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A unified inter-host and in-host model of antibiotic
resistance and infection spread in a hospital ward

Lester Caudill∗, Barry Lawson

Department of Mathematics and Computer Science, University of Richmond, Virginia
23173 USA

Abstract

As the battle continues against hospital-acquired infections and the concurrent

rise in antibiotic resistance among many of the major causative pathogens, there

is a dire need to conduct controlled experiments, in order to compare proposed

control strategies. However, cost, time, and ethical considerations make this

evaluation strategy either impractical or impossible to implement with living

patients. This paper presents a multi-scale model that offers promise as the

basis for a tool to simulate these (and other) controlled experiments. This is

a “unified” model in two important ways: (i) It combines inter-host and in-

host dynamics into a single model, and (ii) it links two very different modeling

approaches − agent-based modeling and differential equations − into a single

model. The potential of this model as an instrument to combat antibiotic resis-

tance in hospitals is demonstrated with a numerical example.

Keywords: Mathematical models, Antibiotic resistance, Nosocomial infection,

Differential equations, Agent-based models

2010 MSC: 92C60, 92C50

1. Introduction

Untested infection control protocols are of dubious value in clinical medicine,

and yet, assessing the effectiveness of control measures remains difficult. This is
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particularly true of strategies to prevent or control hospital-acquired infections

(HAI). HAIs, while not a new problem, have re-emerged as a major public health5

issue in recent years. Elimination of HAIs is an important healthcare priority,

both at the national level and within individual hospitals [1]. The U.S. Centers

for Disease Control and Prevention (CDC) report that there were an estimated

722,000 HAIs in U.S. acute care hospitals in 2011, resulting in about 75,000

deaths [2]. The problem is compounded by pathogen populations that have10

evolved increased tolerance for the antimicrobials normally used to control them.

Antibiotic resistance (AR) makes HAIs more difficult to clear, by requiring

higher (and possibly more-dangerous) doses of antibiotics. Additionally, AR

can grant pathogens the ability to exist for longer periods of time in the local

environment, thereby providing additional opportunities to cause infection. AR15

stands as a significant health challenge in its own right, responsible, according

to CDC estimates, for at least two million infections and at least 23,000 deaths

in the U.S. each year [3].

A number of measures to control the appearance and rise of antibiotic re-

sistance among the pathogens responsible for HAIs have been proposed. Many20

of these measures involve some form of management of antimicrobial use in the

hospitals, both at the administrative level (e.g. by specifying which antimicro-

bials are available to a hospital’s prescribing physicians) and in the management

(e.g. drug and dosage selection, monitoring of progress) of individual patient

infections. These control measures are predicated on the well-supported idea25

that the use of antimicrobial agents can potentially exert an important selective

force that favors AR-mutations within a pathogen population. The connection

between antibiotic use and AR pathogens has been suspected for almost as long

as antibiotics have been in use. In fact, in his Nobel lecture in 1945, Alexander

Fleming, a pioneer in antibiotic research, warned of exactly this: “The time may30

come when penicillin can be bought by anyone in the shops. Then there is the

danger that the ignorant man may easily underdose himself and by exposing his

microbes to non-lethal quantities of the drug make them resistant.” [4]

Ideally, one would evaluate these AR-HAI-control measures through a con-

2



trolled experimental study comparing outcomes in two groups of patients ran-35

domized between the current protocol and the new one. However, cost, time, and

ethical considerations make this evaluation strategy either impractical or im-

possible to implement with living patients. Realistic mathematical models, and

their implementation as computer-based simulators, can provide valuable tools

to conduct in silico versions of these controlled experiments, providing valuable40

insight to hospital epidemiology teams and other decision-making groups. These

experiments can be simulated on a large number of virtual patients for many

replications, all at minimal cost and in a short period of time, and without the

ethical issues that accompany human experimentation. (As of this writing, vir-

tual patients have presented fewer ethical issues, and have proven to be much45

less litigious than their flesh-and-blood counterparts.)

When considering any mathematical model of AR and HAI dynamics, there

are two distinct levels of dynamics that are important to capture. The first,

which we will call in-host dynamics, refers to bacterial-level processes that take

place inside each individual human host, and includes factors like bacterial50

population dynamics, changes in resistance due to genetic mutations, phar-

macokinetic and pharmacodynamic properties of antibiotics, antibiotic-bacteria

interactions, bacterial interactions with the host’s immune system, interactions

between bacterial strains with different resistance profiles, and so forth. The

second level of dynamics, which we will call inter-host dynamics, refers to in-55

teractions at the human-level, principally the transfer of bacteria between indi-

viduals.

The present work aims to provide a highly realistic model of patient, health-

care worker (HCW), bacterial, and antibiotic dynamics as they relate to the rise

and spread of antibiotic-resistant HAIs, offering the potential to carefully and60

systematically test proposed prevention and control strategies and, possibly, to

generate new strategies. Our model:

• combines in-host and inter-host dynamics into a single, unified, realistic

model. The differences in time-scale and dynamics between person-to-
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person interactions and bacterial growth require different approaches to65

modeling the two sets of dynamics, with the further challenge of linking

the two in a practical and realistic way.

• accurately represents the relationship between AR and HAI. HAIs will oc-

cur even in the absence of AR, but AR will often make an HAI more

serious, by making it more difficult, or even impossible, to clear.70

• allows for testing of many different control strategies, including those in-

volving antibiotic-management protocols. This is accomplished by incor-

porating many of the treatment parameters, including antibiotic selection,

dosage size, mode and frequency of administration, treatment duration,

and possible adjustments to existing protocols, as more information (e.g.75

culture results and resistance profiles) becomes available.

• naturally includes a heterogeneous population of patients and HCWs in the

hospital ward. The risk of developing an AR-HAI is not uniform across

patients, and depends on individual factors such as age, antibiotic-usage

history, immunocompetence, colonization state, and co-morbidities. Our80

model permits heterogeneity in such factors across the patient and HCW

population.

• allows for multiple levels of antibiotic-susceptibility for multiple pathogen

species across a wide range of antibiotic classes. It is a commonly-held

misconception that antibiotic resistance is binary, i.e. an individual pathogen85

is either totally susceptible to or totally unkillable by the antibiotic in

question. In reality, a pathogen population will include individuals across

a range of different tolerance levels. This is key to the theory that AR-

strains arise through natural selection [5].

• simulates the appearance of antibiotic-resistant members of pathogen popu-90

lations via random genetic mutation, with their fates determined by natural

selection. It is unfortunate that popular media continues to characterize
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the development of antibiotic-resistance in human pathogens as an inten-

tional retaliatory decision on the part of the bacteria, when, in fact, these

microbes are simply going about their lives and trying to survive. It is now95

widely accepted in the biomedical community that the rise of AR strains

within these pathogen populations is primarily due to changes (e.g. use of

antibiotics in insufficient concentrations) in the local environment, thereby

selecting for these very strains.

• allows for multiple colonization and infection statuses within each human.100

We designed our model to reflect the fact that infections and their spread

as HAIs depend not only on the pathogens involved, but also the infection’s

physical location − a skin or upper respiratory infection will spread to

another person more readily than, say, a heart valve infection.

• incorporates the effects of the immune system response: The immune re-105

sponse to bacterial infection has a great impact on the course of the infec-

tion. In fact, it has been postulated that immunocompromised patients

(e.g., the elderly, and patients in oncology wards or transplant wards) may

play an important role in the ability of antibiotic-resistant pathogens to

survive long-term in hospitals [6].110

The balance of this paper is organized as follows: Section 2 discusses related

work. The in-host and inter-host models are described in Section 3. Section 4

presents preliminary experiments and results using our model, and Section 5

provides conclusions and future directions.

2. Related Work115

Some efforts have been made to model antibiotic resistance at the in-host

level, typically involving standard population dynamics models[7, 8, 9, 10, 11,

12, 13]. Modeling at the inter-host level has received much more attention in the

mathematical modeling literature.(See, for example, [14, 15, 16, 17, 18, 19, 20].)

By far, the most common approach is to base inter-host infection dynamics120
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models on the well-established ecologically-based SIR-type models of infectious

disease. This approach, made popular by the work of Anderson and May [21],

begins by dividing the patient population (and, when included in the model,

the HCW population) into a small number of distinct and disjoint categories.

The individuals within each category are assumed to be identical to each other125

in all relevant ways. The model then consists of a system of differential equa-

tions (or, less-frequently, a Markov process [22, 23, 24]) designed to describe

the rates at which individuals move from one category to another, thereby sim-

ulating infection-spread within the patient population. Those researchers who

have used models to investigate resistance-control strategies have used infection130

dynamics models to do so. Most commonly, reports utilizing SIR-type models

have assessed hand hygiene [25, 15, 16], patient isolation [15], and various forms

of antibiotic restriction/management [25, 14, 26, 20].

The appeal of deterministic SIR-type models stems largely from the poten-

tial for theoretical analysis of these models (e.g. the basic reproductive number135

R0). In this regard, such infection-spread models have been widely success-

ful. However, in the context of infection dynamics within a hospital ward, this

approach is limited by the inherent assumption that the patient (and HCW)

population consists of a small number of perfectly homogeneous subgroups, and

the consequent assumption that the subgroups are each large enough to justify140

the use of deterministic (as opposed to stochastic) models to describe the dy-

namics. While certainly a reasonable approximation in many settings, this is a

particular problem for models of a single hospital ward, in which the total num-

ber of patients is commonly on the order of 20-50. With numbers this small,

individual differences between patients and the effects of randomness are im-145

portant (as previously noted by other researchers, e.g.[27, 22]), suggesting that

a strictly deterministic SIR-type model may not be ideal in the present setting.

Agent-based simulation models offer an attractive alternative for inter-host

dynamics, even when the number of hosts is small. The agent-based struc-

ture permits the modeler to assign (and modify across time) a different set of150

attribute-values to each patient and each HCW, allowing full heterogeneity in
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the hospital population. Similar to the SIR-model work, most agent-based mod-

els of hospital infections focus on simulating control strategies [28, 29, 30, 31, 32].

One recent agent-based approach focuses on community-associated antibiotic re-

sistance [33], an even more challenging problem that requires modeling dynamics155

throughout the entire community.

There have been some previous efforts at incorporating in-host bacterial re-

sistance levels into models of inter-host interactions. One approach consists of

adapting an SIS inter-host model by dividing the infected/colonized population

I into two (as in Boni and Feldman [34]) or more (as with Temime and col-160

laborators [35, 36]) sub-populations. Each member of a given sub-population

is assumed to carry the same pathogen strain (i.e. the same resistance-level to

the antibiotic under consideration), with the sub-populations differing from one

another by pathogen strain. The works [35, 36] permit random movement of

hosts between the sub-populations, simulating random mutations of pathogens,165

a widely-accepted source for changes in resistance.

A second approach, used by Stewart et al ([37]) and Webb and collaborators

([38, 39]), permits hosts to carry two pathogen strains (representing different

resistance-levels) simultaneously. To incorporate the effects of these multiple

strains, these researchers use an inter-host modeling structure similar to the170

partial differential equations models used in population dynamics, where the

in-host influence enters as a new independent variable, representing either the

proportion of the resistant strain within the host (in the former) or age-of-

infection (as in the latter).

Three other recent works are worth noting here, because, similar in spirit175

to our work, the authors link an agent-based sub-model with a sub-model of

different type and scale into a single model. To investigate effects on MRSA

transmission and prevalence, Barnes and collaborators [40] use an agent-based

approach to model movement of patients between facilities, and use modified

SIR equations to model transmission within each facility. Similarly, Kardas̀-180

S loma and collaborators [32] link an agent-based model of inter-host hospital

dynamics with a differential equations model of inter-host interactions in the
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surrounding community. Djanatliev and collaborators [41] use an agent-based

approach in the context of mobile stroke units, and model population and dis-

ease dynamics using system dynamics. The latter work differs significantly in185

context, while all three works differ in scope and, relative to our in-host model,

in choice of mathematical model and corresponding level of detail.

The two principal contributions of our work are (1) the level of detail and the

number of factors incorporated into our differential equations and probabilistic

model of in-host bacterial and antibiotic dynamics, and (2) tight integration190

of this in-host model with agent-based simulation, which naturally models het-

erogeneous populations and allows for modeling complex interactions at the

human level. Recent work comparing differential equations models with agent-

based simulation concludes that the former are more tractable and amenable

to theoretical analysis, while the latter allow for heterogeneity and complexity195

[42]. Moreover, a recent call for multi-agent simulation [43] points out that

these models provide natural heterogeneity, can be easily combined (bridged)

with other types of models, and are well suited for detailed hypothesis testing.

Our work is therefore timely and appropriate, allowing for careful combination

of two generally disparate approaches, leveraging the advantages of each.200

3. Multi-Level HAI Model

We seek to model hospital infection dynamics at multiple levels, from the

interaction between patients and HCWs, to in-host processes at the pathogen-

level. We will make repeated use of several acronyms, which we summarize for

the reader in Table 1.205

3.1. Agent-based model of inter-host interactions

An agent-based simulation model is typically defined by three components:

(a) a collection of heterogeneous autonomous agents (actors), each having char-

acteristics and behaviors; (b) a collection of rules that define the actions of, and

interactions between, agents; and (c) an environment in which the agents reside210
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Table 1: Acronyms and abbreviations used, including the number of the Section in which it
first appears.

Acronym Description Section #

HAI hospital-acquired infections 1
AR Antibiotic resistance 1

AR-HAI Antibiotic resistant hospital-acquired infections 1
HCW Healthcare workers 1
BPV Bacteria population vector 3.1
IPV Immune responder population vector 3.1

IC-parameter Immunocompetence parameter 3.1
C-Cat Colonization category 3.2

AR-profile Antibiotic-resistance profile 3.2
MIC Minimum inhibitory concentration 3.2
HAP Hospital-acquired pneumonia 4

and with which they interact. In our context, agents are the people represented

by the simulation model, i.e., HCWs and patients, and the environment is a

single care unit within the hospital. Each agent in our model represents either

a single HCW or a single patient, having a set of characteristics (data) with

values unique to that agent. These characteristics include:215

• two vectors, a bacteria population vector (BPV) and an immune responder

population vector (IPV), respectively characterizing the current bacteria

population and current immune responder population within the agent

(See Subsection 3.2.);

• a scalar immunocompetence parameter (IC-parameter) λ > 0, describing220

the relative health of the agent’s immune system at the current time (A

larger λ reflects a stronger immune system. See Subsection 3.3.);

• blood volume, for computing antibiotic concentrations;

• the antibiotic treatment history for the agent.

In addition, each agent also has a set of behaviors that correspond to the pos-225

sible actions and interactions of the HCWs and patients. For example, HCW

behaviors include visiting patients on rounds and interacting with other health-

care workers, while patient behaviors include methods to model interacting with
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another patient and receiving antibiotic treatment.

Time evolution of the model is implemented using discrete-event (specifically230

next-event) simulation [44], where the types of events currently include the fol-

lowing: (a) HCW visiting a patient on rounds; (b) HCW addressing a random

patient call; (c) two HCWs interacting; (d) two patients interacting; (e) appli-

cation of antibiotic to an agent; (f) HCW shift change; and (g) discharge of a

patient and admission of a new patient. The simulation progresses by advancing235

the simulation clock to the time of the next event to occur in simulated time,

and then handling the details associated with that type of event (from among

the seven types listed above). Whenever an event occurs, the agent-based imple-

mentation invokes appropriate differential equations and probabilistic methods

from the in-host model (see Sections 3.2–3.5) to model the bacterial, immune re-240

sponder, and immunocompetence dynamics between times of agent-level events.

This combination of agent-based modeling and differential equations modeling

provides realistic heterogeneity not available in typical mathematical models.

Readers interested in further details about the agent-based component of the

present model are invited to consult [45].245

3.2. Linkage between inter-host and in-host dynamics

The agent-based inter-host model and the differential equations/probabilistic

in-host model (see below) are linked by way of the BPV and, indirectly, by

the IPV. To realistically model the transfer of bacteria between agents, it is

necessary to distinguish between different infection states within each agent.250

We subdivide each agent’s bacterial population into six colonization categories

(C-Cats), which reflect six different colonization/infection states that bear on

the spread of person-person bacteria transfer. These six C-Cats, described in

Table 2, represent our efforts to introduce distinctions in a host’s pathogen

population in two ways:255

• distinguish between pathogen populations that will trigger an immune re-

sponse and those that will not. This is usually a question of physical
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Table 2: The six colonization/infection categories (C-Cats) used by the model.

Immune
C-Cat Description Response? Examples

1 colonization that can be no hand or equipment
anticipated and addressed colonization

2 unnoticed colonization − no nasal carriage
no preemptive action taken of S. aureus

3 present as part of the agent’s no usual gut bacteria
regular microflora

4 can be self-spread, spread directly yes skin or respiratory
agent-to-agent, or spread via infections
HCW intervention

5 can be self-spread or spread yes urinary tract
via HCW intervention, but infections
not spread directly agent-to-agent

6 can be spread via HCW intervention, yes bloodstream
but not self-spread nor spread infections
directly agent-to-agent

location of the pathogen, and the source of the distinction between the

terms “colonization” and “infection”. Column 3 in Table 2 indicates which

C-Cats trigger an immune response.260

• distinguish between different likelihoods of transmission of a pathogen pop-

ulation from one host to another. These likelihoods usually depend both

on physical location of the pathogen and the nature of the interaction of

the host with other (human) agents. (These interactions are discussed in

detail in Section 3.4, and are reflected in the transfer matrix in Table 6.)265

To reflect this structure, we subdivide each host’s bacteria population into six

sub-populations, corresponding to the six C-Cats, as described in Table 2.

As part of the model input, the user specifies the particular bacteria species

and antibiotics to be used in the model. If we let J denote the number of bacte-

ria species to use, then, within each of the six C-Cats, the bacteria population is270

subdivided into J subpopulations, according to species. To capture the dynam-

ics of AR appearance via genetic mutation, it is necessary to further subdivide

each of these 6J subpopulations according to the possible antibiotic resistance
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profiles (AR-profiles). To explain what is meant by “AR-profile”, we first note

that the resistance-level of a bacterial strain with respect to a particular an-275

tibiotic can be quantified by the notion of minimum inhibitory concentration

(MIC). The MIC is the minimum concentration of the antibiotic at which the

bacteria strain cannot reproduce. (So, for a given antibiotic, a bacterial strain

with a larger MIC is considered to be more resistant (or less susceptible) to

that antibiotic than a strain with a smaller MIC.) Commonly, bacterial popu-280

lations are heterogeneous in MIC-value, with respect to a particular antibiotic,

as reproduction sometimes results in viable genetic mutants with a MIC-value

that differs from the parent bacterium. We represent this heterogeneity in our

model by introducing, for each bacteria-antibiotic pair, a discrete set of N MIC-

values. (For simplicity, the same value of N is used for each bacteria-antibiotic285

pair included in the model, although this requirement can be relaxed − see the

discussion in Section 5) For the pairing of bacteria species j and antibiotic m,

this set of MIC-values is determined by first identifying an upper bound µjm

on the maximum serum MIC-level for this pairing, then dividing the interval

(0, µjm] into N − 1 subintervals290

(µjm(n−1), µjmn] , n = 1, . . . , N − 1,

where µjm0 = 0 and µjmN = µjm. Then, theN possible MIC-valuesRjm1, . . . , RjmN

for species j and antibiotic m are set as follows:

Rjmn = µjm(n−1) , n = 2, . . . , N, (1)

Rjm1 = εRjm2 , (2)

where 0 < ε < 1. (Rjm1 is chosen small in order to represent the members of

species j that are most-susceptible to antibiotic m.)

Denoting the number of antibiotics in the model by M , an individual bac-

terium from species j will have one MIC-value Rj1nj1
with respect to antibiotic

12



Table 3: The possible MIC-values in the case of two bacteria species, two antibiotics,
and three resistance-levels per antibiotic. Here, µjm is an upper bound on the maxi-
mum serum concentration of Antibiotic m vs. Bacteria Species j. As a result, Bacteria
Species j has nine possible AR-profiles, each of the form {MIC vs. AB1, MIC vs. AB2}:{
εµj1

2
,
εµj2

2

}
,

{
εµj1

2
,
µj2

2

}
,

{
εµj1

2
, µj2

}
,

{
µj1

2
,
εµj2

2

}
,

{
µj1

2
,
µj2

2

}
,

{
µj1

2
, µj2

}
,{

µj1,
εµj2

2

}
,

{
µj1,

µj2

2

}
, and {µj1, µj2}.

Antibiotic 1 (AB1) Antibiotic 2 (AB2)

Bacteria

Species 1 R111 =
εµ11

2
, R112 =

µ11

2
, R113 = µ11 R121 =

εµ12

2
, R122 =

µ12

2
, R123 = µ12

Bacteria

Species 2 R211 =
εµ21

2
, R212 =

µ21

2
, R213 = µ21 R221 =

εµ22

2
, R222 =

µ22

2
, R223 = µ22

1, one MIC-value Rj2nj2
with respect to antibiotic 2, and, more generally, one

MIC-value Rjmnjm
with respect to antibiotic m, for m = 1, . . . , M . We refer

to the resulting sequence {
Rjmnjm

}M
m=1

of M MIC-values as the AR-profile of this bacterium. (Table 3 gives an example295

of this AR-profile structure.) Noting that there are a total of NM possible AR-

profiles for members of bacterial species j, we now sub-divide each of the J

bacterial species into NM ≡ K sub-populations, according to AR-profile.

To summarize, we separate the bacteria population within an individual

human host by the six C-Cats, then by the J bacterial species, then by the K300

possible AR-profiles, resulting in a total of 6JK bacteria sub-populations, which

we then organize as the host’s bacteria population vector (BPV). If we denote

by Pijk the pathogen subpopulation for C-Cat i, species j, and AR-profile k,

then Pijk occupies entry (i− 1)JK + (j − 1)K + k in the BPV.

The IPV is organized in a similar fashion to the BPV, except we include305

only C-Cats 4-6 (See below.), and we impose no sub-division based on AR-

profile. This results in an IPV of length 3J , in which the immune responder

sub-population Iij occupies entry (i − 4)J + j in the IPV. An illustration of

the structure of the BPV and IPV, in the case of two bacteria species, two

13



Table 4: The components of the BPV and IPV, in the case of two bacteria species, two an-
tibiotics, and two resistance-levels. The rows represent the six C-Cats, while the columns
represent the bacteria species, each sub-divided into the four possible AR-profiles. Pijk rep-
resents the bacteria sub-population in C-Cat i of bacteria species j, with AR-profile k. Iij
is similarly defined, but is not sub-divided by AR-profile. Note that the immune responder
populations Iij exist only for C-Cats 4-6.

Bacteria 1 Bacteria 2
AR 1 AR 2 AR 3 AR 4 AR 1 AR 2 AR 3 AR 4

C-Cat = 1 P111 P112 P113 P114 P121 P122 P123 P124

C-Cat = 2 P211 P212 P213 P214 P221 P222 P223 P224

C-Cat = 3 P311 P312 P313 P314 P321 P322 P323 P324

C-Cat = 4
P411 P412 P413 P414 P421 P422 P423 P424

I41 I42

C-Cat = 5
P511 P512 P513 P514 P521 P522 P523 P524

I51 I52

C-Cat = 6
P611 P612 P613 P614 P621 P622 P623 P624

I61 I62

antibiotics, and two resistance-levels, is shown in Table 4. For that example,310

the BPV and IPV have the forms

BPV = {P111, . . . , P114, P121, . . . , P124, P211, . . . , P214, . . . , P621, . . . , P624} ,

IPV = {I41, I42, I51, I52, I61, I62} .

3.3. Bacterial dynamics within each host

In modeling the time-evolution of the pathogen and immune responder pop-

ulations (as represented by the BPV and IPV, respectively), we consider three

important factors:315

1. the natural reproduction and death for the pathogen and immune respon-

der sub-populations,

2. changes to the BPV and IPV due to interactions between the two popu-

lation types (only relevant for C-Cats 4-6),

3. the possibility of resistance-altering genetic mutations within newly pro-320

duced members of the pathogen population.
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We model the first two factors differently for C-Cats 1-3 and C-Cats 4-6, because

the immune responders only enter into the latter. Specifically, for C-Cat i,

i = 1, 2, 3, the BPV entry Pijk corresponding to pathogen species j and AR-

profile k is assumed to satisfy either exponential or logistic growth i.e.:325

dPijk
dt

= fijk(Pijk) , Pijk(0) = Pijk,0 , (3)

for j = 1, . . . , J , and k = 1, . . . ,K, where either

fijk(Pijk) = aijkPijk or fijk(Pijk) = aijkPijk

(
1−

∑K
k=1 Pijk
Pmax,ij

)
.

where the sum is over all AR-profiles and Pmax,ij represents the carrying capac-

ity for bacteria species j in C-Cat i. For i = 4, 5, 6, we model the joint evolution

of Pijk and the corresponding IPV entry Iij by adapting the immune response

model of [46] to the case of multiple AR-profiles:330

dPijk
dt

=
1

λ
fijk(Pijk)− bij

λ

PijkIij
Kij + Pijk

, Pijk(0) = Pijk,0 , (4)

dIij
dt

=
λ

1
2 cij

∑K
k=1 Pijk

Bij +
∑K
k=1 Pijk

+
λ

1
2 dijIij

Mij + Iij
− qij

λ
Iij , Iij(0) = Iij,0 , (5)

for j = 1, . . . , J , and k = 1, . . . ,K. The terms on the right-hand side of (4)

represent, respectively, pathogen growth/death and removal by the immune

response, while the terms on the right-hand side of (5) represent, respectively,

pathogen-induced immune response activation, auto-catalytic immune response

activation, and natural removal of immune cells. The parameter λ represents335

the IC-parameter for the host, one of the attributes carried by each agent. (See

Section 3.1.) The remaining model parameters in (3)-(5) do not vary between

hosts, and are summarized in Table 5. The interested reader is referred to [46]

for further details.
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Table 5: Definitions of parameters appearing in equations (4)-(5), with subscripts indicating
C-Cat i, pathogen species j, and AR-profile k.

Parameter Description

aijk Net per capita pathogen growth rate

bij Pathogen death rate due to immune response

Kij Immune kill rate saturation constant

cij Rate of pathogen-induced immune responder activation

Bij Pathogen-induced immune activation saturation constant

dij Rate of autocatalysis-induced immune responder activation

Mij Autocatalysis-induced immune activation saturation constant

qij Immune responder decay rate

To realistically reflect the rise and spread of antibiotic-resistant members340

of an agent’s bacterial population, our model must also account for the un-

derlying natural selection dynamics within the bacterial subpopulations. Key

to the rise of AR is the occasional appearance of resistant individuals in the

bacterial population, resulting from random genetic mutations occurring dur-

ing reproduction of the susceptible bacteria. We accomplish this by expanding345

the in-host model (3)-(5) to include a probabilistic component, to allow for the

possibility of bacterial genetic mutations (occurring during reproduction) that

result in a change in a bacterium’s AR-profile. When an agent’s BPV is updated

(via the system (3)-(5)), updating is paused at regular time intervals to allow

for some of the newly-created members of the BPV to change from one AR-350

profile to another via mutation. Specifically, for each nonzero sub-population,

we draw a pseudo-random deviate from a binomial distribution. These deviates

determine, for each entry in the BPV, how many of the newly-created members

of that sub-population will be moved to different AR-profiles.

To illustrate the process of assigning mutants to new AR-profiles, consider355

the case of one pathogen species, two antibiotics, and three MIC-levels per

antibiotic. Denoting the MIC-levels with subscripts:
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• For antibiotic 1: R11 < R12 < R13,

• For antibiotic 2: R21 < R22 < R23,

we represent the nine possible AR-profiles by pairs of the form {R1i, R2j}, for i, j ∈360

{1, 2, 3}, and define a metric d on this set of AR-profiles as

d ({R1i1 , R2j1}, {R1i2 , R2j2}) = |i1 − i2|+ |j1 − j2| . (6)

Then, the bacteria from AR-profile {R1i, R2j} selected to mutate are assigned

to their new AR-profile by being distributed randomly (with a uniform prob-

ability distribution) among all AR-profiles that are exactly one unit (accord-

ing to the metric in (6) from their original AR-profile. For instance, mu-365

tants originating from AR-profile {R11, R21} will be distributed between AR-

profiles {R11, R22} and {R12, R21}, but no others, while mutants originating

from AR-profile {R11, R22} will be distributed between AR-profiles {R11, R21},

{R11, R23}, and {R12, R22}. Our code also allows for mutation to AR-profiles

that are two units away from the original, but with a much smaller probability.370

3.4. Bacteria transfer between hosts

Each interaction event between a pair of agents in our model provides an

opportunity for those agents to transfer some of their bacteria to each other. Our

implementation of this “bacterial exchange” is best described in terms of the six

C-Cats from Table 1. In this context, the possible bacterial exchanges between375

the two types of agents (patient and HCW) are given in Table 6. (Based on an

extensive review of the infectious diseases literature, these possible exchanges

are widely accepted.)

For an interaction event between two agents, A1 and A2, the bacterial ex-

change between them is treated as a pair of one-way bacterial transfers − one380

from A1 to A2 and the other from A2 to A1. Each of these one-way transfers is

a two-step process:

1. For each “Y” in the appropriate sub-table from Table 6, we draw a devi-

ate from a Bernoulli probability distribution to determine whether or not
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Table 6: Summary of the possible bacterial exchanges between agents. Each row represents
one of the C-Cats of the donor agent, and each column represents one of the C-Cats of the
recipient agent. Each entry in the table is a list of three letters, corresponding to the three
possible transfers between agents − patient-to-HCW, HCW-to-patient, and same-kind (i.e.
either patient-to-patient or HCW-to-HCW) − respectively. A “Y” indicates that the transfer
is possible, while an “N” indicates that the transfer is not possible.

C-Cat=1 C-Cat=2 C-Cat=3 C-Cat=4 C-Cat=5 C-Cat=6

C-Cat=1 Y, Y, Y Y, Y, Y N, N, N Y, Y, Y N, Y, N N, Y, N
C-Cat=2 Y, Y, Y Y, Y, Y N, N, N Y, Y, Y N, Y, N N, Y, N
C-Cat=3 Y, N, N Y, N, N N, N, N Y, N, N N, N, N N, N, N
C-Cat=4 Y, Y, Y Y, Y, Y N, N, N Y, Y, Y N, Y, N N, Y, N
C-Cat=5 Y, N, N N, N, N N, N, N N, N, N N, N, N N, N, N
C-Cat=6 Y, N, N N, N, N N, N, N N, N, N N, N, N N, N, N

transfer between the two corresponding C-Cats actually occurs.385

2. For each positive result from Step 1, a randomly-determined proportion

of the bacteria population is moved from the donor agent’s C-Cat to the

appropriate C-Cat of the recipient agent.

The probability used for the Bernoulli deviates in Step 1 is based on user-chosen

parameters α (one for each “Y” in Table 6), representing the probability of each390

transfer during a ten-minute interaction between agents. The probability of

transfer for an interaction of duration ∆ is computed by the scaling formula

transfer probability = 1− (1− α)
∆
10 . (7)

To illustrate Step 2, we denote the BPV of agent Am by
{
P

(m)
ijk

}
, and

suppose that 100q% of the pathogen population is to be transferred from C-

Cat-4 of agent A1 to C-Cat-5 of agent A2. We implement this by adjusting the395

corrresponding BPV entries, as indicated in Table 7.

3.5. Use of antibiotics

When an antibiotic treatment event is initiated for an agent, the user spec-

ifies the choice of antibiotic (from the M choices included in the simulation),

dosage, mode of administration (oral, IV, or bolus injection), and number and400

frequency of doses. This action expands the in-host model (3)-(5) to include, for

18



Table 7: An illustration of bacterial transferfrom one host (Agent 1) to another (Agent 2), in
which a proportion q of bacteria species j with resistance profile k is transferred from C-Cat

4 of Agent 1 to C-Cat 5 of Agent 2. Here, P
(m)
ijk

represents the entry of Agent m’s BPV

corresponding to C-Cat i, bacteria species j, and resistance profile k.

BPV-entry BPV-entry before transfer BPV-entry after transfer

C-Cat 4

of Agent 1 P
(1)
4jk (1− q)P

(1)
4jk

C-Cat 5

of Agent 2 P
(2)
5jk P

(2)
5jk + qP

(1)
4jk

the treated agent, an additional M dependent variables, Cm(t), representing the

concentration, in the bloodstream, of antibiotic m at time t. The time-evolution

of each Cm(t) is assumed to be governed by standard pharmacokinetics initial-

value problem models [47]. Assuming that the antibiotic affects only C-Cats405

3-6, the model equations (3)-(5) remain the same for C-Cats 1 and 2, while

the bacterial evolution equations (3) and (4) each gain an additional antibiotic-

driven removal term for C-Cats 3-6. So, the in-host model (3)-(5) becomes, for

C-Cat i, bacteria species j, AR-profile k, and antibiotic m:

For C-Cats i = 1, 2:410

dPijk
dt

= fijk(Pijk) , (8)

for C-Cat i = 3:

dPijk
dt

= fijk(Pijk)− Pijk
M∑
m=1

dijm (Cm(t)− Λjkm) , (9)

and for C-Cats i = 4, 5, 6:

dPijk
dt

=
1

λ
fijk(Pijk)− bij

λ

PijkIij
Kij + Pijk

− Pijk
M∑
m=1

dijm (Cm(t)− Λjkm) ,(10)
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dIij
dt

=
λ

1
2 cij

∑K
k=1 Pijk

Bij +
∑K
k=1 Pijk

+
λ

1
2 dijIij

Mij + Iij
− qij

λ
Iij , (11)

for j = 1, . . . , J , and k = 1, . . . ,K. Here, Λjkm is the MIC, with respect to

antibiotic m, of the subpopulation of bacteria species j with AR-profile k. The

function dijm is a saturating threshold function of the form415

dijm(y) =


0, y ≤ 0 ,

αijmy
βijm+γijmy

, y > 0 ,

(12)

where αijm, βijm, and γijm are positive constants. Two observations, regarding

the antibiotic-induced removal term in (9) and (10):

• The piecewise structure of (12) causes the antibiotic to affect a particular

bacterial subpopulation Pijk only when the antibiotic concentration Cm(t)

exceeds the MIC Λjkm for that subpopulation. Moreover, the effect de-420

pends on the extent to which Cm(t) exceeds the associated MIC, through

the term Cm(t)− Λjkm.

• The sum over m makes it possible to model situations in which an agent is

being treated with two or more antibiotics, either concurrently or in close

succession.425

3.6. Model implementation

Next, we outline how the model components described in Subsections 3.1-3.5

fit together in the overall model. At the highest level, the model constructs a

sequence of events (of the seven types described in Subsection 3.1) by scheduling

them, at random, along a master “event timeline”. For each event, the following430

steps are executed:

1. Select the agent(s) involved in the event. This is determined by a variety

of factors, e.g. HCWs on scheduled rounds.

2. For each agent involved in the event, the BPV and IPV are updated to

the time (on the event timeline) of the current event. At the start of the435
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current event, the BPVs and IPVs of the participating agents reflect the

host’s sub-populations at the time of their most-recent previous events.

3. For an event that involves more than one agent, bacterial exchange between

the agents is simulated according to the method in Subsection 3.4.

Figure 1 shows, for an example simulation, a portion of the event timeline.440

For the interaction event that begins at time t3 (the current “event time”, as

indicated by the clock icon), assume that agents HCW1 and P1 have been

selected in Step 1 to participate in the event. Prior to executing Step 2 of

the event, HCW1’s BPV and IPV contain that agent’s bacteria and immune

responder sub-populations, respectively, each evaluated at time t2 (the time of445

the most-recent event involving HCW1). So, in Step 2, HCW1’s BPV and IPV

must be updated by applying the in-host model of Subsection 3.3 to advance

them from t2 to the current time t3. (See Figure 1.) The BPV and IPV for P1

are updated in the same way, but from t1 to t3. In Step 3, an opportunity for

bacteria transfer, via the method described in Subsection 3.4, between the two450

agents completes the event.

Our computational model is implemented using MATLAB, allowing us to

leverage both the object-oriented programming capabilities of MATLAB for

implementing the agent-based portions and differential equations solvers for the

intra-host model.455

4. Results

To demonstrate the potential of our model as an investigative tool, we

present the details of three simulated experiments.

4.1. Hospital-acquired pneumonia

We now use our model to simulate the treatment of hospital-acquired pneu-460

monia (HAP) within an intensive care unit. Our goal here is two-fold: To

demonstrate how our model may be used to explore HAIs and AR-control mea-

sures, while also comparing treatment strategies whose relative strengths are
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Figure 1: An illustration of part of the example simulation from Section 3.6. The events
(shaded boxes) that comprise the simulation occur at randomly-chosen times along the event
timeline (horizontal axis). If t3 represents the start time of the current event, the event unfolds
as follows: (a) The BPV and IPV of HCW1 are updated from t2 (the time of that agent’s
most-recent prior event) to the current event time t3. (b) The BPV and IPV of P1 are updated
from t1 (the time of that agent’s most-recent prior event) to the current event time t3. (c)
Two-way bacterial transfer between the two agents.

already generally accepted by practicing clinicians, and are consistent with pre-

vious modeling efforts [7]. HAP is the second most common hospital-acquired465

infection (after urinary tract infections), and a leading cause of HAI-induced

mortality [48]. HAP is a particular problem within ICUs, where many patients

undergo mechanical ventilation, providing easy accessibility for pathogens to

reach the lungs. The two most common pathogens implicated in HAP are

Staphylococcus aureus and Pseudomonas aeruginosa, which together account470

for nearly 30% of cultured cases [2]. Antibiotic resistant strains of both of these

species (including the well-known methicillin-resistant S. aureus, or MRSA),

are widespread, leading to the need for a large arsenal of antibiotics for treating

HAP.

Two keys to successful treatment of HAP are (i) early identification of the475

causative pathogen, and (ii) early determination of the MIC for that pathogen

with respect to each of the antibiotics recommended for eliminating them. To-

gether, these ensure that the patient will receive the best choice of antibiotic

at a sufficiently high dose, and to avoid attempting to treat them with an ulti-

mately ineffective drug. For this reason, medical researchers have proposed that480

hospitals screen ICU patients at the first signs of pneumonia [49]. While this
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Table 8: The four treatment protocols used in the experiment, in terms of simulation time
t, representing the number of hours from initial pneumonia diagnosis. The last four columns
indicate the specific antibiotic regimen during different time intervals of the treatment period.
Abbreviations in the table: IPM-500 = repeated 500mg. doses of imipenem, OXA-500 =
repeated 500mg. doses of oxacillin, OXA-1000 = repeated 1000mg. doses of oxacillin.

Protocol Time of Pathogen Time of Completion 0 ≤ t ≤ 24 24 < t ≤ 48 48 < t ≤ 72 t > 72

Identification of MIC-analysis

1 t = 48 t = 72 IPM-500 IPM-500 OXA-500 OXA-1000

2 t = 48 t = 48 IPM-500 IPM-500 OXA-1000 OXA-1000

3 t = 24 t = 48 IPM-500 OXA-500 OXA-1000 OXA-1000

4 t = 24 t = 24 IPM-500 OXA-1000 OXA-1000 OXA-1000

rationale is widely accepted as sound, in practice many hospitals will culture

ICU pneumonia patients only after the first attempt at antibiotic treatment

(typically with a broad-spectrum drug) has proven ineffective, reasoning that

the procedure for obtaining sputum samples from the lung is not only unpleas-485

ant for the patient (For patients unable to produce sputum by coughing, the

procedure involves insertion of a sample-gathering device into the lungs.), but

also provides an additional opportunity to introduce pathogenic bacteria into

the patient’s lower respiratory system.

Our experiment will focus specifically on a single patient with HAP caused490

by infection with a strain of S. aureus, and will compare the fate of this patient

under each of four treatment protocols, each involving initial treatment with

a broad-spectrum antibiotic (imipenem), followed by sputum sample testing

to determine the causative pathogen and associated MIC-levels, then a subse-

quent switch to a narrow-spectrum antibiotic (oxacillin). We will assume that495

this particular strain of S. aureus has a high-level of resistance (i.e. a large

MIC-value) with respect to imipenem, and an intermediate-level (i.e. higher

than the MIC-levels normally found in samples isolated at this hospital, but

low enough to be treatable) of resistance to oxacillin. As illustrated in Table 8,

the four protocols differ only in the initiation times for the pathogen identifica-500

tion and MIC-determination procedures (each assumed to be 100% accurate).

In Treatments 1 and 2, patients are cultured only if the initial treatment with
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Table 9: The four AR-profiles used in the numerical HAP experiment in Sub-Section 4.1.

AR-Profile MIC vs. Imipenem MIC vs. Oxacillin

1 0.8 0.4

2 0.8 4.0

3 8.0 0.4

4 8.0 4.0

imipenem (500mg doses, repeated every six hours) is not successful after 24

hours, resulting in a 24-hour lag time in pathogen identification, compared to

the immediate culturing of patients undergoing Treatments 3 or 4. Further,505

Treatments 1 and 3 assume that MIC-analysis requires an additional 24 hours

(the current norm), while Treatments 2 and 4 assume that both pathogen iden-

tification and MIC-analysis can be completed within a single 24-hour period.

Upon pathogen identification (but before MIC-analysis results are available),

the imipenem treatment is discontinued, in favor of repeated (every four hours)510

500mg doses of oxacillin. After MIC-analysis, the results reveal that the cur-

rent oxacillin doses are insufficient to raise the patient’s drug-level to exceed the

pathogen’s oxacillin-MIC, so the oxacillin dose is then increased to 1000mg.

First, we investigate the effects of early pathogen identification (as in Pro-

tocols 3 and 4) by comparing them to the effects of late pathogen identification515

(as in Protocols 1 and 2). We set up our model with one bacteria species

(S. aureus), two antibiotics (imipenem and oxacillin), and two resistance lev-

els (low-MIC and high-MIC) for each antibiotic, resulting in the four possible

AR-profiles listed in Table 9. The patient’s BPV and IPV will then have the

structure shown in the “Bacteria 1” column of Table 4, and we will use the520

same indexing scheme here. Each entry of the patient’s BPV is set to zero,

except for the entry corresponding to C-Cat 4 and AR-profile 3, P413, which is

set to 105 cells/mL. All entries in the patient’s IPV are also initally set to zero.

For this experiment, we do not permit the bacteria to spread to other C-Cats
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Table 10: Model parameter values used in the numerical HAP experiment in Sub-Section 4.1.
Parameter Description (units) Model Equation Value Source

a413 Bacterial growth rate in C-Cat 4 (min−1) (10) 0.0286 [50]

Pmax,41 Bacterial carrying capacity in C-Cat 4 (P -cells/mL) (10) 1012 [50]

λ Immunocompetence parameter (unitless) (10), (11) 1.0 [46]

b41 Bacterial death rate due to immune response in C-Cat 4 (P -cells/(I-cell ·min)) (10) 0.0025 [51]

K41 Immune kill rate saturation constant in C-Cat 4 (P -cells/mL) (10) 500 estimated

c41 Rate of pathogen-induced immune responder activation in C-Cat 4 (P -cells/(mL ·min)) (11) 0.001 estimated

B41 Pathogen-induced immune activation saturation constant in C-Cat 4 (P -cells/mL) (11) 1000 estimated

d41 Rate of autocatalysis-induced immune responder activation in C-Cat 4 (I-cells/(mL ·min)) (11) 0.001 estimated

M41 Autocatalysis-induced immune activation saturation constant in C-Cat 4 (I-cells/mL) (11) 10.0 estimated

q41 Immune responder decay rate in C-Cat 4 (min−1) (11) 0.0001 [52]

α411 Imipenem-induced kill-rate parameter in C-Cat 4 (min−1) (12) 0.03 estimated

β411 Imipenem-induced kill-rate parameter in C-Cat 4 (µg/mL) (12) 1.0 estimated

γ411 Imipenem-induced kill-rate parameter in C-Cat 4 (unitless) (12) 1.0 estimated

α412 Oxacillin-induced kill-rate parameter in C-Cat 4 (min−1) (12) 0.0725 estimated

β412 Oxacillin-induced kill-rate parameter in C-Cat 4 (µg/mL) (12) 1.0 estimated

γ412 Oxacillin-induced kill-rate parameter in C-Cat 4 (unitless) (12) 1.0 estimated

Λ131 MIC of pathogen vs. imipenem in R-profile 3 (µg/mL) (10) 8.0 user-defined

Λ132 MIC of pathogen vs. oxacillin in R-profile 3 (µg/mL) (10) 4.0 user-defined

or to change to another AR-profile via mutation, so the bacteria population is525

limited to the P413-entry in the patient’s BPV for the duration of the experi-

ment. Model parameter values are listed in Table 10, and our results are shown

in Figure 2. Figure 2(a) shows the outcomes for our patient under Protocols

2 and 4, the two treatments that assume that both the pathogen identification

and the MIC-analysis can be completed within a single 24-hour window, but530

differ by 24 hours in pathogen identification. Similarly, Figure 2(b) shows the

outcomes under Protocols 1 and 3, the two treatments that assume a 24-hour

lag time between pathogen identification and MIC determination, but differ by

24 hours in pathogen identification. Each figure shows the patient’s S. aureus

load (in log(CFU)) over the first 72 hours of treatment. In both comparisons,535

we see that the delay in pathogen identification results in higher pathogen loads.

(Note that the changes in slope for each curve correlate to the treatment changes

indicated in Table 8.) These results are consistent with the conclusions of [7],

where the authors investigate a similar question, using an in-host model that

differs from ours.540

Next, we explore the effects of fast MIC-analysis techniques, by comparing

Protocols 2 and 4 (fast MIC-analysis) to Protocols 1 and 3 (24-hour MIC-
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Figure 2: (a) Pathogen load (log(CFU)) versus time (hours) for a HAP patient under treat-
ment Protocols 2 (dashed) and 4 (solid) for the first 72 hours after the initiation of treatment.
The pathogen load increases during the period of imipenem treatment (0–48 hours under Pro-
tocol 2 and 0–24 hours under Protocol 4). In each case, after identification of the pathogen
(at 48 hours under Protocol 2 and at 24 hours under Protocol 4), the pathogen load then
decreases in response to the corresponding switch to the larger dose of oxacillin. (b) Pathogen
load versus time for a HAP patient under treatment Protocols 1 (open circles) and 3 (filled
circles) for the first 72 hours after the initiation of treatment. In each case, after identifi-
cation of the pathogen (at 48 hours under Protocol 1 and at 24 hours under Protocol 3),
the pathogen load then continues to increase, albeit at a reduced rate, during the period of
insufficient dosage of oxacillin (48–72 hours under Protocol 1 and 24–48 hours under Protocol
3).

analysis). Our results are shown in Figure 3, which exhibits the pathogen load,

beginning at the initial switch from imipenem to oxacillin, for each of the four

treatment protocols. Figure 3(a) shows the outcomes for the patient under545

Protocols 3 and 4, the two treatments that switch from imipenem to oxacillin

after 24 hours, but differ by 24 hours in MIC-analysis. Similarly, Figure 3(b)

shows the outcomes under Protocols 1 and 2, the two treatments that switch

from imipenem to oxacillin after 48 hours, but differ by 24 hours in MIC-analysis.

In both comparisons, we see that the delay in MIC-analysis results in higher550

pathogen loads. In Figure 4, we display the patient’s pathogen loads under

all four treatment protocols, to permit further comparison. It is significant to

note the differences in the maximum pathogen loads between protocols (some of

which may well reach fatal levels during the treatment process), due to the delays

in pathogen identification (in Protocols 1 and 2) and in MIC determination (in555

Protocols 1 and 3). Quantification of these differences in this way will likely

prove useful in further comparisons of the four treatment strategies.
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Figure 3: (a) Pathogen load (log(CFU)) versus time (hours) for a HAP patient under treat-
ment Protocols 3 (filled circles) and 4 (solid) for the period of 24–96 hours after the initiation
of treatment. In each case, pathogen identification, and the resulting switch to oxacillin, occur
at 24 hours. Under Protocol 3, the pathogen load increases during the period of insufficient
dosage of oxacillin (24–48 hours). However, in each case, after MIC determination (at 48
hours under Protocol 3 and at 24 hours under Protocol 4), the pathogen then load decreases
in response to the switch to the larger dose of oxacillin. (b) Pathogen load versus time for
a HAP patient under treatment Protocols 1 (open circles) and 2 (dashed) for the period of
48–96 hours after the initiation of treatment. In each case, pathogen identification occurs
at 48 hours. Under Protocol 1, the pathogen load increases during the period of insufficient
dosage of oxacillin (48–72 hours), but in each case, after MIC determination (at 72 hours
under Protocol 1 and at 48 hours under Protocol 2), the pathogen load decreases in response
to the switch to the larger dose of oxacillin.
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Tmt 2: IPM−500 IPM−500 OXA−1000 OXA−1000
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Figure 4: Pathogen load (log(CFU)) versus time (hours) for a HAP patient under treatment
Protocols 1 (open circles), 2 (dashed), 3 (filled circles), and 4 (solid) for the first 96 hours
after the initiation of treatment. Note the differences in the maximum pathogen load for each
protocol, due to differences in the timing of pathogen identification and MIC-analysis.
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4.2. Infection spread with multiple patients

The next demonstrations illustrate the ability of the agent-based portion

of our model to realistically reflect heterogeneity among individuals. Here, we560

model one HCW visiting two different patients on rounds. The time required to

administer care to a patient on each HCW visit is drawn from a Gamma(40,0.25)

distribution with mean 10 minutes and standard deviation 1.58 minutes, with

visits alternating between the two patients, with no downtime between consecu-

tive visits. Each visit provides an opportunity to transfer bacteria between the565

patient and HCW, consistent with the possible exchanges presented in Table 6.

(For this demonstration, we do not permit bacterial exchange directly betwen

the two patients.) Bacteria transfer proceeds as described in Section 3.4. We

present results both in the case of a low transfer probability (equal to 0.01) and

in the case of a high transfer probability (equal to 0.1). For each interaction in570

which transfer is to occur, we fix the fraction of transferred bacteria to be 0.02.

Hence, the results to follow feature two sources of randomness: the service time

for each patient visit, and the per-visit determination of whether bacteria are

transferred between the HCW and patient.

For these demonstrations, we include two pathogen species and one AR-575

profile, so each agent’s BPV has exactly 12 entries. For the first demonstration,

each agent (HCW and both patients) has a zero for each BPV-entry, with the

following exceptions:

• Patient 1 has 105 bacteria/mL of pathogen 1 in C-Cat 1.

• Patient 2 has 105 bacteria/mL of pathogen 2 in C-Cat 1.580

Figure 5 depicts the pathogen loads in each of the six C-Cats for the HCW

and the two patients, both initially and after eight hours. As shown in Fig-

ure 5(a)–(c), the HCW starts initially with no pathogens in any C-Cat. Patient

1 and Patient 2 each have a different pathogen, but same initial loads, present in

C-Cat 1 only. Figure 5(d)–(f) depicts the mean pathogen loads after eight hours585

(starting from the initial loads) under low probability (Bernoulli with p = 0.01)
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of bacterial transfer. Under this low probability, we replicated the simulation

360 times, and, for each C-Cat, considered only the non-zero values present in

that C-Cat across the replications. This collection of non-zero values was used

to compute the mean, and a 90% tolerance interval, for the pathogen load in590

that C-Cat. (A bar plot beneath each of Figures 5(d)-(f) indicates, for each C-

Cat entry, the percentage out of the 360 replications in which the C-Cat entry

resulted in a non-zero value.)

Figure 5(g)–(i) depicts the mean pathogen loads after eight hours (again

starting from the initial loads) under high probability of bacterial transfer595

(Bernoulli with p = 0.1). Again, we replicated the simulation 360 times. For

each C-Cat, we selected at random (from among all the 360 replications) the

same number of values as were used to compute the mean and tolerance inter-

val in the low-probability setting. Although the majority of replications here

resulted in non-zero values present in each C-Cat, using the same number of600

(randomly chosen) values here allows us to present tolerance intervals that are

consistent in both the low- and high-probability settings.

Next, we demonstrate that individual variations can result, even when our

model is applied to hosts that are initially identical. Here, Patient 1 and Patient

2 will begin with identical initial pathogen loads − 105 bacteria/mL of pathogen605

1 in C-Cat 1 and 105 bacteria/mL of pathogen 2 in C-Cat 2. The HCW will

begin with a BPV equal to the zero vector. Figure 6 depicts the pathogen loads

in each of the six C-Cats for the HCW and the two patients, both initially

and after eight hours. Mean pathogen loads and corresponding 90% tolerance

intervals were computed similar to that for Figure 5, but using 240 replications.610

(Because of the larger initial bacterial loads, fewer replications were required to

achieve sufficient non-zero values to produce 90% tolerance intervals.) Again,

notice that bacteria of both types are now present in various C-Cats for the

HCW and both patients, and that the C-Cats populated are fully consistent

with the possible transfers presented in Table 6. Moreover, for both the low615

and high probability simulations, Patient 1 and Patient 2, who had identical

loads initially, have, after eight hours, pathogen loads that differ from each
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Figure 5: Pathogen load (log(CFU)/mL) for two different bacteria species (indicated by
squares and diamonds, respectively) in each of the six colonization categories at different points
in time for one HCW visiting two different patients on rounds. Each given value represents the
mean of non-zero values from among 360 replications. Next to each is a vertical bar to indicate
a 90% tolerance interval. (a)–(c) Initial pathogen loads of two different bacteria species for
the HCW, Patient 1, and Patient 2. (d)–(f) Resulting pathogen loads after eight hours under
low probability (Bernoulli with p = 0.01) of pathogen transfer, and histograms indicating the
percentage of replicates that yielded non-zero bacterial loads in each C-Cat. (g)–(i) Resulting
pathogen loads after eight hours under high probability (Bernoulli with p = 0.1) of pathogen
transfer. Note that, although Patient 1 initially carries only the first bacteria species and
Patient 2 only the second, patient-to-HCW and HCW-to-patient transfer across time result in
both bacteria species being spread, in different amounts, among the HCW and both patients.
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Figure 6: Pathogen load (log(CFU/mL)) for two different bacteria species (indicated by
squares and diamonds, respectively) in each of the six colonization categories at different points
in time for one HCW visiting two different patients on rounds. Each given value represents the
mean of non-zero values from among 240 replications. Next to each is a vertical bar to indicate
a 90% tolerance interval. (a)–(c) Initial pathogen loads of two different bacteria species for
the HCW, Patient 1, and Patient 2. (d)–(f) Resulting pathogen loads after eight hours under
low probability (Bernoulli with p = 0.01) of pathogen transfer, and histograms indicating the
percentage of replicates that yielded non-zero bacterial loads in each C-Cat. (g)–(i) Resulting
pathogen loads after eight hours under high probability (Bernoulli with p = 0.1) of pathogen
transfer. Note that, although both patients start with identical pathogen loads of both bacteria
species, transfer across time results in a heterogeneous distribution of pathogen loads for the
otherwise identical patients.

other. This demonstrates the capacity for heterogeneity of individuals across

time, distinguishing our agent-based approach from a strictly compartmental

model.620

4.3. Effects of service times on infection spread

Our final example illustrates how our model may be used to investigate

clinically-relevant questions through simulation of controlled experiments, even

in the presence of heterogeneities in patient status, event types, and mean-times

between events. Here, we include one bacteria species (S. aureus), one antibiotic625
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(imipenem), and two MIC-levels, resulting in two bacterial strains (one for each

MIC-level), which, for convenience, we will call “sensitive” and “resistant”. We

include four patients (labeled P1, P2, P3, P4) and one HCW. At the start of the

simulation, the HCW is bacteria-free, while each patient carries 104 CFU/ml

of bacteria in its C-Cat 5; P4 carries the resistant strain, while the other three630

carry the sensitive strain. We assume that each patient, due to differing co-

morbidities, requires a different level-of-care, reflected in the length of time (i.e.

service time) that the HCW spends with each. The HCW visits one patient at

the start of each hour, and rotates between them, so each patient is visited every

four hours. The duration of each visit is drawn from a Gamma distribution with635

standard deviation 1.58 minutes and a mean of 5 minutes for P1, 10 minutes

for P2, and 15 minutes for P3. We are interested in the influence that P4’s

service time has on the spread of the resistant strain (initially carried by P4

only) of S. aureus over a 72-hour period. We investigate this by varying P4’s

service time and observing the resulting prevalence of the resistant bacteria in640

the other three patients.

In this experiment, bacteria can mutate from one MIC-level to the other,

with a mutation probability of 10−5. Transfers of bacteria between interacting

agents are possible, according to Table 6, with probability of transfer during

an interaction of length ∆ minutes computed according to formula (7), with645

α = 0.05. For each transfer from a BPV-entry of one agent (the donor), 2% of

the bacteria from that BPV-entry is transferred to the receiving agent.

Each patient visit is comprised of two steps, with a conditional third step:

1. At the start time of the visit, the HCW’s bacteria load in C-Cat 1 is re-

duced by 90%, reflecting effective handwashing and sterilization of equip-650

ment.

2. Possible pathogen exchange.

3. (Conditional) The patient is given a 500 mg. dose of imipenem.

The conditional third step is based on our one included antibiotic-treatment

protocol: A course of six doses, given four hours apart, each dose consisting of655
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500mg of imipenem, administered as IV bolus. We assume that each patient

will begin to exhibit symptoms of infection when that patient’s pathogen load

exceeds 104 in any C-Cat. Consequently, a new course of antibiotics will be

prescribed during a patient visit, provided this threshold condition is exceeded,

unless the patient is already receiving antibiotic treatment, in which case Step660

3 is also executed. This treatment protocol results in serum imipenem con-

centrations that exceed the MIC for the sensitive strain, but not the resistant

strain.

We use the parameter values from Table 10 (with the subscripts suitably

changed for the present setting), with the following exceptions:665

• Here, we use Pmax,i1 = 108 for each C-Cat i.

• The oxacillin parameters listed in Table 10 do not apply here.

• The MIC-values for imipenem are now Λ111 = 0.8 and Λ121 = 8.0 for the

sensitive and resistant strains, respectively.

We run a total of 60 replications of the following experiment:670

• Conduct the one HCW-four-patient simulation for a 72-hour period, re-

peated 40 times.

• Count the number of these 40 runs for which patient P1 has a non-zero

population of the resistant pathogen strain after 36 hours and after 72

hours.675

• Repeat the previous bullet for patient P2 and for patient P3.

• Use the data gathered to compute the frequency of resistant pathogen

carriage in each of P1, P2, and P3 at 36 hours and at 72 hours.

After completion of the 60 replications (requiring about five hours of comput-

ing time on across 40 nodes (10 quad-core Intel Core i5-4570 CPUs @ 3.20GHz,680

running Red Hat Enterprise Linux Workstation release 7.2 (Maipo)), we com-

pute the mean of each of the six quantities computed from each replication,
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Figure 7: The prevalence (as percentage of 60 replications) of resistant S. aureus infection in
at least one C-Cat of Patients P1, P2, and P3, after 36 hours, when Patient P4’s mean service
time is 10 + δ minutes. Results are for (a) δ = −5, (b) δ = 0, and (c) δ = 5. In each case,
vertical bars indicate 95% tolerance intervals.

along with a 90% tolerance interval for each. This experiment is conducted for

three different service times for patient P4: 5, 10, and 15 minutes. Results are

shown in Figures 7 and 8.685

As expected, prevalence increases with larger mean service times, with differ-

ences in prevalence between the three patients reflective of their differing service

times. More noteworthy, results like this can be refined (e.g. by including a finer

mesh of time-values and δ-values) to derive an approximate functional form for

the dependence of prevalence on these parameters. Quantitative results like690

this, reflecting several levels of heterogeneity, can provide added precision and

specificity to the design of resistance-control measures.

5. Discussion

We have presented a new model for simulating the spread of antibiotic-

resistant infections in hospital wards. This model links an agent-based structure695

at the patient/HCW interaction level with a very detailed differential equations

and probabilistic model at the in-host level. We have demonstrated the potential
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Figure 8: The prevalence (as percentage of 60 replications) of resistant S. aureus infection in
at least one C-Cat of Patients P1, P2, and P3, after 72 hours, when Patient P4’s mean service
time is 10 + δ minutes. Results are for (a) δ = −5, (b) δ = 0, and (c) δ = 5. In each case,
vertical bars indicate 90% tolerance intervals.

usefulness of this model by investigating four different treatment strategies for

pneumonia caused by S. aureus. We have also demonstrated the strength of

agent-based simulation in this context − simulating interactions, each with the700

potential for bacterial transfer, between individuals having heterogeneous and

dynamic characteristics. We concluded by demonstrating the potential of our

model to incorporate several levels of heterogeneity, both in terms of patient

characteristics, and in ward-level dynamics. In future work, we will present

further experiments, that will fully encompass both the inter-host and in-host705

components of our model.

The present work has the potential to serve multiple purposes with regard to

antibiotic resistance and hospital-acquired infections. As noted in Section 1, we

designed our model as a tool to permit researchers and health-care profession-

als opportunities to simulate control strategies to assess their relative merits,710

without risking real patients. In addition, this model, and resulting simulation

tool, may serve a valuable educational role, providing opportunities to train

health-care workers on the consequences of infection-control decisions.
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In our effort to create a realistic model that covers multiple levels of dynam-

ics, we face the challenge of deriving reliable estimates for many model param-715

eters. Many have direct biophysical interpretations, and can be estimated from

experimental data (provided the data exists), while others arise from mathe-

matical constructs (e.g. saturation constants), and can be estimated from data

only indirectly, through calibration procedures. These efforts are ongoing with

the authors, and are likely to lead to ideas for new laboratory experimentation.720

Our next order of business will be a thorough sensitivity analysis to identify

those parameters which have the greatest impact on model outcomes. This will

require two very different approaches, given the significant roles that both dif-

ferential equations and agent-based models play in the overall infection model.

Results will be reported in a future paper.725

In other future work, we will extend this model to incorporate additional

factors including:

• Agent self-interaction events: It is often the case that a bacteria species

can be harmless in some agent C-Cats but pathogenic in other C-Cats. It

is possible, e.g., through inadequate personal hygiene, to induce infection730

in oneself by transferring such bacteria from a “safe” C-Cat to a less-

safe one. We will extend the model to include an event type for agents

interacting with themselves, to permit the transfer of bacteria between

C-Cats of a single agent.

• Indicators of infection severity: Our model currently uses bacteria counts735

to measure infection severity. In practice, these numbers are seldom

known, and clinicians rely on indirect measures of infection severity, such

as body temperature, white blood cell count, and other morbidities. We

will investigate the relationship between these quantities and bacterial load

to incorporate these indirect signs, thereby permitting us to more-closely740

parallel the usual patterns of antibiotic therapy.

• Agent mortality: Currently there is no mechanism whereby an agent can

die from infection, regardless of how large the pathogen load becomes. We
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will incorporate a mechanism whereby mortality will become possible for

agents with very high bacterial loads in the most sensitive C-Cats.745

• Refined handling of AR-profiles: We will extend the current means of

modeling antibiotic resistance profiles to permit the number of MIC-values

(the parameter N in equations (1)-(2) to differ between different bacteria-

antibiotic pairs. The current model will also be expanded to allow for

the phenomenon of cross-resistance, in which the mechanism (e.g. efflux750

pumps in Pseudomonas aeruginosa [53]) by which a bacterium achieves re-

sistance to one antibiotic may afford resistance to certain other antibiotics

as well.

• Bacterial toxins: A number of important hospital pathogens, including S.

aureus and P. aeruginosa, produce toxins that can influence the severity755

of an HAI, and which can remain in the body even after the pathogen

population has been cleared. We will incorporate the dynamics of these

toxins into the existing in-host model.

• Antibiotic toxicity: Any antibiotic, in sufficiently-high concentrations, will

be toxic to humans. We will incorporate the effects of antibiotic toxicity760

into our model to more accurately reflect the limitations faced by prescrib-

ing medical personnel.

• Antibiotic interactions: The present model permits treatment of a host

with two or more antibiotics simultaneously, and assumes that the bacte-

riocidal effects are independent and additive. Clinical evidence suggests765

that there are certain antibiotic combinations for which this assumption

is not valid ([54, 55]). We will adapt our model to allow for the possib-

lity of both synergistic and antagonistic effects of antibiotic combination

therapies.

• The role of indwelling devices: It is widely accepted that the use of cer-770

tain indwelling devices (e.g. mechanical ventilators, artificial heart valves,

urinary and central venous catheters) significantly increases a patient’s
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risk for developing an HAI [56], and may influence the risk of antibiotic

resistance [57]. We will extend the model to simulate the connections be-

tween HAIs and these devices, to accurately incorporate these important775

dynamics.

• The role of fomites in HAI: Researchers acknowledge a potential role for

environmental surfaces (fomites) to serve as avenues for pathogen transfer

([58, 59]). We will expand our model to include the effects of fomite trans-

fer of pathogens, with the goal of simulating experiments to determine the780

impact on resistance-levels of a number of proposed disinfection measures

([60, 61]).

We are currently developing a graphical user interface to facilitate model

use, and, upon completion, will make our MATLAB implementation publicly

available.785
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