
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

4-2014

Automated Oracle Generation via Denotational
Semantics
Liang Cao
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Cao, Liang, "Automated Oracle Generation via Denotational Semantics" (2014). Student Work. 2894.
https://digitalcommons.unomaha.edu/studentwork/2894

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2894?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2894&utm_medium=PDF&utm_campaign=PDFCoverPages

Automated Oracle Generation via Denotational Semantics

A thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha

by

Liang Cao

April 2014

Supervisory Committee:

Dr. Haifeng Guo

Dr. Harvey Siy

Dr. Matt Germonprez

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1554731

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1554731

Automated Oracle Generation via Denotational Semantics

Liang Cao, MS

University of Nebraska, 2014

Advisor: Dr. Haifeng Guo

Abstract

Software failure detection is typically done by comparing the running behaviors from

a software under test (SUT) against its expected behaviors, called test oracles. In this

paper, we present a formal approach to specifying test oracles in denotational

semantics for systems with structured inputs. The approach introduces formal

semantic evaluation rules, based on the denotational semantics methodology, defined

on each productive grammar rule. We extend our grammar-based test generator,

GENA, with automated test oracle generation. We provide three case studies of

software testing: (i) a benchmark of Java programs on arithmetic calculations, (ii) an

open source software on license identification, and (ii) selenium-based web testing.

Experimental results demonstrate the effectiveness of our approach and illustrate the

success of the application on the software testing.

i

Acknowledgments

I would like to thank all those who helped me complete my thesis. First and foremost,

I would like to recognize Dr. Haifeng Guo, my supervisory committee chairman and

advisor, for his guidance, patience and academic visions in the completion of this

thesis. I really appreciate him very much for being there every step of the way.

I would also like to thank the rest of my thesis committees, Dr. Matt Germonprez for

helping me develop the graduate background in the methodology studies, and for his

great suggestions, Dr. Harvey Siy for his encouragement, good questions, and

insightful comments.

I want to thank for Dr. Zongyan Qiu, who spent time to help me to discuss the

research questions and provide very helpful suggestions.

Especially, I would like to thank for Yu-Shu Song who cooperated the

implementation of our approach and provided very helpful experimental results for

the research.

Lastly but not least, I would like to thank my parents for their understanding,

unconditional support and encouragement to pursue my education.

ii

Table of Contents

ACKNOWLEDGMENTS ... I

MULTIMEDIA OBJECTS ... IV

INTRODUCTION .. 1

1.1 BACKGROUND... 1

1.2 RELATED WORK ON ORACLES.. 3

1.3 OUR APPROACH .. 6

1.4 ORGANIZATION ... 10

SECTION 2 GRAMMAR-BASED TEST GENERATION .. 12

2.1 BACKGROUND... 12

2.2 RELATED WORK ... 12

2.3 THE APPROACH WE USE .. 12

2.4 BALANCE RESULTS ... 13

SECTION 3 DENOTATIONAL SEMANTICS ... 15

3.1 BINARY NUMERAL EXAMPLE ... 16

3.2 ARITHMETIC EXPRESSIONS EXAMPLE .. 21

SECTION 4 A DENOTATIONAL SEMANTIC APPROACH FOR ORACLE AUTOMATION 25

4.1 AN APPLICATION OF THE APPROACH .. 26

4.2 AUTOMATING THE APPLICATION OF VALUATION FUNCTIONS ALONG WITH TEST GENERATION 27

4.2.1 Underived String.. 27

4.2.2 Dynamically growing semantic tree associated with test generation 29

4.2.3 Example ... 32

4.3 EVALUATION FUNCTIONS FOR SEMANTIC TREE AND THE GENERATION OF THE ORACLE 34

4.4 ALGORITHM ... 35

SECTION 5 EXPERIMENTAL RESULTS ... 38

5.1 LICENSE SCANNING SYSTEM ... 38

5.1.1 Example: Adaptive Public License 1.0 license .. 39

5.1.2 Example: Apache 2.0 license ... 42

5.2 A GRADING SYSTEM .. 46

5.3 WEB TESTING SYSTEM FOR ONLINE PARKING FEE CALCULATING SYSTEM .. 48

iii

SECTION 6 CONCLUSIONS AND FUTURE WORK .. 51

REFERENCE ... 53

iv

Multimedia Objects

Figure 1.1: Diagram of oracle generation and usage in our applications……………...9

Figure 3.1: Tree depicting the binary numerals “101”……………………………….17

Figure 3.2: Denotational definitions of binary numerals “101”……………………...19

Figure 3.3: Tree depicting arithmetic expression “3 * (4 + 5) - 6”…………………..23

Figure 4.1: CFG input with valuation functions for a subset of arithmetic

expressions…………………………………………………………………………...26

Figure 4.2: Underived string during test case generation process……………………28

Figure 4.3: Internal structure of storage of valuation function in (sub E F)………….30

Figure 4.4: Internal structure of storage of valuation function extending to (F)……..31

Figure 4.5: Semantic tree associated with test case “3*4 - 2”………………………..33

Figure 4.6: Algorithm Evaluation……………………………………………………37

Figure 5.1: Syntax and valuation functions of Adaptive Public License license…….40

Figure 5.2: Syntax and valuation functions of Apache version 2.0 license………….42

Figure 5.3: Semantic definition of the rules for assembleLicense method on Apache

version 2.0 license……………………………………………………………………44

Figure 5.4: Parking lot calculator…………………………………………………….48

Figure 5.5: Parts of syntax and valuation functions of parking lot calculator………..49

Table 2.1: Statistic report for test cases of arithmetic expressions…………………..13

Table 4.1: Production rule index of arithmetic expressions………………………….28

Table 5.1: Report of license scanning results on APL license……………………….42

Table 5.2: Report of license scanning results on Apache version 2.0 license………..45

Table 5.3: Report of grading results on 14 Java program subjects…………………..47

Table 5.4: Report of web testing results on the parking lot calculator……………….50

1

Introduction

1.1 Background

A program fails when it does not do what it is supposed to do [24] and software

testing is the most popular means for practitioners to check the correctness of

programs in order to improve software quality and reliability [23]. Software testing is

a process, or a series of processes, designed to make sure computer code does what it

was designed to do and, conversely, that it does not do anything unintended [1]. In an

ideal world, a program is supposed to be tested in every possible permutation.

However, in most cases this is not possible because creating test cases for all

possibilities is impractical and completing testing of a complex application would

need huge human resources and time. It is not an economically feasible practice if all

(as mentioned above, this simply is not possible) or most cases are generated and

executed manually.

Since software testing is a very labor intensive and hence very expensive process, the

cost of developing software could be dramatically reduced if the testing process can

be automated [4]. Programmers get assistance from test data generator tools in the

generation of test data for a software program.

2

After test data are executed and results of the testing are captured, we still cannot

claim the software testing as a successful one before the test results are validated in

order to determine the correctness of the software behavior. The comparison of results

can be viewing results by human eyeball to determine if they are what we expect for

manual tests. However, it is more complicated with automated tests as each automated

test data provides a set of inputs to the software under test (SUT) and compares the

returned results against what is expected. The results produced by the SUT that need

to be verified are called actual outputs, and the correct results that are used to evaluate

actual outputs are called expected outputs [12]. Expected outputs are generated using

a mechanism called a test oracle. The term oracle may be used to mean some different

things in testing—the expected outputs themselves, the procedure of generating

expected outputs, and the judgment of whether or not the actual outputs are what we

expected [11]. In this article, the term oracle is used to mean an expected output that

can be used to determine whether the software is executed correctly.

Having an oracle is especially important in automatic generation. Effective oracle

approaches try to automate the related generation processes as much as possible.

However, oracle challenges encountered during the process of generating an

automated test oracle need to be addressed. Shahamiri and his colleagues [5]

3

suggested these challenges are output domain generation, input domain to output

domain mapping, and using a comparator to decide on the accuracy of the actual

output. The first challenge is how to provide the output domain automatically because

it can be difficult and expensive to provide the expected outputs manually. An

automated oracle needs automatic output domain generation. The second challenge is

to map the input domain to the output domain automatically. The final challenge is

using the automated comparator to compare expected and actual outputs and decide

whether there is a fault or not.

1.2 Related work on oracles

In the following, some popular oracle generation approaches, which are engaging

these challenges, are reviewed here. Prior studies focus on cause-effect graphs

methods, decision tables methods, artificial intelligence methods, artificial neural

network (ANN) methods and formal methods [5]. These studies show these

approaches can partly or fully address and overcome the challenges of oracle

generation.

Cause-effect graphs and decision tables [13] can be applied to address the challenge

of the mapping from input domain to output domain by fetching logical rules from

4

specifications. Even though there are some tools to create the required structures to

generate the oracles automatically, they still need some human observations and

improvements to achieve the best oracle.

There have been several attempts to apply artificial intelligence methods in order to

make test oracles automatically [5]. As an example, Last and his colleagues [19][20]

introduced a fully automated black-box tester using info fuzzy network (IFN), which

is an approach developed for knowledge discovery and data mining. The method is

designed for a regression test that is inapplicable of a fresh testing and inapplicable

for verifying the newly inserted functionalities.

There also have been several attempts to use ANN to generate test oracles [5]. As an

illustration, Shahamiri and his colleagues proposed a Multi-Networks Oracle based on

to address the mapping challenge and Input/Output Relationship Analysis to

overcome the issue of output domain [21]. Their approach was evaluated using

mutation testing and all of the testing activities were performed automatically. Almost

all of the previous ANN-based oracle studies considered a supervised learning

paradigm to model the software application as test oracles. There are not many studies

investigating unsupervised learning and reinforced learning paradigms [21].

5

Formal oracles may address all the oracle automation challenges and provide a

reliable oracle in case an accurate and complete formal model of the SUT exists.

Pascale Le Gall and his colleagues [18] proposed a formal relation between testing

and program correctness on the level of institutions. They suggested providing an

oracle institution as an intermediate level between programs and requirement

specifications. This oracle framework interprets the program behavior in order to

extract semantics from programs dedicated to deal with correctness. There is some

prior research that shows the approaches generating oracles from semantic of

programs are reasonable. Robinson proposed a semantic test process [16] that

generates tests and test oracles using models of the software [17]. Day and Gannon

[14] have described a system that translates a formal specification of input and output

files into an automated oracle. The specifications from which Day and Gannon

extracted test oracles are divided into a syntax section and semantics section [15]. The

syntax uses BNF grammars to specify the format of input and output files,

respectively. The semantics defines rules that specify the relationship the output must

have with the input. The syntax and semantics sections are compiled together to

obtain an oracle program for checking consistency of an output text with the

corresponding input text. Although all of these studies on semantic oracles show the

6

significance of possibility in generating oracles based on semantics, especially Day

and Gannon’s system shows that semantics sections can be compiled to syntax

sections in order to generate an oracle, none of them fully addresses the question of

how expected outputs can be produced to make the oracle in semantics in automated

framework.

1.3 Our approach

Our study proposes a new automated oracle approach using formal specification. Our

approach targets those SUTs, which require grammar-based structured input data,

including compilers [27], reactive systems [33] and software product lines [28].

Normally, these systems need complex inputs that can be difficult to be tested

systematically [29]. To specify the semantics of the inputs of those SUTs, which are

specified languages, the input grammars need to be extended [34]. The approach in

this paper is strongly tied to the power provided by denotational semantics to achieve

this problem. Denotational semantics is a formal methodology for defining language

semantics. It has been widely used in language development and practical applications

[35] [36], and has been proved to be an approach for precisely defining the meaning

of a language [22].

7

Our approach assigns semantic meaning to structured inputs in a recursive manner,

applies denotational semantics [22] on these semantic meanings to specify expected

outputs in order to satisfy the first challenge about output domain generation

mentioned above. Furthermore, we define valuation functions associated with

grammatical structures of input data to map an input directly to its meaning as the

expected output in order to address the mapping challenge between input domain and

output domain. Our approach in this article is implemented as follows: taking a

context-free grammar, its denotational semantics, in the form of valuation functions,

and the definition of associated methods used in valuation functions as its input; our

automatic test data and oracle generation framework generates test cases and their

oracles based on those inputs. In detail, we use the leftmost derivation strategy for test

generation, meanwhile a semantic tree is built simultaneously with the procedure of

test case generation. The value generated by evaluating the semantic tree where every

derived variable from the structured input is bound with a corresponding semantic

node using defined valuation functions is produced as expected testing output, also

serving as test case’s oracle. As a result, our framework generates a test case along

with its oracle automatically.

Once the test cases are generated, they can be executed and the actual outputs are

compared with oracles to detect software faults. The Figure 1.1 shows the flow

8

including three parts: Test data and oracle generating, software testing, and

validating and analyzing. By extending Gena [2] with our oracle generator, we build

an automatic test data and oracle generator framework. The framework, along with

input and output domain, is shown in Test data and oracle generating. By using the

generated oracles, we apply the test cases on testing subject applications in software

testing and detect the fault for these applications in validating and analyzing.

Software testing and validating and analyzing are used to obtain our experimental

results. Because they are not the work in our oracle generation work, we do not give

the details of the procedure of them here.

9

Figure 1.1: Diagram of oracle generation and usage in our applications

This paper makes the following contributions:

1) We introduce a new formulation of grammar based automated test data

generation in which the goal is to generate test data from grammar, while

simultaneously generating an oracle from semantics, which assigns meanings

10

to grammatically structured input. The syntax, semantics, and valuation

functions of the input data is extracted from software’s specifications.

2) We introduce an algorithm for addressing this extended oracle generating

problem for automated test data generation.

3) We present the results of three empirical studies to illustrate the effectiveness

of the algorithm. The algorithm was applied to three programs, which are a

license scanning system, a grading system, and an online parking fee

calculating system.

1.4 Organization

The rest of the paper is organized as follows. Section 2 addresses the main challenges

on grammar-based test generation and the approach we adopt to generate the test case.

Section 3 introduces denotational semantics, which is the approach we used to

generate the oracle. Section 4 presents our approach for oracle automation. Section

4.1 introduces an application of the approach. Section 4.2 illustrates the process of

automating an application of our approach. Underived string, dynamically growing

semantic tree and an example are included. Section 4.3 introduces the evaluation

functions for a semantic tree. Section 4.4 addresses the algorithm of evaluation of the

semantic tree. Section 5 presents a Java-based implementation and our experimental

11

results of testing on a license scanning system, a grading system and a web testing

system, respectively. Conclusions and future work are given in Section 6.

12

Section 2 Grammar-based test generation

2.1 Background

Grammar-Based Test Generation (GBTG) is an approach to test generation that

employs context-free grammars to create sets of test cases [6]. The context-free

grammar (CFG) describes the syntax of the input to the SUT. GBTG takes generative

context-free grammars as an input and produces strings that conform to the syntax of

the inputs of the SUT.

2.2 Related work

The work of Hanford who generated PL/1 programs for compiler testing [1] was the

earliest known application of CFGs to testing; years later, Bird and Munoz applied

GBTG to compiler testing, sort/merge utilities, and graphical output applications

[6][7]. Burgess utilized grammars for automatically generating test sets for optimizing

Fortran compilers [6][8][9]. Sirer developed a language named lava to test Java

Virtual Machine [10]. Then much of the later work in GBTG focuses on network

protocol testing [6].

2.3 The approach we use

In our paper, a stochastic grammar-based test generation approach is used to perform

automated test case generation. In order to generate our oracle with test cases that can

be terminated appropriately with good diversity, we adopt Guo and his colleagues’

approach [2], which is a Java-based system named Gena based on their

13

grammar-based test generation algorithm to produce well-distributed test cases while

taking a symbolic grammar as input, requiring zero control input from users. Gena

utilizes a dynamic stochastic model, which guarantees the termination of a single test

case generation. In this model, each variable is associated with a tuple of probability

distributions, which are dynamically adjusted along the derivation. The approach

provides various implicit balance control mechanisms to generate the balanced

distribution of generated test cases over grammatical structures [2]. In the following

sector, an example is used to show the abilities of the approach in termination and

distribution aspects. We apply the leftmost derivation to input variables.

2.4 Balance Results

Table 2.1 shows a statistic report of the first 1000 generated arithmetic expressions,

which is an example in [2] by Gena, given a symbolic grammar as follows:

E :: = F | E + F | E – F

F :: = T | F * T | F / T

T :: = [N] | (E)

[N] ::= 1..1000

The grammar has only one terminal exit, E -> F -> T -> [N], but the rest are full of

recursive rules.

Table 2.1: Statistic report for test cases of arithmetic expressions

Operators Total Frequencies

+ 2191

- 2165

* 4438

/ 4402

14

() 1859

[N] 14196

By comparing the total frequencies among operators, we can identify how balanced

test case generation is overall. The total frequencies of the operators + and – are close,

which indicates the balanced distribution between two recursive rules under the same

variable E; similar reasons apply on the frequencies observation between * and /. Also,

the total frequencies of the operators indicate the recursive rules are terminated at a

reasonable level.

15

Section 3 Denotational Semantics

In this section, we give a brief introduction on denotational semantics. The

denotational semantics approach maps a notation specification directly to its meaning,

called its denotation [22]. The denotation is usually a mathematical value, such as a

number or a function. No interpreters are used; a valuation function maps the notation

specification directly to its meaning.

Since denotational semantics provides an approach for precisely defining the meaning

of a notation specification [22], we adopt denotational approach to generate oracles,

which equal an input language’s execution results. The approach has three parts:

- Syntax: the appearance and structure of input notation specification,

specified as a context-free grammar;

- Semantics: the assignment of meanings to the input;

- Valuation function: the function of mapping syntax and semantics parts

to generate the expected output.

Normally, a SUT’s input specification in context-free grammars is a formal language

when it takes grammar-based structured inputs. The valuation function, which

connects syntax and semantics parts, is defined structurally and its domain is the set

of derivation trees of the language. It determines the meaning of a derivation tree by

determining the meanings of its subtrees and combining them into a meaning for the

16

entire tree, which is the expected result of the input language, serving as the oracle of

the SUT.

In the following sector, two examples are used to show the approach.

3.1 Binary numeral example

The following illustrations show the example of binary numerals based on an example

in [22]:

Binary numeral’s syntax definition:

B :: = D | B D

D :: = 0 | 1

Binary numeral’s semantics definition:

Domain N = Integer (0, ∞)

Operations

 0, 1, 2, … : N

 +: N + N -> N

 *: N * N -> N

The following tree depicts the binary numerals “101”:

17

Figure 3.1: Tree depicting the binary numerals “101”

The tree’s internal nodes represent non-terminals of the syntax definition.

The meaning of the digit subtree:

is the number 0.

We might state this as:

That is, the D valuation function maps the tree to its meaning, 0. Similarly, the

meaning of the other binary digits in the tree is one; that is:

We use the following one-dimensional form to represent these two-dimensional

equations by using double brackets. The double brackets surrounding the subtrees are

used to clearly separate the syntax pieces from the semantic notation.

18

ValueD[[0]] = 0

ValueD[[1]] = 1

Furthermore, we use the same way to determine the meanings of the binary numeral

trees. Looking at the leftmost B-tree, we see it has the form:

The meaning of this tree is just the meaning of its D-subtree, that is, 1. In general, for

any unary binary numeral subtree

we have ValueB[[D]] = ValueD[[D]].

The principle of binary arithmetic dictates that the meaning of this tree must be the

meaning of the left subtree doubled and added to the meaning of the right subtree.

We write this as ValueB[[BD]] = (ValueB[[B]] * 2) + ValueD[[D]]. Using this

definition we complete the calculation of the meaning of the tree.

19

Figure 3.2: Denotational definitions of binary numerals “101”

Figure 3.2 shows complete denotational definitions of the above binary numeral

example

Syntax:

B :: = D | B D

D :: = 0 | 1

Semantics:

Domain N = Integer (0, ∞)

Operations

 0, 1, 2, … : N

 +: N + N -> N

 *: N * N -> N

Valuation functions:

20

B:

ValueB[[BD]] = (ValueB[[B]] * 2) + ValueD[[D]]

ValueB[[D]] = ValueD[[D]]

D:

 ValueD[[0]] = 0

 ValueD[[1]] = 1

When we determine the meaning of the tree in the above diagram, we represent the

tree in its linear form [[101]], using the double brackets to remind us that it is indeed a

tree. We mimic the tree transformation in the leftmost derivation manner and begin

with:

ValueB[[101]] = (ValueB[[10]]* 2) + ValueD[[1]]

The ValueB[[BD]] equation of the B function divides [[101]] into its subparts. We

continue:

(ValueB[[10]]* 2) + ValueD[[1]]

= (((ValueB[[1]]* 2) + ValueD[[0]] * 2) + ValueD[[1]]

= (((ValueD[[1]]* 2) + ValueD[[0]] * 2) + ValueD[[1]]

= (((1 * 2) + 0) * 2) + 1

= 5

21

In the above example, the valuation functions are applied to mapping the above

syntax and semantics, and we know binary numeral “101”’s meaning is 5. In our

grammar-based test generation, the binary numeral “101” is the test case, and its

meaning, 5, is the oracle.

3.2 Arithmetic expressions example

The following illustrations show the example of taking an arithmetic expression and

performing its integer evaluation in a Java application using the denotational

semantics approach.

The syntax of the input language represented by integer arithmetic expressions is

given as the following:

E :: = F | E + F | E – F

F :: = T | F * T | F / T

T :: = [N] | (E)

[N] ::= 1..1000

where [N] is an abstract notation from a finite domain of integers. We will generate

the oracle for the arithmetic expression “3 * (4 + 5) - 6” from denotational semantics.

22

Arithmetic expressions’ semantics, like their expected result in the Java application,

are typically integrated as integers with a set of standard arithmetic operators, such as

“+”, “-”, “*” and “/”. The semantics definition is given as the following:

Domain N = Integer (0, ∞)

Operations

 0, 1, 2, … : N

 +: N + N -> N

 -: N - N -> N

 *: N * N -> N

 /: N / N -> N

The denotational semantics is defined by four types of valuation functions: ValueE,

ValueF, ValueT, and ValueN, which map their corresponding grammatical structures

to their respective semantics. The full valuation functions are given as the following:

ValueE[[F]] = ValueF[[F]]

ValueE[[E+F]] = ValueE[[E]] + ValueF[[F]]

ValueE[[E-F]] = ValueE[[E]] - ValueF[[F]]

ValueF[[T]] = ValueT[[T]]

ValueF[[F*T]] = ValueF[[F]] * ValueT[[T]]

ValueF[[F/T]] = ValueF[[F]] / ValueT[[T]]

23

ValueT[[[N]]] = ValueN[[[N]]]

ValueT[[(E)]] = (ValueE[[E]])

ValueN[[[N]]] = N

where double brackets are used to represent grammatical structures, a derivation

subtree in practice. And, the symbolic terminal [N] is treated as a terminal, which is

substituted by a random element from its domain in practice.

The following derivation tree depicts the arithmetic expression “3 * (4 + 5) - 6” in the

leftmost derivation manner:

Figure 3.3: Tree depicting arithmetic expression “3 * (4 + 5) - 6”

24

When we determine the meaning of the input expression 3*(4+5)-6 in the above

diagram, we represent in its linear form ValueE[[3*(4+5)-6]]. We mimic the tree

transformation in the leftmost derivation manner:

ValueE[[3*(4+5)-6]] = ValueE[[3*(4+5)]] – ValueF[[6]]

= ValueF[[3 * (4+5)]] – ValueT[[6]]

= ValueE[[3]] * ValueT[[(4+5)]] – ValueT[[6]]

= ValueF[[3]] * (ValueE[[4+5]]) – ValueT[[6]]

= ValueT[[3]] * (ValueE[[4]]+ ValueF[[5]]) – ValueT[[6]]

= ValueT[[3]] * (ValueF[[4]]+ ValueT[[5]]) – ValueT[[6]]

= ValueT[[3]] * (ValueT[[4]]+ ValueT[[5]]) – ValueT[[6]]

= ValueN[[3]] * (ValueN[[4]]+ ValueN[[5]]) – ValueN[[6]]

= 3 * (4 + 5) – 6

= 21

The denotational semantics approach maps input data directly to its expected results

of a SUT, which provides a solution for the challenges of oracle output generation and

mapping between input domain and output domain. Based on this observation, we

adopt the denotational semantics for automated test oracle generation.

25

Section 4 A denotational semantic approach for oracle

automation

The essential challenge in oracle automation is how to decide output domain and map

input domain to output domain. Our approach utilizes an automated framework that

generates test oracles based on denotational semantics, which addresses the output

domain and the mapping challenge described in the previous section. Our framework

extends denotational semantics on Gena [2], which is an automatic grammar-based

test generator with good termination and distribution aspects introduced in sector 2.

To adopt the denotational semantics approach on Gena, we mainly work in the

following parts:

- Implementing semantic domain along with associated operations

- Specifying semantic valuation functions along with the CFG input

- Automating the application of valuation functions along with test

generation

Semantic domains are determined by the SUT. Our framework provides an interface

for users to define a semantic domain and its associated operations as Java class and

methods, respectively. We introduce the specifications of our approach on an example

in the following section.

26

4.1 An application of the approach

Considering an arithmetic expressions example, we define a semantic domain in a

domain Java class. We also define an integer instance variable, which will eventually

hold the semantic result of the input and a set of methods (including “plus”, “sub”,

“mul”, and “div”) supporting the standard integer arithmetic operations. We extend

CFG input with LISP-like notation to define denotational semantics. Furthermore, we

compute semantic values by using lambda calculus. One reason for this is that

denotational semantics expresses its definition using the higher-order functions of the

lambda calculus; another reason is that lambda calculus’ uncomplicated syntax and

semantics provide the power to represent all computable functions.

The CFG input with valuation functions for a subset of arithmetic expressions is

shown in Figure 4.1:

Figure 4.1: CFG input with valuation functions for a subset of arithmetic expressions

Given the above semantic definitions, each production rule is equipped with valuation

functions by a delimiter “@@”. In the case of the production rule in line (2), the input

27

data contains a grammar structure E + F, and its semantic value can be computed by

lambda expression λE.λF. (plus E F). Here the value of the expression is the

evaluation of applying associated operation “plus”, which is defined in the domain

class on the formal argumentλE.λF., which are omitted in valuation functions due to

their implication in the production rules. Similarly, in the case of the production rule

(E :: = F @@ (F)) formal argument λF. is omitted. Furthermore, because there is a

singleton argument listed in the valuation function, the value of the expression is the

result of the singleton.

4.2 Automating the application of valuation functions along with test

generation

4.2.1 Underived String

Our automated test data framework generates a test case using the strategy of the

leftmost derivation. The application of the leftmost derivation is illustrated here.

Given a symbolic grammar G = (V, T, P, S), where V is a set of variables, T is a set of

terminals that include symbolic terminals, P is a set of production rules that represent

the relations from V to (V ∪ T)*, and S is the start variable. The derivation is in the

form of E⇒Ri ω , where E is a variable in V and ⇒Ri is a single leftmost derivation

applying the i-th production rule of E, ω ∈ (V ∪ T)∗.

We define the production rule index for given grammar and semantic rules as follows:

28

Table 4.1: Production rule index of arithmetic expressions

Variable for derivation: V Production Rule Index: Ri Production rule

E E1 F

E E2 E + F

E E3 E - F

F F1 T

F F2 F * T

F F3 F / T

T T1 [N]

T T2 (E)

We include underived variables in underived string, which initially starts from root “E”

in the above example. When we generate test case “3*(4+5)-6/2”, the underived string

will be updated during the test case generation process as shown in Figure 4.2:

Figure 4.2: Underived string during test case generation process

where each [N] is automatically substituted with a random integer from its domain

during the generation.

29

4.2.2 Dynamically growing semantic tree associated with test generation

In our framework, test data is generated by using the strategy of the leftmost

derivation. When the derivation travels through these production rules, a semantic tree

is built dynamically along with the procedure of test case generation to support oracle

generation by applying the associated valuation functions. During the test case

generation, derived variables are bound with corresponding semantic nodes. There are

two types of semantic nodes, a regular node and a λ-node. A regular node includes the

following three parts:

- A derived variable V or a semantic terminal

- A link to a semantic subtree that presents the semantic value of V

- A link to a peer semantic node that appears in valuation functions

A λ-node includes the following three parts:

- A derived variable V

- A link to the formal argument part of lambda expression

- A link to the body part of lambda expression

In Figure 4.3, a semantic subtree with the valuation function specified in production

rule (E :: = E – F @@ (sub E F)) is presented:

30

Figure 4.3: Internal structure of storage of valuation function in (sub E F)

where node (1) is a λ-node, which is colored by gray and the rest are regular nodes. A

special symbolic “∧” is used to denote a null link. In the expression body part, nodes

(2), (3), and (4) represent the valuation function (sub E F). “sub” in node (2) is a

built-in function in Java, defined in domain class; the semantics of E at node (3) and F

at node (4) will be obtained from the associated formal argument part, node (5) and

node (6), respectively; while the semantics of E at node (5) and F at node (6) in the

formal argument part will be extended recursively when E and F are further derived

during test generation.

To perform such a recursive extension on the semantic tree with test generation, our

framework binds every underived variable of test generation with a corresponding

regular semantic node. Once this variable is derived by applying a production rule, its

bound semantic node will be extended with a semantic subtree based on its associated

valuation function, rooted by a λ-node representing this derived variable. We still use

the above figure as an example. Consider the underived variable E of test case in body

part of E ::= E – F, which is bound to node(5). When grammar rule (E ::= F) is

31

applied to variable E in test case generation process, its bound semantic node, node(5),

is extended with subtree rooted by λ-node, node(7), based on equipped valuation

function (F) in production rule E ::= F. Also the body part of lambda expression is

presented as node (8), and the formal argument part is presented as node (9). The

extended semantic tree is shown as follows:

Figure 4.4: Internal structure of storage of valuation function extending to (F)

Since the associated semantic tree is extended simultaneously along the process when

the derivation path is traveled, the built semantic tree is accurately mapping with the

derivation path, which represents as a test case. We refer to the underived string,

which includes the underived variable information mentioned in section 4.2.1 to

extend the semantic tree in our application.

32

4.2.3 Example

Given the symbolic grammar in section 4.2.1, the Figure 4.5 shows a complete

sequence of the extension procedure of the semantic tree for the test case “3*4 - 2”.

A variable with a superscript (e.g. E(1)) indicates that the variable is bound with a

semantic node where the number in superscript is shown.

Starting from root E, the underived string is “E(1)”. The semantic node, node (1), is

established to associate this underived variable E.

33

Figure 4.5: Semantic tree associated with test case “3*4 - 2”

As the derivation moves on from E(1) to E(2) + F(2) and the underived string is updated

to “E(2) F(3)”, a subtree based on functionλE.λF. (sub E F) in 3-rd production rule of E

is extended under node E, where formal argument E and F are bound to the semantic

node node (2) and node (3), respectively; Then, according to the leftmost derivation

strategy, the underived string is updated to “F(4) F(3)” and a semantic subtree is

34

extended under node (2). The subsequence is executed, and eventually a symbolic

terminal variable [N] is reached. An instance number is generated and stored in its

corresponding semantic node. Here, the number is 3 for [N](8). Similarly, the semantic

tree is extended under node (3), and eventually the whole semantic tree for test case

“3*4 - 2” is built.

4.3 Evaluation functions for semantic tree and the generation of the

oracle

We apply evaluation functions on the following semantic tree, which is built as an

example in the previous section for test case “3*4 - 2”. The value of λ-node E under

node (1) is the semantic value for node (1). So the next step is evaluating thisλ-node E.

It is the evaluation ofλ-expression applying calculus expression based on body parts

(sub E F) on formal argument node E at (2) and node F at (3). Similarly, the λ-node

value will be calculated recursively.

Let Evaluation(node) be the function to evaluate the node in the semantic tree. Here

we present nodes with the indices of their positions.

Evaluation(E(1)) = (sub Evaluation(E(2)) Evaluation(F(3)))

= (sub Evaluation(F(4)) Evaluation(F(3)))

= (sub (mul Evaluation(F(5)) Evaluation(T(6))) Evaluation(F(3)))

= (sub (mul Evaluation(T(7)) Evaluation(T(6))) Evaluation(F(3)))

35

= (sub (mul Evaluation([N](8)) Evaluation(T(6))) Evaluation(F(3)))

= (sub (mul 3 Evaluation(T(6))) Evaluation(F(3)))

= (sub (mul 3 Evaluation([N](9))) Evaluation(F(3)))

= (sub (mul 3 4) Evaluation(F(3)))

= (sub (mul 3 4) Evaluation(T(10)))

= (sub (mul 3 4) Evaluation([N](11)))

= (sub (mul 3 4) 2)

= (sub 12 2)

= 10

In our grammar-based test generation, the test case “3*4-2” is generated and its

associated semantic tree is evaluated as “10”, the oracle of the test case, which equals

the expected value of the test case.

4.4 Algorithm

We present a detailed pseudo-code for the evaluation function in our automatic oracle

generation framework. To support the oracle generation, a semantic tree is gradually

constructed along a derivation path traveled during a test generation. A semantic tree

node contains a variable and two links. The first one is the link to a subtree that

contains formal arguments to calculate the value of the variable; the second is the link

36

to a subtree that contains the body of the lambda expression. A link is null value if the

subtree is empty. The methods associated with semantic tree evaluation are described

as follows:

– int getValue: return the value of the subject node; null is returned if the value does

not exist.

– void setValue(int): set the value to the subject node.

- int getValueByApplyingOperator: return the value of a node’s lambda calculation.

In detail, the value of formal arguments obtained from the first link of the subtree is

applied to an expression in which the operators and parameters are found in the

second link. The operators are defined in domain class.

- Node[] getArgumentNodes: return formal argument nodes of the input node if they

exist; null is returned if no node exists.

1: Global: semantics G = (V, T, P, S)

2: Input: a semantic tree parent node, sNode;

3: Output: oracle

4: function int Evaluation (sNode)

5: if (sNode is in form of [N]) then ⊲ encounter terminal, end of a recursion

6: Let r is random integer value in defined domain

7: return r

8: else

9: nodes <- sNode.getArgumentNodes() ⊲ get argument nodes

10: for (node in nodes)

11: if (node.getValue is null) then

37

12: node.setValue(Evaluation(node)) ⊲ get nodes’ value by recursively

computing their subtree.

13: end if

14: end for

15: return sNode.getValueByApplyingOperator() ⊲ apply operator on the

computation of nodes

16: end if

17: end function

Figure 4.6: Algorithm Evaluation

The algorithm shows the evaluation function to generate the meaning of a semantic

tree. We first check whether the recursion is end; if that is the case, a random integer

value will be returned (lines 5-7). If there exists a subtree structure for the subject

node, we define the nodes that are formal arguments of the subject node to obtain the

value of the subject node (line 9). Then we recursively get these nodes’ values (lines

10-14). Lastly, we apply these argument nodes to the operator and return the result,

which is the value of the semantic tree whose root is the input node (line 15).

38

Section 5 Experimental Results

We have carried out three experiments to measure how generated test oracle and its

associated cases are well mapped over a given symbolic grammar, and how those

input test specifications can be used for automatic testing.

5.1 License scanning system

We have implemented an automatic license text and oracle generation system for an

open source license scanning tool. Considering an open source license scanning tool

takes a free format text as an input string, performs license identifying operations to

discover open source license, and finally returns the identified license name. We

generated oracle, which is an expected license name, along with our test case, which

is a free format text containing license key words. The actual output from the license

scanning tool and oracle are compared for every test case.

The FOSSology license scanning tool [26] is our software test subject in this study.

To identify a sample license from a free format text by FOSSology, some contents are

selected from the sample license specification and used as key words in the

FOSSology license discovery module. Once these key words in sample license

specifications are identified in an input string, FOSSology will “suggest” this license

39

is identified. During the scanning procedure, FOSSology changes all input strings to

lower case to mitigate case sensitive issues.

5.1.1 Example: Adaptive Public License 1.0 license

Given open source Adaptive Public License 1.0 license (APL-1.0) specification [30]

and FOSSology license scanning specifications, we summarized APL license’s input

specification as follows:

(1) “This License is adaptive, and the generic version” string is contained;

(2) “Adaptive Public License Version 1.0” or “Adaptive Public License

v1.0” string is contained;

(3) The word spelling “license” can be “license” or “licence”;

If the text string meet specification (1) and it does not meet specification (2), then an

“APL” license can be identified; if the text string meet specification (1) and (2) at the

same time then an “APL-1.0” license can be identified. No appearance order for

specification (1) and (2) is demanded. Specification (3) is applied to specifications (1)

and (2). According to these specifications, we defined the following syntax in Figure

5.1:

40

Figure 5.1: Syntax and valuation functions of Adaptive Public License license

We established two patterns of test cases, which are the production rules at line 1 and

line 2, based on corresponding specifications. The production rule at line 3 associates

with specification (1); the production rule at line 5 associates with specification (2);

according to specification (2), we also defined the production rules at lines 8, 9 and 10

to represent different format of version information; and we defined the production

rules at lines 6, 7 based on specification (3); the production rule at line 4 was

established in order to meet specification (1) and (2) at the same time. Here, we

introduced operator “=AND=” to address the conjunction relationship of two

variables next to “=AND=”. For example, in S2 ::= S1 =AND= APLTITLE @@

(assembleLicense S1 APLTITLE)(line 5), the generated license text S2 includes

license text segment S1 and APLTITLE.

A valuation function defined behind the delimiter ‘@@’ provides semantic value for

the variable defined before the delimiter. For example, in S2 ::= S1 =AND=

41

APLTITLE @@ (assembleLicense S1 APLTITLE)(line 5), S2’s semantic value can

be calculated via the λ-expressionλS1.λAPLTITLE.(assembleLicense S1 APLTITLE),

where the value of argument S1 and APLTITLE is calculated from further derivation.

If the semantic value is defined directly without further processing, the valuation

function simply relays the result from the expression. For example, in S1 ::= 'This '

LICENSE ' is adaptive, and the generic version' @@ ('APL') (line 3), 'APL'after

delimiter ‘@@’ is the semantic value for variable S1.

The semantic domain and associated methods are defined in a domain class in our

framework. In the given case, we define the operation “assembleLicense”, which

induces a certain license when listed variables’ information meets certain license

assemble rules. The following license assemble rule based on the APL 1.0 license

specification [30] is defined for the method: “{APL, APLTITLE}-->APL-1.0”, where

“-->” indicates the license component on the right side can be induced from the

license components bracketed in {} on the left side.

Table 5.1 shows license scanning results on 18 APL specified license strings, which

cover all derivation paths of given input grammar, by running these license texts on

the FOSSology license scanning tool [26]. We categorized the percentage of the test

cases in all cases according to actual outputs and their oracles.

42

Table 5.1: Report of license scanning results on APL license

Case

Number

Percentage

in all cases
Oracle Actual output

1 2 11% APL APL

2 16 89% APL-1.0 APL-1.0

The above table shows there is no test case where the actual output is different from

its oracle.

5.1.2 Example: Apache 2.0 license

Consider a more complicated example -- the open source Apache 2.0 license. We

input the following grammar and valuation function based on the specifications,

which we summarized according to the Apache 2.0 license’s specifications [25] and

the FOSSology license scanning specifications:

APACHE20 ::= S1 @@ (S1)

APACHE20 ::= S2 @@ (S2)

APACHE20 ::= S3 @@ (S3)

APACHE20 ::= S4 @@ (S4)

APACHE20 ::= S5 @@ (S5)

APACHE20 ::= S6 @@ (S6)

APACHE20 ::= S7 @@ (S7)

APACHE20 ::= S8 @@ (S8)

APACHE20 ::= S9 @@ (S9)

S1 ::= REFERENCE @@ ('APACHE-2.0')

S2 ::= LICENSE =AND= VERSION @@ (assembleLicense LICENSE

VERSION)

S3 ::= URLAPACHE2 @@ (URLAPACHE2)

S4 ::= URLOPENSOURCEAPACHE2 @@ (URLOPENSOURCEAPACHE2)

S5 ::= APACHE DELIMITER V2 =AND= A1 @@

('APACHE_V2-POSSIBILITY')

S5 ::= A1 =AND= APACHE DELIMITER V2 @@

('APACHE_V2-POSSIBILITY')

43

S6 ::= BSD =AND= PREFIX =AND= REFERENCE @@ (assembleLicense

BSD PREFIX REFERENCE)

S7 ::= BSD =AND= LICENSE =AND= REFERENCE @@ (assembleLicense

BSD LICENSE REFERENCE)

S8 ::= ASF =AND= LICENSE =AND= VERSION2 @@ (assembleLicense ASF

LICENSE VERSION2)

S9 ::= BSD2 =AND= LICENSE =AND= VERSION2 @@ (assembleLicense

BSD2 LICENSE VERSION2)

BSD ::= 'distribution and use in source and binary forms' MOD ' ' ISARE ' '

PERMIT ' provided that' @@ ('BSD')

BSD2 ::= 'distribution of the source code in binary form must reproduce' @@

('BSD2')

BSD2 ::= 'distribution in binary form must reproduce' @@ ('BSD2')

MOD ::= '' | ' with or without modifications' | ' with or without modification'

ISARE ::= 'is' | 'are'

PERMIT ::= 'permitted' | 'permitted for any purpose'

ASF ::= 'copyrighted software available under a free-to-use- ' A1 ' by the apache

software foundation' @@ ('ASF')

LICENSE ::= APACHE ' ' A1 @@ ('APACHE')

LICENSE2 ::= APACHE ' ' SERIES ' ' A1

V2 ::= 'v2' | 'v2.0'

URLAPACHEU ::= WWW DOT 'apache' DOT 'org/licenses/' @@

('VERSION-UNKNOWN')

URLAPACHE2 ::= WWW DOT 'apache' DOT 'org/licenses/license-2.0' @@

('APACHE-2.0')

URLOPENSOURCEAPACHE2 ::= WWW DOT 'opensource' DOT

'org/licenses/apache-2.0' @@ ('APACHE-2.0')

DOT ::= '' | '.'

WWW ::= 'www' | 'http://www'

A1 ::= 'licence' | 'license'

APACHE ::= 'Apache' | 'APACHE' | 'apache'

DELIMITER ::= ' ' | '_' | '-' | ''

PREFIX ::= COPYRIGHT ' ' YEAR ' ' APACHE ' ' APACHESUFFIC @@

('APACHE')

COPYRIGHT ::= '©' | '(c)' | 'copyright' | '©'

YEAR ::= YEARNUM SUFFIX

SUFFIX ::= ',' | '-' | ' '

APACHESUFFIC ::= 'group' | 'software' | 'foundation'

44

YEARNUM ::= '1900' | '2000' | '2025'

REFERENCE ::= REF1 ' under' =AND= LICENSE =AND= VERSION @@

('VERSION2.0')

REFERENCE ::= REF2 ' under' =AND= LICENSE2 @@ ('VERSION2.0')

REF1 ::= 'distributed' | 'offer' | 'offered' | 'released' | 'licensed' | 'available' |

'protected' | 'provided'

REF2 ::= 'distributed' |'modified'

VERSION ::= V SERIES @@ ('VERSION2.0')

VERSION2 ::= SERIES @@ ('VERSION2.0')

VERSION2 ::= V SERIES @@ ('VERSION2.0')

V ::= 'v' | 'version ' | 'v.'

SERIES ::= 20 | 2.0

Figure 5.2: Syntax and valuation functions of Apache version 2.0 license

The following license assemble rules based on the Apache version 2.0 license

specification [25] are defined for the method “assembleLicense” in the domain class

of our framework:

1. {LICENSE}-->APACHE

2. {ASF, APACHE}-->APACHE

3. {APACHE,VERSION2.0}-->APACHE-2.0

4. {BSD,APACHE,VERSION2.0}-->APACHE-2.0,BSD-style

5. {BSD,APACHE}-->APACHE,BSD-style

6. {BSD2,APACHE,VERSION2.0}-->APACHE-2.0,BSD-style

Figure 5.3: Semantic definition of the rules for assembleLicense method on Apache

version 2.0 license

Table 5.2 shows license scanning results on 1000 Apache version 2.0 specified license

strings, which cover all derivation paths of the given input grammar:

45

Table 5.2: Report of license scanning results on Apache version 2.0 license

Case

Number

Percentage

in all cases
Oracle Actual output

1 382 38% APACHE-2.0 APACHE-2.0

2 477 48% Apache-2.0,BSD-style Apache-2.0,BSD-style

3 45 5% Apache-2.0,BSD-style
Apache-2.0,BSD-style,U-Camb

ridge-style

4 84 8% Apache_v2-possibility Apache_v2-possibility

5 12 1% Apache_v2-possibility Apache-possibility

The Row 3 and 5 show the test cases where the actual outputs are different from their

oracles, and it indicates that there may be some failed instances for Apache version

2.0 scanning module in FOSSology.

Regarding the test results in row 3, we confirmed that the key word “in source and

binary forms is permitted provided” in the BSD-style license is also used as a key

word in the U-Cambridge-style license scanning module. FOSSology reported the

generated test cases, which meet BSD-style license specifications also meet

U-Cambridge-style license specification. In the aspect of identifying the Apache 2.0

license, there is no inconsistency found and no fault is found in associated scanning

modules.

Regarding the test results in Row 5, “Apachev2” is considered as one acceptable form

for an Apache v2 possible license. However, the test results were inconsistent with

expectations where the test cases in form of “license … apachev2” are identified as

Apache-possibility instead of Apache_v2-possibility. With the power of an oracle, we

46

located the fault in the software successfully and significantly reduced the cost to

generate expected output from massive test cases.

5.2 A Grading System

We extended our oracle generator to Gena [3] as an automatic grading system for Java

programs. Consider a Java programming assignment, which takes an infix arithmetic

expression as an input string, then convert the input to expression and calculate this

expression to return a number. We used our framework to generate arithmetic

expressions and their oracles. Then we compared returned numbers from Java

program subjects, which take generated arithmetic expressions as inputs with our

generated oracles to detect failing cases. The context-free grammar of the arithmetic

expression and its valuation functions are defined as follows, which was introduced in

Figure 4.1 and used as an example in Section 4:

(1) E :: = F @@ (F)

(2) E :: = E + F @@ (plus E F)

(3) E :: = E – F @@ (sub E F)

(4) F :: = T @@ (T)

(5) F :: = F * T @@ (mul F T)

(6) F :: = F / T @@ (div F T)

(7) T :: = [N] @@ ([N])

(8) T :: = (E) @@ (E)

(9) [N] ::= 1..1000

As we mentioned in Section 4, the operations in valuation functions are defined with

standard Java arithmetic operations in the domain class in our framework. Table 5.3

47

shows the report of grading results on 14 Java program subjects, by running 1000

different arithmetic expressions generated by our framework. Because the generated

arithmetic expressions can be very complex (e.g.

766+2*(359*840)/249/(429-184+711)-105-389+314), automated generated oracles

can significantly reduce the time of calculating expected value based on test cases

independently. By comparing the oracle with the actual output number from those

Java programs, we collected the ratios of correctness for each subject. For example,

the first subject performs correctly on 14% of the 1000 test cases. We located the

failing test cases by the power of the oracle and listed the possible causes of the

failure incorporated with typical causes related to processing arithmetic expressions.

Table 5.3: Report of grading results on 14 Java program subjects

Correctness

Ratio
Possible Causes

1 14% Right-associativity

2 78% Parenthesis not properly handled

3 100%

4 2% Not working at all

5 9% Right-associativity; operator precedence ignorance

6 6% Right-associativity; operator precedence ignorance

7 53% [N] * [N] /[N]

8 100%

9 68% Partial operator precedence ignorance

10 100%

11 14% Right-associativity

12 54% Operator precedence ignorance

13 4% Operators not supported

14 10% Right-associativity and parenthesis problem

48

5.3 Web testing system for online parking fee calculating system

We also applied our oracle generation approach to Song’s application [31], a

selenium-based web testing system. A real world web application, a parking lot

calculator of Gerald Ford International Airport (http://www.grr.org/ParkCalc.php),

was used as our test subject in this application, as shown in Figure5.4.

Figure 5.4: Parking lot calculator

The parking lot calculator takes parameters including entry date and time, leaving

data and time, and parking fee type, etc. as input; calculates the fee and returns a

number for the parking cost. Traditionally, people generate test cases for web test by

submitting parameters to servers and executing them, manually or automatically, to

obtain the expected output. The procedure can be costly in time and money. We

applied our oracle generation approach to generate executable JUnit test cases, which

leverages the Selenium web testing framework [32] to test web applications

automatically. Our framework can generate oracles for web-based tests with test cases

http://www.grr.org/ParkCalc.php

49

simultaneously, which improves the efficiency of test procedures of web applications.

Because of space, only main part of the CFG and its valuation functions are attached

here:

Figure 5.5: Parts of syntax and valuation functions of parking lot calculator

Operations in valuation functions were defined in the domain class to calculate time,

data and cost information for derived variables and eventually a cost can be calculated,

50

which was the oracle. We located failing test cases by comparing two values, one was

the oracle of the generated JUnit test case; another was web testing results, which

were the parking costs calculated from the subject system by executing the operation

defined in the JUnit test case. Our approach simplified the process to get expected

results from JUnit test cases instead of executing all test cases manually or

automatically independently.

Table 5.4 shows testing results obtained in Song’s work including failing test cases

ratio and failing test case number by running five different groups of test cases.

Table 5.4: Report of web testing results on the parking lot calculator

 Failing Ratio Case Number Failing Cases Number

1 9% 100 9

2 14.0% 200 28

3 10.7% 300 32

4 11.3% 400 45

5 11.2% 500 56

51

Section 6 Conclusions and future work

We presented an automatic semantic-based oracle generation algorithm based on the

denotational semantic approach. The approach realizes the mapping between the test

case generation and associated oracle generation. Furthermore, we presented

strategies to construct a semantic tree, which represents the semantic meaning of a test

case. Our framework ensures that every generated oracle correctly represents the

meaning of a test case as long as a correct denotational semantics rule associated with

the test case grammar is given.

We have presented an automatic oracle generation framework based on our

algorithms. The framework takes context-free grammar and semantic rules as input,

produces test cases along with an associated oracle. Experimental results demonstrate

the effectiveness of our oracle generation.

In the future, we will continue to enhance our framework in the following aspect:

- The optimization of the semantic tree:

We noticed the possibility of simplifying the semantic tree structure from the

experiments of our approach. The current framework binds each underived

variable of test generation with a corresponding semantic node, where a

semantic subtree will be extended when this variable is derived. However,

there is an exception: when the associated valuation function is an identify

52

function, where the output is simply the same as the input. Recall that

because the production rule in arithmetic expression example (E ::= F @@

(F)), the subtree will contain a regular semantic node E. Because this node

does not influence the calculation for the sematic value of E, where λF.(F) is

used, the semantic tree can be optimized to be compact one by omitting this

semantic node.

- More use cases in practical applications:

We collected the experimental results from an open source license scanning

tool, a grading system for Java programs handling arithmetic calculations,

and a web test framework for an online application in this study. The results

illustrate the effectiveness of our oracle generation approach and eventually

an ability of fault detection. However, the experimental subjects are limited

to small or middle scale systems. Because the complexity of input

specifications and evaluation varies from applications, we plan to apply our

approach to larger scale and more complicated applications.

53

Reference

1. K. Hanford: Automatic generation of test cases. IBM Systems Journal 9(4), pages

242-257, 1970.

2. H.F. Guo and Z. Qiu: Automatic Grammar-based Test Generation. In The 25th

IFIP International Conference on Testing Software and Systems, pages 17-32,

2013.

3. H.F. Guo, H. Siy, and Z. Qiu: Locating fault-inducing pattern from structural

inputs. In the 29th Symposium on Applied Computing, Software Engineering

Track, pages 1100-1107, 2014.

4. R. Ferguson and B. Korel: The chaining approach for software test data generation.

ACM Transactions on Software Engineering and Methodology, vol. 5, no 1.

January, pages 63-86, 1996.

5. S.R. Shahamiri, W.M.N.W. Kadir, S. Ibrahim, and S.Z.M. Hashim: An automated

framework for software test oracle. Information and Software Technology (2011),

53(7), pages 774-788, July 2011.

6. L.P. Sobotkiewicz: A new tool for grammar-based test case generation. Master

Thesis, University of Victoria, 2004.

7. D.L. Bird and C.U. Munoz: Automatic generation of random self-checking test

cases. IBM Systems Journal, 22(3), pages 229–245, 1983.

54

8. C. Burgess: The automated generation of test cases for compilers. Software

Testing, Verification and Reliability, 4(2), pages 81–99, 1994.

9. C. Burgess and M. Saidi: The automatic generation of test cases for optimizing

fortran compilers. Information and Software Technology, 38(2), pages 111–119,

1996.

10. E.G. Sirer and B.N. Bershad: Using production grammars in software testing. In

2nd conference on Domain-specific languages, pages 1-13. ACM Press, 1999.

11. D. Hoffman: Heuristic Test Oracles. Software Testing & Quality Engineering

Magazine, pages 29-32 1999

12. J.A. Whittaker: What is software testing? And why is it so hard? IEEE Software

17 (2000) pages 70-79

13. P.C. Jorgensen: Software Testing: a Craftsman’s Approach, second edition. CRC

Press, LLC, 2002.

14. J.D. Day and J.D. Gannon: A test oracle based on formal specifications. In Proc.

SoftFair, A Second Conf. on Software Development Tools, Techniques, and

Alternatives, pages 126-130, San Francisco, Dec 1985. ACM Press.

15. L. Baresi and M. Young: Test Oracles. Technical Report CIS-TR-01-02, August

2001

16. H. Robinson: Using pre-oracled data in model-based testing. Microsoft, July 1999.

55

17. Q. Xie and A.M. Memon: Designing and comparing automated test oracles for

GUI-based software applications. ACM Transactions on Software Engineering

and Methodology (TOSEM) 16(1), February 2007 Article No. 4

18. P. Le Gall and A. Arnould: Formal specifications and test: Correctness and oracle.

11th Workshop on Specification of Abstract Data Types Joint with the 8th

COMPASS Workshop Oslo, Norway, September 19–23, 1995, pages 342-358,

1996

19. M. Last and M. Freidman: Black-box testing with info-fuzzy networks. In M. Last,

A. Kandel, H. Bunke (Eds.), Artificial Intelligence Methods in Software Testing,

World Scientific, 2004, pages 21-50.

20. M. Last, M. Friendman and A. Kandel: Using data mining for automated software

testing. International Journal of Software Engineering and Knowledge

Engineering 14 (2004), pages 369-393.

21. S.R. Shahamiri, W.M.N.W. Kadir, S. Ibrahim, and S.Z. Mohd-Hashim: Artificial

neural networks as multi-networks automated test oracle. Automated Software

Engineering, in preparation. September 2012, 19(3), pages 303-334

22. D. A. Schmidt: Denotational Semantics: A methodology for Language

Development. Wm. C. Brown Publishers. 1988

56

23. M. Last, M. Friedman, and A. Kandel: The Data Mining Approach to Automated

Software Testing. KDD '03 Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 388-396, 2003.

24. S.L.Pfleeger: Software Engineering: Theory and Practice. 2nd Edition.

Prentice-Hall, 2001.

25. APACHE Version 2.0. The Apache Software Foundation,

http://www.apache.org/licenses/LICENSE-2.0, cited March 2014.

26. The FOSSology project. http://www.fossology.org/projects/fossology, cited

March 2014.

27. P. Godefroid, A. Kiezun, and M. Y. Levin: Grammar-based whitebox fuzzing.

ACM SIGPLAN Notices, 43(6), pages 206–215, 2008.

28. E. Bagheri, F. Ensan, and Dragan Gasevic: Grammar-based test generation for

software product line feature models. In the Conference of the Centre for

Advanced Studies on Collaborative Research. IBM, 2012.

29. L.X. Zheng and H.M. Chen: A systematic framework for grammar testing. In

IEEE/ACIS Int. Conf. on Computer and Information Science, 2009.

30. ADAPTIVE PUBLIC LICENSE Version 1.0. University of Victoria,

http://opensource.org/licenses/APL-1.0, cited March 2014.

http://www.apache.org/licenses/LICENSE-2.0
http://www.fossology.org/projects/fossology%202014/03/25
http://www.apache.org/licenses/LICENSE-2.0%202014/03/25
http://www.apache.org/licenses/LICENSE-2.0%202014/03/25

57

31. Y.S. Song and H.F. Guo: Selenium Web Testing via Grammar-based Automation.

Master Thesis-equivalent project report, University of Nebraska, 2014.

32. The Selenium project: http://seleniumhq.org/, cited April 2014.

33. P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber: Automatic testing of

reactive systems. In 32nd IEEE Real-Time Systems Symposium, pagers 200-209,

1998.

34. P.R. Henriques, M.J.V. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu:

Automatic generation of language-based tools using the LISA system. Software,

IEE Proceedings, 152(2), pages 54-69, April 2005.

35. J.W. de Bakker and E.P. de Vink: Denotational models for programming

languages: applications of Banach’s fixed point theorem. Topology and its

Applications, 85(13), pages 36-52, 1998.

36. G. Gupta: Horn logic denotations and their applications. In The Logic

Programming Paradigm, pages 127-159. Springer, 1999.

http://seleniumhq.org/

	University of Nebraska at Omaha
	DigitalCommons@UNO
	4-2014

	Automated Oracle Generation via Denotational Semantics
	Liang Cao
	Recommended Citation

	Automated Oracle Generation via Denotational Semantics

