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Abstract 

Software failure detection is typically done by comparing the running behaviors from 

a software under test (SUT) against its expected behaviors, called test oracles. In this 

paper, we present a formal approach to specifying test oracles in denotational 

semantics for systems with structured inputs. The approach introduces formal 

semantic evaluation rules, based on the denotational semantics methodology, defined 

on each productive grammar rule. We extend our grammar-based test generator, 

GENA, with automated test oracle generation. We provide three case studies of 

software testing: (i) a benchmark of Java programs on arithmetic calculations, (ii) an 

open source software on license identification, and (ii) selenium-based web testing. 

Experimental results demonstrate the effectiveness of our approach and illustrate the 

success of the application on the software testing. 
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Introduction 

1.1 Background 

A program fails when it does not do what it is supposed to do [24] and software 

testing is the most popular means for practitioners to check the correctness of 

programs in order to improve software quality and reliability [23]. Software testing is 

a process, or a series of processes, designed to make sure computer code does what it 

was designed to do and, conversely, that it does not do anything unintended [1]. In an 

ideal world, a program is supposed to be tested in every possible permutation. 

However, in most cases this is not possible because creating test cases for all 

possibilities is impractical and completing testing of a complex application would 

need huge human resources and time. It is not an economically feasible practice if all 

(as mentioned above, this simply is not possible) or most cases are generated and 

executed manually. 

 

Since software testing is a very labor intensive and hence very expensive process, the 

cost of developing software could be dramatically reduced if the testing process can 

be automated [4]. Programmers get assistance from test data generator tools in the 

generation of test data for a software program.  
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After test data are executed and results of the testing are captured, we still cannot 

claim the software testing as a successful one before the test results are validated in 

order to determine the correctness of the software behavior. The comparison of results 

can be viewing results by human eyeball to determine if they are what we expect for 

manual tests. However, it is more complicated with automated tests as each automated 

test data provides a set of inputs to the software under test (SUT) and compares the 

returned results against what is expected. The results produced by the SUT that need 

to be verified are called actual outputs, and the correct results that are used to evaluate 

actual outputs are called expected outputs [12]. Expected outputs are generated using 

a mechanism called a test oracle. The term oracle may be used to mean some different 

things in testing—the expected outputs themselves, the procedure of generating 

expected outputs, and the judgment of whether or not the actual outputs are what we 

expected [11]. In this article, the term oracle is used to mean an expected output that 

can be used to determine whether the software is executed correctly.  

 

Having an oracle is especially important in automatic generation. Effective oracle 

approaches try to automate the related generation processes as much as possible. 

However, oracle challenges encountered during the process of generating an 

automated test oracle need to be addressed. Shahamiri and his colleagues [5] 
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suggested these challenges are output domain generation, input domain to output 

domain mapping, and using a comparator to decide on the accuracy of the actual 

output. The first challenge is how to provide the output domain automatically because 

it can be difficult and expensive to provide the expected outputs manually. An 

automated oracle needs automatic output domain generation. The second challenge is 

to map the input domain to the output domain automatically. The final challenge is 

using the automated comparator to compare expected and actual outputs and decide 

whether there is a fault or not. 

 

1.2 Related work on oracles 

In the following, some popular oracle generation approaches, which are engaging 

these challenges, are reviewed here. Prior studies focus on cause-effect graphs 

methods, decision tables methods, artificial intelligence methods, artificial neural 

network (ANN) methods and formal methods [5]. These studies show these 

approaches can partly or fully address and overcome the challenges of oracle 

generation. 

 

Cause-effect graphs and decision tables [13] can be applied to address the challenge 

of the mapping from input domain to output domain by fetching logical rules from 
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specifications. Even though there are some tools to create the required structures to 

generate the oracles automatically, they still need some human observations and 

improvements to achieve the best oracle.  

 

There have been several attempts to apply artificial intelligence methods in order to 

make test oracles automatically [5]. As an example, Last and his colleagues [19][20] 

introduced a fully automated black-box tester using info fuzzy network (IFN), which 

is an approach developed for knowledge discovery and data mining. The method is 

designed for a regression test that is inapplicable of a fresh testing and inapplicable 

for verifying the newly inserted functionalities. 

 

There also have been several attempts to use ANN to generate test oracles [5]. As an 

illustration, Shahamiri and his colleagues proposed a Multi-Networks Oracle based on 

to address the mapping challenge and Input/Output Relationship Analysis to 

overcome the issue of output domain [21]. Their approach was evaluated using 

mutation testing and all of the testing activities were performed automatically. Almost 

all of the previous ANN-based oracle studies considered a supervised learning 

paradigm to model the software application as test oracles. There are not many studies 

investigating unsupervised learning and reinforced learning paradigms [21]. 
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Formal oracles may address all the oracle automation challenges and provide a 

reliable oracle in case an accurate and complete formal model of the SUT exists. 

Pascale Le Gall and his colleagues [18] proposed a formal relation between testing 

and program correctness on the level of institutions. They suggested providing an 

oracle institution as an intermediate level between programs and requirement 

specifications. This oracle framework interprets the program behavior in order to 

extract semantics from programs dedicated to deal with correctness. There is some 

prior research that shows the approaches generating oracles from semantic of 

programs are reasonable. Robinson proposed a semantic test process [16] that 

generates tests and test oracles using models of the software [17]. Day and Gannon 

[14] have described a system that translates a formal specification of input and output 

files into an automated oracle. The specifications from which Day and Gannon 

extracted test oracles are divided into a syntax section and semantics section [15]. The 

syntax uses BNF grammars to specify the format of input and output files, 

respectively. The semantics defines rules that specify the relationship the output must 

have with the input. The syntax and semantics sections are compiled together to 

obtain an oracle program for checking consistency of an output text with the 

corresponding input text. Although all of these studies on semantic oracles show the 
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significance of possibility in generating oracles based on semantics, especially Day 

and Gannon’s system shows that semantics sections can be compiled to syntax 

sections in order to generate an oracle, none of them fully addresses the question of 

how expected outputs can be produced to make the oracle in semantics in automated 

framework. 

 

1.3 Our approach 

Our study proposes a new automated oracle approach using formal specification. Our 

approach targets those SUTs, which require grammar-based structured input data, 

including compilers [27], reactive systems [33] and software product lines [28]. 

Normally, these systems need complex inputs that can be difficult to be tested 

systematically [29]. To specify the semantics of the inputs of those SUTs, which are 

specified languages, the input grammars need to be extended [34]. The approach in 

this paper is strongly tied to the power provided by denotational semantics to achieve 

this problem. Denotational semantics is a formal methodology for defining language 

semantics. It has been widely used in language development and practical applications 

[35] [36], and has been proved to be an approach for precisely defining the meaning 

of a language [22]. 
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Our approach assigns semantic meaning to structured inputs in a recursive manner, 

applies denotational semantics [22] on these semantic meanings to specify expected 

outputs in order to satisfy the first challenge about output domain generation 

mentioned above. Furthermore, we define valuation functions associated with 

grammatical structures of input data to map an input directly to its meaning as the 

expected output in order to address the mapping challenge between input domain and 

output domain. Our approach in this article is implemented as follows: taking a 

context-free grammar, its denotational semantics, in the form of valuation functions, 

and the definition of associated methods used in valuation functions as its input; our 

automatic test data and oracle generation framework generates test cases and their 

oracles based on those inputs. In detail, we use the leftmost derivation strategy for test 

generation, meanwhile a semantic tree is built simultaneously with the procedure of 

test case generation. The value generated by evaluating the semantic tree where every 

derived variable from the structured input is bound with a corresponding semantic 

node using defined valuation functions is produced as expected testing output, also 

serving as test case’s oracle. As a result, our framework generates a test case along 

with its oracle automatically. 

Once the test cases are generated, they can be executed and the actual outputs are 

compared with oracles to detect software faults. The Figure 1.1 shows the flow 
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including three parts: Test data and oracle generating, software testing, and 

validating and analyzing. By extending Gena [2] with our oracle generator, we build 

an automatic test data and oracle generator framework. The framework, along with 

input and output domain, is shown in Test data and oracle generating. By using the 

generated oracles, we apply the test cases on testing subject applications in software 

testing and detect the fault for these applications in validating and analyzing. 

Software testing and validating and analyzing are used to obtain our experimental 

results. Because they are not the work in our oracle generation work, we do not give 

the details of the procedure of them here. 
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Figure 1.1: Diagram of oracle generation and usage in our applications 

This paper makes the following contributions: 

1) We introduce a new formulation of grammar based automated test data 

generation in which the goal is to generate test data from grammar, while 

simultaneously generating an oracle from semantics, which assigns meanings 
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to grammatically structured input. The syntax, semantics, and valuation 

functions of the input data is extracted from software’s specifications. 

2) We introduce an algorithm for addressing this extended oracle generating 

problem for automated test data generation. 

3) We present the results of three empirical studies to illustrate the effectiveness 

of the algorithm. The algorithm was applied to three programs, which are a 

license scanning system, a grading system, and an online parking fee 

calculating system. 

 

1.4 Organization 

The rest of the paper is organized as follows. Section 2 addresses the main challenges 

on grammar-based test generation and the approach we adopt to generate the test case. 

Section 3 introduces denotational semantics, which is the approach we used to 

generate the oracle. Section 4 presents our approach for oracle automation. Section 

4.1 introduces an application of the approach. Section 4.2 illustrates the process of 

automating an application of our approach. Underived string, dynamically growing 

semantic tree and an example are included. Section 4.3 introduces the evaluation 

functions for a semantic tree. Section 4.4 addresses the algorithm of evaluation of the 

semantic tree. Section 5 presents a Java-based implementation and our experimental 
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results of testing on a license scanning system, a grading system and a web testing 

system, respectively. Conclusions and future work are given in Section 6. 
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Section 2 Grammar-based test generation 

2.1 Background 

Grammar-Based Test Generation (GBTG) is an approach to test generation that 

employs context-free grammars to create sets of test cases [6]. The context-free 

grammar (CFG) describes the syntax of the input to the SUT. GBTG takes generative 

context-free grammars as an input and produces strings that conform to the syntax of 

the inputs of the SUT. 

2.2 Related work 

The work of Hanford who generated PL/1 programs for compiler testing [1] was the 

earliest known application of CFGs to testing; years later, Bird and Munoz applied 

GBTG to compiler testing, sort/merge utilities, and graphical output applications 

[6][7]. Burgess utilized grammars for automatically generating test sets for optimizing 

Fortran compilers [6][8][9]. Sirer developed a language named lava to test Java 

Virtual Machine [10]. Then much of the later work in GBTG focuses on network 

protocol testing [6].  

2.3 The approach we use 

In our paper, a stochastic grammar-based test generation approach is used to perform 

automated test case generation. In order to generate our oracle with test cases that can 

be terminated appropriately with good diversity, we adopt Guo and his colleagues’ 

approach [2], which is a Java-based system named Gena based on their 
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grammar-based test generation algorithm to produce well-distributed test cases while 

taking a symbolic grammar as input, requiring zero control input from users. Gena 

utilizes a dynamic stochastic model, which guarantees the termination of a single test 

case generation. In this model, each variable is associated with a tuple of probability 

distributions, which are dynamically adjusted along the derivation. The approach 

provides various implicit balance control mechanisms to generate the balanced 

distribution of generated test cases over grammatical structures [2]. In the following 

sector, an example is used to show the abilities of the approach in termination and 

distribution aspects. We apply the leftmost derivation to input variables. 

2.4 Balance Results 

Table 2.1 shows a statistic report of the first 1000 generated arithmetic expressions, 

which is an example in [2] by Gena, given a symbolic grammar as follows: 

E :: = F | E + F | E – F 

F :: = T | F * T | F / T 

T :: = [N] | (E) 

[N] ::= 1..1000 

The grammar has only one terminal exit, E -> F -> T -> [N], but the rest are full of 

recursive rules. 

Table 2.1: Statistic report for test cases of arithmetic expressions 

Operators Total Frequencies 

+ 2191 

- 2165 

* 4438 

/ 4402 



14 

 

() 1859 

[N] 14196 

 

By comparing the total frequencies among operators, we can identify how balanced 

test case generation is overall. The total frequencies of the operators + and – are close, 

which indicates the balanced distribution between two recursive rules under the same 

variable E; similar reasons apply on the frequencies observation between * and /. Also, 

the total frequencies of the operators indicate the recursive rules are terminated at a 

reasonable level.  
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Section 3 Denotational Semantics 

In this section, we give a brief introduction on denotational semantics. The 

denotational semantics approach maps a notation specification directly to its meaning, 

called its denotation [22]. The denotation is usually a mathematical value, such as a 

number or a function. No interpreters are used; a valuation function maps the notation 

specification directly to its meaning.  

Since denotational semantics provides an approach for precisely defining the meaning 

of a notation specification [22], we adopt denotational approach to generate oracles, 

which equal an input language’s execution results. The approach has three parts: 

- Syntax: the appearance and structure of input notation specification, 

specified as a context-free grammar; 

- Semantics: the assignment of meanings to the input; 

- Valuation function: the function of mapping syntax and semantics parts 

to generate the expected output.  

Normally, a SUT’s input specification in context-free grammars is a formal language 

when it takes grammar-based structured inputs. The valuation function, which 

connects syntax and semantics parts, is defined structurally and its domain is the set 

of derivation trees of the language. It determines the meaning of a derivation tree by 

determining the meanings of its subtrees and combining them into a meaning for the 
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entire tree, which is the expected result of the input language, serving as the oracle of 

the SUT.  

In the following sector, two examples are used to show the approach. 

3.1 Binary numeral example 

The following illustrations show the example of binary numerals based on an example 

in [22]: 

Binary numeral’s syntax definition: 

B :: = D | B D 

D :: = 0 | 1 

Binary numeral’s semantics definition: 

Domain N = Integer (0, ∞) 

Operations 

  0, 1, 2, … : N 

  +: N + N -> N 

  *: N * N -> N 

 

The following tree depicts the binary numerals “101”: 
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Figure 3.1: Tree depicting the binary numerals “101” 

The tree’s internal nodes represent non-terminals of the syntax definition. 

The meaning of the digit subtree: 

is the number 0. 

 

 

We might state this as:  

  

That is, the D valuation function maps the tree to its meaning, 0. Similarly, the 

meaning of the other binary digits in the tree is one; that is: 

  

We use the following one-dimensional form to represent these two-dimensional 

equations by using double brackets. The double brackets surrounding the subtrees are 

used to clearly separate the syntax pieces from the semantic notation. 
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ValueD[[0]] = 0 

ValueD[[1]] = 1 

 

Furthermore, we use the same way to determine the meanings of the binary numeral 

trees. Looking at the leftmost B-tree, we see it has the form: 

 

The meaning of this tree is just the meaning of its D-subtree, that is, 1. In general, for 

any unary binary numeral subtree 

  

we have ValueB[[D]] = ValueD[[D]]. 

The principle of binary arithmetic dictates that the meaning of this tree must be the 

meaning of the left subtree doubled and added to the meaning of the right subtree. 

 

We write this as ValueB[[BD]] = (ValueB[[B]] * 2) + ValueD[[D]]. Using this 

definition we complete the calculation of the meaning of the tree. 
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Figure 3.2: Denotational definitions of binary numerals “101” 

Figure 3.2 shows complete denotational definitions of the above binary numeral 

example 

Syntax: 

B :: = D | B D 

D :: = 0 | 1 

 

Semantics: 

Domain N = Integer (0, ∞) 

Operations 

  0, 1, 2, … : N 

  +: N + N -> N 

  *: N * N -> N 

 

Valuation functions: 
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B:  

ValueB[[BD]] = (ValueB[[B]] * 2) + ValueD[[D]] 

ValueB[[D]] = ValueD[[D]] 

D: 

  ValueD[[0]] = 0 

  ValueD[[1]] = 1 

 

When we determine the meaning of the tree in the above diagram, we represent the 

tree in its linear form [[101]], using the double brackets to remind us that it is indeed a 

tree. We mimic the tree transformation in the leftmost derivation manner and begin 

with: 

ValueB[[101]] = (ValueB[[10]]* 2) + ValueD[[1]] 

The ValueB[[BD]] equation of the B function divides [[101]] into its subparts. We 

continue: 

(ValueB[[10]]* 2) + ValueD[[1]] 

= (((ValueB[[1]]* 2) + ValueD[[0]] * 2) + ValueD[[1]] 

= (((ValueD[[1]]* 2) + ValueD[[0]] * 2) + ValueD[[1]] 

= (((1 * 2) + 0) * 2) + 1 

= 5 
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In the above example, the valuation functions are applied to mapping the above 

syntax and semantics, and we know binary numeral “101”’s meaning is 5. In our 

grammar-based test generation, the binary numeral “101” is the test case, and its 

meaning, 5, is the oracle. 

 

3.2 Arithmetic expressions example 

The following illustrations show the example of taking an arithmetic expression and 

performing its integer evaluation in a Java application using the denotational 

semantics approach. 

The syntax of the input language represented by integer arithmetic expressions is 

given as the following: 

E :: = F | E + F | E – F 

F :: = T | F * T | F / T 

T :: = [N] | (E) 

[N] ::= 1..1000 

where [N] is an abstract notation from a finite domain of integers. We will generate 

the oracle for the arithmetic expression “3 * (4 + 5) - 6” from denotational semantics. 
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Arithmetic expressions’ semantics, like their expected result in the Java application, 

are typically integrated as integers with a set of standard arithmetic operators, such as 

“+”, “-”, “*” and “/”. The semantics definition is given as the following: 

Domain N = Integer (0, ∞) 

Operations 

  0, 1, 2, … : N 

  +: N + N -> N 

  -: N - N -> N 

  *: N * N -> N 

  /: N / N -> N 

The denotational semantics is defined by four types of valuation functions: ValueE, 

ValueF, ValueT, and ValueN, which map their corresponding grammatical structures 

to their respective semantics. The full valuation functions are given as the following: 

ValueE[[F]] = ValueF[[F]] 

ValueE[[E+F]] = ValueE[[E]] + ValueF[[F]] 

ValueE[[E-F]] = ValueE[[E]] - ValueF[[F]] 

ValueF[[T]] = ValueT[[T]] 

ValueF[[F*T]] = ValueF[[F]] * ValueT[[T]] 

ValueF[[F/T]] = ValueF[[F]] / ValueT[[T]] 
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ValueT[[[N]]] = ValueN[[[N]]] 

ValueT[[(E)]] = ( ValueE[[E]] ) 

ValueN[[[N]]] = N 

where double brackets are used to represent grammatical structures, a derivation 

subtree in practice. And, the symbolic terminal [N] is treated as a terminal, which is 

substituted by a random element from its domain in practice. 

The following derivation tree depicts the arithmetic expression “3 * (4 + 5) - 6” in the 

leftmost derivation manner: 

 

Figure 3.3: Tree depicting arithmetic expression “3 * (4 + 5) - 6” 
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When we determine the meaning of the input expression 3*(4+5)-6 in the above 

diagram, we represent in its linear form ValueE[[3*(4+5)-6]]. We mimic the tree 

transformation in the leftmost derivation manner: 

ValueE[[3*(4+5)-6]] = ValueE[[3*(4+5)]] – ValueF[[6]] 

= ValueF[[3 * (4+5)]] – ValueT[[6]] 

= ValueE[[3]] * ValueT[[(4+5)]] – ValueT[[6]] 

= ValueF[[3]] * ( ValueE[[4+5]] ) – ValueT[[6]] 

= ValueT[[3]] * ( ValueE[[4]]+ ValueF[[5]] ) – ValueT[[6]] 

= ValueT[[3]] * ( ValueF[[4]]+ ValueT[[5]] ) – ValueT[[6]] 

= ValueT[[3]] * ( ValueT[[4]]+ ValueT[[5]] ) – ValueT[[6]] 

= ValueN[[3]] * ( ValueN[[4]]+ ValueN[[5]] ) – ValueN[[6]] 

= 3 * ( 4 + 5 ) – 6 

= 21 

The denotational semantics approach maps input data directly to its expected results 

of a SUT, which provides a solution for the challenges of oracle output generation and 

mapping between input domain and output domain. Based on this observation, we 

adopt the denotational semantics for automated test oracle generation. 
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Section 4 A denotational semantic approach for oracle 

automation 

The essential challenge in oracle automation is how to decide output domain and map 

input domain to output domain. Our approach utilizes an automated framework that 

generates test oracles based on denotational semantics, which addresses the output 

domain and the mapping challenge described in the previous section. Our framework 

extends denotational semantics on Gena [2], which is an automatic grammar-based 

test generator with good termination and distribution aspects introduced in sector 2. 

To adopt the denotational semantics approach on Gena, we mainly work in the 

following parts: 

- Implementing semantic domain along with associated operations 

- Specifying semantic valuation functions along with the CFG input 

- Automating the application of valuation functions along with test 

generation 

Semantic domains are determined by the SUT. Our framework provides an interface 

for users to define a semantic domain and its associated operations as Java class and 

methods, respectively. We introduce the specifications of our approach on an example 

in the following section. 
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4.1 An application of the approach 

Considering an arithmetic expressions example, we define a semantic domain in a 

domain Java class. We also define an integer instance variable, which will eventually 

hold the semantic result of the input and a set of methods (including “plus”, “sub”, 

“mul”, and “div”) supporting the standard integer arithmetic operations. We extend 

CFG input with LISP-like notation to define denotational semantics. Furthermore, we 

compute semantic values by using lambda calculus. One reason for this is that 

denotational semantics expresses its definition using the higher-order functions of the 

lambda calculus; another reason is that lambda calculus’ uncomplicated syntax and 

semantics provide the power to represent all computable functions. 

The CFG input with valuation functions for a subset of arithmetic expressions is 

shown in Figure 4.1: 

 

Figure 4.1: CFG input with valuation functions for a subset of arithmetic expressions 

Given the above semantic definitions, each production rule is equipped with valuation 

functions by a delimiter “@@”. In the case of the production rule in line (2), the input 
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data contains a grammar structure E + F, and its semantic value can be computed by 

lambda expression λE.λF. (plus E F). Here the value of the expression is the 

evaluation of applying associated operation “plus”, which is defined in the domain 

class on the formal argumentλE.λF., which are omitted in valuation functions due to 

their implication in the production rules. Similarly, in the case of the production rule 

(E :: = F @@ (F)) formal argument λF. is omitted. Furthermore, because there is a 

singleton argument listed in the valuation function, the value of the expression is the 

result of the singleton. 

 

4.2 Automating the application of valuation functions along with test 

generation 

4.2.1 Underived String 

Our automated test data framework generates a test case using the strategy of the 

leftmost derivation. The application of the leftmost derivation is illustrated here. 

Given a symbolic grammar G = (V, T, P, S), where V is a set of variables, T is a set of 

terminals that include symbolic terminals, P is a set of production rules that represent 

the relations from V to (V ∪ T)*, and S is the start variable. The derivation is in the 

form of E⇒Ri ω , where E is a variable in V and ⇒Ri is a single leftmost derivation 

applying the i-th production rule of E, ω ∈ (V ∪ T )∗. 

We define the production rule index for given grammar and semantic rules as follows: 
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Table 4.1: Production rule index of arithmetic expressions 

Variable for derivation: V Production Rule Index: Ri Production rule 

E E1 F 

E E2 E + F 

E E3 E - F 

F F1 T 

F F2 F * T 

F F3 F / T 

T T1 [N] 

T T2 (E) 

 

We include underived variables in underived string, which initially starts from root “E” 

in the above example. When we generate test case “3*(4+5)-6/2”, the underived string 

will be updated during the test case generation process as shown in Figure 4.2: 

 

Figure 4.2: Underived string during test case generation process 

where each [N] is automatically substituted with a random integer from its domain 

during the generation.  
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4.2.2 Dynamically growing semantic tree associated with test generation 

In our framework, test data is generated by using the strategy of the leftmost 

derivation. When the derivation travels through these production rules, a semantic tree 

is built dynamically along with the procedure of test case generation to support oracle 

generation by applying the associated valuation functions. During the test case 

generation, derived variables are bound with corresponding semantic nodes. There are 

two types of semantic nodes, a regular node and a λ-node. A regular node includes the 

following three parts: 

- A derived variable V or a semantic terminal 

- A link to a semantic subtree that presents the semantic value of V 

- A link to a peer semantic node that appears in valuation functions 

A λ-node includes the following three parts: 

- A derived variable V 

- A link to the formal argument part of lambda expression 

- A link to the body part of lambda expression 

In Figure 4.3, a semantic subtree with the valuation function specified in production 

rule (E :: = E – F @@ (sub E F)) is presented: 
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Figure 4.3: Internal structure of storage of valuation function in (sub E F) 

where node (1) is a λ-node, which is colored by gray and the rest are regular nodes. A 

special symbolic “∧” is used to denote a null link. In the expression body part, nodes 

(2), (3), and (4) represent the valuation function (sub E F). “sub” in node (2) is a 

built-in function in Java, defined in domain class; the semantics of E at node (3) and F 

at node (4) will be obtained from the associated formal argument part, node (5) and 

node (6), respectively; while the semantics of E at node (5) and F at node (6) in the 

formal argument part will be extended recursively when E and F are further derived 

during test generation. 

To perform such a recursive extension on the semantic tree with test generation, our 

framework binds every underived variable of test generation with a corresponding 

regular semantic node. Once this variable is derived by applying a production rule, its 

bound semantic node will be extended with a semantic subtree based on its associated 

valuation function, rooted by a λ-node representing this derived variable. We still use 

the above figure as an example. Consider the underived variable E of test case in body 

part of E ::= E – F, which is bound to node(5). When grammar rule (E ::= F) is 
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applied to variable E in test case generation process, its bound semantic node, node(5), 

is extended with subtree rooted by λ-node, node(7), based on equipped valuation 

function (F) in production rule E ::= F. Also the body part of lambda expression is 

presented as node (8), and the formal argument part is presented as node (9). The 

extended semantic tree is shown as follows: 

 

Figure 4.4: Internal structure of storage of valuation function extending to (F) 

Since the associated semantic tree is extended simultaneously along the process when 

the derivation path is traveled, the built semantic tree is accurately mapping with the 

derivation path, which represents as a test case. We refer to the underived string, 

which includes the underived variable information mentioned in section 4.2.1 to 

extend the semantic tree in our application. 
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4.2.3 Example 

Given the symbolic grammar in section 4.2.1, the Figure 4.5 shows a complete 

sequence of the extension procedure of the semantic tree for the test case “3*4 - 2”. 

A variable with a superscript (e.g. E(1)) indicates that the variable is bound with a 

semantic node where the number in superscript is shown.  

Starting from root E, the underived string is “E(1)”. The semantic node, node (1), is 

established to associate this underived variable E. 
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Figure 4.5: Semantic tree associated with test case “3*4 - 2” 

As the derivation moves on from E(1) to E(2) + F(2) and the underived string is updated 

to “E(2) F(3)”, a subtree based on functionλE.λF. (sub E F) in 3-rd production rule of E 

is extended under node E, where formal argument E and F are bound to the semantic 

node node (2) and node (3), respectively; Then, according to the leftmost derivation 

strategy, the underived string is updated to “F(4) F(3)” and a semantic subtree is 
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extended under node (2). The subsequence is executed, and eventually a symbolic 

terminal variable [N] is reached. An instance number is generated and stored in its 

corresponding semantic node. Here, the number is 3 for [N](8). Similarly, the semantic 

tree is extended under node (3), and eventually the whole semantic tree for test case 

“3*4 - 2” is built. 

 

4.3 Evaluation functions for semantic tree and the generation of the 

oracle 

We apply evaluation functions on the following semantic tree, which is built as an 

example in the previous section for test case “3*4 - 2”. The value of λ-node E under 

node (1) is the semantic value for node (1). So the next step is evaluating thisλ-node E. 

It is the evaluation ofλ-expression applying calculus expression based on body parts 

(sub E F) on formal argument node E at (2) and node F at (3). Similarly, the λ-node 

value will be calculated recursively. 

Let Evaluation(node) be the function to evaluate the node in the semantic tree. Here 

we present nodes with the indices of their positions. 

Evaluation(E(1)) = (sub Evaluation(E(2)) Evaluation(F(3))) 

= (sub Evaluation(F(4)) Evaluation(F(3))) 

= (sub (mul Evaluation(F(5)) Evaluation(T(6))) Evaluation(F(3))) 

= (sub (mul Evaluation(T(7)) Evaluation(T(6))) Evaluation(F(3))) 
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= (sub (mul Evaluation([N](8)) Evaluation(T(6))) Evaluation(F(3))) 

= (sub (mul 3 Evaluation(T(6))) Evaluation(F(3))) 

= (sub (mul 3 Evaluation([N](9))) Evaluation(F(3))) 

= (sub (mul 3 4) Evaluation(F(3))) 

= (sub (mul 3 4) Evaluation(T(10))) 

= (sub (mul 3 4) Evaluation([N](11))) 

= (sub (mul 3 4) 2) 

= (sub 12 2) 

= 10 

In our grammar-based test generation, the test case “3*4-2” is generated and its 

associated semantic tree is evaluated as “10”, the oracle of the test case, which equals 

the expected value of the test case. 

 

4.4 Algorithm 

We present a detailed pseudo-code for the evaluation function in our automatic oracle 

generation framework. To support the oracle generation, a semantic tree is gradually 

constructed along a derivation path traveled during a test generation. A semantic tree 

node contains a variable and two links. The first one is the link to a subtree that 

contains formal arguments to calculate the value of the variable; the second is the link 
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to a subtree that contains the body of the lambda expression. A link is null value if the 

subtree is empty. The methods associated with semantic tree evaluation are described 

as follows: 

– int getValue: return the value of the subject node; null is returned if the value does 

not exist. 

– void setValue(int): set the value to the subject node. 

- int getValueByApplyingOperator: return the value of a node’s lambda calculation. 

In detail, the value of formal arguments obtained from the first link of the subtree is 

applied to an expression in which the operators and parameters are found in the 

second link. The operators are defined in domain class. 

- Node[] getArgumentNodes: return formal argument nodes of the input node if they 

exist; null is returned if no node exists. 

 

1: Global: semantics G = (V, T, P, S) 

2: Input: a semantic tree parent node, sNode; 

3: Output: oracle 

4: function int Evaluation (sNode) 

5:   if (sNode is in form of [N]) then      ⊲ encounter terminal, end of a recursion 

6:      Let r is random integer value in defined domain 

7:      return r 

8:   else 

9:     nodes <- sNode.getArgumentNodes()              ⊲ get argument nodes 

10:    for (node in nodes) 

11:      if (node.getValue is null) then  
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12:        node.setValue(Evaluation(node))     ⊲ get nodes’ value by recursively 

computing their subtree. 

13:      end if 

14:    end for 

15:  return sNode.getValueByApplyingOperator()      ⊲ apply operator on the 

computation of nodes 

16:  end if 

17: end function 

Figure 4.6: Algorithm Evaluation 

The algorithm shows the evaluation function to generate the meaning of a semantic 

tree. We first check whether the recursion is end; if that is the case, a random integer 

value will be returned (lines 5-7). If there exists a subtree structure for the subject 

node, we define the nodes that are formal arguments of the subject node to obtain the 

value of the subject node (line 9). Then we recursively get these nodes’ values (lines 

10-14). Lastly, we apply these argument nodes to the operator and return the result, 

which is the value of the semantic tree whose root is the input node (line 15). 
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Section 5 Experimental Results 

We have carried out three experiments to measure how generated test oracle and its 

associated cases are well mapped over a given symbolic grammar, and how those 

input test specifications can be used for automatic testing. 

 

5.1 License scanning system 

We have implemented an automatic license text and oracle generation system for an 

open source license scanning tool. Considering an open source license scanning tool 

takes a free format text as an input string, performs license identifying operations to 

discover open source license, and finally returns the identified license name. We 

generated oracle, which is an expected license name, along with our test case, which 

is a free format text containing license key words. The actual output from the license 

scanning tool and oracle are compared for every test case. 

The FOSSology license scanning tool [26] is our software test subject in this study. 

To identify a sample license from a free format text by FOSSology, some contents are 

selected from the sample license specification and used as key words in the 

FOSSology license discovery module. Once these key words in sample license 

specifications are identified in an input string, FOSSology will “suggest” this license 
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is identified. During the scanning procedure, FOSSology changes all input strings to 

lower case to mitigate case sensitive issues. 

5.1.1 Example: Adaptive Public License 1.0 license 

Given open source Adaptive Public License 1.0 license (APL-1.0) specification [30] 

and FOSSology license scanning specifications, we summarized APL license’s input 

specification as follows: 

(1) “This License is adaptive, and the generic version” string is contained; 

(2) “Adaptive Public License Version 1.0” or “Adaptive Public License 

v1.0” string is contained; 

(3) The word spelling “license” can be “license” or “licence”; 

If the text string meet specification (1) and it does not meet specification (2), then an 

“APL” license can be identified; if the text string meet specification (1) and (2) at the 

same time then an “APL-1.0” license can be identified. No appearance order for 

specification (1) and (2) is demanded. Specification (3) is applied to specifications (1) 

and (2). According to these specifications, we defined the following syntax in Figure 

5.1: 
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Figure 5.1: Syntax and valuation functions of Adaptive Public License license 

We established two patterns of test cases, which are the production rules at line 1 and 

line 2, based on corresponding specifications. The production rule at line 3 associates 

with specification (1); the production rule at line 5 associates with specification (2); 

according to specification (2), we also defined the production rules at lines 8, 9 and 10 

to represent different format of version information; and we defined the production 

rules at lines 6, 7 based on specification (3); the production rule at line 4 was 

established in order to meet specification (1) and (2) at the same time. Here, we 

introduced operator “=AND=” to address the conjunction relationship of two 

variables next to “=AND=”. For example, in S2 ::= S1 =AND= APLTITLE @@ 

(assembleLicense S1 APLTITLE)(line 5), the generated license text S2 includes 

license text segment S1 and APLTITLE. 

A valuation function defined behind the delimiter ‘@@’ provides semantic value for 

the variable defined before the delimiter. For example, in S2 ::= S1 =AND= 
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APLTITLE @@ (assembleLicense S1 APLTITLE)(line 5), S2’s semantic value can 

be calculated via the λ-expressionλS1.λAPLTITLE.(assembleLicense S1 APLTITLE), 

where the value of argument S1 and APLTITLE is calculated from further derivation. 

If the semantic value is defined directly without further processing, the valuation 

function simply relays the result from the expression. For example, in S1 ::= 'This ' 

LICENSE ' is adaptive, and the generic version' @@ ('APL') (line 3), 'APL'after 

delimiter ‘@@’ is the semantic value for variable S1. 

The semantic domain and associated methods are defined in a domain class in our 

framework. In the given case, we define the operation “assembleLicense”, which 

induces a certain license when listed variables’ information meets certain license 

assemble rules. The following license assemble rule based on the APL 1.0 license 

specification [30] is defined for the method: “{APL, APLTITLE}-->APL-1.0”, where 

“-->” indicates the license component on the right side can be induced from the 

license components bracketed in {} on the left side. 

Table 5.1 shows license scanning results on 18 APL specified license strings, which 

cover all derivation paths of given input grammar, by running these license texts on 

the FOSSology license scanning tool [26]. We categorized the percentage of the test 

cases in all cases according to actual outputs and their oracles. 
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Table 5.1: Report of license scanning results on APL license 

 
Case 

Number 

Percentage 

in all cases 
Oracle Actual output 

1 2 11% APL APL 

2 16 89% APL-1.0 APL-1.0 

The above table shows there is no test case where the actual output is different from 

its oracle. 

5.1.2 Example: Apache 2.0 license 

Consider a more complicated example -- the open source Apache 2.0 license. We 

input the following grammar and valuation function based on the specifications, 

which we summarized according to the Apache 2.0 license’s specifications [25] and 

the FOSSology license scanning specifications: 

 

APACHE20 ::= S1 @@ (S1) 

APACHE20 ::= S2 @@ (S2)  

APACHE20 ::= S3 @@ (S3) 

APACHE20 ::= S4 @@ (S4) 

APACHE20 ::= S5 @@ (S5) 

APACHE20 ::= S6 @@ (S6) 

APACHE20 ::= S7 @@ (S7) 

APACHE20 ::= S8 @@ (S8) 

APACHE20 ::= S9 @@ (S9) 

S1 ::= REFERENCE @@ ('APACHE-2.0') 

S2 ::= LICENSE =AND= VERSION @@ (assembleLicense LICENSE 

VERSION) 

S3 ::= URLAPACHE2 @@ (URLAPACHE2) 

S4 ::= URLOPENSOURCEAPACHE2 @@ (URLOPENSOURCEAPACHE2) 

S5 ::= APACHE DELIMITER V2 =AND= A1 @@ 

('APACHE_V2-POSSIBILITY') 

S5 ::= A1 =AND= APACHE DELIMITER V2 @@ 

('APACHE_V2-POSSIBILITY') 
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S6 ::= BSD =AND= PREFIX =AND= REFERENCE @@ (assembleLicense 

BSD PREFIX REFERENCE) 

S7 ::= BSD =AND= LICENSE =AND= REFERENCE @@ (assembleLicense 

BSD LICENSE REFERENCE) 

S8 ::= ASF =AND= LICENSE =AND= VERSION2 @@ (assembleLicense ASF 

LICENSE VERSION2) 

S9 ::= BSD2 =AND= LICENSE =AND= VERSION2 @@ (assembleLicense 

BSD2 LICENSE VERSION2) 

BSD ::= 'distribution and use in source and binary forms' MOD ' ' ISARE ' ' 

PERMIT ' provided that' @@ ('BSD') 

BSD2 ::= 'distribution of the source code in binary form must reproduce' @@ 

('BSD2') 

BSD2 ::= 'distribution in binary form must reproduce' @@ ('BSD2') 

MOD ::= '' | ' with or without modifications' | ' with or without modification' 

ISARE ::= 'is' | 'are' 

PERMIT ::= 'permitted' | 'permitted for any purpose' 

ASF ::= 'copyrighted software available under a free-to-use- ' A1 ' by the apache 

software foundation' @@ ('ASF') 

LICENSE ::= APACHE ' ' A1 @@ ('APACHE') 

LICENSE2 ::= APACHE ' ' SERIES ' ' A1 

V2 ::= 'v2' | 'v2.0' 

URLAPACHEU ::= WWW DOT 'apache' DOT 'org/licenses/' @@ 

('VERSION-UNKNOWN') 

URLAPACHE2 ::= WWW DOT 'apache' DOT 'org/licenses/license-2.0' @@ 

('APACHE-2.0') 

URLOPENSOURCEAPACHE2 ::= WWW DOT 'opensource' DOT 

'org/licenses/apache-2.0' @@ ('APACHE-2.0') 

DOT ::= '' | '.' 

WWW ::= 'www' | 'http://www' 

A1 ::= 'licence' | 'license' 

APACHE ::= 'Apache' | 'APACHE' | 'apache' 

DELIMITER ::= ' ' | '_' | '-' | '' 

PREFIX ::= COPYRIGHT ' ' YEAR ' ' APACHE ' ' APACHESUFFIC  @@ 

('APACHE') 

COPYRIGHT ::= '©' | '(c)' | 'copyright' | '&copy' 

YEAR ::= YEARNUM SUFFIX 

SUFFIX ::= ',' | '-' | ' ' 

APACHESUFFIC ::= 'group' | 'software' | 'foundation' 
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YEARNUM ::= '1900' | '2000' | '2025' 

REFERENCE ::= REF1 ' under' =AND= LICENSE =AND= VERSION @@ 

('VERSION2.0') 

REFERENCE ::= REF2 ' under' =AND= LICENSE2 @@ ('VERSION2.0') 

REF1 ::= 'distributed' | 'offer' | 'offered' | 'released' | 'licensed' | 'available' | 

'protected' | 'provided' 

REF2 ::= 'distributed' |'modified' 

VERSION ::= V SERIES @@ ('VERSION2.0') 

VERSION2 ::= SERIES @@ ('VERSION2.0') 

VERSION2 ::= V SERIES @@ ('VERSION2.0') 

V ::= 'v' | 'version ' | 'v.' 

SERIES ::= 20 | 2.0 

Figure 5.2: Syntax and valuation functions of Apache version 2.0 license 

The following license assemble rules based on the Apache version 2.0 license 

specification [25] are defined for the method “assembleLicense” in the domain class 

of our framework: 

1. {LICENSE}-->APACHE 

2. {ASF, APACHE}-->APACHE 

3. {APACHE,VERSION2.0}-->APACHE-2.0 

4. {BSD,APACHE,VERSION2.0}-->APACHE-2.0,BSD-style 

5. {BSD,APACHE}-->APACHE,BSD-style 

6. {BSD2,APACHE,VERSION2.0}-->APACHE-2.0,BSD-style 

Figure 5.3: Semantic definition of the rules for assembleLicense method on Apache 

version 2.0 license 

Table 5.2 shows license scanning results on 1000 Apache version 2.0 specified license 

strings, which cover all derivation paths of the given input grammar: 
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Table 5.2: Report of license scanning results on Apache version 2.0 license 

 
Case 

Number 

Percentage 

in all cases 
Oracle Actual output 

1 382 38% APACHE-2.0 APACHE-2.0 

2 477 48% Apache-2.0,BSD-style Apache-2.0,BSD-style 

3 45 5% Apache-2.0,BSD-style 
Apache-2.0,BSD-style,U-Camb

ridge-style 

4 84 8% Apache_v2-possibility Apache_v2-possibility 

5 12 1% Apache_v2-possibility Apache-possibility 

The Row 3 and 5 show the test cases where the actual outputs are different from their 

oracles, and it indicates that there may be some failed instances for Apache version 

2.0 scanning module in FOSSology. 

Regarding the test results in row 3, we confirmed that the key word “in source and 

binary forms is permitted provided” in the BSD-style license is also used as a key 

word in the U-Cambridge-style license scanning module. FOSSology reported the 

generated test cases, which meet BSD-style license specifications also meet 

U-Cambridge-style license specification. In the aspect of identifying the Apache 2.0 

license, there is no inconsistency found and no fault is found in associated scanning 

modules. 

Regarding the test results in Row 5, “Apachev2” is considered as one acceptable form 

for an Apache v2 possible license. However, the test results were inconsistent with 

expectations where the test cases in form of “license … apachev2” are identified as 

Apache-possibility instead of Apache_v2-possibility. With the power of an oracle, we 
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located the fault in the software successfully and significantly reduced the cost to 

generate expected output from massive test cases. 

 

5.2 A Grading System 

We extended our oracle generator to Gena [3] as an automatic grading system for Java 

programs. Consider a Java programming assignment, which takes an infix arithmetic 

expression as an input string, then convert the input to expression and calculate this 

expression to return a number. We used our framework to generate arithmetic 

expressions and their oracles. Then we compared returned numbers from Java 

program subjects, which take generated arithmetic expressions as inputs with our 

generated oracles to detect failing cases. The context-free grammar of the arithmetic 

expression and its valuation functions are defined as follows, which was introduced in 

Figure 4.1 and used as an example in Section 4: 

(1) E :: = F @@ (F) 

(2) E :: = E + F @@ (plus E F) 

(3) E :: = E – F @@ (sub E F) 

(4) F :: = T @@ (T) 

(5) F :: = F * T @@ (mul F T) 

(6) F :: = F / T @@ (div F T) 

(7) T :: = [N] @@ ([N]) 

(8) T :: = (E) @@ (E) 

(9) [N] ::= 1..1000 

As we mentioned in Section 4, the operations in valuation functions are defined with 

standard Java arithmetic operations in the domain class in our framework. Table 5.3 
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shows the report of grading results on 14 Java program subjects, by running 1000 

different arithmetic expressions generated by our framework. Because the generated 

arithmetic expressions can be very complex (e.g. 

766+2*(359*840)/249/(429-184+711)-105-389+314), automated generated oracles 

can significantly reduce the time of calculating expected value based on test cases 

independently. By comparing the oracle with the actual output number from those 

Java programs, we collected the ratios of correctness for each subject. For example, 

the first subject performs correctly on 14% of the 1000 test cases. We located the 

failing test cases by the power of the oracle and listed the possible causes of the 

failure incorporated with typical causes related to processing arithmetic expressions. 

Table 5.3: Report of grading results on 14 Java program subjects 

 
Correctness 

Ratio 
Possible Causes 

1 14% Right-associativity 

2 78% Parenthesis not properly handled 

3 100%  

4 2% Not working at all 

5 9% Right-associativity; operator precedence ignorance 

6 6% Right-associativity; operator precedence ignorance 

7 53% [N] * [N] /[N] 

8 100%  

9 68% Partial operator precedence ignorance 

10 100%  

11 14% Right-associativity 

12 54% Operator precedence ignorance 

13 4% Operators not supported 

14 10% Right-associativity and parenthesis problem 
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5.3 Web testing system for online parking fee calculating system 

We also applied our oracle generation approach to Song’s application [31], a 

selenium-based web testing system. A real world web application, a parking lot 

calculator of Gerald Ford International Airport (http://www.grr.org/ParkCalc.php), 

was used as our test subject in this application, as shown in Figure5.4. 

Figure 5.4: Parking lot calculator 

The parking lot calculator takes parameters including entry date and time, leaving 

data and time, and parking fee type, etc. as input; calculates the fee and returns a 

number for the parking cost. Traditionally, people generate test cases for web test by 

submitting parameters to servers and executing them, manually or automatically, to 

obtain the expected output. The procedure can be costly in time and money. We 

applied our oracle generation approach to generate executable JUnit test cases, which 

leverages the Selenium web testing framework [32] to test web applications 

automatically. Our framework can generate oracles for web-based tests with test cases 

http://www.grr.org/ParkCalc.php
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simultaneously, which improves the efficiency of test procedures of web applications. 

Because of space, only main part of the CFG and its valuation functions are attached 

here: 

 

 

Figure 5.5: Parts of syntax and valuation functions of parking lot calculator 

Operations in valuation functions were defined in the domain class to calculate time, 

data and cost information for derived variables and eventually a cost can be calculated, 



50 

 

which was the oracle. We located failing test cases by comparing two values, one was 

the oracle of the generated JUnit test case; another was web testing results, which 

were the parking costs calculated from the subject system by executing the operation 

defined in the JUnit test case. Our approach simplified the process to get expected 

results from JUnit test cases instead of executing all test cases manually or 

automatically independently. 

Table 5.4 shows testing results obtained in Song’s work including failing test cases 

ratio and failing test case number by running five different groups of test cases. 

Table 5.4: Report of web testing results on the parking lot calculator 

 Failing Ratio Case Number Failing Cases Number 

1 9% 100 9 

2 14.0% 200 28 

3 10.7% 300 32 

4 11.3% 400 45 

5 11.2% 500 56 
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Section 6 Conclusions and future work 

We presented an automatic semantic-based oracle generation algorithm based on the 

denotational semantic approach. The approach realizes the mapping between the test 

case generation and associated oracle generation. Furthermore, we presented 

strategies to construct a semantic tree, which represents the semantic meaning of a test 

case. Our framework ensures that every generated oracle correctly represents the 

meaning of a test case as long as a correct denotational semantics rule associated with 

the test case grammar is given. 

We have presented an automatic oracle generation framework based on our 

algorithms. The framework takes context-free grammar and semantic rules as input, 

produces test cases along with an associated oracle. Experimental results demonstrate 

the effectiveness of our oracle generation. 

In the future, we will continue to enhance our framework in the following aspect: 

- The optimization of the semantic tree: 

We noticed the possibility of simplifying the semantic tree structure from the 

experiments of our approach. The current framework binds each underived 

variable of test generation with a corresponding semantic node, where a 

semantic subtree will be extended when this variable is derived. However, 

there is an exception: when the associated valuation function is an identify 
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function, where the output is simply the same as the input. Recall that 

because the production rule in arithmetic expression example (E ::= F @@ 

(F)), the subtree will contain a regular semantic node E. Because this node 

does not influence the calculation for the sematic value of E, where λF.(F) is 

used, the semantic tree can be optimized to be compact one by omitting this 

semantic node. 

- More use cases in practical applications: 

We collected the experimental results from an open source license scanning 

tool, a grading system for Java programs handling arithmetic calculations, 

and a web test framework for an online application in this study. The results 

illustrate the effectiveness of our oracle generation approach and eventually 

an ability of fault detection. However, the experimental subjects are limited 

to small or middle scale systems. Because the complexity of input 

specifications and evaluation varies from applications, we plan to apply our 

approach to larger scale and more complicated applications. 
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