View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Richmond

EZRICHMOND

SchoolefArts & Sciences University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

1996

Detecting trends and ﬁattems in reliability data over
time using exponentia ly weighted moving-averages

Harry F. Martz

Paul H. Kvam
University of Richmond, pkvam@richmond.edu

Follow this and additional works at: https://scholarship.richmond.edu/mathcs-faculty-publications

b Part of the Mathematics Commons, and the Statistics and Probability Commons
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

Martz, Harry F. and Kvam, Paul H., "Detecting trends and patterns in reliability data over time using exponentially weighted moving-
averages” (1996). Math and Computer Science Faculty Publications. 179.
https://scholarship.richmond.edu/mathcs-faculty-publications/179

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more

information, please contact scholarshiprepository@richmond.edu.


https://core.ac.uk/display/232786277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications/179?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Reliability Engineering and System Safety 51 (1996) 201-207
Published by Elsevier Science Limited
Printed in Northern Ireland

0951-8320(95)00117-4

Detecting trends and patterns in reliability
data over time using exponentially weighted
moving-averages

Harry F. Martz & Paul H. Kvam
Los Alamos National Laboratory, Los Alamos, NY 87545, USA

A simple, easy-to-use graphical method is presented for use in determining if
there is any statistically significant trend or pattern over time in an underlying
Poisson event rate of occurrence or binomial failure on demand probability.
The method is based on the combined use of both an exponentially weighted
moving-average (EWMA) and a Shewhart chart. Two nuclear power plant
examples are introduced and used to illustrate the method. The false alarm
probability and power when using the combined procedure are also deter-
mined for both cases using Monte Carlo simulation. The results indicate that
the combined procedure is quite effective in rapidly detecting either a small or
large step increase in the Poisson rate or binomial probability over time.

1 INTRODUCTION

One important class of reliability data analyses
concerns the statistical identification of trends and
patterns inherent in the data over time. Following
Atwood et al.,' a trend means a steady increase or
decrease over time in a reliability quantity of interest,
such as a failure rate (or probability). On the other
hand, a pattern means any deviation from a stable
state or condition resulting from some assignable
cause more fundamental than those producing the
mere randomness of the data while in the stable state.
An example might be the significant step increase in
the failure rate in a certain year due to the discovery
of a generic problem.

We present a simple, easy-to-use graphical method
for use in determining if there is any statistically
significant trend or pattern over time in either an
underlying Poisson event rate of occurrence or a
binomial probability of failure on demand.

Suppose that we have m > 1 independent Poisson
or binomial data sets {(x;, ;), i = 1, 2,..., m} or {(y;, n;),
i=1, 2,..., m}, respectively, which are ordered over
time. In the Poisson case, the ith data set consists of
the number of events x; (typically failure events),
which have occurred in a given operating or exposure
time ;. For operational Poisson data, f; is the total
exposure time for which the event of interest is at risk
of occurring and may or may not denote total calendar
time. In the binomial case, the ith data set consists of
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the observed number of failures y; in a total number of
demands n;. For binomial data, n; typically represents
both true unplanned demands and various kinds of
scheduled tests on a given system/component.
Atwood® discusses several issues regarding exposure
time and demands. Also, it is implicitly assumed here
that i indexes equally spaced calendar time periods;
for example, annually reported data.

The Poisson or binomial data sets are said to be
balanced if t; =t or n; = n, respectively, for all i and
unbalanced otherwise. For the ith data set, let A;
denote the Poisson failure rate and let p; denote the
binomial probability of failure per demand. Recall
that the maximum likelihood (ML) estimator of A, is
A; = x;/t;, while the (ML) estimator of p; is p; = y;/n;.

Consider the following Poisson data from 1987-
1992 (m = 6) for the failure to start (FTS) of a certain
system in a particular subset of US commercial
nuclear power reactors:

Example 1. Reactor System Failures to Start,
1987-1992
Number of Reactor-years,

i Year FTS Events, x; t;

1 1987 4 4.31

2 1988 5 4.06

3 1989 3 4.02

4 1990 5 5.07

5 1991 5 5.23

6 1992 4 5.02
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We also consider the following binomial example.
Atwood er al.! present binomial auxiliary feedwater
(AFW) turbine train failure data for the vyears
1987-1991 (m =5) at US commercial nuclear power
plants.

Example 2. Turbine Train Failure Data, 1987-1991

Turbine Train

i Year Failures, y; Demands, #n;
1 1987 6 62
2 1988 2 40
3 1989 7 32
4 1990 3 35
5 1991 2 25

2 AN EWMA CONTROL CHART

The exponentially weighted moving-average (or
EWMA) control chart was first introduced by
Roberts.* Hunter’ and Montgomery® give good
introductory discussions of the EWMA. It is well
known (see Hunter’ and Montgomery®) that the
EWMA control chart is a good alternative to the
historical Shewhart chart when we are interested in
detecting small shifts in the reliability parameter of
interest. We also demonstrate this in Section 4.

We now develop the EWMA control chart for the
general case of unbalanced Poisson and binomial data.
Suppose that time period i is the current time period
of interest. For k =1, 2,..., i, let 8, = A, when we are
considering Poisson data, and let 8, = p, for the case
of binomial data. The EWMA is defined as

z=v0, + (1=9y)z—y, i=12,..m, (1)

where 0 < y = 1 is a user-specified exponential decay
constant which controls the weight given to the
sequence of ML estimates @, k=1, 2...., i, when
calculating z;. Note that the well-known Shewhart
control chart is obtained when y=1.0; that is, the
EWMA depends only on the most recent ML estimate
6, The statistic Z;, when plotted along with its
corresponding control chart limits, constitutes what is
known as an EWMA control chart. A starting value z,
is required when i=1 which may be empirically
calculated from the data as

m m
Zo=0=A= E X; / Eti, for Poisson data
i=1 i=1

n

m
E > n;, for binomial data. 2

i=1

II

If we treat z, as a constant (thus ignoring the
dependency of z, on all the available data), then the
EWMA z; is a weighted average of all previous ML
estimates 8, ,, 8 <k =<i—1. This may be seen by

substituting for z,_; on the right-hand side of (1) and
continuing this recursive process to finally obtain

i—1
;= 72 (1 - Y)kei—k + (1 - ‘Y)lZO' (3)
k=0

because the weights y(1 — y)* decrease geometrically
with k, the EWMA is also sometimes called a
geometric moving average (or GMA).

Now let us consider the mean and variance of z;
under the null hypothesis that there has been no
change in the Poisson rate or binomial probability
underlying the m data sets; that is, under the
assumption that 8, =6, for all i =1, 2,..., m for some
unknown value 6,. Upon taking the expectation of (3)
and simplifying, we find that E(z;)=6,. Because
8, = 0 under H,, 0 is the sample estimate for 6, that
we use as the centerline of our EWMA chart.

Similarly, as a consequence of the assumed
independence of 9, upon taking the variance of (3)
and considering z, to be constant, we find that, under
H,, the variance of z; is estimated as

V 2 ( - y)Zk
(z)=Ay E " , for Poisson data

i—k

A-v* N
=p(1-p)y’ Z " , for binomial data.

i—k

(4)
Now, suppose that we define

1- 2k
y 2 [( " 7) ] 0<y<1
Ki(s,v)=Ki(t,y) = 1 o (5)

. v =1, for Poisson data
where t; = (¢;, t5,... ;) is the (i x 1) vector of exposure
times. Similarly, we define K(*, y) = Ki(n;, ), where
n; = (A, Ny,... 1;) is the (i x 1) vector of sample sizes,
when we are considering binomial data.

The corresponding EWMA c¢-o upper and lower
control chart limits for use at time period i (denoted
by UCL,; and LCL,, respectively) are

UCL; = A + cA'?K"'? (s, ), for Poisson data
=p +cp (1 — p)?K"? (=, ), for binomial data,
and

LCL; = X — cA'2K'?,(s, ), for Poisson data

=p —cp"*(1 - p)"*K"*(*,y), for binomial data.
(6)
Although ¢ can be taken to be any small positive

number, here we will consider ¢ =1, 2, and 3; that is,
1-0, 2-0, and 3-0 control chart limits.
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As stated earlier, when y =1 the EWMA depends
only on the most recent ML failure rate estimate 6;;
thus, there is no smoothing of the ML estimates. This
is the Shewhart procedure. On the other hand, the
smaller the value of v, the greater the weight that is
given to the past estimates 8, and the greater the
smoothing of the ML estimates. For small values of v,
the EWMA thus has a long memory and performs like
the CUSUM statistic which places equal weight on ali
the past ML estimates (see Montgomery®).
Montgomery” states that it has been found that values
of y in the interval 0.05= y= (.25 work well in
practice, with y=0.08, y=0.10, and y=0.15 being
popular choices. We have likewise found that the
EWMA with y=0.1 performs well in detecting small
shifts, but does not react to large shifts as quickly as
the Shewhart chart.

A good way to further improve the sensitivity in
detecting large shifts without sacrificing the ability to
detect small shifts is to use both an EWMA and a
Shewhart chart. Such a combined procedure signals an
anomalous condition if either statistic fails outside its
respective control chart limits. We have found that the
combined procedure is effective against both large and
small shifts and is easily implemented because the
Shewhart chart is a special case of the EWMA when
v=1.0. Thus, we propose this combined procedure
here. In accordance with this combined procedure, in
the remainder of the paper we consider only the two
values y=0.10 and y = 1.0; however, in practice, any
other desired value (or values) for y can be used by
the analyst.

The Shewhart control chart limits, corresponding to
vy=1, are

UCL,=X+C

$|

, for Poisson data

)

)

=p+ , for binomial data,

_ X
LCL,=X—c \/ —, for Poisson data

, for binomial data.  (7)
Further simplification is possible in the case of

balanced data. In this case, K;(*, y) has the closed
form

1 _
Ki(*,y)= ;(Z—Ly)[l -(1- 7)2'], for Poisson data

1 .
= _(_7_)[1 -1- ‘y)z‘], for binomial data.
n\2—vy
8

For large values of i, further simplification is also
possible; namely,

1
Ki(*,y)=K(*,y)= ;(2%)’), for Poisson data

~ l(—y—>, for binomial data. 9)

n\2—vy

Recall that an EWMA control chart consists of a
graphical plot of the EWMA from (1) and
corresponding upper and lower control limits from (6)
as a function of time period i. The EWMA chart
provides a graphical indication of any trend or pattern
in the underlying Poisson failure rate over time. Apart
from any trend or pattern in the EWMA (which may
be of interest in itself), a statistical indication of a
trend or pattern occurs when the EWMA fails outside
a corresponding 2-o or 3-¢ control chart limit at some
time period i. We will refer to this situation as an
anomalous condition or signal corresponding to those
limits. The use of 1-o limits serve here as an alert to a
potential anomalous condition; these will be further
discussed in Section 4 and Section 5.

3 EXAMPLES

Along with the EWMA (the solid dots connected by
the solid line), the corresponding 1-o, 2-0, and 3-¢
control chart limits for Example 1 are plotted in Fig. 1

EWMA Control Chart
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Fig. 1. The EWMA and Shewhart control charts for
Example 1 (a) EWMA (y =0.1) and (b) Shewhart (y = 1.0).
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EWMA Control Chart
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Fig. 2. The EWMA and Shewhart control charts for
Example 2 (a) EWMA (y=0.1) and (b) Shewhart (y =1.0).

as a function of time period i. The centerline (A) of
the EWMA chart is also shown. We see from Fig. 1
that there clearly is no statistically significant trend or
pattern over time in the Poisson FTS rate for Example
1. The corresponding Shewhart control chart is also
shown in Fig. 1. There clearly is no statistically
significant indication of a trend or pattern on this
chart either.

The corresponding EWMA and Shewhart control
charts for Example 2 are shown in Fig. 2. We see that,
while there is no indication of any significant trend or
pattern in the probability of an AFW turbine failure
to start on demand on the EWMA chart, there
appears to be an anomaly for 1989 on the 2-¢
Shewhart chart.

4 PERFORMANCE ASSESSMENT

We expect an increase in the power for detecting
trends and patterns when using a combined EWMA
and Shewhart control chart procedure. However, we
must carefully determine the accompanying increase
in the probability of a false alarm, which is the price
we must pay in order to obtain increased power. We
use Monte Carlo simulation with 10,000 replications to
examine both the false alarm probability and the

power when using this combined procedure. Also, the
sampling error associated with the calculated false
alarm probabilities and power is generally 0.01 or less.
We assess the power of the combined procedure in
detecting a sudden step increase over time in both a
Poisson event rate and a binomial probability for the
case of both balanced and unbalanced data.

In the case of balanced Poisson data, let A; denote
the event rate prior to the shift and let A; denote the
rate after the step shift occurs. The corresponding
performance is completely determined given specified
values for k; = A;/A,, the factor increase in event rate
that is of interest to be detected, and k,, the expected
number of Poisson events in exposure time ¢ when the
failure rate is A,. Thus, k, =1A,.

In order to assess the performance of the combined
procedure in detecting both small and large step
increases in failure rate, we consider k; =1 (corres-
ponding to a false alarm), 1.25, 2.0, 5.0 and 10.0. This
range represents step increases ranging from a factor
of 1.25 (a 25% increase) through a factor of 10 (an
order-of-magnitude increase). We examine the per-
formance for a broad range of exposure times by
considering values of k, =1, 5, 10 and 25.

The performance of such a combined procedure
against a step shift in the failure rate is shown in Figs
3, 4 and 5. The rectangular ‘box’ in each cell contains
the cumulative probabilities of detecting a factor of &,
step increase in the event rate by 0, 1,.., 5 time
periods after the increase first occurs. Thus, time
period O corresponds to the time at which the failure
rate increase first occurs. These six probabilities thus
represent the cumulative power (except when k; = 1)
of the combined procedure for detecting the indicated
step increase. The column labeled ‘U(1,25) in each

k2
1 5 10 25 U1, 25)

0 1 2 3 4 1
.
1.00 av,go,,u,,u,m,sal l.u.,sv..ﬂ,.a‘..uv,.wl |.:4,,sv,.7z,,uz..u‘.szi |.s4,.ss,,7z,.az. se‘.94 [.ae,.ev..m.u.es.si

1.25 [99.63.78,87.92,58 |.42wes.‘ao‘.a¢,.ez,.ss‘[47.,71..&,.91 198,97] |,so.,aa.,nz,,w.,u,,w| I,so,,ax.m..as. nr,.mi

k1 2.00 f52.77.89,95, u‘.so] l.ac_ss,mn.ea.e,'.o] [M,Lo.\,o,‘.o.\,e.',ol I| u,|,o.|vo.|,u.».o.1,c{ [w.u,o‘to.:.mvo.mi

5.00 7‘91.-99.1,0'1‘0,1‘0.1.0'|‘ 0.1.&1.0.\.0.1.0.10] ||.e‘1,o,1,o,w,o.1,o,w ol |1,o,|,o,w,o,w,v,o.wl b.o.svo.nm u.|.o‘|.o|

10.00 O'LOJ-O'LO.LO.LOlIW.O,LOJ.O.LOJ o,|.ol ||.a,w.o.|.o‘1 0,1.0,19) l‘,o,c.umo.nw.o,to] \o,l.o.no.m.‘.o.l-ol

"False alarm
Fig. 3. Cumulative probabilities for a 1-o combined EWMA

and Shewhart control chart procedure for detecting a step
increase in the Poisson event occurrence rate.
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ko
1 5 10 25 u(1, 25)

0 1 2 348

.
1.00 [os.12.17.22.27.31 |.Vos,vw..|5.,20,.24, zsl I.oe,.n,_m,.z\,.ze.:lol l.oe,.n..n,.zu,zs”sv Los 12,17.21,.26,3

1.25 |.10,19.26.33.39. 44| l.|2..22,,:|2w40..l7”54 .16..29, 40, 50, 58, 65| l;s. 45,,59..70‘,70,.5% LZZ,.!D,,S:I,SO,.&Q. 7]

k1 2.00 f26.42.56.85.73.78 lsc..n,u. 95.97, ssl l.n.,ss..ss.w o,|.n.\,ul F@.\.u,1 0,1.0,10,1 4 lﬂu.n.u.o,w 0.1.04 cl

5.00 |22.96.99.1.01.0,1.0]{11.0.1.0.1.0.1.0.1.0.1 Dl I| o,t.u,m.l.o.!.o.x.ol 11,0.1.0,1.0.‘.0.1.0.1 0) ILD.LGJ.OJ.GJ.M.U

10.00 Jse.1.00.010.1.010 l.u.m,l,u.m.i.u.m] [w.!.u,‘ 0.1.0,1.0,1.,0) |;.a‘1 0,1.01.0,1.0,1 ,cl 1.0,10,1.0.1.0,1.0,1 OI

.
False alarm

Fig. 4. Cumulative probabilities for a 2-¢ combined EWMA
and Shewhart control chart procedure for detecting a step
increase in the Poisson event occurrence rate.

figure gives the results for the case of unbalanced
Poisson data in which the value of k, is randomly
selected from a uniform distribution on the range 1 to
25 for each time period.

In Fig. 3, we consider 1-o control limits. A point
failing outside the 1-o limits when using the combined
procedure can be used to alert a potential anomalous
condition; that is, a situation worthy only of continued
or additional study or monitoring but not strong
definitive action. In the case of an alert, we see from
Fig. 3 that the false alarm probability at the initial

ka
1 5 10 25 u(t, 25)

0 1 2 3 48

.
1.00 §02.04.05..07..08.10 [ou..on.nz.m.m.‘asl [m‘,m.‘uz.m. ua,,ml [.m.m,.oz, vz,.oa.nq I.m,.m,.oz. 02.03, G;I

1.25 |03.06.09.12.15.17]f|.03,06,08..12,.15..19) Im‘ 08,.12,,16,.21, 26| l;7,.u..zw,.ao.,:9,.;l [es,.m..w,.zo..zz.

k1 2.00 \2.,2;,,20,35,43.,49'|3o_.4a.ea..7s‘ea..sz{Is:.‘n_as.se‘.oa.ml Im..n\.nn.a,\‘un.q I.az.sﬁ.w,ne,xw_.ol

5,00 64,.85,94,.98,.99,1.0/[11.0.1.0,1.0.1.0,1.0 |4 [\.0,1 0,1.0,1.01 0,1.0] [‘ 01 .0,\‘0‘1‘0.1.0.!.01 [‘ .0.1.0,1.0,1.0,1.0.1.0f

10.00 [s8.1.0,1.00.0.1.0.10[f|1.03.01.01.01 o.LoI Im.w 01,01 o.m.‘.nl [1 0,401 0.|.0.V.D,|.0] 1.0,1.01.0.1.0,1 o,w]

B
False alarm

Fig. 5. Cumulative probabilities for a 3-0 combined EWMA
and Shewhart control chart procedure for detecting a step
increase in the Poisson event occurrence rate.

stage of the shift is between 34 and 38%, a clear
reason for no strong action.

A combined procedure using 2-¢ and/or 3-o control
limits can be used to provide a stronger statistical
indication of a trend or pattern in the Poisson rate.
Figure 4 gives the results for a combined 2-o
procedure. We observe that the false alarm prob-
abilities at the first time period after the shift occurs
are around 5-6%, which are sufficiently small for a
2-0 procedure. Similarly, Fig. 5 gives the cumulative
detection probabilities for a stronger 3-o combined
procedure. We see that the false alarm probabilities
for the first time period after the shift occurs are now
around 1-2%. Figures 4 and 5 indicate that the
combined 2-0 and 3-o procedure is quite powerful in
rapidly detecting step increases in a Poisson event
rate.

In the case of balanced binomial data, the
performance of the combined chart depends upon &,
k, and p,, the value of the binomial probability prior
to the shift. Thus, three parameters (in contrast to two
for the Poisson) are required to summarize the
performance in the binomial case. Analogous to the
Poisson case, let k, = p,/p,, the factor increase in the
binomial probability that is of interest to be detected.
Similarly, let k, denote the expected number of
binomial failures in n demands when the binomial
parameter is p,; that is, k, =n p,.

For illustration here, we consider only a single value
of p,; namely, p,=0.1. In order to assess the
performance of the EWMA chart in detecting small
through large step-increases in the binomial prob-
ability, we likewise consider k, =1 (false alarm), 1.25,
2.0, and 5.0. In order to examine the performance for
a broad range of demands, we consider values of
k,=1,5,10 and 25.

As in Figs 3-5, Figs 6-8 give the binomial simula-
tion results when using the 1-¢, 2-¢, and 3-¢ limits for

k2
1 5 10 25 U, 25)

01 2 31 45

-
1.00 Jor.61.78 .ss'na,.aa{ tu,ss,.n.sz..aa,.ez‘ 25,.58.,72,62,.88, 9 l.as,ssm,vsz,»,,ﬂ [as .g..n,.es.s-..q

1.25 40,.64,.79,.87,.92,.96| |’.:1,66u79,.un53,.95 I.‘!.JZHS‘.-Q‘.&S,- ‘|r52‘»l5.>9‘.,97,,w.q IBG.,B!,BG..’&.@Lq

2.00 | 55..80,.90..95, 97,.90| l463..97_99.l.0‘|.0,1,ol ]:95.‘.0‘\.0,!,0‘1 0.1.f |\,D,I.0A,D,|,D.\ DJH 1.0,1.0,0.0,1 0‘1.0.|v0l

5.00 |s710100.0100 oll\.q.Lw.u.l.n.\.n.v.o] [u.o.a,v.u.o‘x 0,1.0,1.0) Iuo,i.o.\,u,t,o,w D,I.Dl |w,\.u.| 0.1.0,1 o‘l.o]

“False alarm
Fig. 6. Cumulative probabilities for a 1-c combined EWMA
and Shewhart control procedure for detecting a step
increase in the binomial probability when p, = 0.1.
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False alarm

Fig. 7. Cumulative probabilities for a 2-o combined EWMA
and Shewhart control chart procedure for detecting a step
increase in the binomial probability when p, =0.1.
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Fig. 8. Cumulative probabilities for a 3-o combined EWMA
and Shewhart control chart procedure for detecting a step
increase in the binomial probability when p, = 0.1.

the combined procedure for all combinations of the
values of k; and k, stated above and p, = 0.1. Note
that the false alarm probability for time period 0 is
roughly 33-46% for the 1-¢ limits, 5-8% for the 2-o
limits, and 0.5-2% for the 3-¢ limits. The power for
detecting large step shifts is quite high, particularly for
large values of k,. In general, the performance is quite
similar to the performance for the Poisson case.

5 CONCLUSIONS

The results in Section 4 indicate that the combined use
of an EWMA control chart in which y=0.1 and a
Shewhart control chart (y=1.0) is quite effective in
detecting both small and large step increases in either
a Poisson rate or a binomial probability over time.
Such a combined procedure signals an anomalous
condition if either statistic fails outside its respective

control chart limits. The 1-¢ limits can be used as an
alert to a potential anomalous condition, while the
false alarm probabilities for the 2-o and 3-o limits are
sufficiently small such that these limits can be used as
a signal of an actual anomalous condition. The use of
such a combined procedure should be particularly
useful to regulatory agencies, such as the US Nuclear
Regulatory Commission, whose goal it is to
statistically detect such anomalies in nuclear power
reactor system/component failure rates of occurrence
and failure on demand probabilities as rapidly as
possible using operational reliability data.

It is interesting and useful to compare the power of
the combined procedure with the corresponding
power of the individual EWMA and Shewhart
charting procedures. For example, Fig. 9 gives the
false alarm probabilities and power of all three of
these procedures for detecting a step increase in the
Poisson event occurrence rate when using 2-o charts.
The combined chart results from Fig. 4 are
reproduced in Fig. 9 along with the corresponding
EWMA results (indicated in boldface) and Shewhart
results (indicated in italics). Because of the ‘either or’
manner of using the combined procedure, the false
alarm probabilities of the individual charts in the first
row of Fig. 9 are significantly less than those of the
combined procedure, while the power of the
combined approach is significantly greater in many
cases. However, because of these differences in the
false alarm probabilities, it is not possible to directly
compare the power of the three methods. On the
other hand, because the cumulative false alarm
probabilities are nearly the same for the individual

ke
1 ) 10 25 U1, 25)
0 1 2 348 ]
0' .08,.12,.17,.22,.27,.31[||.05,.10,.15,.20,.24,. .06,.11,.16,.21,.26, .. .06,.11,.17,.21,.26,.31| || .06,.12,.17,.21,.26,.31|
K S
1.0 01,.02,.04,.06,.08,.11(100,.01,.02,.04,.07,.10 }1.00,.01,.62,.08,.67,.10|{00,.01,.02,.04,.07,.10} | |01,.02, .04,.08,.07,.00
| 02..04,.06,.08,.09,. 111} 02..03..08..07,.08,. 101} 02,.03,.08,.07,.09,. 10[{] 02..03,.05,.07..08,.10} || 01,.09,.04,.06,.07, 08|
i
125 .10..19,.28,.33,.39, I;Z.,n..&,.m,.ﬂ.‘ul -16,.29,.40,.50,.58, . .22,40,53,58, 63,74
) [01,04,28,.12,.15,.19) lm,u.m.u,.a.m 02,08,.16,.25,32,.41
03,.07..00,.12,.15,.174|.06,.11,.16,.20..24, 26| .08.13,.19,. 23,33,
.26,.43,.56,.65,.73,.78}1.54,.77,.88,.96,.97, 99 | ‘|.n..%.,ﬁ,|.O.LO.!,Ol“v”J,0.!.0,!.0,1.0,1 4 lu,to,a,o.l.o.'.m.o
kl 2’00 $04,.18,.27,.39,.40,.57|
11,.21,.20,.34,.40, 44| 99..62,.75, 83,88,
.82,.96,.99,1.0,1.0,1.0811.0,1.0,1.0,1.0,1.0,1 ¢ ||.a.1.0.|.0,1.0.|.0q ||,o,1,0.1,0,\,0.|,0,¥ l)l |\,o,|.i)m0.| 0,1.0,1.0
5.00
: 43,.84,.96,.00,1.0,1.01194,1.0,1.0,1.0,1.0,1.0) 1.0,1.0,1.0,1.0,1.0,1.0/ [1.0, 1.0,1.0,3.0,1.0,1.0,1.0f
64..86,.04,.97,.98.9011.0,1.0,1.0,1.0,1.0, 1. 1.9 1. 1.0,1.0,1.0,1.0,1.0,1.9
99,1.0,1.0,1.0,1.0,1.0 q‘a,|_o‘|.a,|,o‘(,n,14 1.0,1.0,1.0,1.0,1.0,1.0|(|1.0.1.0,1.0,1.0,1.0,1 IM
10.00 92,1.0,1.0,1.0,1.0,1.0184 0,1.0,1.0,1.0,1.0,1.) |
98,1.0,1.0,1.0,1.0,1.0141.0,1.0,1.0,1.0,1.0,1..

‘False alarm

Fig. 9. A comparison of the cumulative probabilities for a

2-0 combined and individual EWMA and Shewhart control

chart procedures for detecting a step increase in the Poisson

event occurrence rate: combined, plain; EWMA, boldface;
Shewhart, italics.
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EWMA and Shewhart charts, it is possible to compare
the power of these two charts. Note that the power of
the Shewhart chart generally exceeds that of the
EWMA chart in detecting step increases in the event
rate of occurrence soon after the increases occur,
while the EWMA is generally more powerful in
ultimately detecting such increases.

This analysis, however, does not address another
real question: Given that an anomalous condition has
been identified for a given time period, what is the
probability that this corresponds to a false alarm, as
opposed to a true step shift, in the underlying rate or
probability? To answer this question requires an
unconditional prior probability distribution on the rate
or probability. This additional distribution is required
in order to apply Bayes’ theorem, which is used to
determine the desired inverse probabilities. Martz &
Tietjen® illustrate these calculations for the case of
emergency diesel generator reliability.

Finally, all of the required EWMA calculations, as
well as the graphical control charts in Figs 1 and 2,
were obtained using Mathematica’ software. Martz &
Kvam®® describe this software, listings of which are
available from the authors upon request.
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