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AN INVARIANT SUBSPACE PROBLEM FOR p = 1 BERGMAN SPACES
ON SLIT DOMAINS

WILLIAM T. ROSS

Abstract. In this paper, we characterize the z-invariant subspaces that lie between the
Bergman spaces A1(G) and A1(G\K), where G is a bounded region in the complex plane
and K is a compact subset of a simple arc of class C1.

1. Introduction

For a bounded region U ⊂ C, we define the Bergman space A1(U) as the space of analytic
functions f on U with

∫
U |f |dA <∞ (Here dA is Lebesgue measure on C) and the operator

S on A1(U) by (Sf)(z) = zf(z). Characterizing the subspaces M of A1(U) for which
SM ⊂ M is a difficult and unsolved problem which has received considerable attention
over the past 40 years. In this paper, we give a complete characterization of the S-invariant
subspaces M with

A1(G) ⊂M ⊂ A1(G\K). (1.1)

Here G is a bounded region in C and K is a compact subset of a simple arc of class C1.
This paper will be a continuation of an Lp version of this problem [5] to the largest of the
Bergman spaces p = 1. Different techniques will be used here since the papers mentioned
above use duality and the reflexivity of Lp, a luxury not afforded us in the non-reflexive
setting of L1. Our main theorem is:

Theorem 1.1. For M of type (1.1) and S-invariant, there is a closed F ⊂ K with M =
A1(G\F ).

The author would like to thank Prof. Peter Jones and Prof. Dmitry Khavinson for a
helpful conversation.

2. Preliminaries

Before proceeding, we point out that some of the techniques used here are somewhat
standard and fall under the general name of ‘Havin’s lemma’. We refer the reader to [3] and
[8], Ch. 4, section 2, for further details. For the sake of completeness, we will outline these
results here.

For a bounded region U in the complex plane C, we identify the dual of L1(U) = L1(U, dA)
with L∞(U) = L∞(U, dA) by the bi-linear pairing

< f, g >=
∫
U
fgdA, f ∈ L1(U), g ∈ L∞(U).
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For a linear manifold X in L1(U) we let X⊥ be the annihilator of X and note that X⊥

is weak-star closed in L∞(U). For a linear manifold Y in L∞(U), we let ⊥Y be the pre-
annihilator of Y and note that ⊥Y is norm closed in L1(U). We also note that by the
Hahn-Banach theorem ⊥(X⊥) is the norm closure of X in L1(U) and (⊥Y )⊥ is the weak-star
closure of Y in L∞(U).

Lemma 2.1. A1(U)⊥ is the weak-star closure of ∂C∞0 (U), where ∂ = 1
2
(∂/∂x+ i∂/∂y).

Proof. By Weyl’s lemma [2], p. 172, ⊥(∂C∞0 (U)) = A1(U), hence(⊥
(∂C∞0 (U))

)⊥
= A1(U)⊥. (2.1)

By Hahn-Banach, the left-hand side of (2.1) is the weak-star closure of ∂C∞0 (U). �

Remark: We will show, in Proposition 3.1, that in fact ∂C∞0 (U) is weak-star sequentially
dense in A1(U)⊥, a technicality that will be important later in the paper.

We now relate A1(U)⊥ with a certain type of Sobolev space on U via ∂. Let W = W(C)
be the Banach space of f ∈ L∞ = L∞(C, dA) such that ∂f (in the sense of distributions)
belongs to L∞. We norm W by

‖f‖W = ‖f‖∞ + ‖∂f‖∞.
Remark: We pause here for a moment to mention that W contains, but is not equal
to W 1,∞(C), the Sobolev space of f ∈ L∞ whose first partial derivatives (in the sense of
distributions) also belong to L∞. In fact, if f ∈ W , then the first partial derivatives belong
to BMO but are not always bounded (see [9] and [10], p. 164, and [4]).

For g ∈ L∞ with compact support, define the Cauchy transform Tg by

(Tg)(w) = − 1

π

∫ g(z)

z − w
dA(z) (2.2)

and note that Tg is continuous on C ([11], p. 40), analytic off of the support of g, (Tg)(∞) =
0, and φ = T (∂φ) for all φ ∈ C∞0 ([2], p. 170).

Lemma 2.2. Every f ∈ W has a continuous representative.

Proof. Let f ∈ W and φ ∈ C∞0 . Note that φf ∈ W and, by distribution theory [2], p. 174 -
175, φf = T (∂(φf)) a.e. (dA). Since T (∂(φf)) is continuous, we can conclude that f has a
continuous representative. �

Assuming now, and for the rest of the paper that all functions in W are continuous, we
let W0(U) be the subspace of functions in W which vanish off of U . (W0(U) is not the same
as the closure of C∞0 (U) in the W norm.) For f ∈ W0(U), one sees from Lemma 2.2 that
f = T (∂f), and thus for w ∈ U

|f(w)| ≤ 1

π

∫
U

|∂f(z)|
|z − w|

dA(z) ≤ CU‖∂f‖∞. (2.3)

Here CU is a positive constant depending only on the region U . Hence an equivalent norm
on W0(U) is

‖f‖W0 = ‖∂f‖∞.
If f ∈ W0(U) and w 6∈ U , then

0 = f(w) = − 1

π

∫
U

∂f(z)

z − w
dA(z).



But since A1(U) is the closed linear span of {(z−w)−1 : w 6∈ U} [1], then ∂f ∈ A1(U)⊥ and
moreover ∂ :W0(U)→ A1(U)⊥ is an isometry.

Proposition 2.3. ∂ :W0(U)→ A1(U)⊥ is invertible.

Proof. Since ∂ is an isometry, it suffices to show that ∂ is onto. To this end, let g ∈ A1(U)⊥.
By distribution theory [2], p. 174, ∂(Tg) = g ∈ L∞, so Tg ∈ W . Since g ∈ A1(U)⊥, then by
(2.2), (Tg)(w) = 0 for all w 6∈ U . Hence Tg ∈ W0(U). �

Proposition 2.4. W0(U) can be equivalently re-normed to make it a Banach algebra.

Proof. If f = T (∂f) and g = T (∂g) both belong toW0(U), then one has ([2], p. 178, Lemma
3.11) fg = T (f∂g + g∂f), hence

∂(fg) = f∂g + g∂f, (2.4)

from which we obtain ‖∂(fg)‖∞ ≤ ‖f∂g‖∞ + ‖g∂f‖∞. Using (2.3) will yield ‖∂(fg)‖∞ ≤
2CU‖∂f‖∞‖∂g‖∞. We conclude from this thatW0(U) can be equivalently re-normed to make
it a Banach algebra. �

3. Invariant subspaces

Define the operator R on A1(U)⊥ by (Rg)(z) = zg(z) and M on the Sobolev space
W0(U) by (Mh)(z) = zh(z) and notice that R and M are well defined and continuous. For
f ∈ W0(U), observe that

∂(zf) = z∂f,

and thus ∂M = R∂.
If M is invariant with

A1(G) ⊂M ⊂ A1(G\K), (3.1)

we can take annihilators to get

A1(G\K)⊥ ⊂M⊥ ⊂ A1(G)⊥ (3.2)

with RM⊥ ⊂M⊥. Taking T = ∂
−1

(Proposition 2.3) of both sides of (3.2) will yield

W0(G\K) ⊂ TM⊥ ⊂ W0(G)

and using ∂M = R∂, we get that TM⊥ is z-invariant. We will eventually show that TM⊥

is an ideal of the Banach algebra W0(G) and that TM⊥ =W0(G\ZM), and hence

M = A1(G\ZM),

where

ZM = {z ∈ K : (Tg)(z) = 0 ∀g ∈M⊥}, (3.3)

but first we need a few preliminary lemmas.
In Lemma 2.1, we saw that ∂C∞0 (G) is weak-star dense in A1(G)⊥. This next result gives

us slightly more.

Proposition 3.1. ∂C∞0 (G) is weak-star sequentially dense in A1(G)⊥.

The proof of Proposition 3.1 will depend on the following lemma which uses a certain
”mollifier” of Ahlfors [1].



Lemma 3.2. Let h ∈ W0(G). Then there is a sequence hn ∈ W0(G) with supp(hn) ⊂ G and
∂hn → ∂h weak-star.

Proof. Since h ≡ 0 off of G, then one can show [11], p. 40, that for all z and w in C

|h(z)− h(w)| ≤ C|z − w|| log |z − w||.
Thus if d(z) equals the minimum of e−2 and dist(z, ∂G), then

|h(z)| ≤ Cd(z)| log d(z)|. (3.4)

We now construct the ”Ahlfors mollifier” wn as follows [1]: Let j(t) be an infinitely
differentiable function on R with 0 ≤ j ≤ 1, j(t) = 0 for all t ≤ 1, and j(t) = 1 for all t > 2.
For n ∈ N and z ∈ G let

wn(z) = j
(

n

log log d(z)

)
(3.5)

and notice that wn ≡ 0 near ∂G. Thus define wn on C be defining wn ≡ 0 off G.
Since d(z) is Lipschitz continuous with constant 1 and j′(t) = 0 outside 1 < t < 2, one

can check [1] that

|∂wn(z)| ≤ C

n

1

d(z)| log d(z)|
∀z ∈ G. (3.6)

Hence wn ∈ W0(G) and so, by Proposition 2.4, hn ≡ wnh also belongs to W0(G) with
supp(hn) ⊂ G.

We now show that ∂hn → ∂h weak-star. If f ∈ L1(G), then by (2.4)

|
∫
G
f(∂hn − ∂h)dA| ≤ |

∫
G
f∂h(wn − 1)dA|+

∫
G
|f ||h||∂wn|dA. (3.7)

By (3.4) and (3.6), we get ∫
G
|f ||h||∂wn|dA ≤

C

n

∫
G
|f |dA

which goes to zero as n→∞. The first integral in (3.7) goes to zero since wn → 1 pointwise
and wn ≤ 1. Thus ∂hn → ∂h weak-star. �

Proof of Proposition 3.1

Let hn = wnh be as in Lemma 3.2. For n, k ∈ N let ϕk be a mollifier [2], p. 171, and define

hn,k(w) =
∫
ϕk(w − z)hn(z)dA(z).

Notice that hn,k ∈ C∞0 (G) (since hn has compact support in G) and hn,k → hn uniformly as
k →∞. By a change of variables and Fubini’s theorem, one checks that

∂hn,k(w) = −
∫
ϕk(z)∂hn(w − z)dA(z).

Since ∂hn → ∂h weak-star, then

sup
n
‖∂hn‖∞ = M <∞

and so |∂hn,k(w)| ≤M
∫
ϕk(z)dA(z) = M. Hence

sup
n,k
‖∂hn,k‖∞ ≤M <∞.



Choose k(n) so that ‖hn,k(n) − hn‖∞ ≤ 1/n and let Hn = hn,k(n). We shall conclude by

showing that ∂Hn → ∂h weak-star. Let f ∈ L1(G) and choose a sequence φj ∈ C∞0 (G) with
φj → f in L1. Then∣∣∣ ∫ f(∂Hn − ∂h)dA

∣∣∣ ≤ ∣∣∣ ∫ (f − φj)(∂Hn − ∂h)dA
∣∣∣ +

∣∣∣ ∫ φj(∂Hn − ∂hn)dA
∣∣∣

+
∣∣∣ ∫ φj(∂hn − ∂h)dA

∣∣∣
≤ M‖f − φj‖L1 +

∫
|∂φj|

1

n
dA+

∣∣∣ ∫ φj(∂hn − ∂h)dA
∣∣∣ .

For ε > 0 given, choose j′ such that

‖f − φj′‖L1 ≤ ε.

Hence ∣∣∣ ∫ f(∂Hn − ∂h)dA
∣∣∣≤Mε+

1

n

∫
|∂φj′|dA+

∣∣∣ ∫ φj′(∂hn − ∂h)dA
∣∣∣ .

Now use Lemma 3.2 and let n→∞ to get the desired conclusion. Λ

Lemma 3.3. If f, g ∈ W0(G) and φn in C∞0 (G) with ∂φn → ∂g weak-star, then ∂(fφn) →
∂(fg) weak-star.

Proof. Let h ∈ L1(G). By (2.4) we have∫
G
∂(fφn − fg)hdA =

∫
G
hf∂(φn − g)dA+

∫
G
h(φn − g)∂fdA. (3.8)

The first integral on the right-hand side of (3.8) goes to zero since hf ∈ L1(G) and ∂φn → ∂g
weak-star. For the second integral, we first notice that by (2.3) ‖φn‖∞ ≤ C‖∂φn‖∞ and that
‖∂φn‖∞ is uniformly bounded in n (since ∂φn is weak-star convergent). Since (z − w)−1 ∈
L1(G) for all w ∈ G, and ∂φn → ∂g weak-star, then

φn(w) = −π−1
∫
∂φn(z)(z − w)−1dA→ −π

∫
∂g(z)(z − w)−1dA = g(w) ∀w ∈ G.

Now apply the dominated convergence theorem to get the second integral on the right-hand
side of (3.8) goes to zero as n→∞. �

This next lemma can be found in [5] and uses very strongly that K lies on γ a simple
compact C1 arc.

Lemma 3.4. Let ψ ∈ C1(C) and ε > 0 be given. Then there is a polynomial p(z) and a
Ψ ∈ C1(C) with

(i) Ψ = ψ on γ
(ii) ‖p−Ψ‖∞ < ε

(iii) ‖∂(p−Ψ)‖∞ < ε.

As a consequence of this lemma, we have that TM⊥ is not only z-invariant but invariant
under multiplication by any C∞0 (G) function.

Corollary 3.5. If ψ ∈ C∞0 (G), then ψ(TM⊥) ⊂ TM⊥.

Proof. Let ψ ∈ C∞0 (G) and ε > 0 be given and Ψ and p be as in Lemma 3.4. If f ∈ TM⊥,
then Ψf ∈ W0(G) and Ψf − ψf = 0 on K, so Ψf − ψf ∈ W0(G\K) ⊂ TM⊥. Hence

dist(ψf, TM⊥) = dist(Ψf, TM⊥) ≤ ‖∂(pf −Ψf)‖∞ ≤ Cε‖∂f‖∞ �



This immediately yields the following:

Proposition 3.6. TM⊥ is an ideal of W0(G).

Proof. Let f ∈ TM⊥ and g ∈ W0(G) and notice that fg ∈ W0(G). Employing the weak-
star sequential density of ∂C∞0 (G) in A1(G)⊥, Proposition 3.1, we can find a sequence φn ∈
C∞0 (G) with ∂φn → ∂g weak-star. By Corollary 3.5, φnf ∈ TM⊥ and by Lemma 3.3,
∂(φnf) → ∂(fg) weak-star. Since M⊥ is weak-star closed, then ∂(fg) ∈ M⊥, hence fg ∈
TM⊥. �

Proof of Theorem 1.1

Let ZM be as in (3.3). Since W0(G\K) ⊂ TM⊥, then TM⊥ ⊂ W0(G\ZM) and so
M⊥ ⊂ A1(G\ZM)⊥. To prove A1(G\ZM)⊥ ⊂ M⊥, we apply Lemma 3.2 to see that it
suffices to show that ∂φ ∈ M⊥ for all φ ∈ W0(G\ZM) with support in G\ZM. For this,
we use an argument of Sarason [7], p. 41, Lemma 1, along with the fact that TM⊥ is an
ideal to find a g ∈ TM⊥ with g ≡ 1 on the support of φ. Thus, since TM⊥ is an ideal,
φ = gφ ∈ TM⊥ and hence ∂φ ∈M⊥. Λ
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