
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

2016

On Data Depth and the Application of
Nonparametric Multivariate Statistical Process
Control Charts
Suk Joo Bae

Giang Do

Paul Kvam
University of Richmond, pkvam@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications
This is a pre-publication author manuscript of the final, published article.

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Bae, Suk Joo; Do, Giang; and Kvam, Paul, "On Data Depth and the Application of Nonparametric Multivariate Statistical Process
Control Charts" (2016). Math and Computer Science Faculty Publications. 168.
http://scholarship.richmond.edu/mathcs-faculty-publications/168

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232781799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications/168?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


On Data Depth and the Application of Nonparametric

Multivariate Statistical Process Control Charts

Suk Joo Bae ∗, Giang Do†, Paul Kvam‡

Abstract

The purpose of this article is to summarize recent research results for constructing

nonparametric multivariate control charts with main focus on data depth based control

charts. Data depth provides data reduction to large-variable problems in a completely

nonparametric way. Several depth measures including Tukey depth are shown to be

particularly effective for purposes of statistical process control in case that the data

deviates normality assumption. For detecting slow or moderate shifts in the process

target mean, the multivariate version of the EWMA is generally robust to non-normal

data, so that nonparametric alternatives may be less often required.

Keywords: Data depth, Hotelling T 2 statistic, Mahalanobis distance, Shewhart chart, Tukey

depth.

1 Introduction

A control chart is a traditional way of monitoring the sequential stability of a single variable

in a process under parametric assumption. In modern statistical process control (SPC), a

large number of quality characteristics are becoming accessible through on-line computers

and other advanced data-acquisition equipments. There is a well recognized need for mul-

tivariate methods to handle complex applications that monitor a large number of variables

simultaneously. By now, there has been a substantial body of research addressing problem

issues for multivariate data in SPC. Despite this recent surge in new charts for multivariate
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data, they are not highly appreciated by managers who use control charts to identify and

eliminate assignable causes of variation from a process.

There are two formidable challenges in analyzing multivariate process data. First, data

become more sparse as dimensions increase. Sample size requirements are formidable - a

reference sample of hundreds to thousands of observations can be needed to fully characterize

an in-control process if three or more quality variables are being measured. Another big

problem is that the control charting methods become more dependent on the assumption

that the input measurements are normally distributed, while at the same time, the normality

assumption becomes less plausible in multivariate settings. If multivariate control charts

are to find a place in statistical practice, they need to address problems with correlated

non-normal data. If traditional (parametric) methods are not found to be robust, we need

to focus instead on nonparametric multivariate control charting techniques.

With these serious impediments, practitioners have continued to rely on univariate con-

trol charting techniques by treating individual variables independently for multivariate data.

Multivariate methods are not highly emphasized in non-technical books. In Montgomery’s

popular Introduction to Statistical Process Control (2005), simultaneous monitoring is suc-

cinctly reviewed, yet relegated to a late chapter, which suggests that multivariate methods

are not part of the core study for a quality control class. Recognizing the need of multivari-

ate methods in SPC, Alt and Smith (1988) and Lowry and Montgomery (1995) reviewed

control charts for multivariate normal data since the mid-1980s. Recently, multivariate

methods for process control are getting more attention in industry to monitor the stabil-

ity of certain sequential processes. Yeh et al. (2006) and Bersimis et al. (2007) surveyed

parametric multivariate chart techniques based mainly on multivariate normal processes,

providing a helpful discussion for practitioners about how to implement and interpret mul-

tivariate methods.

In this article, we will go over the current state of nonparametric methods in multivariate

process control. To complement this study, there are several overviews of nonparametric

methods used in SPC, including a comprehensive survey of rank-based extensions for tra-

ditional (univariate) control charts in Chakraborti et al. (2001). It is important to note,

however, that there is virtually no intersection between these review articles. That is, prac-

titioners seeking information about nonparametric multivariate control charts will not find

the topic covered in either review.

In Sections 2 and 3, we will review the literature comprising the two separate branches

of multivariate statistical process control and nonparametric control charting. In Sections 4,

we will review the literature on nonparametric multivariate control charts. In Section 5, we
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will focus on the only well-known nonparametric multivariate control charting techniques

based on the concept of data depth. Data depth techniques for dimension reduction are

based on measuring how “outlying” a given multivariate observation (or entire sample) is

with respect to an underlying population or distribution.

We feature two general categories of control charts that solve two different process

control problems. Shewhart-type charts (e.g., x̄-R chart, p-chart) use information from the

most current sample in order to detect a sudden change in the process mean. Shewhart

charts are useful for detecting change-points in the process target mean unless the mean shift

is gradual and cannot be detected in a single sample. As an alternative, accumulative-type

charts such as the cumulative sum (CUSUM) chart or the exponentially weighted moving

average (EWMA) chart are constructed to detect slow and moderate shifts in the mean

that occur across sequential samples. These two types of charts serve different purposes for

the process manager, and they also have different performance issues when we try to extend

them to include nonparametric applications.

2 Multivariate control charts

Before multivariate process control techniques were used in practice, it was common to

monitor multiple variables by ignoring the multivariate distribution of the input data and

creating separate charts for individual variables. This approach can lead to grossly incorrect

control limits, especially when the monitored data are correlated. Even if the inputs are

uncorrelated, individual monitoring has to be calibrated in order to understand the (type I)

error rates that are associated with deciding that an in-control process is out of control. For

example, if two quality characteristics are monitored using 3σ control limits, the probability

either variable exceeds the control limits is P (|Z| > 3) = 0.0027, where Z ∼ N (0, 1).

But the probability both variables are simultaneously within control limits is reduced to

0.99732 = 0.9946, so the type I error rate is nearly doubled to 0.0054. As the number of

monitored variables increases to k, the type I error for the process goes from the individual

error level α to 1− (1− α)k.

For Shewhart-type charts, the standard approach for analyzing multivariate process

data is based on the Hotelling’s T 2 statistic which is a natural multivariate extension to

the univariate Shewart chart. The idea is based on the statistic n(x̄ − µ)TΣ−1(x̄ − µ),

where x̄ is the sample mean from a multivariate Np(µ,Σ) (normal) distribution. There are

two distinct phases of control chart practice; Phase I consists of using the control charts

for retrospectively testing whether the process was in control when the first m subgroups

were drawn. The objective is to secure an in-control set of data to construct control limits
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for future monitoring purposes. These control limits are used in Phase II to test whether

the process remains in control when future subgroups are drawn at the second phase. Alt

(1984) and Jackson (1985) discussed the methods for constructing the control limits for

both phases of a multivariate process. For the Hotelling’s T 2 chart, suppose that we sample

m subgroups of which sample sizes are larger than 1 in Phase I and compute (p×1) vectors

of the sample means x̄1, · · · , x̄m, and (p × p) matrix of sample variances S1, · · · ,Sm for

each subgroup. If µ and Σ are unknown, µ and Σ are estimated by ¯̄x and S̄, respectively,

then

Ti
2 = n (x̄i − ¯̄x)T S̄

−1
(x̄i − ¯̄x) (1)

has the Hotelling’s T 2 distribution for the ith rational subgroup, where ¯̄x is the overall

mean and S̄ = (
∑m

j=1 Sj)/m is the pooled sample variance-covariance matrix from the m

subgroups. The Hotelling’s T 2 chart for the process mean, with unknown parameters, has

the following upper control limit (UCL)

UCL =
p(m+ 1)(n− 1)

mn−m− p+ 1
Fα,p,mn−m−p+1, (2)

for the sample size n of the subgroup. The UCL is used to monitor future subgroups in

Phase II. If the underlying input data is from the multivariate normal distribution, then

the T 2 statistic is appropriate, and the multivariate problem can be conveniently reduced

to a single-variable test. Along with the normality assumption, Hotelling’s T 2 control chart

relies on the covariance structure remaining constant in time. Tracy et al. (1992) showed

that the control limits for the Hotelling’s T 2 statistic are not appropriate and follow a beta

distribution if individual observation (n = 1) is used. Nedumaran and Pignatiello (1999)

studied the effects of parameter estimation on multivariate T 2 charts with χ2-based control

limits. Champ et al. (2005) studied the T 2 chart with corrected control limits based on the

F distribution and showed that both the in-control and out-of-control average run lengths

(ARLs) in the unknown parameter case are higher than ARLs in the known parameter case

when estimating the parameters in the T 2 statistic. For Shewhart-type charts, however,

there are no straightforward extensions to common control charts that can be effectively

applied to non-normal data.

Hotelling’s T 2 chart, which is based only on the most recent observations, is insensi-

tive to small and moderate shifts in process mean. For detecting slow or moderate shifts

in the process mean, we can use a multivariate version of the CUSUM or another exten-

sion based on the exponentially weighted moving average (MEWMA). Woodall and Ncube

(1985) proposed the use of p univariate CUSUM charts for the p original variables or for

p principal components in p-dimensional multivariate normal process. This multiple uni-

variate CUSUM scheme (called the MCUSUM) gives an out-of-control signal whenever any

4



of the univariate CUSUM charts is out of control. The MCUSUM scheme was applied to

control process dispersion by Healy (1987) and to detect process mean shift for regression-

adjusted variables by Hawkins (1991, 1993). Hauck et al. (1999) applied the MCUSUM

chart to the multivariate process monitoring and diagnosis with grouped regression-adjusted

variables. For modified versions of the MCUSUM chart, see Crosier (1988) and Pignatiello

and Runger (1990). Ngai and Zhang (2001) provided a natural multivariate extension to

the two-sided cumulative sum chart for controlling the process mean. Runger and Testik

(2004) provided a comprehensive description and analysis of several multivariate exten-

sions to CUSUM control charts, as well as performance evaluations and a description of

their inter-relationships. The MCUSUM schemes have been employed in biomedical area,

as well as industries. Rogerson and Yamada (2004) compared univariate and multivariate

cumulative sum approaches for monitoring the change in spatial patterns of breast cancer

in the northeastern United States. They observed that the univariate CUSUM scheme is

generally better at detecting the changes in rates occurring in a small number of regions

when the degree of spatial autocorrelation is low, while the multivariate CUSUM scheme is

better at detecting the changes in rates occurring in a large number of regions. Noorossana

and Baghefi (2006) investigated the performance of the MCUSUM chart in the presence of

autocorrelation and suggested to use a time series model to improve the ARL properties of

the MCUSUM control charts.

As a natural extension to the univariate EWMA chart, the MEWMA chart was proposed

by Lowry et al. (1992) as follows

zi = Rxi + (I−R)zi−1, i = 1, 2, 3, . . . (3)

where z0 = 0, R = diag(r1, r2, . . . , rp), 0 ≤ rj ≤ 1 for j = 1, . . . , p, and I is the identity

matrix. The MEWMA chart gives an out-of-control signal if zTi Σ
−1
z zi > h, where Σz is

the variance-covariance matrix of zi. The value h is calculated by simulation to achieve a

specific in-control ARL. Analogous to the situation in the univariate case, the MEWMA

chart is equivalent to the Hotelling’s T 2 chart if R = I. Lowry et al. (1992) showed that

the ARL performance of the MEWMA chart is similar to that of the MCUSUM chart in

detecting a shift in the mean of a multivariate normal distribution. For calculating in-control

or out-of control ARL of the MEWMA chart, many ideas have been suggested, e.g., Rigdon

(1995a, 1995b), Runger and Prabhu (1996), Bodden and Rigdon (1999), and Molnau et al.

(2001). Stoumbos and Sullivan (2002) showed that the MEWMA scheme is fairly robust

to non-normal data and very effective at detecting slow and subtle shifts even for highly

skewed and heavy-tailed multivariate distributions. Testik et al. (2003) discussed robustness

properties of MEWMA charts for multivariate t and multivariate gamma distributed data.

5



In designing the MEWMA charts, there are three different approaches: (1) statistical design;

(2) economic-statistical design; and (3) robust design. A comparison of these three design

strategies is provided by Testik and Borror (2004). Liu et al. (2004) studied a data depth-

based moving average (DDMA) control chart to simultaneously detect location and scale

changes of the process in the nonparametric setting. Yeh et al. (2004) proposed a likelihood-

ratio-based EWMA control chart for detecting small changes in the process variability of

multivariate normal processes. Lee and Khoo (2006) investigated the performance of the

MEWMA control chart in ARL and median run length (MRL).

If a process is judged to be out of control, there are various ways of dissecting the process

to find out which of the monitored inputs is responsible for the alarm. But this is a difficult

problem to sort out. We can resort to gleaning univariate charts under the assumption that

only one or two individual variables are responsible for the alarm. However, the signal of

a multivariate chart can be due to a combination of several factors having to do not only

with a drift from individual process means, but possibly from a detected difference in the

correlation structure. Dimension reduction is then considered for multivariate charts in

which the number of variables p is large and the use of traditional multivariate Shewhart

charts or MCUSUM and MEWMA charts are less plausible. A common procedure for

reducing the dimensionality of the variable space is to use projection methods such as

principal component analysis (PCA) and partial least squares (PLS). The PCA reduces

(p×p) non-singular sample covariance matrix S to a diagonal matrix L such that UTSU =

L, where U is an orthonormal matrix. The diagonal elements of L, l1 ≥ l2 ≥ · · · ≥ lp are

eigenvalues of S and the columns of U are the eigenvectors of S. For (p× 1) observations

of original variables, x, ith principal component zi = uT
i (x− x̄) has mean zero and variance

li, where ui is a normalized eigenvector such that uT
i ui = 1. In general, because the first

k(k < p) principal components explain the majority of process variance, they can be used

for inference purposes to reduce the dimensionality of process variables. Runger and Alt

(1996) proposed a method about how to choose k for process control purposes. Jackson

(1991) presented three types of principal components control charts: (1) T 2 chart based

on principal components scores; (2) a principal components residual control chart; and (3)

a control chart for each independent principal components scores. Ku et al. (1995) and

Mastrangelo et al. (1996) extended the PCA models to autocorrelated data in process

monitoring. The PCA methods were applied to analyze a historical set of batch trajectory

data in multi-way form, e.g., Nomikos and MacGregor (1995a), Wise et al. (2001), and Cho

and Kim (2003), to name a few.

The PLS has been used to extract latent variables that not only explain the variation
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in the process variables (X), but the variation in X which is most predictive of the quality

variables (Y). The PLS accomplishes this by working on the sample covariance matrix

(XTY)(YTX). MacGregor et al. (1994), Nomikos and MacGregor (1995b), and Kourti et.

al. (1995) presented the use of PLS in multivariate SPC. Wang et al. (2003) proposed a

recursive PLS modeling technique in the multivariate SPC framework. The applications of

PLS, multi-way PLS, PCA, and multi-way PCA, or their modifications in real or simulation

processes have been discussed by Martin and Morris (1996) and Simoglou et al. (2000).

Kourti (2005) gave an overview of multivariate monitoring based on latent variable methods

for detection and isolation of faults in industrial processes. Besides, Lee et al. (2004)

proposed the use of independent component analysis (ICA) which decomposes observed data

into linear combinations of statistically independent components to capture the essential

structure of the data in the process. Wang and Tsung (2009) developed adaptive dimension

reduction schemes to maintain the sampling distribution properties of the test statistic.

This procedure can be effective on a limited number of multivariate SPC problems. Zou

and Qiu (2009) developed a multivariate EWMA chart into which integrates a LASSO-based

multivariate test statistic for phase II multivariate process monitoring.

3 Nonparametric control charts

Even with univariate control charts, the normality assumption has been a critical barrier

in validating the statistical method with the process data. As mentioned in Kvam and

Vidakovic (2007), simple control charts based on the assumptions of normality are not more

useful because they are perfectly appropriate, rather because they are perfectly convenient.

In some cases we can transform the data, and by choosing the right chart, such as the

EWMA or CUSUM, the performance of these assumption-driven control charts can be

respectable – see, for example, Borror et al. (1999).

Shewhart (1939) first considered the effect of non-normality on a control chart, specifi-

cally the x̄ chart. Non-normal distributions not only reduce the precision of the traditional

control chart, but Jones (2002) showed that estimation of parameters of the assumed nor-

mal distribution can also greatly affect the control chart’s performance. There have been

numerous nonparametric adaptations to standard control charts (see Chakraborti et al.,

2001), based mostly on ranks. That is, instead of charting the original variables (if they

fail to substantiate the normality assumptions), charts are based on the rank order of the

variables compared within and between groups. Bakir developed a Shewhart-type non-

parametric control chart based on signed-rank test statistic (2004) and on signed-rank-like

statistic (2006), to monitor a process center for grouped data when the in-control target is
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not specified. However, the false alarm rates for the chart are too high unless the subgroup

size is large. To make up for the drawback, Chakraborti and Eryilmaz (2007) proposed

a nonparametric Shewhart-type signed-rank control chart under k-of-k runs rules where a

process is declared to be out-of-control when k consecutive signaling events are observed.

Thereafter, Chakraborti et al. (2009) presented a phase II nonparametric control chart

based on precedence statistics with runs-type signaling rules. Recently, Jones et al. (2009)

proposed a Shewhart-type distribution-free phase I control chart based on subgroup mean

rank. Balakrishnan et al. (2009) developed nonparametric control charts based on runs and

Wilcoxon-type rank-sum statistics. In general, the rank methods are slightly disappointing

in terms of efficiency, consequently the nonparametric techniques have been largely ignored

in general practice. As another alternative to charting the sample mean, Amin et al. (1995)

plotted the sample median based on the sign test. Janacek and Meikle (1997) proposed

a distribution-free control chart for medians with limits calculated from an in-control (or

reference) sample. Chakraborti et al. (2004) further studied the median chart by Janacek

and Meikle (1997) and derived exact expressions for the run-length distribution. Arts et al.

(2004) proposed an extrema chart which monitors max/min values of subgroups. Apart from

these, nonparametric control charts were constructed based on linear placement statistics

(Park and Reynold, 1987), empirical reference distribution (Willemain and Runger, 1996),

the Mann-Whitney statistic (Chakraborti and Van de Wiel, 2003), the grand median (Al-

tukife, 2003a), the sum of ranks (Altukife, 2003b), and empirical quantile function (Albers

and Kallenberg, 2004). Recently, Zou et al. (2009) proposed a nonparametric control chart

for profiles using change-point formulation, and it was further developed by Hawkins and

Deng (2010) to detect slow and moderate mean shifts.

For plotting process variability, rank-based charts have not been fully practiced in in-

dustry. The R-chart, based on a sample range, was used with smaller samples of size n ≤ 9

or so. With larger samples, the S-chart, based on sample standard deviation, has been

considered to be more appropriate. As sample size n increases, the central limit theorem

will allow the sample mean to be approximated well by the normal distribution, making

the S-chart more reliable than the R-chart. Chakraborti, et al. (2001) reviewed the scant

literature on monitoring process variability using nonparametric methods, admitting that

more work is needed in this area.

Unlike most Shewhart charts, the CUSUM and EWMA charts have been usually ap-

plied to individual observations, making these charts more prone to issues of non-normality.

There are nonparametric alternatives to the CUSUM chart by Bakir and Reynolds (1979),

McDonald (1990), and Amin et al. (1995) among others. The EWMA has been likewise ex-
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tended to non-normal data by Hackl and Ledolter (1991, 1992) and Amin and Searcy (1991).

While the regular CUSUM chart is somewhat sensitive to non-normality, the EWMA has

been proved to be more robust, so adapted EWMA charts based on standardized ranks are

needed when the data are extremely skewed. The nonparametric extensions of the CUSUM

chart, on the other hand, should be more widely adopted as an alternative to the less robust

CUSUM chart. Li et al. (2010) proposed using the Wilcoxon rank-sum statistic for CUSUM

and EWMA control charts. Via simulations, they concluded that the proposed charts per-

form well close to their parametric counterparts with normal data and outperform both the

parametric charts and the existing nonparametric control charts under various non-normal

distributions. Qiu and Li (2011) proposed a P-CUSUM chart for categorized observations

which can control the information loss due to categorization by adjusting the number of

categories used. The P-CUSUM chart can also be used for single-observation data.

None of the nonparametric charts referenced in this section can adequately handle multi-

variate data. Although the Hotelling’s T 2 statistic (for multivariate data) is not particularly

robust to non-normality, there are few viable alternatives to consider. In next section, we

focus on particular nonparametric alternatives to the multivariate T 2 chart that have been

adapted to processes in which a large number of variables are monitored simultaneously.

4 Nonparametric Multivariate Control Charts

The previous section showed that there has been little intersection between nonparametric

control charts and multivariate methods. Parametric multivariate control charts, just as

their univariate counterparts, rely on certain distributional assumptions. As in the uni-

variate case, if these assumptions are not properly justified or not true, this leads to an

excessive number of false alarms, reducing the effectiveness of the monitoring strategy. As

an alternative to parametric multivariate control charts, nonparametric multivariate control

charts, even though a few are available in the literature, can be largely classified into two

approaches; sign and/or rank-based approach and depth-based approach.

Hayter and Tsui (1994) proposed a Shewhart-type nonparametric multivariate control

chart based on the M statistic, which is the maximum of deviation of the observations from

their sample means, for monitoring the process location-parameter vector. The calculation

of control limits (called M procedure) is based on the empirical distribution of an initial

reference sample. However, The M procedure ignores any correlation structure among the

multivariate components. Kapatou and Reynolds proposed an EWMA-type multivariate

control charts for groups based on the sign statistic (1994) and on the signed rank statistics

(1998). In the usual sense, however, their charts are not nonparametric because they require
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the estimation of nuisance parameters related to the process covariance structure. Qiu and

Hawkins (2001) developed a CUSUM control chart based on the cross-sectional antiranks

of the measurements in detecting a shift in the mean vector. As the indices of the order

statistics, the antiranks have a given distribution when the process is in control. The in-

control distribution is compared with out-of-control distribution for detecting shifts in mean

vector. However, because the distribution of the antiranks would not be changed if all the

measurement components increase or decrease by the same amount, Qiu and Hawkins (2003)

applied the modified version of the antiranks to a nonparametric multivariate CUSUM

chart for detecting shifts in all directions. Li et al. (2012) proposed two nonparametric

multivariate CUSUM procedures based on the spatial sign and data depth for detecting

location and scale changes. They showed that the two proposed CUSUM procedures are

affine invariant and asymptotically distribution-free over a broad family of distributions.

Das (2009) presented a nonparametric multivariate control chart based on bivariate sign

test and compared its in-control ARL with that of parametric multivariate control charts

through simulated data from multivariate normal and multivariate t distributions. Zou and

Tsung (2011) developed a multivariate sign EWMA control chart which adapts a powerful

multivariate sign test proposed by Randles (2000) to online sequential monitoring of process

location parameters. Zou et al. (2012) developed a spatial rank-based multivariate EWMA

control chart for on-line sequential monitoring of process location parameters. Boone and

Chakraborti (2012) proposed two Shewhart-type nonparametric control charts based on the

multivariate forms of the sign and the Wilcoxon signed-rank tests for phase II monitoring.

Ghute and Shirke (2012) developed a nonparametric control chart based on a signed-rank

test for monitoring the changes in the location of a bivariate process.

Apart from these, Sun and Tsung (2003) proposed a multivariate control chart based

on the kernel distance (called K-chart), which is a measure of the distance between the

kernel center and the incoming new samples to be monitored. The kernel distance was

calculated using support vector methods. Ning and Tsung (2013) provided a guideline

for determining the charting parameters and implementing the K-chart in practice. Qiu

(2008) incorporated the categorical information into the log-linear model for estimating

the in-control measurement distribution. Based on this estimated in-control distribution,

a multivariate CUSUM procedure was implemented for phase II SPC, to detect shifts in

a location parameter of the measurement distribution. Bush et al. (2010) proposed a

nonparametric multivariate control chart based on a k-linkage ranking algorithm (called

the kLINK chart therein) that calculates the ranking of a new observation relative to the

in-control training data. In addition, they presented an EWMA version of a kLINK chart to
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enable increased sensitivity to small shifts. In general, nonparametric control charts based

on machine learning principles require event data from each out-of-control process state for

effective model building. To overcome these limitations, Camci et al. (2008) presented a

nonparametric multivariate control chart employing the notion of one-class classification

based on support vector principles.

The most effective strategy for process managers who monitor multivariate data is to

reduce the dimension of the problem as much as possible without losing significant informa-

tion from the incoming signal. The efficient measures that have adequately provided data

reduction to such large-variable problems in a completely nonparametric way are based on

data depth. we will provide a focused review on the nonparametric multivariate control

charting techniques based on the concept of data depth in the following section.

5 Data Depth-Based Nonparametric Multivariate Control

Charts

5.1 Data Depth Functions

The word “depth” was first used by Tukey (1975) to picture data, and the far reaching rami-

fications of depth in ordering and analyzing multivariate data was elaborated by Liu (1990),

Donoho and Gasko (1992), Liu et al. (1999) and others. Data depth refers to the sample

measurements and characterizes the centrality of a multivariate data point with respect to a

distribution or a multivariate sample. Data depth can be viewed as a method of dimension

reduction, but unlike related methods of projection pursuit or principal components, data

depth does not rely on link functions, kernel functions, or other refined mappings.

In order to form a general definition of a “depth function”, Zuo and Serfling (2000)

defined a statistical depth function to be a bounded, non-negative mapping that satisfies

four desirable properties: (1) affine invariance; (2) maximality at center; (3) monotonicity

relative to deepest point; and (4) vanishing at infinity. Basically, affine invariance means

that the relative depth of any point is unchanged after performing an affine transformation

on the coordinates. For a distribution having a uniquely defined “center”, maximality at

center indicates that the depth function must attain the maximum at the center of the

distribution. Monotonicity relative to the deepest point means that when a point moves

from the center outward, the corresponding depth should decrease. Vanishing at infinity

requires that the depth of a point should tend to zero when its norm tends to infinity. This

definition represents an ideal depth function, but not all data depth functions defined so

far in the literature satisfy all four of these properties.
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Most data depth functions were defined assuming the in-control data are governed by

a p-dimensional distribution function G (called the reference distribution) with mean µG

and covariance matrix ΣG. If G is unknown, we substitute the empirical distribution (Gm)

from a reference sample set x1, . . . ,xm. Applied to control charts, the reference distri-

bution and the reference sample set are considered as the representatives of an in-control

process, usually determined from the initial set up (phase I) of a control chart. Vencálek

(2011) reviewed possible applications of the data depth, including outlier detection, robust

and affine-equivariant estimates of location, rank tests for multivariate scale difference, and

depth-based classifiers solving discrimination problem, as well as control charts for multi-

variate processes.

Mahalanobis Depth

Mahalanobis (1936) introduced a distance function that serves as the first data depth mea-

sure, now called “Mahalanobis depth”. It is based on Hotelling’s T 2 statistic

MDG(x) =
1

1 + (x− µG)
TΣ−1

G (x− µG)
(4)

which measures how “deep” or “central” the vector x is with respect to the distribution

G. When G is unknown, the empirical version of Mahalanobis distance is based on x̄ and

estimated covariance matrix S

MDGm(x) =
1

1 + (x− x̄)TS−1(x− x̄)
. (5)

From (1), we can see how this distance function relates to Hotelling’s T 2 statistic, and

both statistics share convenient statistical properties. Liu (1990) showed that the depth

function MDGm(x) satisfies all of the above four properties. Hamurkaroğlu et al. (2004)

used the Mahalanobis depth to monitor a controlling process involving multivariate quality

measurements via r-chart and Q-chart.

Simplicial Depth

Liu (1990) introduced “simplicial depth”, which is determined by counting simplices derived

from the data points. Let {X1, . . . ,XN} be a sample of p-dimensional observations, where

N > p. For any point x in Rp, the sample simplicial depth SDG(x) at x is defined to

be the fraction of the simplices generated from {X1, . . . ,XN} which contain x. That is,

SDG(x) = PG(x ∈ s[X1, . . . ,Xp+1]), where s[X1, . . . ,Xp+1] is the open simplex whose

vertices {X1, . . . ,Xp+1} are (p + 1) random observations from p-dimensional distribution
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G. This depth is also a geometrically intuitive metric, with properties such as center-

outward ordering and affine invariance. When G is unknown and only a reference sample

{x1, . . . ,xm} is given, it’s empirical version can be expressed as

SDGm(x) =

(
m

p+ 1

)−1 ∑
all possible subsets

I(s[x ∈ xi1 , . . . ,xip+1 ]), (6)

where s[xi1 , . . . ,xip+1 ] is the open simplex whose vertices are {xi1 , . . . ,xip+1} and I(·) is the
indicator function. SDGm(x) measures how deep x is within the data cloud {x1, . . . ,xm}.
The larger the value is the deeper x is within the data cloud. Liu (1990) showed that

SDG(x) is affine invariant, and that if G is absolutely continuous, then SDGm(x) converges

uniformly and strongly to SDG(x) as m → ∞. we can confirm that x in the simplex

s[xi1 , . . . ,xip+1 ] if x can be expressed as a convex combination of {xi1 , . . . ,xip+1}.

Tukey Depth

Tukey (1975) proposed a half-space depth (now commonly called “Tukey depth”), which

is the smallest proportion of data points contained on one side of any hyperplane passing

through x, including points lying on the hyperplane. For instance, in the bivariate case,

the empirical Tukey depth is the smallest proportion of data points contained on one side

of any line passing through x, including points lying on the line itself. To search for this

smallest proportion, one way is to rotate a line around the center point x, then calculate the

proportion of data points separated each time this line meets another data point. Similarly

in trivariate case, Tukey depth is the smallest proportion of data points contained on one side

of any plane passing through x, including points lying on the plane. As mentioned before,

depth for a vector x is computed as the smallest proportion of data points contained on one

side of any hyperplane passing through x including points lying on the hyperplane. This

intuitive way of computing depth is easily explained but not practical for multivariate data.

Besides these three widely used data depths, there are several other data depth metrics,

e.g., “convex hull peeling depth” by Barnett (1976), “majority depth” by Singh (1991),

“likelihood depth” by Fraiman and Meloche (1996), “regression depth” by Rousseeuw and

Jubert (1999), “projection depth” by Zuo and Serfling (2000), “spatial depth” by Vardi and

Zhang (2000), “spatial rank depth” by Gao (2003), spherical depth by Elmore et al. (2006),

and “Lens depth” by Liu and Moddares (2011), to name a few.
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5.2 Computing Tukey Depth

Because existing literature glosses over implementational challenges of Tukey depth, we

focus on the computation of the Tukey depth and its difficulites in this subsection. For

calculating two-dimensional Tukey depth, we depend on the method described by Rousseeuw

and Ruts (1996). The goal is to find the vector that connects a fixed x to each member

of the reference sample x1, . . . ,xm and then measure the angles of these vectors with the

positive x−axis. Then, instead of counting the minimum number of points lying on one side

of the line (L) passing through x and a reference sample, we count the minimum number

of angles that are between the angle of L and its opposite angle. With that, the formula

for Tukey depth of x is

TDGm(x) =
1

m
min
i

{min (ki,m− ki)} , (7)

where ki = Ψ(i) − Υ(i), Ψ(i) = # {j : 0 ≤ αj < αi + π} and Υ(i) = # {j : 0 ≤ αj < αi} ,
and αi is the angle of ui = (Xi − x)/||Xi − x||. We can assume 0 = α1 ≤ ... ≤ αm < 2π

and αm+1 = α1 +2π, αm+2 = α2 +2π, and so on (see Figure 2). To reduce the calculation

time of Ψ, the authors use an updating mechanism that sorts the array consisting of αi’s

and their opposite angles βi = αi + π. Then Ψ(1) = # {j : 0 ≤ αj < π = β1} and Ψ(2) =

Ψ(1) + #{αj ’s lying between β1 and β2}. Similarly, Ψ(3) = Ψ(2) + #{αj ’s lying between

β2 and β3}, and so on. We illustrate this procedure with two simple examples.

Example 1: Let the reference sample consist of four points A,B,C,D be (±1, 0), (0,±1),

and consider the point E = (0, 0). We will calculate the depth of E by both the intuitive

way and also via Rousseeuw and Ruts’ (1996) method. Without performing any difficult

computations, we can see that E has depth 1/2 because there are only two possibilities

where a line passes through E. Either it coincides with one of the two axes, or it doesn’t, as

in Figure 1. For the first case, the minimum proportion of reference points on one side of the

line is 1/2, and for the second case it is 3/4. To find the depth via the method of Rousseeuw

and Ruts, we first, calculate α1, α2, α3, α4, which are angles of vectors
−→
EA,

−−→
EB,

−−→
EC,

−−→
ED

with respect to the x-axis. So α1 = 0, α2 = π/2, α3 = π, α4 = 3π/2, Υ(i) = i − 1 and

Ψ(1) = 2, Ψ(2) = 3, Ψ(3) = 4, Ψ(4) = 5. Hence k1 = k2 = k3 = k4 = 2, and the depth is

indeed 1/2 (see Figure 2).

To explain the three-dimensional case, we build on what we showed for two dimensions

in the last example. The main idea is to reduce the problem to the two-dimensional case by

projecting all the reference points onto a plane. The chosen plane is perpendicular to the line

connecting x and one of the reference points. Then, we use the computational method for

the two-dimensional case to find the depth of x on this plane. The three-dimensional depth
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Figure 1: Tukey depth in two-dimensional space

is the smallest two-dimensional depth amongst all projections (we have different projections

when we choose different reference points to connect with x).

Example 2: Similar to Example 1, the reference sample consists of six points A1, ..., A6 on

(±1, 0, 0), (0,±1, 0), (0, 0,±1). We calculate the depth of E = (0, 0, 0) by both an intuitive

way and Rousseeuw and Ruts’ method. The intuitive way to calculate the depth now is

by rotating a plane around the point E. This is now much harder to imagine, especially

to cover all possibilities for the plane, but the result is the same as in Example 1. If the

plane passing through the origin E does not pass through any of the reference points, then

it separates the points in half, with three on each side (see Figure 3). Otherwise, the plane

contains at least one coordinate axis (the plane passes the origin and a point on an axis)

and the minimum proportion of points on one side of the plane will be 5/6. So the depth

of E in this case is also 1/2.

To implement the method of Rousseeuw and Ruts, we first connect E with A1, which

is the x−axis (denote by L in general). We denote γ to be the plane passing through E

and perpendicular to L (this is the yz−plane). Then, we project all reference points onto

γ. The resulting points are the same as in Example 1, along with these added points

m0 = #{points whose projections coincide with E} = 0,

m+ = #{points lying above γ whose projections coincide with E} = 1,

m− = #{points lying below γ whose projections coincide with E} = 1,

and m̃ = m − m0 − m+ − m− = 4. The minimal proportion of points on one side of any

15



Figure 2: Illustration of angles in calculating two-dimensional Tukey depth

plane η passing through E is

TDGm(E) =
1

m

[
min
i

{min (ki, m̃− ki)}+min
{
m+,m−}+m0

]
=

1

6
[2 + 1 + 0] =

1

2
,

where ki’s are calculated as in Example 1 for two-dimensional case.

The approximation algorithm for p-dimension (p ≥ 4) is based on a generalization of the

same process of projecting our reference sample into a subspace of the higher dimensions in

order to reduce the dimension. In particular, the method that Rousseeuw and Ruts (1996)

proposed was to project the whole reference sample set onto a line which is chosen using the

steps below. After the projection, we calculate the Tukey depth in one dimension, which is

the smallest proportion of the reference sample on either side of the line separated by the

point whose depth we are calculating. The approximation is a multi-step algorithm that is

repeated k times. Let TDGm(x) = m and repeat the following five steps:

1. Draw a random sample of size p from the reference points.

2. Determine a direction u perpendicular to the p-subset.

3. Project all data points on the line L through x with direction u.

4. Compute the univariate depth d of x on L.

5. Update TDGm(x) = min{TDGm(x), d}. This approximation is the smallest univariate

depth of x amongst all considered projections.

16



Figure 3: Tukey depth in three-dimensional space

5.3 Choosing the best method

At first glance, there is no obvious “best choice” of which data depth measure to use in mul-

tivariate control charts. Zuo and Serfling (2000) considered a wide range of depth functions

and compared them using their four key properties listed in the last section. Simplicial

depth has appealed to researchers in part due to its intuitive geometric interpretations. It

is not hard to find counterexamples showing that simplicial depth fails to satisfy the second

and third criterion for some discrete distributions. For example, consider the univariate

point mass function: P (X = 0) = P (X = ±1) = P (X = ±2) = 1/5. In this case, all

intervals containing 1/2 will contain 1, however the interval [1,2] contains X = 1 but not X

= 1/2, so the depth at X = 1 is larger than depth at X = 1/2. This violates the principal

of monotonicity relative to deepest point (0 in this case).

A data depth measure is also judged on its computational feasibility, especially with

regard to high-dimension problems. Rousseeuw and Ruts (1996) and Rousseeuw and Struyf

(1998) provided FORTRAN codes to calculate the Tukey depth for bivariate and trivariate

data, as well as an approximation procedure with much faster calculation time for higher

dimensions. Their results also compute simplicial depth for bivariate data with comparable

computing time to that of Tukey depth. This calculation time required for bivariate data

was confirmed to be as good as possible by Aloupis et al. (2002). Other attempts to reduce

the calculation complexity in higher dimensions includes Cuesta-Albertos and Nieto-Reyes

(2008), where they estimated the Tukey depth by the so-called “random Tukey depth”,

which requires much less computational time under certain conditions. Another result is
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an output-sensitive algorithm for half-space depth by Bremmer et al. (2008), where they

introduced an algorithm calculating Tukey depth in three or more dimensions. The running

time of these algorithms depends on the actual depth needed to be calculated.

In addition to these considerations, an effective data depth function should have a high

breakdown point. The breakdown point represents the upper limit of bad data (in terms of

a fraction) that the depth function can handle before it will give an arbitrarily bad result.

In this regard, Tukey depth is considered better than most other depth functions. Its cor-

responding location estimator has breakdown point 1/3 for typical data sets, while location

estimator for the spatial depth has breakdown point 1/2 (Liu et al., 2013). In general,

the simplicial depth performs adequately with continuous distributions, even though the

estimator based on simplicial depth has breakdown point 0.

Overall, we can observe that both Tukey depth and simplicial depth have been studied

thoroughly, and the Tukey depth function has obvious advantages in terms of the key

properties, e.g., computational feasibility and breakdown point.

5.4 Control Charts based on Data Depth

The first distribution-free multivariate control charts using data depth introduced by Liu

(1995) were based on the simplicial depth. Until now, several depth-based control charts

have been suggested, and among them, well-known control charts based on the data depth

are

• r-chart: Shewhart-type chart for individual measurements

• Q-chart: Shewhart-type chart based on means of subsamples

• S-chart: CUSUM-type chart.

Stoumbos et al. (2001) noted that the Q-chart denotation risks being confused with short

production run control charts by Quesenberry (1991). Liu (1995) illustrated these charting

methods with simplicial depth and Mahalanobis depth, but they can be easily extended

to Tukey depth. Suppose that the data consist of a set of reference samples {y1, . . . ,ym}
governed by a prescribed continuous p-dimensional distribution G with Gm being the cor-

responding empirical distribution. The new observations {x1,x2, . . .} are assumed to follow

a distribution F . Based on the observations xi’s, we determine whether the process is out

of control by comparing F with the distribution G.

Liu’s r-chart is based on depth function DG(·) in the statistic: rG(x) = P{DG(y) ≤
DG(x)|y ∼ G}, where y ∼ G indicates that y follows the distribution G. If G is unknown
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and the reference sample {y1, . . . ,ym} are only available, then the r-chart is constructed

based on

rGm(x) =
# {yj |DGm(yj) ≤ DGm(x)}

m
. j = 1, . . . ,m. (8)

rGm(·) reflects how close the p-dimensional vector x is to the center of the data cloud created

by the reference sample. The r-chart plots the values rGm(xi) against time i with CL = 0.5

and a lower control limit (LCL), say α. The process is considered out of control if the

rGm(xi) statistic is smaller than α.

To construct the Q-chart (analogous to the Shewhart X̄-chart), Liu (1995) presented a

simple extension to the r-chart. Let Fn(·) denote the empirical distribution of the sample

{x1, . . . ,xn} and define QG(F ) = P{DG(y) ≤ DG(x)|y ∼ G,x ∼ F}. The Q-chart is based

on the Q statistic

QG(Fn) =
1

n

n∑
i=1

rG(xi) or QGm(Fn) =
1

n

n∑
i=1

rGm(xi) (9)

if G is unknown. The Q-chart plots {QG(F
1
n), QG(F

2
n), . . .} or {QGm(F

1
n), QGm(F

2
n), . . .}

if only reference sample {y1, . . . ,ym} are available, where F j
n is the empirical distribution

of the jth subset of size n from the new observations. The Q statistic averages out the r

statistics in subsets to prevent a single fluctuation from giving a false-positive alarm. The

Q chart has the CL = 0.5 and a lower control limit of LCLQ = n−1 (n! α)1/n for small

subsamples of n ≤ 4 under the assumption of α = 0.01 since the general condition for using

that LCL is α ≤ 1/n!, and for n ≥ 5,

LCLQG
= 0.5− zα(12n)

−1/2 and LCLQGm
= 0.5− zα

√
1

12

(
1

m
+

1

n

)
.

The S-chart is motivated from the CUSUM chart with the intention of detecting small

process shifts by accumulating the deviations from the expected value. In the multivariate

setting, Liu and Singh (1993) used the statistic

Sn(G) =

n∑
i=1

(rG(xi)− 1/2) or Sn(Gm) =

n∑
i=1

(rGm(xi)− 1/2)

for plotting {S1(G), S2(G), . . .} or {S1(Gm), S2(Gm), . . .} if G is unknown and only random

sample {y1, . . . ,ym} are available. The chart’s lower control limit is LCLSG
= −zα(n/12)

−1/2

and LCLSGm
= −zα

√
n2

12

(
1
m + 1

n

)
. A standardized version, called S∗

n(G) and S∗
n(Gm) chart,

are based on

S∗
n(G) =

Sn(G)√
n/12

and S∗
n(Gm) =

Sn(Gm)√
n2 (1/m+ 1/n) /12

.
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so the lower control limits do not depend on m or n. This S∗ chart has CL = 0 and

LCL = −zα. As a result, the S∗-chart has a horizontal control limit and a smaller, more

practical chart size.

Besides, Liu et al. (2004) proposed a data depth based moving-average (DDMA) control

chart for monitoring multivariate data. The DDMA chart is a nonparametric multivariate

control chart derived from the notion of data depth which is devised to detect simultaneously

process changes in location and scale. For the new observations {x1,x2, . . . ,xn}, the DDMA

chart monitors the moving averages with length q, i.e., x̃q = (x1 + · · · + xq)/q, x̃q+1 =

(x2 + · · · + xq+1)/q, . . ., x̃n = (xn−q+1 + · · · + xn)/q. Let X̃ = {x̃q, . . . , x̃n}. Then the

corresponding reference samples for monitoring x̃i ∈ X̃ is Ỹ = {ỹq, . . . , ỹm} such that

ỹq = (y1 + · · ·+ yq)/q, ỹq+1 = (y2 + · · ·+ yq+1)/q, . . ., ỹm = (ym−q+1 + · · ·+ ym)/q. For

each x̃i ∈ X̃, its relative rank is calculated with respect to {ỹq, . . . , ỹm}, i.e.,

rG̃m−q+1
(x̃i) =

#
{
ỹj |DG̃m−q+1

(ỹj) ≤ DG̃m−q+1
(x̃i)

}
m− q + 1

, j = q, . . . ,m. (10)

where G̃m−q+1 is the empirical distribution of Ỹ, and DG̃m−q+1
(·) is the empirical depth

computed with respect to G̃m−q+1. The DDMA chart plots rG̃m−q+1
(x̃i) against the indices

i = q, . . . , n with CL = 0.5 and LCL = α.

5.5 Curse of Dimensionality

A primary step of statistical process is to create a reference sample large enough to gain

sufficient evidence that the process is actually in control. The reference sample serves

as the benchmark for judging future process outputs, so insufficient reference sample can

potentially disqualify the results of any control chart that follows. This is a critical problem

with multivariate data, where the increased dimension of the data creates an unavoidable

sparseness within the reference sample. Without the features of a parametric model that

conveniently relate distant observations, it is hard to deduce how new observations relate

to the bench-marked data in the reference sample unless they happen to be close neighbors

in multivariate space.

Liu (1995) discussed requirements for the reference sample size, which can be as small

as 50 for bivariate data but much larger for higher-dimensional cases. This heuristic claim

has been discussed in detail by Stoumbos et al. (2001). In that paper, the authors did a

thorough study on the effect of the reference sample size (m) on Q-charts using different

subgroup sizes (n = 1, ...5). Stoumbos et al. (2001) pointed out a fatal problem with these

nonparametric charts: the data can be so sparse in p ≥ 3 dimensions that a lot of the

reference data are likely to be “on the outside” in that they will seem to be extreme in at
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least one dimension. They focused on average run length (ARL) of an in-control process

and showed that it might be impossible to find a positive threshold (e.g., r(X) ≤ α for

the r-chart) that can create a valid chart with a reasonable ARL. A 3σ Shewhart chart

garners a false alarm rate (FAR) of P (|N (0, 1)| > 3.0) = 2(1 − Φ(3)) = 0.0027 and a

corresponding ARL of 1/0.0027 = 370.4. If the reference sample is not large enough, a

typical nonparametric chart will report an ARL much smaller than 370 by rejecting only

the most outlying data points in the sample.

To factor this in the problem, Stoumbos et al. (2001) computed the ARL at the expected

minimum positive false alarm rate based on finding the expected number of points that will

be on the outside border of the reference sample. The expected number of extreme points

increases with the number of variables p but also changes with the reference distribution G

and distribution F . They considered p of 2 and 3, generating data from the multivariate

normal distribution and uniform distributions on unit circle and unit sphere, respectively.

The findings reveal something we might already suspect: individual control charts based

on data depth are not a practical option unless the reference sample is enormous (perhaps

larger than 10,000). By subgrouping data in group sizes of n ≥ 3, we can achieve effectively

high ARL values for trivariate data (p = 3) if the reference samples are larger than 500.

Stoumbos et al. (2001) recommend 600 ≤ m ≤ 1000, depending on the distribution of the

data.

Although these findings are based on applications using simplicial depth, the findings

are the same with Tukey depth. Reference sample requirements are based on the number

of extreme points in their expanded reference sample (see equation (2) of Stoumbos et al.,

2001), which is the same for both depth functions.

6 Numerical Example

We rely on Monte Carlo simulation to show how well the data depth-based control charts

fare versus traditional charts when analyzing multivariate process data. We compare the

performances of four data depth-based control charts, that is, r-chart, Q-chart, S-chart, and

DDMA chart, to those of a T 2 chart in terms of the accuracy of process change detection.

For our example we consider a p = 5 variable process that is in control with observations

generated from aWeibull distribution having a distribution function F (x) = 1−exp(−(λx)κ)

with parameter values κ = 1.5 and λ = 1.0, which has mean and standard deviation of 0.9027

and 0.6130, respectively. The process will be out-of-control after 40 observation periods, at

which time the five variables are generated from an Exponential(λ = 1) distribution, with

shifted mean and standard deviation of (1.000, 1.000). That is, the process suffers a small
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location shift along with an increase in variability.

The simulations are based on 500 reference samples from the in-control distribution.

To measure the effectiveness of the competing charts, we repeat each simulation 500 times

and keep track of the type I errors (in the first phase) as well as the type II errors (in the

out-of-control phase). Both tests are calibrated to have nominal type I error of α = 0.05.

One set of charts from the simulations appears in Figure 4.

The parametric (T 2) chart in Figure 4 plots 80 points, with the first 40 representing

T 2 statistics from the in-control process. The chart is considered to be out of control if

the T 2 statistic exceeds 11.0705. The nonparametric Q-chart (based on Tukey depth) has

only 20 observational periods because subgroups of n=4 are required to make the chart

effective. The chart is ruled to be out of control if the test statistic (Q) is less than 0.2617.

The results of the entire set of 500 simulations are summarized by the box-plots in Figure

5. The S-chart is a CUSUM-type chart accumulating the deviations from the expected

value and the type II error will be relatively small due to the nature of simulation. Thus,

we exclude the results from the S-chart for the purpose of comparison. The data depth

based charts are more effective in this example, although the type I error rates from the

nonparametric charts are higher than that from the T 2 chart. After the charts are out of

control, the type II errors from the nonparametric charts are remarkably small, for instance,

only 30% (seven of ten observations are ruled out of control) for Q-chart compared to 77%

for T 2 chart. The Q-chart has the median of type I error being αQ = 0.10, and 50% of

the simulations producing type I error rates between 0 and 0.20. The T 2 is only slightly

more biased, with median type I error rate of αT 2 = 0.0285, and 50% of the simulations

producing type I error rates between 0 and 0.05.

After the process becomes out of control, the nonparametric charts prove to be much

more effective in detecting the changes. The Q-chart detects the shift, on average, 70.82%

of the time (50% of the simulations producing type II error rates between 0.20 and 0.40).

In contrast, the parametric chart detects the shift only 22.54% of the time, on average

(50% of the simulations producing type II error rates between 0.75 and 0.80). However,

the type II error from the DDMA chart is comparably large: the DDMA chart detects the

shift only 29.01% of the time, on average (50% of the simulations producing type II error

rates between 0.675 and 0.775). The simulation results are not unlike other comparisons

between nonparametric and parametric charts (Chakraborti et al., 2001). The parametric

procedures tend to underestimate the type I error, while the power to detect an out-of-

control process is greatly decreased, compared to the nonparametric chart. In this case, the

type II error doubles that of the nonparametric chart when the process means and variances
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are shifted.

To show that the performance of the nonparametric charts improves as the reference

sample size increases, we perform the simulation again with 2500 reference sample points

and 4000 observations where the first 2000 points are in-control and the last 2000 observa-

tions are out-of-control, using the same distributions as before. The summary of results is

presented in Figure 6. In this case, the bias of the parametric chart becomes significantly

worse without showing improvement with type II error: the Q-chart detects the shift 39.28%

of the time, while the parametric chart detected the shift 21.87% of the time, on average.

7 Discussion

The purpose of this article is to summarize recent research results for constructing mul-

tivariate, nonparametric control charts. Rather than relying on the linear reduction of

principal components analysis, we focus on dimension reduction via the computational in-

tensive methods of data depth. Specifically, we used the method by Rousseeuw and Ruts

(1996) for computing Tukey depth, which has several important advantages over the other

depth functions.

Multivariate nonparametric control chart research still has a long way to go before they

will be considered effective enough to gain wide use. We feature Shewhart-type charts for

subgroup sizes of n ≥ 3, noting that individuals charts are highly impractical because we

cannot count on obtaining reference samples large enough (typically in the thousands) to

ensure that the type I error rate of the chart will be controlled.

In some cases, nonparametric charts are strictly necessary, but if standard parametric

charts are viable in multivariate settings, the more complicated nonparametric charts should

be considered as a last resort. Unlike the simpler univariate settings, the loss of efficiency

that is associated with distribution-free statistical inference might be substantial with mul-

tivariate data, in part due to the curse of dimensionality. For detecting slow or moderate

shifts in the process target mean, it has been generally known that the multivariate version

of the EWMA is robust to non-normal data, so that nonparametric alternatives may be less

necessary.
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