Do: 

Loop 

Set v to V2/3 trV n-1/24 
Set KCoefficients[k) to 

{(1- ~)exp[f]+(1 + ~)exp[-f]}/k 

Initialize result to 0 
For each ~ e FareySet 
Do: 

Set result to 
result+ cos[tr(s<h, k) - 2Zh)] . KCoefficients[k] 

Loop 

16) Set result to Round( ~1 • result) 

End p 
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• Complexity Analysis 

Clearly lines (11) and (12) execute l (0 Vn J times. Our concern will be line (15). Now there are a number of 
2 

elements proportional to maxK2 < ( 1~ Vn) < n in FareySet. Moreover, s(h, k) is O(k). To make a simplifying assumption 
we may let s(h, k) be O(maxK) = o( Vn). Hence line (15) represents a number of steps proportional to L:::t Vn = n213• 

But this is misleading, for the arithmetic operations can be carried out in nearly O(log p(n)) = o( Vn) steps, that is, "the 
number of bit operations is not much larger than the number of bits of p(n)" [19]. After the first few terms, the terms of the 
series "are of order k-312 and usually of order k-2• Furthermore, about half of the coefficients Ak(n) tum out to be zero." For 
example, for p(106), 123 of the required 250 Ak(106)terms are zero [16] . 

• Considerations 

27 

The advantages of using the Hardy-Ramanujan-Rademacher formula (HRR) are hardly limited to its running time, 
although its running time is nearly as fast as the fastest alternative algorithms. Indeed, for extremely large values of n, HRR 
is often the only option, for all other algorithms have significant memory requirements in comparison. Consider, for 
example, Euler's recurrence, which must hold in memory not only the pentagonal numbers but also every p(m), 0 s m :S n. 

Moreover, HRR can be used to generate symbolic results involving an undefined variable n with k terms of the formula. The 
symbolic output may be used to calculate p(n) in only the time it takes to evaluate the symbolic expression. Additional terms 
may be generated on the fly without reference to a fixed nor k. (Remember: It is a simple matter to generated Fw+! very 
quickly from Fw.) 

Why, we might ask, would anyone ever use any other aglorithm? For small values of n, HRR tends to have slightly 
more overhead than Euler's recurrence. Indeed, HRR is significantly harder to understand and implement, as the 
mathematics behind it are orders of magnitude more sophisticated. In addition, HRR requires high-precision arithmetic 
sooner than does Eu1er's recurrence. (See the Java source code listings in the appendices. An implementation of both 
algorithms using Java's double and long primitive data types has HRR giving inaccurate results for n = 246, whereas Euler's 
recurrence does not fail until n = 405.) 
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• Other Methods of Determining Arithmetic Properties of p(n) 

There are a few methods of determining the distribution of p(n) modulus certain prime numbers without actually 
computing p(n). 

28 

Davis and Perez have developed an algorithm that computes p(n) modulus a prime number in O(N log~ N) time [13]. 
Their algorithm begins with the polynomial in theorem 11, then uses a Fast Fourier Transform algorithm to invert it. Thus 
p(n) can be computed by picking the prime number large enough. The details of the algorithm are yet unpublished, but see 
[13] for an outline of the technique. 

The special case of determining the congruence mod 2 of p(n) is particularly simple. (The proof, omitted here, is 
found in [7].) 

Theorem 19: 

p(4n) = p(n) + p(n - 7) + p(n - 9) + ·· · + p(n - ai) + ··· (mod2), 
p(4n + 1) = p(n) + p(n- 5) + p(n - 11) + ·· · + p(n- f3i) + ... (mod2), 
p(4 n + 3) = p(n) + p(n - 3) + p(n - 13) + · ·· + p(n- n) + · · · (mod 2), 
p(4 n + 6) = p(n) + p(n - 1) + p(n - 15) + · .. + p(n- 8i)+ ···(mod 2), 

where ai = i(S i ± 1), f3i = i(S i ± 3), 'Yi = i(8 i ± 5), and 8i = i(S i ± 7). 

Note that o( -..{;) terms must be taken on the RHS, while each term requires O(lo~ k) recursive calls. Compare this to 
Euler's recurrence, where there are also o( -..{;) terms on the RHS, but where each term requires O(k) recursive calls. Thus 
an algorithm that exploits this recurrence is significantly faster than Euler's recurrence. Yet in spite of the simplicity of this 
special case, there are many unanswered questions about the parity of p(n). (See [20].) 

• Conclusion 

With the techniques discussed, the question of the umestricted partition function's arithmetic properties may be 
attacked computationally. Indeed, p(n)'s distribution mod certain prime numbers has been calculated on super computers for 
millions of values of n [10], and questions regarding the parity of p(n) have been vigorously investigated [12]. Naturally, 
however, results tend to be merely suggestive. Ultimately a rigorous proof is desired. Nonetheless, data produced by 
empirical investigation often reveals patterns which cry out for explanation, and new, groundbreaking questions arise. Thus, 
these techniques will continue to be invaluable to the study of the partition function. 
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• Appendix A: Big-0 Notation 

Big-0 notation is a way of describing an asymptotic upper bound on the running time of an algorithm. For a given 
function g(n) we denote O(g(n)) (that is, "big 0 of g of n") by 

O(g(n)) = {f(n): 3 c > 0 3 no > 0 V n ~ no(O ~ f(n) ~ c g(n))}. 

In other words, O(g(n)) is the set of all functions that eventually always remain below a fixed positive multiple of g(n). The 
variable n is interpreted as the size of the input to the algorithm. For our purposes, n is the integer for which p(n) is 
calculated. To take an example, the algorithm based on Euler's recurrence takes time proportional to n312 to execute. 
Traditionally, one writes that an algorithm's running time f(n) is O(g(n)), or alternatively, that f(n) = O(g(n)), even though 
O(g(n)) is a set of functions. Note that if f(n) is O(n), then f(n) is also O(n2). 

Most of the algorithms discussed are really asymptotically tightly bounded, that is, bounded above and below by g. 

We denote O(g(n)) (that is, "big theta of g of n") by 

O(g(n)) = {f(n): 3 c1 > 0 3 cz > 0 3 no > 0 V n :=:: no(O ~ c1 g(n) ~ f(n) ~ Cz g(n))}. 

In other words, O(g(n)) is the set of all functions that always remain between fixed positive multiples of g(n). Thus the 
algorithm based on Euler's recurrence is in fact O(n312). This paper is only really concerned with the upper bound. The 
asymptotic tightness of the bounds is usually obvious. 
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•Appendix B: Source Code Listing for GeneratingFunct.java 

1: /* Robert Jacobson 
2: 
3: 
4: 
5: 
6: 

*Expands the generating function to compute p(n) , 
* the number of unrestricted partitions of n. The 
* generating function is adjusted to exclude any 
* qAi with i > n, since such a term would not 
* contribute to the coefficient of qAn. The new 

7: * function is 
8: * 
9: * Prod[Sum[qA(i m)]] 

10: * 
11: *where the sum goes from i=O to Floor[n/m] and 
12: * the product goes from m=1 ton. 
13: * 
14: *This algorithm is 0( nA2 Log(n) ) . 
15: * 
1 6: * For the sake of comparison, an algorithm that 
1 7: *does not take advantage the above fact, that is, 
18: * that merely expands the usual generating function, 
19: *is given as p2(n). This inefficient algorithm is 
20: *0(nA5). 
21: * 
22: * Both algorithms can calculate upton= 405 before 
23: * failing due to overflow. However, the O( nA5 ) 
24: *algorithm is almost guaranteed to fail far sooner 
25: * since it must allocate a tremendous amount of 
26: * memory. 
27: * 
28: */ 
29: 
30: import java.lang.Math; 
31: 
32 : public class GeneratingFunct{ 
33: public static void main(String[] args) { 
34: System.out.println(p(405)); 
35: } 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 

//Refined algorithm: 0( nA2 Log(n) 
public static long p(long n){ 
//trivial special cases. 
if(n<O) return 0; 
if(n==O) return 1; 

int i, m; 
int j = 0; 
long steps = 0; 

//This array holds coefficients of qAi 
long coeffs1[] =new long[(int)n+1]; 
//Init this array :) 
coeffs1[0] = 1; 
//This array is initially zeroed 
long coeffs2[] =new long[(int)n+1]; 

//perform the expansion 
for(m = 1; m <= n; m++){ 

in the ith position 

//This loop multiplies one factor by another. 
//If i went to n instead of n/m, n-i*m would 
//become < 0 in the innermost loop and an 
//assignment would never be made. 
for(i • 0; i <= (n/m) ; i++){ 



61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 
116: 
117: 
118: 
119: 
120: 
12 1 : 
122: 
123: 
124: } 

} 

//This innermost loop multiplies the intermediate 
//polynomial (initially 1) by a single term, 
//namely qAi*m, and adds the result to the prev poly. 
//We set coeffs=O for every qAi with i>n. 

} 
} 

for(j = 0; j <= (int)n-i*m; j++){ 
coeffs2[j+i*m] += coeffsl[j]; 

//the destination becomes the source for the next iteration. 
for(j = 0; j <= n; j++){ 
coeffsl[j] = coeffs2[j]; 
coeffs2[j] = 0; 
} 

return coeffsl[(int)n]; 

} 

//Inefficient algorithm: 0( nAS 
public static long p2(long n){ 
//trivial special cases. 
if(n<O) return 0; 
if(n==O) return 1; 

int i, m; 
int j = 0; 
long max= (n*n*n + n*n)/2; 
long steps = 0; 

//This array holds coefficients of qAi in the ith position 
long coeffsl[] =new long[(int) (n*n*n + n*n)/2 + 1]; 
//Init this array :) 
coeffsl[O] = 1; 
//This array is initially zeroed 
long coeffs2[] =new long[(int) (n*n*n + n*n)/2 + 1]; 

//perform the expansion 
for(m = 1; m <= n; m++){ 

} 

//This loop multiplies one factor by another. 
//If i went to n instead of n/m, n-i*m would 
//become < 0 in the innermost loop and an 
//assignment would never be made. 
for(i = 0; i <= n; i++){ 
//This innermost loop multiplies the intermediate 
//polynomial (initially 1) by a single term, 
//namely qAi*m, and adds the result to the prev poly. 

for(j = 0; j <= n*(m-l)*(m)/2; j++){ 
coeffs2[j+i*m] += coeffsl[j]; 

} 
} 

steps++; 

//The destination becomes the source for the next iteration. 
//Naturally there are more clever ways to do this. 
for(j = 0; j <= n*(m)*(m+l)/2; j++){ 
coeffsl[j] = coeffs2[j]; 
coeffs2[j] = 0; 
} 

return coeffsl[j]; 

} 



•Appendix C: Source Code Listing for 
SigmaRecurrence.java 

1: /*Robert Jacobson 
2 : *Uses a recurrence to compute p(n), the number 
3 : * of unrestricted partitions of n. The recurrence is 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 

* 
* p(n) = 1/n Sum( siqma(k) p(n-k) ) 
* 
* where siqma(k) is the sum of factors of k and the 
* sum is from k=1 to n. 
* * This algorithm is O( nA2 ) . This implementation can 
* calculate up to p(316) = 28305020340996003 before 
* giving garbage results due to overflow. 
* 
*I 

public class SigmaRecurrence { 
public static void main(String[] 
System.out.println(p(316)); 
} 

public static long p(long 
//trivial special cases. 
if(n<O) return 0; 
if(n==O) return 1; 

int i = 0; 
int k = 0; 
long partialsum 
float temp = 0; 

- 0; 

n){ 

//sigma[k] holds sigma(k+1) 
long sigma[] =new long[(int)n]; 
//pv[k] holds p(k) 
long pv[] =new long[(int)n + 1]; 
//initialize pv 
pv[O] = 1; 

args){ 

//Initialize sigma. Perhaps this could be done 
//more efficiently, but it's faster than 
//the rest of the method anyway. 
for(i = 1; i <= n; i++){ 

----'l2_: _ /1ca.l-culate- sigma-(i)' _________________________ _ 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
SO: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 

} 

for(k = 1; k <= i; k++){ 
if ((float) (i) I (float) k - (float) ( (i) /k) == 0) { 

sigma[i-1] += k; //SUM of factors, not COUNT 
} 
} 

of factors 

//Now calculate p(i) for 1 <= i <= n. (i=O is already done.) 
for(i = 1; i <= n; i++){ 

} 

for(k = 1; k <= i; k++){ 
partialsum += siq.ma[k-1]*pv[i-k]; 
} 
pv[i] = partialsum/i; 
partialsum = 0; 



J 

59: 
60: 
61: 
62: 
63: } 

return pv[ (int)n]; 
} 



) 

•Appendix D: Source Code Listing for EulerRecurrence.java 

1 : 
2: 
3: 
4: 
S: 
6: 
7: 
8: 
9: 

10: 
11: 
12 : 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
SO: 
51: 
52 : 
53: 
54: 
SS: 
56: 
57: 
58: 
59: 
60: 

II Robert Jacobson 
II Uses Euler's recurrence to compute p(n), the number 
II of unrestricted partitions of n. The recurrence is 
II 
II p(n)=p(n-1)+p(n-2)-p(n-S)-p(n-7)+ ... 
II 
II where the numbers subtracted are the generalized 
II pentagonal numbers. This algorithm is 0( nA(3/2) ) . 
II 
II This code can calculate up to p(40S) before it fails 
II due to overflow. 
II 
II Future improvements: 
II Subsequent calls could be significantly expedited 
II if partNums was cached. The algorithm would then 
II be O[Sqrt(n)] if (n-1) has already been computed. 

import java.lang.Math; 

public class EulerRecurrence { 
public static void main(String[] args) { 
System.out.println(p(40S)); 
} 

public static long p(long n){ 
//trivial special cases. 
if(n<O) return 0; 
if(n==O) return 1; 

//important things 
//K is in 1/2*3kA2+k 
II 
//we need at least one extra K to stop loops. 
long maxK = (long) ((Math.sqrt(1+24*(double)n)-1)/6) + 1; 
long pentNums[] =new long[2*(int)maxK]; 
long parts[] =new long[(int)n+1]; //From 0 ton means n+1 elements. 
long partialSum • 0; 
int i, j; 
int sign = 1; 

parts[O] = 1; 

//generate all the pentagonal numbers we need. 
for(i = 1; i<=maxK; i++){ 

pentNums[2*i -2] = (3*i*i-i)/2; //the -2 in the array index is to zero-base 
pentNums[2*i+1 -2] = (3*i*i+i)/2; 

} 

//calculate p(i) for i<=n. 
for(i = 1; i<=n; i++){ 

partial Sum = 0; 
//sum p(n-1) + p(n-2)- p(n-S) - ... 
for(j = 1; pentNums[j-1]<=i; j++){ 
//determine j's residue class mod 4. Signs come in pairs: +, +, -
sign = (int) ( ((float) j/4 - (float) (j/4)) *4); 
switch (sign){ 
case 1: 

partialSum += parts[i-(int)pentNums[j-1]]; 
break; 

case 2: 

I • • 



61: 
62: 
63: 
64: 
65 : 
66 : 
67 : 
68 : 
69 : 
70: 
71: 
72: 
73: 
74: } 

} 

partialSum += parts[i-(int)pentNums[j-1]]; 
break; 

case 3: 
partialSum -= parts[i-(int)pentNums[j-1]]; 
break; 

case 0: 

} 
} 

partialSum -= parts[i-(int)pentNums[j-1]]; 

parts[i] = partialSum; 

return partialSum; 
} 



•Appendix E: Source Code Listing for HRR.java 

1: // 
2 : // 
3: // 
4: // 
5: // 
6: // 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Robert Jacobson 
Uses the Hardy-Ramanujan-Rademacher formula to 
compute p(n), the number of unrestricted 
partitions of n. 

See paper for the formula and discussion. 

This algorithm first fails at p(247) due to 
inadequate precision of Java's primitive double. 

Future improvements: 
The number of terms {maxk) is limited by 
size(int) and accuracy of results is limited 
by the precision of double. Arbitrary 
precision arithmetic would allow arbitrary 
accuracy (up to memory) . 
Calculating the terms symbolically would 
allow all p(n) to be calculated in constant 
time. 
Caching symbolic terms would allow the next 
term to be computed very quickly. 

17: 
18: 
19: 
20: 
21: 
22: 
23 : 
24: 
25: 

import java.lang.Math; 

public class HRR { 
26: 
27: public static void main(String[] args) { 
28: System.out.println(p(246)); 
29: } 
30: 
31: public static long p(long n){ 
32: //trivial special cases. 
33: if(n<O) return 0; 
34: if(n==O) return 1; 
35: 
36: double nd = (double)n; //convenience 
37: double result = 0; //convenience 
38: double dummy1 = 0; 
39: double dummy2 = 0; 
40: ListNode zero= new ListNode(); 
41: ListNode one = new ListNode{); 
42: 
43: zero.h = Od; 
44: zero.k = 1d; 
45: one.h = 1d; 
46: one.k = 1d; 
47: zero.next = one; 
48: one.next = null; 
49: 
50: //Each term is O( exp[pi*sqrt(2n/3)/k] ), so we only 
51: //need to take a*sqrt(n) where a is a carefully 
52: //selected constant. We carefully select a = .4 
53: //and take Max[Floor[a*sqrt{n)], 1] terms . 
54: 
55: long maxk = (long) (0.4d*Math.sqrt(n)); 
56: if(maxk == 0) maxk = 1; 
57: 
58: //Compute Farey fractions of order maxk. 
59: ComputeFarey(maxk, zero, one); 
60: 
61: //Calculate the coefficients of A_k(n) in the outer sum. 
62: double[] kcoeff = new double [ (int)maxk]; 
63: for(double k=1; k<=maxk; k++){ 
64: dummy1 = Math.sqrt(2d/3d)*Math.PI*Math.sqrt(nd-1d/24d)/k; 
65 : dummy2 = Math. exp ( dummy1 ) ; 
66: kcoeff [ (int)k- 1] = ((1d- 1d/dummy1)*dummy2 + (1d + 1d/dummy1)/dummy2)/Math.sqrt(k); 



67: 
68: 
69: //We don't want 0/1 in our computations. 
70: ListNode cursor = zero.next; 
71: 
72: //enumerate through each (h,k) pair 
73: while(cursorl=null){ 
74: result+= Math.cos( Math.PI*(s(cursor.h, cursor . k) 
75: - 2*nd*cursor.h/cursor.k) ) 
76: *kcoeff[(int) (cursor.k) -1]; 
77: 
78: 
79: 
80: 
81: 
82 : 
83: 
84: 
85: 
86: 
87: 
88 : 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 

cursor = cursor.next; 

//Coefficient of the outermost sum. 
result= Math.sqrt(12}/(24*nd-l)*result; 

return Math.round(result); 
} 

public static double s(double h, double k){ 
II This function calculates its result in O( k-1 ) time. 
double result = 0; 
double temp = 0; 
for(double m = 1; m < k; m++){ 

temp = h*m/k; 
result+= (m/k - 0.5d)*(temp- Math.floor(temp)-0.5d); 

return result; 
} 

public static void ComputeFarey(long order, 
ListNode left, ListNode right){ 

if(left.k + right.k > order) return; 

ListNode middle= new ListNode(); 
mid~e.k = left.k + right.k; 
middle.h = left.h + right.h; 

left.next = middle; 
middle.next = right; 

ComputeFarey(order, left, middle); 
ComputeFarey(order, middle, right); 

112: return; 
113: } 
114: 
115: 
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