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Abstract

Low-density residential development (i.e., exurban development) is often embedded within a matrix of protected areas and
natural amenities, raising concern about its ecological consequences. Forest-dependent species are particularly susceptible
to human settlement even at low housing densities typical of exurban areas. However, few studies have examined the
response of forest birds to this increasingly common form of land conversion. The aim of this study was to assess whether,
how, and at what scale forest birds respond to changes in habitat due to exurban growth. We evaluated changes in habitat
composition (amount) and configuration (arrangement) for forest and forest-edge species around North America Breeding
Bird Survey (BBS) stops between 1986 and 2009. We used Threshold Indicator Taxa Analysis to detect change points in
species occurrence at two spatial extents (400-m and 1-km radius buffer). Our results show that exurban development
reduced forest cover and increased habitat fragmentation around BBS stops. Forest birds responded nonlinearly to most
measures of habitat loss and fragmentation at both the local and landscape extents. However, the strength and even
direction of the response changed with the extent for several of the metrics. The majority of forest birds’ responses could be
predicted by their habitat preferences indicating that management practices in exurban areas might target the
maintenance of forested habitats, for example through easements or more focused management for birds within existing or
new protected areas.
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Introduction

The expansion of human settlement along the urban-rural

fringe has received considerable global attention in recent decades

[1–5]. In the United States, conversion of privately owned rural

lands into low-density residential development (i.e., exurban

development) has increased five- to sevenfold between 1950 and

2000 [6]. In the Mid-Atlantic region of the United States, the

dispersed, isolated housing units typical of exurban areas are

embedded within a forest matrix, often close to protected areas [7]

and natural amenities [8,9]. Understanding the impacts of

exurban development on wildlife and biodiversity is crucial to

better understand long-term effects of exurban development and

to develop successful land use and conservation planning [10,11].

Humans generally remove natural habitats by building settle-

ments, which can serve to fragment the landscape [12–14]. Both

habitat loss and fragmentation modify the spatial pattern of

remnant habitats, creating smaller and isolated fragments, thus

compromising habitat quality and quantity. Wildlife responds in a

variety of ways depending on species traits and life histories

[15,16]. Some species thrive in these environments whereas others,

such as forest birds, decline rapidly (e.g., [17,18]). Possible reasons

for long-term reductions of forest-bird species in these environ-

ments include predation [19], brood parasitism [20], and

competition with human-adapted species [21]. Forest birds have

been shown to be particularly susceptible to human settlement

even at housing densities as low as 0.095 house/ha [22–27].

Understanding how exurban development alters forest birds’

habitat over time is a conservation priority given the unprece-

dented rates of exurban development in eastern temperate forests

of the Mid-Atlantic [6,28]. Forest bird abundance is generally

positively related to proportion of forest cover (e.g., [29,30]), but

the spatial distribution of suitable habitat also affects forest birds’

occurrence and fecundity [31,32]. Declines of forest birds have

been well documented in eastern North America, and these

declines have been associated with habitat loss and fragmentation

due to roads, power lines, and residential development [11,33,34].

However, few studies have examined the response of species

through time as residential development progresses [18].

Species may respond nonlinearly to habitat loss and fragmen-

tation (reviewed by [35]). Nonlinear responses of species to habitat

loss and fragmentation may complicate our ability to determine

the response of biodiversity to exurban development. Theoretical

models predict the existence of a change point or threshold in

which an abrupt reduction in occupancy occurs despite the

presence of sufficient suitable habitat [36–39]. Some studies show
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empirical evidence for threshold existence in birds [40–43],

although others have not found any evidence to support threshold

responses [44]. It is uncertain whether threshold declines in forest

birds apply to exurban development. If these relationships are

appropriately characterized by threshold models, determining the

range at which exurban development induces population crashes

may provide guidance for landscape planning, management, and

conservation.

The aim of this study was to assess whether and how forest birds

respond to changes in habitat due to exurban growth. We

evaluated habitat composition (amount) and configuration (ar-

rangement) for selected bird species (i.e., forest and forest-edge

species) around North America Breeding Bird Survey stops

between 1986 and 2009. The approach accounted for year-to-

year variability in species abundances and investigated species

responses to both habitat loss and fragmentation as exurban

development increased over time. In addition, we assessed whether

selected bird species showed thresholds in both occurrence

frequency and relative abundance. We used Threshold Indicator

Taxa Analysis [45] to detect change points in species occurrence.

We evaluated two spatial extents (400-m and 1-km radius buffer)

to determine if species responded differently to changes at the local

and landscape scales. We expected that forest species would

exhibit a strong negative response to exurban development at both

extents, whereas forest-edge species would respond positively to

high levels of exurban land cover.

Methods

Study area
The study area encompassed nine counties in north-central

Virginia (Clarke, Culpeper, Fauquier, Frederick, Madison, Page,

Rappahannock, Shenandoah, and Warren) and two in western

Maryland (Washington and most of Frederick; Figure 1). The

region has experienced a remarkable population growth. For

example, counties included in the study area had growth rates

ranging from 4% (Page County) to 40% (Culpeper County)

between 2000 and 2009 [46]. Concomitant with this population

growth, the region has also experienced an increase in exurban

area from 2.3% in 1986 to 7.3% in 2009 [28]. One reason for the

increased exurban development is the easy access and well-

maintained transportation infrastructure to the metropolitan

Washington, DC area which provides employment opportunities

[47].

Breeding bird survey
We used the North America Breeding Bird Survey (BBS;

[48,49]) to gather relative abundance data. The BBS is a large-

scale annual roadside survey to monitor the status and trend of

breeding bird populations in the United States and southern

Canada since 1966. The survey is performed along secondary

roads by experienced volunteer observers in late May to early July,

the peak of the breeding season. Routes are 39.4 km long and

consist of 50 survey stops located at 0.8 km intervals. During the

survey, observers record all birds heard or seen within 0.4 km in a

3-min period. We focused our analysis on survey stops instead of

the entire route because our interest was on local characteristics of

breeding habitats and routes might vary in local environmental

conditions [50,51]. We chose all routes located in the study area

and from them we uniformly selected at most 10 survey stops per

route (every fifth stop along the route). We only considered survey

stops that had detailed direction descriptions and fell within the

study region (125 survey points in total; Figure 1). This

information was important for geocoding and characterizing

site-specific features of selected survey stops. A maximum of 10

stops per route was chosen to reduce overlap between circular

areas around survey stops and decrease the likelihood of spatial

autocorrelation.

We focused on 11 forest-nesting passerine species whose habitat

preferences included forest –Ovenbird (Seiurus aurocapilla), Red-

eyed Vireo (Vireo olivaceus), American Redstart (Setophaga ruticilla),

Wood Thrush (Hylocichla mustelina), Scarlet Tanager (Piranga

olivacea), Eastern Wood-Pewee (Contopus virens), Eastern Phoebe

(Sayornis phoebe); and forest-edge –Eastern Towhee (Pipilo ery-

throphthalmus), Gray Catbird (Dumetella carolinensis), Northern

Cardinal (Cardinalis cardinalis), and Indigo Bunting (Passerina cyanea)

[52]. We defined forest species as birds that utilized a wide variety

of deciduous and mixed deciduous-coniferous forest types and that

may favor interior forested habitats. Forest-edge species are those

species that are strongly associated with forest edges and open

habitats [53]. These species were selected to represent contrasting

habitat preferences (forest vs. edge) and because they were

detected on at least 5% of surveys during the 1986–2009 interval.

In addition, many of these species are reported to have

experienced population declines or reduced fecundity in their

distribution range due to habitat loss or fragmentation [32,54–56].

Our study was designed to determine if the specific land

conversion process of exurban development corresponded with

abundance changes for these species.

Landscape structure around Breeding Bird Survey stops
We established circular areas of 400-m and 1-km radius around

selected BBS stops. These areas were chosen to characterize both

breeding bird territories [57,58], which were assumed to be in the

immediate surroundings of survey stops, and areas feasibly visited

during bird daily movements [59,60]. To quantify landscape

structure around selected survey stops over time at these two

extents, we used Landsat 5 TM imagery for 1986, 1993, 2000, and

2009. We performed standard pre-processing procedures (atmo-

spheric and topographic correction) prior to image classification.

We used aerial photos to generate a training dataset to supervise

a classification of areas of exurban development. Exurban

development was defined as areas with housing densities between

1 unit per 0.4 ha and 1 unit per 16.3 ha (e.g., 6 - 250 houses per

km2) [6]. We used both spectral and spatial characteristics to

define and identify exurban areas [28]. Spectral characteristics

were derived from spectral mixture analysis [61] of corrected

Landsat images to estimate the fractional cover of vegetation,

substrate, non-photosynthetic vegetation, and shade within each

image. We built decision trees based on spectral mixture analysis

outputs to classify exurban development between 1986 and 2009.

We used morphological spatial pattern analysis to further analyze

terminal nodes from the decision trees that could not discriminate

between exurban and urban areas based on spectral characteristics

alone [62,63]. Scattered, isolated pixels were regarded as spatial

characteristics typical of exurban development. This procedure

allowed us to distinguish exurban areas from forest and urban

areas and create a land-cover map that was used to characterize

areas around survey stops.

We used FRAGSTATS 3.3 [64] and GUIDOS 1.3 [62,63] to

estimate both landscape composition and configuration within the

two circular areas around selected survey stops for 1986, 1993,

2000, and 2009. Landscape composition variables described the

amount of habitat and included proportion of area occupied by

forest and exurban development. Landscape configuration vari-

ables described the arrangement of forest habitat and included

area-weighted average patch size, number of forest patches greater

than 0.45 ha, and proximity index [65]. Proximity index is a

Threshold Response of Birds to Landscape Change
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measure of isolation that considers both patch size and proximity

of a focal patch to all forest patches around. We only considered

forest patches $ 100 ha within 2500 m of the focal patch. A

2500 m range was selected to reflect dispersal patterns of most

songbirds (dispersal median distance range: 0.3 – 7.3 km; [66]).

The proximity index increases as the neighborhood is increasingly

occupied by forest patches and as those patches become closer and

more contiguous or less isolated. GUIDOS was used because it

identifies and graphically depicts the different types of landscape

elements created by the fragmentation process [63]. The software

package analyzes map geometry by applying mathematical

morphological operators to allocate each pixel to one of a

mutually exclusive set of classes. We quantified changes in the

proportion of forest interior (core class), forest fragments (islet

class), and forest edge (edge and perforation classes).

Although some of these variables are not independent, many

have been shown to affect abundance of birds [32,67–70] and

represent different aspects of potential habitat alteration.

Analysis
BBS data have unknown precision due to observer differences

[71], first-year observers’ skills [72,73], environmental conditions

[74], and habitat features [50]. We used a hierarchical Bayesian

model to adjust BBS counts and account for these limitations. We

modeled count data as hierarchical over-dispersed Poisson

variables and fit models using Markov Chain Monte Carlo

(MCMC) methods in WinBUGS 1.4.3 [75]. Hierarchical Bayesian

models are frequently applied to BBS data [76–78] and are better

able to account for variability in complex time series than other

methods [79]. We specified Cit as the count for each species on

stop i and time t where i = 1,..., N; t = 1,…, T; and N and T were

the number of stops and the number of years species were

observed, respectively. Conditioned on the model, counts (Cit) were

independent across years and stops, and these conditional

distributions for Cit were assumed to be Poisson with mean mit:

Cit*Pois mitð Þ ð1Þ

The full model was then:

log mitð Þ~b0stopzb1stop|Yeartzb2|FirstYearit

zRouteitzObserveritzNoiseit

ð2Þ

where each stop was assumed to have a separate intercept (b0) and

time trend (b1). The model also included several sources of

variability including unknown route-level effects (Routeit), observer

effects (Observerit), and an additional noise component (Noiseit) to

help account for over-dispersion in the data. BBS observers tend to

over or under-record certain species in their first year relative to

subsequent years [77,80] and to incorporate this effect we treated

an individual’s first year (FirstYearit) as a binary indicator variable

(b2). The precision parameters (t2) for b0-2, observer, route, and

noise effects were assigned vague inverse gamma prior distribu-

tions [81] with parameters (0.001, 0.001).

Figure 1. Study region (shaded area). It includes nine counties in north-central Virginia and two in western Maryland. Circles represent 125 North
American Breeding Bird Survey (BBS) stops that were uniformly selected from routes. Zoom-in window shows example of a landscape within a 1-km
radius of a selected survey stop.
doi:10.1371/journal.pone.0067593.g001

Threshold Response of Birds to Landscape Change
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We used two Markov chains for each model and examined

model convergence and performance through Gelman-Rubin

diagnostics and individual parameter histories [82,83]. Time to

convergence varied among species depending on the amount of

data for that species (30,000 – 200,000 iterations required). Once

convergence was reached, we obtained derived estimates of the

count at each stop and in each year, and these adjusted counts

were then used for the threshold analysis. In addition, we

estimated for each selected species the linear trend coefficient

(i.e., the slope of abundance over time on a log scale) and percent

annual change (the expected count in the last year divided by the

expected count in the first year raised to 1/number of years). For

trend coefficients (slope and percent annual change), we

interpreted significance based on values with 95% credible

intervals not overlapping zero.

We examined the relationship between landscape variables and

selected species adjusted counts by fitting a non-parametric locally

weighted polynomial regression (loess; [84]). When the loess

regression highlighted nonlinearity in the relationship, then a

change-point analysis to test for nonlinear threshold response was

used.

We estimated potential species thresholds to landscape variables

in space and time using Threshold Indicator Taxa ANalysis

(TITAN; [45]). TITAN identifies abrupt changes in both

occurrence frequency and relative abundance of individual taxa

along an environmental gradient. It is able to distinguish responses

of individual taxa with low occurrence frequencies or highly

variable abundances and does not assume linear response along all

or part of an environmental gradient. TITAN uses normalized

indicator species taxa scores (z) to establish a change-point location

that separates the data into two groups and maximizes association

of each taxon with one side of the partition. Z scores measure the

association of taxon abundance weighted by their occurrence and

is normalized to facilitate cross-taxa comparison. Thus, TITAN

distinguishes negative (z-) and positive (z+) indicator response taxa.

To measure quality of the indicator response and assess

uncertainty around change-point locations, TITAN bootstraps

the original dataset and recalculates change points with each

simulation. Uncertainty is expressed as quantiles of the change-

point distribution. Narrow intervals between upper and lower

change-point quantiles (i.e., 5 and 95%) indicate nonlinear

response in taxon abundance whereas broad quantile intervals

are characteristic of taxa with linear or more gradual response.

Diagnostic indices of the quality of the indicator response are

purity and reliability. Purity is the proportion of bootstrap

replicates that agree with the direction of the change-point for

the observed response. Pure indicators (purity $ 0.95) are those

that consistently assign the same response direction during the

resampling procedure. Reliability is the proportion of change-

point individual value scores (IndVal) among the bootstrap

replicates that consistently have p-values below defined probability

levels (0.05). Reliable indicators (reliability $ 0.95) are those with

consistently large IndVal. Because purity and reliability indices did

not differ for most metrics, we only reported the reliability index.

We ran TITAN for the 11 selected bird species and each of the

landscape variables in R 2.11.1 [85]. We used the minimum

number of observations on each side of the threshold split that is

required by TITAN (n = 5). Because our data set was very large,

we specified 250 permutations to compute z scores and diagnostic

indices as suggested by Baker and King [45].

Results

Breeding Bird Survey
There were 2481 detections on the 125 selected survey stops

between 1986 and 2009. The most common species was the

Indigo Bunting (1108 detections) and the least common was the

Eastern Phoebe (190 detections; Table 1). Forest-edge species were

the more abundant group (average of 1094 individuals per species)

compared to the forest species (525 individual counts per species).

Annual mean adjusted abundances (i.e., posterior means) showed

population trends of selected species between 1986 and 2009

accounting for differences in route, observer, and detection year

(Figure 2). The Gray Catbird, Northern Cardinal, American

Redstart, Ovenbird, and Red-eyed Vireo showed significant

increases in estimated abundance between 1986 and 2009

(Table 1). American Redstart had the highest percent change

per year (3.1%). For the other six species, the estimated abundance

did not significantly change through the 24-year period.

Landscape structure around Breeding Bird Survey stops
Landscape composition and configuration changed through

time during the period of study, except for 20% of BBS that were

inside protected areas (Table 2). For the 400-m radius buffer,

amount of forest decreased from 49.2% in 1986 to 41.2% in 2009;

whereas, the amount of exurban development increased from

1.7% in 1986 to 6.0% in 2009. Configuration of forest patches also

differed among years. Although the number of forest patches

remained nearly constant, area-weighted average patch size

decreased by a mean of 2.1 ha in the last time period. This

decrease in patch size was accompanied by a decrease in forest

edge from 1986 to 2009, a decrease in forest interior, an increase

in forest fragments, and a decrease in the proximity index. In

general, all metrics changed much more in later time periods than

early years reflecting the increasing rate of exurban development

in the study region.

Similar patterns were observed for the 1-km radius buffer (Table

2). Those differences that did exist can largely be explained by the

area effect of the larger buffer. More forest patches were found in

the larger 1-km radius buffer, and these patches were generally

larger (e.g., area-weighted average patch size in 2009 of 111.6 ha

for the 1-km buffer vs. 18.5 ha for 400-m buffer). The larger buffer

also contained fewer forest fragments (19.9 vs. 31.9% in 2009), but

underwent a greater loss in forest interior from 1986 to 2009 (6.5%

for 1-km buffer vs. 4.4% for 400-m buffer).

Threshold response of bird species to landscape
structure

Scatterplots of adjusted counts fitted with a non-parametric

locally weighted polynomial regression (loess) model indicated a

nonlinear relationship between several of the landscape variables

and selected bird species (see examples in Figure 3). In general,

forest species exhibited threshold responses to both landscape

composition and configuration (Figure 4). For the 400-m radius

buffer, most of the forest species were positive indicator taxa for

the amount of forest (mean change point: 24.3%), forest interior

(15.4%), area-weighted average patch size (5.7 ha), and proximity

index (9078). Most of the forest species were negative indicator

taxa for the amount of exurban development (0.2%) and

proportion of forest fragments (19.7%). American Redstart was

the only forest species that responded negatively to forest edge

(change point: 29.1%), whereas the rest of the forest species

responded positively (mean change point: 16.6%). Eastern Phoebe

was the only forest species that declined with amount of forest,

proportion of forest interior, and area-weighted average patch size.

Threshold Response of Birds to Landscape Change
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Table 1. Hierarchical-model estimates based on Breeding Bird Survey stops for forest and forest- edge species.

Species
Number of total
detections (% of surveys)

Mean adjusted
abundance Trend coefficient Percent change/year

Forest species

American Redstart (AMRE) 225 (9.1) 0.13260.015 0.042 3.10

Ovenbird (OVEN) 248 (10.0) 0.13760.016 0.029 2.70

Red-eyed Vireo (REVI) 632 (25.5) 0.37360.027 0.024 2.70

Eastern Phoebe (EAPH) 190 (7.7) 0.09060.014 0.005 1.80

Wood Thrush (WOTH) 618 (24.9) 0.39660.027 0.008 1.10

Scarlet Tanager (SCTA) 364 (14.7) 0.18060.018 –0.004 0.30

Eastern Wood-Pewee (EAWP) 490 (19.8) 0.23760.018 –0.001 –0.20

Forest-edge species

Gray Catbird (GRCA) 509 (20.5) 0.40160.048 0.025 2.80

Northern Cardinal (NOCA) 808 (32.6) 0.46160.027 0.022 1.50

Eastern Towhee (EATO) 526 (21.2) 0.31360.025 0.007 1.00

Indigo Bunting (INBU) 1108 (44.7) 0.65760.031 –0.006 0.50

American Ornithologists Union alpha codes for English common names are in parenthesis. Trend coefficient represents the slope on a log scale of abundance over time.
Values in bold indicate 95% credible intervals.
doi:10.1371/journal.pone.0067593.t001

Figure 2. Time series of mean abundance adjusted for missing observations and observer differences. Lines indicate posterior median
(line nearly coincident with the circles) with 95% confidence intervals.
doi:10.1371/journal.pone.0067593.g002

Threshold Response of Birds to Landscape Change
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This species also responded positively to the proportion of forest

fragments, though some relationships for this species were of lower

reliability (Appendix S1).

Forest-edge species had strong threshold responses to landscape

composition and most of the configuration metrics at both extents

(Figure 4). For the 400-m radius buffer, for example, all forest-edge

species responded positively to the number of forest patches (mean

change point: 0.6 patches). Gray Catbird and Northern Cardinal

increased sharply with amount of exurban development, propor-

tion of forest fragments, and forest edge (although forest edge was

not a reliable indicator for Gray Catbird). These two species

responded negatively to the amount of forest, forest interior, area-

weighted average patch size, and proximity index (Figure 4).

However, Eastern Towhee and Indigo Bunting were positive

indicator taxa for the amount of forest, forest interior, area-

weighted average patch size, proximity index, and forest edge, and

were negative indicator taxa for the proportion of forest fragments.

Eastern Towhee was the only forest-edge species that responded

negatively to the amount of exurban development and had similar

change points to those exhibited by forest species.

Similar patterns in threshold response were observed for the two

buffer widths (Figure 4 comparison of top and bottom panels)

except for number of forest patches and proportion of forest edge.

For these two variables, the direction of the response for roughly

half of the species changed with buffer width. For most of the

species, the direction of the response was positive for the 400-m

radius buffer but negative for the 1-km radius buffer. However, the

quality of indicators for the proportion of forest edge was less

reliable for the 1-km radius buffer.

The quality of the indicator and confidence around change-

point locations varied by extent and by landscape structure

variable. For example, the forest species Red-eyed Vireo

responded positively to the amount of exurban development.

However, the indicator was only moderately reliable for the 400-m

radius buffer (reliability = 0.70; Appendix S1). Reliability also

changed with extent of analysis for some species and indicators.

For example, the reliability of the response of the forest species

Eastern Phoebe to the proximity index was higher within the 400-

m radius buffer (reliability = 0.74) than for the 1-km radius buffer

(reliability = 0.38). Gray Catbird, an edge species, had a positive

response to the number of forest patches within the 400-m radius

buffer and a negative response within the 1-km radius buffer.

However, the reliability for the 1-km radius buffer was poor

(reliability = 0.32). In general, where there were differences in

reliability at different extents, the 400-m relationships were more

reliable.

Forest species had relatively narrow bootstrapped change-point

distributions for most landscape structure characteristics indicating

confidence about the existence of a threshold (Figure 4). However,

for some landscape structure characteristics, forest species

exhibited variable width in the bootstrapped change-point

distributions. For example, some species (e.g., Eastern Wood-

Pewee) had a sharp response to the amount of forest whereas

others (e.g., Red-eyed Vireo) had a more gradual response. In

general, forest-edge species (except for Eastern Towhee) had broad

bootstrapped change-point distribution suggesting a more gradual

response for most landscape structure characteristics.

Discussion

Our results support the existence of nonlinear responses to

habitat loss and fragmentation [37,41,43] and variation in

sensitivity to alteration of landscape structure due to exurban

development depends on species habitat specificity (Figure 4;

[41,86]). For example, species that positively responded to the

amount of exurban development (e.g., Northern Cardinal) are

often found throughout a range of habitats from shrubby sites in

logged and second-growth forests to plantings around buildings

Table 2. Landscape structure surrounding selected Breeding Bird Survey stops (n = 125) at 400-m and 1-km radius buffer (mean
6 sd) for 1986, 1993, 2000, and 2009.

Variables 1986 1993 2000 2009

400-m radius buffer

Forest (%) 49.2639.3 48.3639.3 46.2639.4 41.2639.2

Exurban development (%) 1.762.5 2.162.6 3.163.4 6.066.8

Forest interior (%) 39.8632.2 38.1631.9 35.8631.8 29.3632.4

Area- weighted average patch size (ha) 22.2620.8 21.7620.7 20.6620.6 18.5620.5

Forest fragments (%) 23.4635.7 23.5635.6 25.1637.9 31.9640.9

Number of forest patches (. 0.45 ha) 1.761.1 1.761.2 1.661.2 1.661.4

Forest edge (%) 24.1614.7 24.3614.8 24.5616.4 20.7616.2

Proximity index 25156.86071.5 23165.16749.6 14763.062712.3 9884.664949.1

1-km radius buffer

Forest (%) 51.0635.7 50.0635.6 47.9635.7 42.7635.8

Exurban development (%) 1.861.6 2.261.9 3.262.6 6.265.6

Forest interior (%) 55.6628.9 53.1628.9 49.4630.2 40.1632.4

Area- weighted average patch size (ha) 134.46123.5 131.86123.1 123.26121.7 111.66121.3

Forest fragments (%) 10.2617.8 11.2619.6 14.4624.5 19.9628.8

Number of forest patches (. 0.45 ha) 5.064.2 5.064.2 5.364.3 5.464.4

Forest edge (%) 23.6611.3 24.5611.8 24.4612.6 22.5612.8

Proximity index 25957.06205.7 23906.86060.7 15272.461243.6 10533.364917.0

doi:10.1371/journal.pone.0067593.t002
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[87]. Sensitive species who responded negatively to amount of

exurban development (e.g., Wood Thrush) are more frequently

found in well-developed deciduous and mixed forests [88].

Despite loss of forest and increase of exurban development, bird

sightings significantly increased during the 24-year period for five

of the 11 species analyzed. The detection of two of the forest-edge

species (Northern Cardinal and Gray Catbird) increased between

1986 and 2009. These species are found in forest edges and

clearings, fencerows, abandoned farmland, or residential areas

[87,89]. Thus, more sightings in exurban areas may indicate that

these species have been taking advantage of the increased

availability of suitable habitats and supplemental feeding provided

by landowners [90]. The species also had broad change-point

distributions indicating gradual responses to the land-cover

change. Although we did not expect to find a threshold response,

the direction of the response showed by these species corresponded

with their habitat preferences. In other words, these species were

indicators of habitat fragmentation due to exurban development

(e.g., increased in abundance with increase in forest fragments and

decrease in forest interior).

The other three species that experienced abundance increases

were forest birds (American Redstart, Red-eyed Vireo, and

Ovenbird). This was surprising given documented population

declines in other studies for the Red-eyed Vireo and the Ovenbird

due to habitat loss and fragmentation (e.g., [32,56]). American

Redstart and Red-eyed Vireo are forest birds but seem to occur

more frequently in early and mid-successional forest habitats and

even start to decline as forests mature [91–93]. Thus, the type of

forest disturbance associated with exurban development may

benefit these species. The larger temporal and spatial scale

regional regrowth of eastern forests due to farmland abandonment

since the early twentieth century [94–96] also may explain the

slight increase in abundance of these species. However, all three of

the species showed a strong threshold response to amount of forest,

suggesting that they are sensitive to reduced forest cover. It is

important to note that the amount of forest of more than 45% of

survey stops in 2009 were above the identified thresholds at both

extents for American Redstart, Red-eyed Vireo, and Ovenbird.

Thus, it seems that abundance increase is occurring dispropor-

tionately in relatively intact forests (e.g., protected areas)

Figure 3. Example relationships between adjusted abundance for species representing the forest and forest-edge groups and
selected landscape variables. Landscape composition (e.g., proportion of forest) and landscape configuration (e.g., proportion of forest
fragments) in 400-m radius circular areas are depicted. The line represents non-parametric locally weighted polynomial regression curve (loess).
doi:10.1371/journal.pone.0067593.g003
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confounding any negative effects that forest decline [32] in

exurban areas may have, though further assessment is required to

confirm this assertion.

Although species showed similar response patterns at both

extents, for two of the landscape configuration variables (number

of patches and forest edge), the direction of the response changed

with the extent. Similar results were found by Smith [97] who

demonstrate that fragmentation effects depend on the landscape

extent considered. Thus, the extent should be explicitly accounted

for when evaluating the effects of these two metrics on forest birds.

In general, the 400-m relationships were deemed more reliable by

the TITAN threshold analysis indicating that more local change

processes had a greater effect on species occurrence and relative

abundances.

Although the majority of species responses were consistent with

our classification regarding habitat preferences, there were two

species (Eastern Phoebe and Eastern Towhee) whose response did

not correspond to the assigned group. Eastern Phoebe is generally

a woodland species [98] and was classified as a forest species.

However, this species had threshold responses similar to those

exhibited by forest-edge species for most of the landscape structure

variables. This may be explained by nest placement preferences.

Eastern Phoebe is mostly constrained by availability of suitable

nest sites [98] and nests are often located on bridges, culverts,

buildings, and rock outcrops in the vicinity of water [99]. Change

in landscape structure due to exurban development may benefit

this species, but further monitoring of its population is recom-

mended. In contrast, Eastern Towhee exhibited a response similar

to those showed by forest species. This species is thought of as an

edge-associated generalist and places its nests on or above ground,

usually at 1.5 m in shrubby areas [100]. However, these results

suggest that Eastern Towhees may be more sensitive to habitat

change due to exurban development than previously expected.

Alternatively, Eastern Towhees might be more susceptible to

increased predation pressure from free-ranging domestic cats

common in exurban development [101,102].

The threshold responses that we detected for selected forest bird

species indicate that species were affected in a nonlinear fashion by

changes in landscape composition and configuration. However,

the thresholds observed may not necessarily be similar for forest

bird communities as a whole. In addition, threshold responses

detected should not be used as a point below which a population

will not persist [103] but rather as guidelines for management

practices in areas prone to exurban development.

Given the wide range of threshold values observed in this study

(e.g., threshold response to the amount of forest ranged between

9.6 and 33.9% for the 400-m radius buffer), it is problematic to

suggest generic recommendations on how to best conserve forest

birds in exurban areas. Exurban development is creating habitats

that suit forest-edge species, and the main risk is at the other end of

the spectrum for the forest species that require large amount of

continuous forest cover. Incorporating threshold response in

conservation planning might focus on maintaining forested

Figure 4. Threshold Indicator Taxa ANalysis (TITAN). Landscape
variables were used as predictors of threshold changes in individual
bird species in 400-m (top panel) and 1-km radius circular areas (bottom
panel) between 1986 and 2009 in north-central Virginia and western
Maryland. Only indicator taxa (purity $ 0.95 and reliability $ 0.95) are
plotted in increasing order with respect to their observed change point.

Solid circles correspond to negative (z-) indicator taxa (with corre-
sponding species labels on the left axes) and open circles correspond to
positive (z+) indicator taxa (with corresponding species labels on the
right axes). Circles are sized in proportion to z scores. Lines overlapping
each circle represent 5 and 95% percentiles among 250 bootstrap
replicates. Landscape variables evaluated were (A) forest, (B) exurban
development, (C) forest interior, (D) area-weighted averaged patch size,
(E) forest fragments, (F) number of forest patches, (G) forest edge, and
(H) proximity index. Taxa IDs correspond to the American Ornithologists
Union alpha codes for English common names.
doi:10.1371/journal.pone.0067593.g004
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habitats targeted towards the most sensitive species. For example,

exurban areas can be managed to retain forest conditions close to

the identified thresholds in species occurrence and relative

abundance for the most sensitive of selected forest birds such as

Red-Eyed Vireo, and in this way other forest birds would also be

protected.

It is important to note that the BBS is poor for surveying

sensitive forest species with large area requirements. As a result,

this analysis considered species that are dependent on forests, but

not some of those species that might have been especially sensitive

to forest loss (e.g., Kentucky Warbler). Therefore, management

efforts targeting the maintenance of larger forest patches as

exurban development continues will also benefit some of these

other sensitive forest-dependent species. This could be achieved

through easements or more focused management for forest birds

within existing or new protected areas. The value of high-quality

potential source habitat is suggested by the unchanged or even

increasing abundance of many of the forest species, although they

exhibit negative threshold responses to many of the predictor

variables when the entire spatial-temporal dataset is considered.

Additional monitoring work, perhaps within the region’s protected

areas [104], could expand beyond the BBS roadside surveys to

account for some of the limitations of its design.

Conclusion

Rural private lands are being converted to exurban develop-

ment at high rates in the Mid-Atlantic region and around the

world [28], and this trend is likely to continue into the future [5].

Our results show that exurban development is altering forest

habitats. Forest birds exhibited a threshold response to landscape

structure alteration at both local and landscape extents. The

majority of forest birds’ responses could be predicted by their

habitat preferences indicating that management practices in

exurban areas might target the maintenance of forested habitats

(e.g., through easements or more focused management for birds

within existing or new protected areas) lest risk broad-scale

changes in bird community composition within these landscapes.
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