
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

11-2018

An Investigation into the Imposed Cognitive Load
of Static & Dynamic Type Systems on
Programmers
Ian Vaughn Koeppe
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Koeppe, Ian Vaughn, "An Investigation into the Imposed Cognitive Load of Static & Dynamic Type Systems on Programmers" (2018).
Student Work. 2922.
https://digitalcommons.unomaha.edu/studentwork/2922

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232778871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2922?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages

An Investigation into the Imposed

Cognitive Load of Static & Dynamic Type

Systems on Programmers

A Thesis

Presented to the

College of Information Science and Technology

and the

Faculty of the Graduate College

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Computer Science

University of Nebraska

by

Ian Vaughn Koeppe

November 2018

Supervisory Committee

Dr. Brian Dorn

Dr. Briana Morrison

Dr. Christine Toh

http://www.unomaha.edu/college-of-information-science-and-technology/news/index.php
http://www.unomaha.edu/
ikoeppe@unomaha.edu

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10978420

10978420

2019

Abstract

An Investigation into the Imposed Cognitive Load of Static & Dynamic Type Systems on

Programmers

Ian Vaughn Koeppe, MS

University of Nebraska, 2018

Advisor: Dr. Brian Dorn

Static and dynamic type systems have long been a point of contention in the pro-

gramming language wars. Yet, for many years, arguments on either side were drawn from

personal experience and not empirical evidence. A challenge for researchers is that the

usability of language constructs is difficult to quantify, especially since usability can be

interpreted in many ways. By one definition, language usability can be measured in terms

of the level of cognitive load imposed on a developer. This can be done through question-

naires, but ultimately user responses are subject to bias. In recent years, eye-tracking has

been shown to be an effective means of measuring cognitive load via direct physiological

measures. Towards the goal of measuring type system usability, we present a user study in

which participants completed programming tasks in Java and Groovy. This thesis explored

the use of the Index of Cognitive Activity (ICA) as a cognitive load measurement tool and

considered novices and experts separately in the analysis. We found ICA to be an ineffective

means of measuring type system usability and we cannot say conclusively whether it can be

generally applied to programming tasks. Despite this, our results contradict previous stud-

ies as we found type system did not affect success rate, task completion time, or perceived

task difficulty.

ii

Acknowledgements

This thesis is the direct and indirect result of many people and many hours. I would like

to extend the most sincere appreciation to:

– Dr. Brian Dorn, whose ability to retain and recall all manner of relevant research still

amazes me. In addition to his invaluable contributions and ideas, I am most grateful

for the passion he has for his work. It influences and inspires.

– Dr. Briana Morrison & Dr. Christine Toh, for their guidance and direction in navi-

gating the inherent obstacles of user-centered research.

– Mi amor and raison d’etre, Ellie.

iii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1

2 Related Work 5

2.1 Cognitive Load & Subjective Measures . 5

2.2 Language Usability & Type Systems . 7

3 Methodology 10

3.1 Methods & Procedure . 10

3.1.1 Experiment Design . 10

3.1.2 Data Collection . 11

3.2 Environment & Task Design . 13

3.2.1 Task 1: Using a Data Object . 14

3.2.2 Task 2: Coordination Between Objects 16

3.2.3 Task 3: Invalid Subclass . 16

3.2.4 Task 4: Debug Integer Divide . 19

3.3 Participant Procedures & Privacy Protection 21

3.3.1 Pilot . 21

3.3.2 Number of Participants . 21

3.3.3 Protection of Privacy . 22

3.3.4 Participant Recruitment . 22

3.3.5 Participant Characteristics . 23

4 Results 26

4.1 Cognitive Load Index & Subjective Measures 26

4.2 Research Question 1 . 26

4.3 Research Question 2 . 29

iv

5 Discussion 32

5.1 Eye-tracking as a Cognitive Load Measurement Tool 32

5.2 Tasks Isomorphism & Difficulty . 34

5.3 Alternative Analyses of ICA . 35

5.4 A Comparison to Past Studies . 37

5.5 Future Work . 38

5.6 Limitations . 39

6 Conclusion 41

A Analysis Scripts 43

Bibliography 45

v

List of Figures

3.1 Task Environment . 13

3.2 First Isomorphic Tasks . 15

3.3 Second Isomorphic Tasks . 17

3.4 Third Isomorphic Tasks . 18

3.5 Fourth Isomorphic Tasks . 20

4.1 Average Cognitive Load per Task . 27

4.2 Average Subjective Load per Task . 27

4.3 Average Cognitive Load by Task & Expertise 29

4.4 Average Subjective Load by Task & Expertise 29

5.1 Average Success Time per Task . 34

A.1 Two-way ANOVA for Task & Type System 43

A.2 Two-way ANOVA for Expertise & Type System 43

A.3 Two-way ANOVA for Task & Type System 44

A.4 Two-way ANOVA for Task & Type System 44

A.5 Two-way ANOVA for Expertise & Type System 44

A.6 Two-way ANOVA for Expertise & Type System 44

vi

List of Tables

1.1 Research Question Logic Model . 4

3.1 Language Preferences - Choice of 3 programming languages, if starting a

project of any kind, included a language with the specified type system. . . 24

3.2 Language Experience - Used a programming language with a particular type

system in at least 1 project. 24

5.1 Success Counts by Task & Expertise . 34

5.2 Alternative Analyses - 95th Percentile & Max of Minute Averages 35

vii

Here’s to the crazy ones. . .

1

Chapter 1

Introduction

Usability is an increasingly popular facet of programming language design. Usability, in this

context, refers to the same notions of usability which have guided user interface design prin-

ciples for decades. Historically, usability has been downplayed in programming language

considerations. The primary focus, particularly in industry, falls on what could be consid-

ered more expert-level concerns like performance, a rich set of features, and expressiveness

(Felleisen, 1990). Research focused on unraveling the mystery of language superiority has ei-

ther been scarce, unconvincing, or lacking replication. Only in recent years have researchers

redoubled, regrouped, and began to empirically conquer the questions surrounding what it

truly means for a programming language and its environment to be usable (Myers et al.,

2016).

By one definition, a usable interface is considered transparent; transparent in that it

disappears so the user can focus entirely on the task at hand without allocating undue mental

resources to understand and navigate it. Since poorly designed user interfaces can cause

unnecessary mental strain on a user, it is becoming increasingly popular to consider cognitive

load in empirical evaluations of interfaces and human-computer design in general (Oviatt,

2

2006; Mazza, 2017; Hollender et al., 2010). There are numerous language qualities which

could conceivably impact the usability of a language: syntax, error messaging, semantics

of language constructs, and length of an edit/build/test cycle, to name a few. One cannot

conceivably formulate a study which universally answers the question, “what makes one

language more usable than another?” Therefore, one must extract a single one of these

components and scrutinize it in an empirical investigation.

This thesis considers the question of type system. There have been long-standing

arguments on both sides of dynamic and static type systems. Proponents of dynamically

typed languages will argue that typecasting unnecessarily increases the complexity of a

program. The need to typecast is enforced by the type system, and does not actually

contribute to the application’s semantics. In all, “types can get in the way of simple

changes or additions to the program which would be easily implemented in a dynamic type

system” (Laurence, 2009, pp. 149–184). On the other hand, “strong typing is important

because adherence to the discipline can help in the design of clear and well structured

programs” (Bird and Wadler, 1988, p. 8). Furthermore, “a static type system provides the

reader of code with implicit documentation” (Benjamin, 2002, p. 5). Yet, at the time these

arguments were written, there was little evidence to support their validity. Today, one can

find a handful of papers which seek to answer these questions, however, there are limitations

to the existing body of research which this thesis seeks to address. These limitations and

the importance of our research will be considered in Chapters 2 and 3. Similar to usability

studies in user interface design, the goal of this research is to evaluate the usability of type

systems by measuring the cognitive load imposed on a developer during programming tasks.

The nature and design of the study will be covered in depth in Chapter 3.

One limitation driving our research surrounds expertise. To date, type system usability

3

research has not considered whether type systems affects novices and experts differently.

Knowing whether novices suffer more from differences in type system would have implica-

tions for how to address those hurdles and assist developers in overcoming them. In turn,

the results of this study could conceivably benefit both educators and the software industry.

Software engineering is known to be a cognitively difficult task with a high barrier to entry

(Green, 1980b). In identifying the non-intuitive aspects of programming languages, one

could reduce this barrier for both traditional students and self-learners. More specifically, if

one can identify whether a dynamically-typed language or a statically-typed one is less cog-

nitively burdensome for students and/or professionals, then more informed decisions could

drive the future of software engineering curricula. This study also offers benefits to the

software engineering community and language designers. Many language design decisions

are made without empirical evidence as to whether or not these changes are an improve-

ment to the usability of the language. Do types unnecessarily complicate the development

process and slow progress? Is it worth the effort to add an optional static type system to

Python? Is it easier for engineers to reason about unfamiliar code if types provide implicit

documentation? Having conducted this study, we provide empirical evidence of the impact,

or lack there of, type system has on productivity measures like completion time and success

rate while investigating the applicability of cognitive load as a driving factor in the analysis

of language usability. These goals were pursued with the research questions outlined in

Table 1.1.

4

Table 1.1: Research Question Logic Model

Research Question Data Collection Analysis Method Hypothesis

Is there a significant
increase in cognitive
load for developers
during programming
tasks when using a
dynamically-typed
language?

Eye Tracking &
Timed Exercises

Per Participant, Per
Task Cognitive Load
Index & Completion
Time

Tasks involving a dy-
namic type system will
be cognitively more
strenuous than those
with static types.

Is there a measurable
difference in the im-
pact of cognitive load
as a result of type
system between novice
and professional devel-
opers?

Eye Tracking &
Timed Exercises

Cognitive Load In-
dex & Completion
Time

The cognitive load dif-
ference seen for novices
will become less signif-
icant, and potentially
nonexistent, for profes-
sional developers.

5

Chapter 2

Related Work

Before answering the research questions, we provide a background into cognitive load as a

usability metric and its applications in software engineering (Section 2.1). Then we discuss

the current state of type system usability research and limitations to the working body of

knowledge (Section 2.2).

2.1 Cognitive Load & Subjective Measures

A strong argument for language superiority lies in the level of cognitive effort one must

employ to use it. Programming is understood to be a difficult task; even amongst seasoned

programmers. Much of the difficulty comes in the prerequisite problem-solving skills and

precision necessary to write programs (Pane et al., 2002). Even having a viable solution in

one’s head, the programmer faces the complex task of expressing it correctly in a computer-

understandable way. Green recognized programming as a cognitively demanding activity

and proposed analyzing software development through the lens of existing research in psy-

chology which could provide well-accepted theories and measures for empirically quantifying

why learning to program is so hard (Green, 1980b). Since Green, other researchers have

6

attempted to observe and classify what hinders novice programmers (Boulay, 1986; Perkins

et al., 1986). Ultimately, these contributions highlight the effects of the overwhelming

cognitive strains imposed on student learners of programming. Being such a cognitively de-

manding task, researchers and educators should be intrigued by the possibilities of lessening

the mental burden imposed on novice programmers.

This raises a fair question as to how one can reliably measure the cognitive effort a

developer musters while completing a programming task. Rather than rely on potentially

biased surveys, recent studies have attempted to use objective cognitive load measurements

to evaluate the success of alternative instructional and learning techniques. One such study

found eye-tracking to provide strong indication of cognitive load assessment (Korbach et al.,

2017). As these evaluation techniques are cutting edge, prior research studying the pros and

cons of various type systems have only been able to leverage success rate and task completion

time as metrics of success or productivity. While these may seem like an appropriate

gauge of how difficult it is to use one type system over another, it is fundamentally an

indirect measure of workload. On the contrary, a direct way to measure cognitive load

relies on physiological measures. Completion time can be influenced by conditions other

than cognitive load such as reading speed, typing speed, and motivation, whereas direct

cognitive load measures seek to eliminate the impact of these confounding variables.

One method of cognitive load assessment which has garnered success is the Index of

Cognitive Activity (ICA). “The Index of Cognitive Activity measures abrupt discontinuities

in the signal created from continuous recording of pupil diameter” (Marshall, 2002, p. 5).

The pupil responds to the presence of cognitive effort with sudden reflexes. ICA tries to

determine, and separate, changes to pupil dilation caused by cognitive effort and those

resulting from other changes to the environment (e.g. lighting). Ultimately, the index is

7

found by determining the times per second that an abrupt discontinuity is detected. Several

studies claim to have successfully gauged cognitive load during activities such as answering

mathematics questions (Korbach et al., 2017; Marshall, 2002). Yet, to our knowledge, the

effectiveness of eye-tracking to measure cognitive load during programming tasks had yet

to be considered.vc

2.2 Language Usability & Type Systems

Usability is not new to programming language research, yet only in recent years has it

felt renewed vigor. Over the past several decades, a handful of researchers have helped

contribute to the current body of knowledge. Some of the earliest work dates back to the

1960s when Dijkstra wrote his well-known paper, “Go to considered harmful” (Dijkstra,

1968). In his rational criticism of the construct, the usability of programming languages

is never mentioned explicitly as a principal motivation. Nonetheless, Dijkstra’s primary

concerns address usability issues of cognitive load imposed on the programmer by the go to

statement. Namely, Dijkstra argues that the go to statement breaks natural flow of control,

and in turn, makes reasoning about the state of the program more cognitively difficult.

Since Dijkstra, numerous papers have addressed language usability as a first-order concern

(Green, 1980a; Soloway et al., 1983; Myers et al., 2016) including some which specifically

look at syntax (Stefik and Siebert, 2013; Uesbeck et al., 2016; Denny et al., 2011).

In the last ten years, researchers have made efforts towards better understanding the

impact of type system on programming language usability (Hanenberg, 2010a; Hanenberg,

2010b; Hanenberg, 2011; Hanenberg and Stuchlik, 2011; Mayer et al., 2012b; Spiza and

Hanenberg, 2014; Okon and Hanenberg, 2016). A handful of papers have even analyzed

type systems in terms of maintenance tasks (Kleinschmager et al., 2012; Hanenberg et al.,

8

2014). Others have looked heavily at the role type system plays on using various forms of

documented and undocumented APIs (Mayer et al., 2012a; Endrikat et al., 2014; Petersen

et al., 2014; Fischer and Hanenberg, 2015; Feldborg et al., 2015).

Of these prior studies, one looked at the effects of type system on longer-term projects

and found no difference in the progress of the 49 participants after 27 hours of time invested

(Hanenberg, 2010b). Similarly, other studies were unable to definitively say one way or

another, but rather found some tasks benefited statically-typed languages, while others

benefited dynamically-typed languages (Mayer et al., 2012b). Moreover, a study specifically

aimed at measuring whether type casting plays a negative role in statically-typed languages

found nonintuitively that the difference only held when tasks required a small amount of

casting (Hanenberg and Stuchlik, 2011). Okan et. al. took it even further by trying to see

if a benefit for dynamically-typed languages could be ensured by creating tasks which were

believed to be inherently biased against statically-typed languages. Yet, at best, there was

no discernible difference (Okon and Hanenberg, 2016). Finally, a handful of studies argue

they have successfully demonstrated statically-typed languages do have a positive impact

on developer productivity (Kleinschmager et al., 2012; Endrikat et al., 2014; Petersen et al.,

2014; Fischer and Hanenberg, 2015), however, for those which considered debugging tasks,

the benefit was only perceived for syntactical errors (Hanenberg et al., 2014).

Despite many existing research efforts, we have identified four major shortcomings:

• The vast majority of research is dominated by a small group of authors. This means

potential biases can permeate multiple papers in a series of studies, and therefore,

they require replication by external parties.

• All studies rely primarily on time to completion as the measure of success. Although

a couple try to explore other metrics, such as number of files viewed, they ignore a key

9

area of insight; namely, how does type system impact to the cognitive strain imposed

on programmers during software tasks.

• Existing research considers only novice programmers, but does not seek to evaluate if

there is a measurable difference in the outcomes for experts or industry professionals.

The study presented in this thesis was designed to address each of these concerns.

Firstly, it acts as a form of replication study with similar tasks and language choices.

Secondly, we explored eye-tracking as a method of cognitive load measurement beyond the

indirect measures of success rate or completion time. Finally, we considered expertise to

investigate how type system affects novices and experts alike.

10

Chapter 3

Methodology

3.1 Methods & Procedure

The objectives of this thesis were achieved through the execution of a user study. At a

high level, we evaluated developers as they attempted to perform programming tasks in a

statically-typed language and a dynamically-typed one. Tasks were designed for varying

difficulty and eye-tracking equipment was leveraged to measure cognitive load while devel-

opers completed them. The following sections delve further into experiment design, data

collection, and design of the tasks themselves.

3.1.1 Experiment Design

We leveraged a within-subject design to manage variability in knowledge or skill which

could skew our results. In doing so, we were aware of the possibilities of learning bias and

adapted isomorphic programming tasks which we believe were similar enough to measure the

same underlying variable but different enough in substance to prevent direct, transferable

knowledge transfer. In addition, learning bias was mitigated through counter-balancing

11

task order. Participants were assigned to start with either the first two dynamically-typed

tasks or first two statically-typed tasks and instructed to alternate every two tasks to the

next pair of tasks in the competing type system.

Each participant was to attempt four programming tasks in a dynamically-typed set-

ting, and four in a statically-typed setting. In order to keep with the expected time con-

straints of 90 minutes, we asked participants who had not completed a task after ten minutes

if they would like to move on. If the participant worked beyond the ten minute allotment,

we did not use that data in our analysis of completion time. In either case, cognitive load

analysis with said data was still possible. Participants were expected to complete the ma-

jority of the tasks, but task difficulty paired with tight time constraints meant few were

even able to attempt the last pair of isomorphic problems. In the other six tasks, each

participant had the chance to attempt a solution. Therefore, only the first three pairs of

isomorphic tasks are used in the analysis.

3.1.2 Data Collection

Prior to the experiment, we conducted a survey to obtain information relevant to deter-

mine the experience of the developer for placement into the novice or expert group. Our

pre-screening survey also asked participants to mark experience with popular languages

and which languages they would prefer to use in a personal project. This allowed us to

collectively look at the group for any inherent biases or favoritism towards a particularly

type system.

During the experiment, we captured eye-tracking data with Seeing Machine’s FOVIO

eye-tracker as participants scanned to understand the code and implement their solutions.

12

A cognitive load index (ICA) was measured via the eye-tracker and leveraging the Eye-

Works Analysis software. The EyeWorks software scaled the cognitive load indices over

the duration of a task, and in conjunction with all information about bad or missing data,

created an average ICA by dividing the sum of raw indices by the maximum number of

measurements which could have occurred (EyeTracking, 2014). Bad or missing data in this

case can be attributed to blinking, head turning, or any other action which could cause

momentary loss in precision by the tracker. It is the scaled ICA value which we use for

statistical comparisons. Success rate and completion time were also monitored as a means

of comparing our findings related to cognitive load with those of past studies.

After each task, participants were asked to record task difficulty as a subjective counter-

balance to the direct cognitive load measures. Participants were asked to rate the following

from zero to ten where ten signified strong agreement with the statement.

• The programming concepts in the activity were very complex.

• The task covered program code that I perceived as very complex.

• The task description and/or documentation were very unclear.

The first 2 questions were used in conjunction with our empirical cognitive load mea-

sures to answer our research questions. These questions were taken from a study which

found them, in the context of competing Computer Science course instruction, to be good

indicators of intrinsic cognitive load (Morrison et al., 2014). Intrinsic cognitive load refers to

the innate difficulty the tasks themselves pose on an individual. The third question, taken

from the same study, was used to gauge extraneous cognitive load; that is, the complexity

created by lack of clarity in the instructions and not directly related to the tasks themselves.

13

Figure 3.1: Task Environment

3.2 Environment & Task Design

To ease finding participants, Java was chosen as the statically-typed language, and similar to

existing research, Groovy was presented as a dynamically-typed Java where the keyword,

def, replaced all type declarations. Tasks were performed in a stripped down version of

Eclipse which had everything removed from shortcuts to syntax highlighting and search

features. Effectively, Eclipse functioned as a basic text editor with a single play button

which allowed the participant to execute a set of tests to validate their solutions (see Figure

3.1).

Within the environment, Groovy files had the extension, dava (a portmanteau of dy-

namic and Java), and any run-time errors or output were intercepted. Mention of “Groovy”

in this intercepted output was replaced with “Java” to further convince participants this

language was no different from Java in any way other than the underlying type system.

Between the static and dynamic tasks, the participants were given isomorphic problems.

The general concepts within the problems dealt with dates/time and money. Problems with

dates and time were given for Java, and the isomorphic problems dealing with money and

14

currency were given in Groovy. Dates and money were ideal candidates for such a study

as there are many calculations done with both that are similar in nature. For example,

one can increment a date by adding days or increment money by adding cents. One can

convert dates between time zones and convert money between currencies. The experiment

setup used a subset of the open source timeandmoney1 library. Leveraging an existing,

open source project allows us to observe more authentic behavior from participants as

opposed to fabricating classes, methods, and variable names which may result in additional

experimental bias.

Before our experiment, we hypothesized there would be a measurable increase in cog-

nitive load for programming tasks involving dynamic types. Part of this belief stemmed

from the notion that statically-declared types function as external memory for the type of

an object, which prevents the programmer from having to store this information in his or

her finite, short-term memory (Hutchins, 1995). In terms of expertise, we believed any cog-

nitive load difference measured across type system with novices may become less distinct,

and potentially nonexistent when looking at professional developers. The reason being that

existing studies have shown, despite initial differences, usability of language constructs do

not play a major role in the ability of expert programmers to use them (Uesbeck et al.,

2016).

3.2.1 Task 1: Using a Data Object

The first task required simple comprehension of an object’s public API. Participants were

given a method which takes an object as a parameter. The objective was for the participant

1https://github.com/stephenh/timeandmoney

15

/**

* Return the current year as an integer based on

* the date of the system clock provided.

*

* @param Clock clock the system clock.

* @returns int the current year based on the clock.

*/

public static int getCurrentYear(Clock clock) {

return clock.today (). getYear (). value ();

}

(a) Task 1 - Java

/**

* Return the current account balance as a double

* based on the balance of the account provided.

*

* @param Account account the provided account.

* @returns double the numerical balance of the account.

*/

public static def getCurrentBalance(def account) {

return account.balance (). getAmount ();

}

(b) Task 1 - Dava

Figure 3.2: First Isomorphic Tasks

to implement the method by using getters on this object. Figures 3.2a and 3.2b are the

Java (Date/Time), and Groovy (Money/Currency) solutions, respectively.

This simple example helped shine light on how developers begin to work with code they

have never seen before. For the statically-typed group, we expected participants to be able

to quickly jump to the class of the provided parameter and search for the method which

returns a calendar object. Since the Clock returns a CalendarDate, the statically-typed

group could again jump to the corresponding class and begin investigating the provided

methods. This is where the dynamically-typed group was expected to deviate. Rather

than immediately knowing the return type of the Account’s method is a MoneyAmount,

they must search for where variables are defined and instantiated. The clear expectation

would be that the statically-typed group would dominate in terms of completion time,

16

however, our primary goal was to measure cognitive load. Despite our expectation that the

dynamically-typed task will require more time, it could be that additional time is not a

byproduct of increased mental burden.

3.2.2 Task 2: Coordination Between Objects

In the second pair of tasks, participants were asked to implement a method which re-

ceives multiple object parameters and coordinates their mutation to a desired state. In the

statically-typed instance, participants were asked to increment a TimePoint object by a

given number of hours, convert it to a provided time zone, and return a string based on a

provided format. In the dynamic task, participants needed to decrease an Account balance

by a provided value (with a specified currency), and print it in the specified locale.

This task sought to measure the ability of each group to coordinate the interaction

of multiple objects. Participants not only had to know what methods to call, but also

needed to understand how to invoke methods with specific parameters. It was expected

participants would display similar foraging behaviors as in the first task, but given the

greater complexity resulting of the number of objects involved, it was anticipated that both

groups would measure higher cognitive load indices than the first task; regardless of type

system. This was by design to allow these two tasks to function as indicators of whether

cognitive load is being measured accurately.

3.2.3 Task 3: Invalid Subclass

The third pair of tasks asked participants to implement a method which receives a service

class as an argument. The service returned parent objects in a class hierarchy, but the de-

veloper needed access to specific subclass methods to complete the task. While the first two

17

/**

* Add the given number of hours to the date (TimePoint),

* convert it to a CalendarDate with the provided

* timezone and return the date in the format of the

* format string.

*

* @param TimePoint the timepoint to manipulate.

* @param int hours number of hours to add to the time point.

* @param TimeZone the timezone to put the date in (TimeZone is

* not a class in this project).

* @param String the date pattern to print the date as.

* @returns String the date in the correct time zone and

* formatted with the hours added.

*/

public static String addHoursToDateAndFormatInTimeZone(

TimePoint timePoint ,

int hours ,

TimeZone timeZone ,

String formatPattern) {

TimePoint time = timePoint.plus(Duration.hours(hours));

return time.calendarDate(timeZone). toString(formatPattern);

}

(a) Task 2 - Java

/**

* Treat the given amount as having the provided currency. Add it

* to the account and then return it formatted with the given locale.

*

* @param Account account the account to manipulate.

* @param Double amount the amount to add to the account.

* @param Currency currency the currency to treat the amount as.

* @param Locale locale the locale to format the money in (Locale is

* not a class in this project).

* @returns String the total amount formatted with the given locale.

*/

public static def addAmountToAccountAndFormatInCurrency(

def account ,

def amount ,

def currency ,

def locale) {

account.increaseBalance(Money.valueOfDouble(amount , currency));

return account.balance (). toString(locale);

}

(b) Task 2 - Dava

Figure 3.3: Second Isomorphic Tasks

18

/**

* You are given the amount of free time available and a schedule which

* contains activities with durations. A schedule returns a list of Activity

* which may be a FixedActivity or an OpenActivity. You can assume the

* schedule provided only returns FixedActivity.

*

* This method should find the total amount of time the activities will take , and

* return the free time remaining after the completion of these activities.

*

* @param long freeTimeInMillis the amount of available free time.

* @param Schedule schedule a schedule containing activities.

* @returns long the amount of free time after completing the activities.

*/

public static long calculateRemainingFreeTime(

Schedule schedule ,

long freeTimeInMillis) {

long scheduledTime = 0;

for (Activity activity : schedule.getActivities ()) {

scheduledTime += ((FixedActivity) activity). getDuration (). toMillis ();

}

return freeTimeInMillis - scheduledTime;

}

(a) Task 3 - Java

/**

* You are given a StockTradingService which contains trades. A

* StockTradingService returns a list of Trade that may be a

* RealizedTrade or UnrealizedTrade. You can assume the service

* will only return RealizedTrades.

*

* This method should find the total amount of money earned or lost , and

* add that to the original balance.

*

* @param StockTradingService service the service containing trade information.

* @param Double originalBalance the original balance.

* @returns Double the balance after including gains and losses from trades.

*/

public static def calculateBalanceWithTrades(def service , def originalBalance) {

totalGainedOrLost = 0.0;

for (Trade trade : service.getTrades ()) {

totalGainedOrLost += trade.getNetGainOrLoss (). getAmount ();

}

return originalBalance + totalGainedOrLost;

}

(b) Task 3 - Dava

Figure 3.4: Third Isomorphic Tasks

19

tasks considered the argument that statically-typed languages provide explicit documenta-

tion which eases strain on short-term memory, this task is meant to consider a case made

for dynamic languages which do not enforce the need to type cast. In the dynamically-

typed group, participants were able to call the subclass methods without casting, but the

statically-typed group had to cast the objects first.

It is a common argument that typecasting gets in the way of understanding and writing

code. On the other hand, while the dynamic tasks do not require typecasting, participants

still have to determine the type of the objects and what methods they afford. This task

intended to measure the impact of forcing the statically-typed group to cast when the

dynamically-typed group had no such obligation. Based on previous work, we would expect

the dynamically-typed group to perform better since the number of casts involved is low

(Hanenberg and Stuchlik, 2011). Still, it remained an open question whether productivity

gains earned from not having to cast would outweigh perceived benefits of static types and

translate to a smaller effect on cognitive load.

3.2.4 Task 4: Debug Integer Divide

In the first three tasks, our expectations were based on the perceived benefits of each type

system. However, these final tasks did not necessarily lend themselves to one or the other.

In addition, these tasks isolated a common difference between static and dynamic languages.

In the statically-typed group, participants were asked to debug a method whose error was

caused by integer division being implicitly floored to another integer. The dynamically-

typed group, in contrast, were to uncover a bug resulting from integer division being im-

plicitly cast to a double. Here we wanted to measure any cognitive load difference resulting

from the implicit conversion of number types during arithmetic operations. As previously

20

/**

* Find the Bug! The following method is meant to find the percentage

* a person is through various life stages based on an 80 year life

* expectancy for a given age.

* Childhood is 15 years from 0 - 14

* Young Adult is 15 years from 15 - 30

* Adult is 30 years from 31 - 60

* Elderly is 20 years from 61 - 80

*

* @param int age the current age.

* @returns String a string containing the percentage the person is

* through each life stage.

*/

public static String findPercentageThroughLifeStages(int age) {

int elderly = age - 60;

elderly = Math.max(0, elderly / 20);

age = Math.min(60, age);

int adult = age - 30;

adult = Math.max(0, adult / 30);

age = Math.min(30, age);

int youngAdult = age - 15;

youngAdult = Math.max(0, youngAdult / 15);

age = Math.min(15, age);

int childhood = Math.max(0, age / 15);

return formatResponse(childhood , youngAdult , adult , elderly);

}

(a) Task 4 - Java

/**

* Find the bug! The following method is meant to find the minimum

* number of coins needed to provide change for the given amount.

*

* @param Integer change the amount of change that must be given

* (between 0 and 100).

* @returns String a string containing the amount of each coin needed.

*/

public static def findChange(def change) {

def quarters = change / 25;

change = change - (quarters * 25);

def dimes = change / 10;

change = change - (dimes * 10);

def nickels = change / 5;

change = change - (nickels * 5);

def pennies = change;

return formatResponse(quarters , dimes , nickels , pennies);

}

(b) Task 4 - Dava

Figure 3.5: Fourth Isomorphic Tasks

21

mentioned, due to time constraints, not enough participants were able to attempt these

tasks to perform an analysis, however, for fullness of the report we are including them here.

3.3 Participant Procedures & Privacy Protection

The following sections detail the process for pilot, recruitment, selection, protection, and

compensation of individuals during the realization of this experiment. This research was

carried out under UNMC IRB protocol 052-18-EX.

3.3.1 Pilot

A study of this size and effort warranted validation with a pilot study. Thus, we conducted

an initial pilot before recruitment procedures. This allowed us to ensure the feasibility of

the task setup and whether or not it is possible to obtain the data of interest with the

desired approach. 4 graduate student researchers were asked to complete a subset of the

tasks to gain confidence in the ability to gather eye-tracking data, to ensure the tasks did

not contain bugs, and to validate we could perform the statistical analysis we expected with

the results. Feedback from the students led to refinement of the tasks and their descriptions

to make the objective clearer.

3.3.2 Number of Participants

The goal was to achieve a total test population of 50 participants; 25 novices and 25 pro-

fessionals. Due to recruitment challenges, the total number of recruited subjects was 25.

Thirteen were professionals and 12 were novices. Our lowest level of analysis was per type

system per expertise level which we compared in a 2x2 factorial design. A power analysis

showed a reasonable chance of measuring some effect (0.70) if the effect size were moderate.

22

Since past studies of similar size have been able to measure differences in success rate and

completion time across type system, it was reasonable to believe we could also measure a

difference in cognitive load with a comparable number of participants.

3.3.3 Protection of Privacy

Upon expression of desire to partake in the study, participants were given unique, numerical

identifiers which were used to tie questionnaire responses, eye-tracking videos, and other

non-identifiable information to that individual. A single document which ties the identifier

to an individual’s name and contact information was stored on a password-protected com-

puter under possession by the primary investigator. Eye-tracking videos were stored in a

way that ties it only to the anonymous identifier. The identification file, along with eye-

tracking videos, will be deleted after conclusion of the study which will make it impossible

to associate questionnaire results with an individual. Questionnaire data was primarily used

for classifying participants as novice or professional, as well as gauging the programmer’s

experience with popular statically and dynamically-typed languages.

3.3.4 Participant Recruitment

Working with a faculty advisor who had ethical access to course enrollment information, we

were able to find participants who met our criteria for novices (see Section 3.3.5). Novices

were recruited through University of Nebraska-Omaha courses. Several sections of CSCI

1620: Introduction to Computer Science II, the university’s second semester Java program-

ming course, were contacted for recruitment. In addition, we reached out to sections of

CSCI 3320: Data Structures, and CSCI 4830: Introduction to Software Engineering. These

23

courses were chosen since students enrolled had completed at least the minimum prerequi-

site semesters of programming needed to participate and had learned the concepts necessary

to be able to complete the tasks.

Experts were contacted by notifying user group coordinators in the Omaha area. We

requested permission to recruit from the organization’s members and coordinators forwarded

our prepared statements. We sought participants from an eclectic set of user groups to

ensure we were not biasing a particular type system. User groups contacted were the

Omaha Java Users Group, Omaha Coffee & Code, Emerging Developers, Omaha Game

Developers, Omaha Hackers, and NebraskaJS.

Both novices and professionals were provided a $50 Amazon gift card in compensation

for their time. Given the tasks were expected to take 1.5 hours, the rate was approximately

$33/hr. Based on prospective wages of software engineering interns and professionals, this

made it sufficient to adequately reimburse novices and professional developers for their

time in a way that did not inadvertently affect the willingness or motives of individuals to

participate.

3.3.5 Participant Characteristics

There were no restrictions for participants based on race, age, gender, or any other charac-

teristic or status. As it was not relevant to our research questions, we did not gather any

demographic information. Children and minors were not asked to participate as it would

provide no additional benefit to this study; and furthermore, children were unlikely to have

the programming background necessary to complete the tasks required of them.

Participants classified as novices had at least 1 semester of formal software engineer-

ing education but had never held a job in the software industry. Experts had at least 1

24

Static Dynamic

Novices
(N=12)

11 4

Experts
(N=13)

13 11

96% 60%

Table 3.1: Language Preferences - Choice of 3 programming languages, if starting a
project of any kind, included a language with the specified type system.

Static Dynamic

Novices
(N=12)

12 7

Experts
(N=13)

13 12

100% 76%

Table 3.2: Language Experience - Used a programming language with a particular type
system in at least 1 project.

semester of formal Computer Science education and had held an industry software engi-

neering position for at least one year. This bar could be considered low, nonetheless, there

were concerns about recruitment of industry professionals, so we accommodated to allow a

wider audience. That being said, of our thirteen experts, 5 reported less than five years of

experience, whereas 8 reported five years of experience or more.

Participants were also asked what languages they might choose if starting a new project

of any kind. When allowed to choose three languages, 22 participants listed Java, 11 chose

Python, 7 chose JavaScript, and the remaining choices were spread out amongst various

C derivatives, Scala, Ruby, Swift, and Perl. Broken down by type system and expertise,

experts are well-balanced in selecting both statically and dynamically-typed languages,

whereas novices were inclined to choose a statically-typed language (see Table 3.1). The

overwhelming reason for choosing these languages was exposure and experience. Partici-

pants also rated familiarity with programming languages based on whether they had played

around with the language, used it in a single project, or in multiple projects (see Table 3.2).

25

100 percent of participants marked having used a statically-typed language in at least one

project, and 76 percent reported they had used a dynamically-typed language in at least

one project. This difference can largely be attributed to the universality of Java, both in

industry and education, and considering Java is the primary language taught at the uni-

versity from which we recruited. Therefore, it is understandable novices would be slightly

preferential to statically-typed languages. Notwithstanding, a large majority of subjects

also had experience with a dynamic language which provides reasonable assurance language

background would not skew results.

26

Chapter 4

Results

4.1 Cognitive Load Index & Subjective Measures

Here we present the results of our analysis using the scaled ICA values generated by the

EyeWorks software and responses to our statements on task difficulty. When charting either

the eye tracking results, which range from zero to one, or our subjective statements, ranging

from zero to ten, we use the full range of the y-axis values to given a full picture and make

visual comparisons simpler.

For one novice, the eye tracking files became corrupt and could not be used in analysis.

In total, data from 11 novices and 13 experts was used. Furthermore, since a majority

of participants did not attempt the fourth pair of tasks, those will also be excluded from

analysis. One will find R scripts used to complete our analysis in Appendix A.

4.2 Research Question 1

To remind readers, our first research question sought to answer whether there is a difference

in cognitive load across static and dynamic type systems, regardless of experience. The

27

Task 1

0.000

0.250

0.500

0.750

1.000

0.3250.326

Java 1 Dava 1

Task 2

0.000

0.250

0.500

0.750

1.000

0.3100.323

Java 2 Dava 2

Task 3

0.000

0.250

0.500

0.750

1.000

0.3150.309

Java 3 Dava 3

Figure 4.1: Average Cognitive Load per Task

Question 1

0.00

2.50

5.00

7.50

10.00

2.002.64

Java 1
Dava 1

Question 2

0.00

2.50

5.00

7.50

10.00

3.043.20

Java 1
Dava 1

Question 1

0.00

2.50

5.00

7.50

10.00

3.123.36

Java 2
Dava 2

Question 2

0.00

2.50

5.00

7.50

10.00

3.923.72

Java 2
Dava 2

Question 1

0.00

2.50

5.00

7.50

10.00

2.882.72

Java 3
Dava 3

Question 2

0.00

2.50

5.00

7.50

10.00

3.042.76

Java 3
Dava 3

Figure 4.2: Average Subjective Load per Task

average cognitive load indices per task can be seen in Figure 4.1. Comparing our scaled

ICA values across task and type system revealed there is no significant effect for task, F(1,

134) = 0.13, p = 0.71, nor for type system, F(1, 134) = 0.04, p = 0.85. Moreover, the

interaction effect also appears insignificant, F(1, 134) = 0.02, p = 0.88.

Similarly, in Figure 4.2, one will find the average result of the subjective questions posed

28

to our participants broken down by task. The charts are paired. The first two correspond

to the answers to questions one and two for the first Java and Dava tasks, the second pair

correspond to the answers to questions one and two for the second Java and Dava tasks,

and so on. As with the ICA values, we performed a two-way ANOVA with task and type

system as our independent variables. For the first subjective statement, “the programming

concepts in the activity were very complex.”, there was no significant effect for task, F(2,

138) = 0.72, p = 0.49, nor for type system, F(1, 138) = 0.36, p = 0.55, and their interaction

was also insignificant, F(2, 138) = 0.20, p = 0.82. Equally, the second statement, “The

task covered program code that I perceived as complex.”, measured no significant effect for

task, F(2, 138) = 0.75, p = 0.48, no significant effect for type system, F(1, 138) = 0.00, p

= 0.96, and their interaction was insignificant as well, F(2, 138) = 0.04, p = 0.96.

To consider other potential arguments towards the benefits of type system, we also

considered success rate and completion time. In the case of success rate, we found no

significant effect for task, F(2, 138) = 1.24, p = 0.29, nor for type, F(1, 138) = 0.04, p

= 0.85. We also found no significance in their interaction, F(2, 138) = 0.06, p = 0.94.

Similarly with completion time, only at successful attempts, the results further solidified

our findings. No significant effect was measured based on task, F(2, 75) = 0.26, p = 0.77, no

significant effect was measured based on type, F(1, 75) = 0.00, p = 0.99, and no significant

effect was found for their interaction, F(2, 75) = 0.31, p = 0.74

As a result of both empirical and subjective analyses, we must reject our hypothesis

that static type systems reduce the cognitive effort exerted on this set of programming

tasks.

29

Task 1

0.000

0.250

0.500

0.750

1.000

Novice Expert

0.3020.353 0.3050.350

Java 1 Dava 1

Task 2

0.000

0.250

0.500

0.750

1.000

Novice Expert

0.2930.329 0.3060.343

Java 2 Dava 2

Task 3

0.000

0.250

0.500

0.750

1.000

Novice Expert

0.3090.322 0.3000.319

Java 3 Dava 3

Figure 4.3: Average Cognitive Load by Task & Expertise

Question 1

0.00

2.50

5.00

7.50

10.00

Novice Expert

0.923.17 2.003.33

Java 1 Dava 1

Question 2

0.00

2.50

5.00

7.50

10.00

Novice Expert

1.774.42 2.234.25

Java 1 Dava 1

Question 1

0.00

2.50

5.00

7.50

10.00

Novice Expert

1.694.67 1.775.08

Java 2 Dava 2

Question 2

0.00

2.50

5.00

7.50

10.00

Novice Expert

2.006.00 1.546.08

Java 2 Dava 2

Question 1

0.00

2.50

5.00

7.50

10.00

Novice Expert

1.854.00 0.924.67

Java 3 Dava 3

Question 2

0.00

2.50

5.00

7.50

10.00

Novice Expert

1.624.58 0.924.75

Java 3 Dava 3

Figure 4.4: Average Subjective Load by Task & Expertise

4.3 Research Question 2

To answer our second research question, does type system affect novices differently from

experts, we compared the scaled ICA values for experts (static & dynamic) against novices

(static & dynamic). The average cognitive load values broken out by expertise and type

system can be seen in Figure 4.3. One will notice there is visually only marginal difference in

cognitive load across expertise, and additionally, across type system, there is no perceivable

difference in average ICA. Our analysis further confirms no significance for expertise, F(1,

134) = 3.05, p = 0.08, neither for type system, F(1, 134) = 0.01, p = 0.92, and ultimately,

30

no significant effect for their interaction, F(1, 134) = 0.00, p = 0.99.

Figure 4.4 shows a breakdown of the average rating to our subjective statements by

expertise and type system. We see a much clearer distinction between novices and experts

in these subjective measures. We found a significant effect for both subjective statements

for expertise, F(1, 140) = 19.51, p <0.001 and F(1, 140) = 35.83, p <0.001, respectively.

However, in accordance with all our previous findings, there was no significant effect mea-

sured for type system by the first statement, F(1, 140) = 0.18, p = 0.67, nor the second

statement, F(1, 140) = 0.07, p = 0.80.

Turning again towards other metrics of productivity, we considered success rate and

completion time between novices and experts. Interestingly, we did not find a significant

effect in success rate based on expertise, F(1, 140) = 2.60, p = 0.11. This may suggest

our expertise classification was not sufficiently disparate or that our task difficulty was not

enough to separate the experienced from the beginner. We further reflect on this in Chapter

5. In terms of success rate, type system had no significant effect, F(1, 140) = 0.06, p =

0.80, and the interaction between expertise and type system was also insignificant, F(1,

140) = 0.25, p = 0.62. Measuring completion time against expertise and type, we found

expertise had a significant effect, F(1, 78) = 5.67, p = 0.02, but did not find a significant

effect for type system, F(1, 78) = 0.35, p = 0.56, or for their interaction, F(1, 78) = 1.88,

p = 0.17. Therefore, while experts completed tasks more quickly, the time to completion

was not influenced by type system across tasks.

Our analysis shows a significant effect for expertise based on our subjective statements

and task completion time, but no significance for type system on all accounts. It is expected

experts would report markedly lower values on our statements of task difficulty and even

complete tasks more quickly, however, neither group revealed contrast tied to type system.

31

Therefore, we again reject our hypothesis that type system impacts the cognitive load

of developers and furthermore, in the context of our experiment and by our definitions

of expertise, we cannot support the claim that type system has a different effect on the

cognitive load of novices and experts.

32

Chapter 5

Discussion

Results do not support our hypothesis that statically-typed languages reduce the cognitive

load of developers during programming tasks. Likewise, we found no significant difference in

the effects of type system on novices and experts. Both these statements are true based on

all forms of data gathered. There are some surprises; namely, that our cognitive load indices

measured did not show a significant effect for expertise, nor for task difficulty. In fact, we

found little variance in the ICA values of participants. We discuss both the effectiveness of

eye-tracking, and its generalization to programming tasks in Section 5.1. We also consider

the impact of our task design in Section 5.2. We conclude our discussion with a reflection on

our findings, a comparison to existing studies, implications for future work, and limitations

of our conclusions.

5.1 Eye-tracking as a Cognitive Load Measurement Tool

Eye-tracking has been shown to be a good indicator of cognitive load in various settings

(Korbach et al., 2017; Marshall, 2002). Yet, to our knowledge, the effectiveness of eye-

tracking to measure cognitive load during programming tasks had yet to be considered.

33

With the objective of validating its use in programming tasks, we attempted to design two

pairs of tasks believed to be relatively more difficult from one another. Having pooled

participants from industry, we also expected that experts overall would show demonstrably

lower ICA values. Nonetheless, based on our findings, there was no significant difference in

ICA values for task, type system, or expertise. It is possible the data gathered from the

eye-tracker was low quality, but with each participant, the tracker was recalibrated using a

five-point calibration sequence to ensure precise measurement. Therefore, one must consider

the fundamental differences of our study with those previously used to validate the index

of cognitive activity. Primarily, tasks used in validating ICA contrasted greatly with each

other. In one case, participants were asked to stare at the screen doing nothing, whereas the

other task involved performing math and responding verbally (Marshall, 2002). Other tasks

mentioned were largely visual, and involved small amounts of keyboard interaction. This

varies greatly with programming. Programming involves significant amounts of reading and

typing. Also, while our tasks were believed to vary in difficulty, the difference is likely not

as definitive as would be the case between doing nothing and a performing a cognitively

difficult task. These differences highlight some of the challenges involved in measuring ICA

in a programming setting, and may indicate ICA is not a good indicator of cognitive activity

while programming.

Physiological cognitive load measurements with eye-tracking are still new. Researchers

are discovering new methods of calculating cognitive load using eye-tracking (Duchowski

et al., 2018) and some methods have had success in real-world scenarios; such as driving

(Fridman et al., 2018). Future work could explore whether these or newer cognitive load al-

gorithms may be better suited towards programming activities. As it stands, we cannot say

conclusively whether eye-tracking and ICA are well-suited for programming environments.

34

Se
co

nd
s

250

288

325

363

400

Java 1 Dava 1 Java 2 Dava 2 Java 3 Dava 3

362355319311333339

Avg Success Time

Figure 5.1: Average Success Time per Task

Java 1 Dava 1 Java 1 Dava 1 Java 1 Dava 1

Novices
(N=12)

7 8 4 4 5 6

Experts
(N=13)

9 9 8 8 10 8

Total
(N=25)

16 17 12 12 15 14

Table 5.1: Success Counts by Task & Expertise

5.2 Tasks Isomorphism & Difficulty

It is difficult to truly say if two tasks are sufficiently isomorphic for a within-subjects

design. We believe during task design to have chosen subject areas and task objectives

which were similar in nature, but which required a similar number of operations, similar

types of operations, and interactions with a similar number of classes and files.

Nevertheless, we can rely on other indicators to support the claim these tasks were

sufficiently isomorphic beyond their apparent perception. Firstly, the success rate of tasks

across type system were similar. The first Java task was completed correctly by 16 par-

ticipants and its dynamic counterpart was completed correctly by 17. The second pair of

Java and Dava tasks were each completed correctly by 12 participants, and the third pair of

tasks were completed correctly by 15 and 14 participants, respectively (see Table 5.1). As

35

Min Mean Max SD

95th Percentile
Left Eye

0.0332 0.0520 0.1521 0.0204

95th Percentile
Right Eye

0.0333 0.0519 0.2186 0.0248

Max of Minute Averages
Left Eye

0.2069 0.3593 0.6834 0.1037

Max of Minute Averages
Right Eye

0.1770 0.3510 0.6835 0.1098

Table 5.2: Alternative Analyses - 95th Percentile & Max of Minute Averages

expected, the effect of task on success rate was non-significant, F(1, 138) = 0.04, p = 0.85.

Since no pair of tasks had a significant difference in success rate, we can surmise they were

fairly similar in difficulty. In addition, since success rate was between 48 and 68 percent,

these results are not skewed by the tasks being overly simple or grossly difficult (i.e. no

scaling or flooring effects).

As a final indication of isomorphism, we looked at task completion time. In Figure

5.1, one will find the average time per task of those participants who successfully completed

them. There is no significant difference in the completion time of isomorphically-paired

tasks, F(2, 138) = 0.42, p = 0.66, which further supports the notion tasks were isomorphic.

5.3 Alternative Analyses of ICA

Our original analysis indicates there might not be a significant increase in cognitive load

based on type system, however, one could make the argument that averaging cognitive load

indices throughout two to ten minute tasks softens more interesting details of the data set.

For example, while averages might indicate an overall increase in cognitive load during the

entirety of the task, one could also consider peak values or grouped averages to determine

if one type system plays a role in momentary increases or spikes in cognitive effort. As

such, we considered two additional metrics for comparing cognitive load across tasks. First,

36

we considered the 95th percentile cognitive load index which could give a better indication

of peak cognitive strain at any point in the task. In a similar way, we considered average

cognitive load values over sixty second windows and then chose the maximum value of those

averages as a balance between averaging all values and looking only at the maximum.

We ran our analysis on both the 95th percentile ICAs and the maximum of sixty second

averages. The analysis was run on each eye separately as there is no intuitive way to combine

these metrics from each eye when the ICA values may not have occurred from the same

point in time. Descriptive statistics of these metrics by eye can be found in table 5.2. The

95th percentile results continue to show no significant difference in cognitive load based on

type system; F(1, 134) = 1.48, p = 0.23, and F(1, 134) = 0.01, p = 0.92 for the left and

right eye respectively. Similarly, the maximum ICA of one minute averages also showed no

difference in cognitive load based on type system for the left eye, F(1, 134) = 0.01, p =

0.92, and right eye, F(1, 134) = 0.02, p = 0.88.

Interestingly, if we look at only the left eye values to ask if there is a significant difference

in cognitive load based on expertise, there is still no significance for both 95th percentile,

F(1, 134) = 0.08, p = 0.78, and maximum of minute averages, F(1, 134) = 0.83, p = 0.36.

However for the right eye, there is strong significance for both 95th percentile, F(1, 134)

= 7.51, p < 0.01, and maximum of minute averages, F(1, 134) = 9.04, p < 0.01. The

results of the right eye data align with our original expectations of cognitive effort between

novices and experts, however, it cannot be determined from the results alone why this

phenomenon has occurred. These findings may indicate that lighting in our lab was not

well-distributed or perhaps eye dominance plays a role in capturing cognitive load (i.e. it

is possible one’s dominant eye may be more sensitive to the physiological manifestations of

cognitive load). Given the right eye results are accurate, one could speculate that expertise

37

does not necessarily result in a lower average cognitive load, but fewer spikes in cognitive

strain throughout a given task. These questions represent areas of future work. One could

attempt to uncover whether eye dominance plays a role in the measurement of cognitive

load or whether peak cognitive strain is a better indicator of cognitive effort rather than

average cognitive load for tasks of approximately ten minutes.

All this aside, the objective of this research was to determine if cognitive load differences

result from programming in a static type system versus a dynamic type system. Given this,

the results continue to show that it is unlikely type system plays a role in the cognitive

effort of programmers in the context of the tasks we have provided.

5.4 A Comparison to Past Studies

We gathered several other indicators of usability which can be leveraged aside from ICA.

Primarily, we can rely on the subjective statements as well as success rate and completion

time to act as a proxy for usability. Recall the analysis of success rate and completion time

in Chapter 4. Our previous analysis showed no significant difference in average success rate

or completion time. This is counter to a handful of studies which claim a positive benefit can

be shown for statically-typed languages (Endrikat et al., 2014; Petersen et al., 2014; Fischer

and Hanenberg, 2015). In fact, none of completion time, success rate, subjective statements,

or cognitive load index indicated a benefit for either type system. It is possible these studies

contained bias in the experience of their participants since the majority were students, but

experience surveys were not provided. We believe, at best, the benefits of a particular type

system are likely too small to measure, or occur in such specific instances, that it is not

worthwhile to make type system a forefront issue in language usability discussions.

38

It was believed declared types, in the context of a static type system, would allow a

developer to offload some of the cognitive effort required to mentally keep track of them.

However, it is possible developers still keep track of types in short term memory so as to

better reason about the program and task as a whole. Offloading type information from

working memory may actually hinder the formation of a working mental model. Further-

more, it is possible when working on smaller libraries and code bases, or where the tasks

are confined to the implementation of a single method, the benefits of either type system

are too small to measure. Since our study only dealt with the implementation of small

methods in a medium-sized library, it could be one would measure an effect given a study

with longer tasks or in which participants implement a larger system from scratch. Unfor-

tunately, a study of such length and complexity would have nontrivial problems accounting

for confounding variables of participant ability or how solutions are structured throughout

the project life cycle. Ultimately, it is beyond the findings of this research to claim one type

system reduces cognitive effort on the developer. From a usability perspective, it raises the

question of whether it is worth debating the benefits of type system. Perhaps researchers

should turn their gaze towards more impactful language features.

5.5 Future Work

Despite the inconclusiveness of eye-tracking results, neither our subjective measures nor

productivity metrics showed a benefit for either type system. This leaves an open question

as to whether our study design was not well-suited to measure an effect, or whether the

effect is simply nonexistent. Given this, it would be interesting to coordinate a study which

tracks cognitive load over a longer real-world task rather than the quick problems presented

herein. Furthermore, we believed developers relied on declared types to offload some burden

39

on memory, but our results could not confirm this. A logical followup would be to consider

whether developers even use declared types as we suspect. One could analyze fixation points

and duration on type declarations to better understand how, or if, programmers use type

information.

Researchers could also focus on other aspects of language design such as syntax, lan-

guage constructs, etc. As with type system, it is possible the effect sizes could be small

when looking at individual language differences. Consequently, it may be more feasible to

work backwards. First, compare two vastly different languages syntactically, such as Java

and Python, to find a cognitive load difference. If found, then one could try to peel back the

most likely culprits. In the end, it could be that one language feature does not play a huge

role in its usability, but rather marginal gains of small-impact features result in significant

differences.

Another avenue of future work is looking at cognitive load variance as an indicator of

experience. While looking at cognitive load variance, it appeared to fluctuate more often

for novices. Less variance across tasks could signify greater comfort with programming,

and by extension, more experience. Put another way, higher variance for novices highlights

how much more impact unknown or unfamiliar parts of a task can have on a learner. One

could further explore cognitive load variance as an indicator of expertise or as a measure of

progress or proficiency in learning.

5.6 Limitations

The limitations of our study can be divided into two groups: 1) those related to study

design, and 2) those relevant to our findings. In terms our study design, it is possible

to have introduced learning effects brought on by the within-subject design. The order

40

in which participants attempted tasks was counterbalanced to help alleviate any potential

influence, but ultimately, the tasks may have been too similar. In addition, by using a

stripped down version of Eclipse, despite having many of its features removed, it may still

have felt more familiar to experts, and thus played a role in recorded difficulty. Lastly, our

study originally intended to recruit 50 participants, however, this proved to be extremely

difficult. This means an effect on cognitive load may still exist, but it was too small to be

measured with our sample size.

With regards to our findings, there are limitations to their generalization. It is possible,

given different coding scenarios, that an impact resulting from type system differences could

occur. For example, it may be that the cognitive impact of type system is more apparent

during longer tasks or ones which involve building a project from start to finish. Moreover,

while our study had developers implement methods within an unfamiliar API, it is not often

the case in real-world environments that a programmer’s goal be clearly defined and so

narrowly limited in scope. Rather, they oftentimes have to change code in several locations

of a project to add new functionality. Such changes may be better suited to identify the

benefits of a particular type system since it involves piecing together a grander mental

model of an program.

41

Chapter 6

Conclusion

While programming is well-known to be a cognitively demanding activity, even today, us-

ability in programming language design is not a first-order concern. Languages continue to

evolve and increase in complexity so it is crucial for future research to consider usability

when new language features are proposed.

Historically, usability research has relied on indirect measures of cognitive load, how-

ever, advancements in eye-tracking technology suggest a way to empirically measure the

cognitive effort of study participants. We explored this technique in a user study aimed

at uncovering differences in imposed cognitive load based on type system. The results and

underlying contributions of this thesis are summarized by the following:

• We found no evidence type system had any bearing on the cognitive load of developers.

• We found no evidence type system impacts the cognitive load of novices or experts

differently.

• We found the effectiveness of eye-tracking, as a means of measuring cognitive load

during programming tasks, to be inconclusive.

42

• We served as a replication study for previous research which has had varying results

comparing the productivity benefits of type systems.

In our study, we sought to isolate type system as a potential factor affecting the cogni-

tive load of developers. We found no evidence in our results that such a distinction exists.

Not only was this true for type systems as a whole, but it also held for both novices and

experts. Furthermore, the statements rated by participants as a subjective measure further

supported these findings. Lastly, we did not find a significance in success rate or completion

time when comparing type system which contradicts previous work in this area. In conclu-

sion, we cannot support the assertion that type system has a significant effect on usability,

or even productivity, by any metric we gathered.

43

Appendix A

Analysis Scripts

The first research question considered task and type system as the independent variables and

ICA as the dependent variable (Figure A.1). In the second research question, we considered

expertise and type system as the independent variables and ICA as the dependent variable

(Figure A.2). Both research questions also considered success rate (Figures A.3 & A.5) and

completion time (Figures A.4 & A.6).

1 rq1 <- read.csv(’rq1.csv ’)

2

3 library(car);

4 anova <- aov(ICA ~ Task * Type , data = rq1)

5 Anova(anova , type = "III")

Figure A.1: Two-way ANOVA for Task & Type System

1 rq2 <- read.csv(’rq2.csv ’)

2

3 library(car);

4 anova <- aov(ICA ~ Expert * Type , data = rq2)

5 Anova(anova , type = "III")

Figure A.2: Two-way ANOVA for Expertise & Type System

44

1 rq1 <- read.csv(’rq1.csv ’)

2

3 library(car);

4 anova <- aov(Success ~ Task * Type , data = rq1)

5 Anova(anova , type = "III")

Figure A.3: Two-way ANOVA for Task & Type System

1 rq1 <- read.csv(’rq1.csv ’)

2

3 library(car);

4 anova <- aov(Time ~ Task * Type , data = rq1)

5 Anova(anova , type = "III")

Figure A.4: Two-way ANOVA for Task & Type System

1 rq2 <- read.csv(’rq2.csv ’)

2

3 library(car);

4 anova <- aov(Success ~ Expert * Type , data = rq2)

5 Anova(anova , type = "III")

Figure A.5: Two-way ANOVA for Expertise & Type System

1 rq2 <- read.csv(’rq2.csv ’)

2

3 library(car);

4 anova <- aov(Time ~ Expert * Type , data = rq2)

5 Anova(anova , type = "III")

Figure A.6: Two-way ANOVA for Expertise & Type System

45

Bibliography

Benjamin, P. C. (2002). Types and Programming Languages. MIT Press, Cambridge, MA.

Bird, R. and Wadler, P. (1988). An Introduction to Functional Programming. Prentice
Hall International (UK) Ltd, Herfordshire, UK.

Boulay, B. D. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1):283–299.

Denny, P., Luxton-Reilly, A., Tempero, E., and Hendrickx, J. (2011). Understanding the
syntax barrier for novices. In Proceedings of the 16th annual joint conference on
innovation and technology in computer science education (ITiCSE’11), pages 208–212.

Dijkstra, E. W. (1968). Letters to the editor: go to statement considered harmful.
Communications of the ACM, 11(3):147–148.

Duchowski, A. T., Krejtz, K., Krejtz, I., Biele, C., Niedzielska, A., Kiefer, P., Raubal, M.,
and Giannopoulos, I. (2018). The index of pupillary activity: Measuring cognitive
load vis-à-vis task difficulty with pupil oscillation. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, page 282. ACM.

Endrikat, S., Hanenberg, S., Robbes, R., and Stefik, A. (2014). How do API
documentation and static typing affect api usability? In Proceedings of the 36th
International Conference on Software Engineering, pages 632–642.

EyeTracking, I. (2014). Workload Module Manual. EyeTracking, Inc.

Feldborg, M., Nielson, T. L., and Thomas, B. (2015). Type system and programmers: A
look at optional typing in dart. Master’s thesis, Aalborg University.

Felleisen, M. (1990). On the expressive power of programming languages. ESOP ’90,
pages 134–151.

Fischer, L. and Hanenberg, S. (2015). An empirical investigation of the effects of type
systems and code completion on API usability using Typescript and Javascript in ms
visual studio. ACM SIGPLAN Notices, 51(2):154–167.

Fridman, L., Reimer, B., Mehler, B., and Freeman, W. T. (2018). Cognitive load
estimation in the wild. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, page 652. ACM.

Green, T. R. G. (1980a). Ifs and thens: Is nesting just for the birds? Software: Practice
and Experience, 10(5):373–381.

46

Green, T. R. G. (1980b). Programming as a cognitive activity. Human interaction with
computers, pages 271–320.

Hanenberg, S. (2010a). Doubts about the positive impact of static type systems on
programming tasks in single developer projects-an empirical study. In ECOOP Object
Oriented Programming, pages 300–303.

Hanenberg, S. (2010b). An experiment about static and dynamic type systems: Doubts
about the positive impact of static type systems on development time. ACM
SIGPLAN Notices, 25(10):22–35.

Hanenberg, S. (2011). A chronological experience report from an initial experiment series
on static type systems. In 2nd Workshop on Empirical Evaluation of Software
Composition Techniques (ESCOT)(Lancaster, UK, 2011).

Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, E., and Stefik, A. (2014). An
empirical study on the impact of static typing on software maintainability. Empirical
Software Engineering, 19(5):1335–1382.

Hanenberg, S. and Stuchlik, A. (2011). Static vs. dynamic type systems: An empirical
study about the relationship between type casts and development time. ACM
SIGPLAN Notices, 47(2):97–106.

Hollender, N., Hofmann, C., Deneke, M., and Schmitz, B. (2010). Review: Integrating
cognitive load theory and concepts of human-computer interaction. Comput. Hum.
Behav., 26(6):1278–1288.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive science,
19(3):265–288.

Kleinschmager, S., Robbes, R., Stefik, A., Hanenberg, S., and Tanter, E. (2012). Do static
type systems improve the maintainability of software systems? an empirical study. In
Program Comprehension (ICPC), 2012 IEEE 20th International Conference on,
pages 153–162. IEEE.

Korbach, A., Brünken, R., and Park, B. (2017). Differentiating different types of cognitive
load: a comparison of different measures. Educational Psychology Review, pages 1–27.

Laurence, T. (2009). Dynamically typed languages. Advances in Computers, 77:149–184.

Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. In
Human factors and power plants, 2002. proceedings of the 2002 IEEE 7th conference
on, pages 7–7. IEEE.

Mayer, C., Hanenberg, S., Robbes, R., Tanter, E., and Stefik, A. (2012a). An empirical
study of the influence of static type systems on the usability of undocumented
software. ACM SIGPLAN Notices, 47(10):683–702.

Mayer, C., Hanenberg, S., Robbes, R., Tanter, E., and Stefik, A. (2012b). Static type
systems (sometimes) have a positive impact on the usability of undocumented
software: An empirical evaluation. Self, 18:5.

47

Mazza, D. (2017). Reducing cognitive load and supporting memory in visual design for
HCI. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, pages 142–147. ACM.

Morrison, B. B., Dorn, B., and Guzdial, M. (2014). Measuring cognitive load in
introductory cs: adaptation of an instrument. In Proceedings of the tenth annual
conference on International computing education research, pages 131–138. ACM.

Myers, B. A., Stefik, A., Hanenberg, S., Kaijanaho, A. J., Burnett, M., Turbak, F., and
Wadler, P. (2016). Usability of programming languages: Special interest group (SIG)
meeting at CHI 2016. Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems, pages 1104–1107.

Okon, S. and Hanenberg, S. (2016). Can we enforce a benefit for dynamically typed
languages in comparison to statically typed ones? a controlled experiment. In
Program Comprehension (ICPC), 2016 IEEE 24th International Conference on,
pages 1–10. IEEE.

Oviatt, S. (2006). Human-centered design meets cognitive load theory: designing
interfaces that help people think. In Proceedings of the 14th ACM international
conference on Multimedia, pages 871–880. ACM.

Pane, J. F., Myers, B. A., and Miller, L. B. (2002). Using HCI techniques to design a
more usable programming system. In Human Centric Computing Languages and
Environments, 2002. Proceedings. IEEE 2002 Symposia on, pages 198–206. IEEE.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., and Simmons, R. (1986). Conditions
of learning in novice programmers. Journal of Educational Computing Research,
2(1):37–55.

Petersen, P., Hanenberg, S., and Robbes, R. (2014). An empirical comparison of static
and dynamic type systems on API usage in the presence of an IDE: Java vs. Groovy
with Eclipse. In Proceedings of the 22nd International Conference on Program
Comprehension, pages 212–222.

Soloway, E., Bonar, J., and Ehrlich, K. (1983). Cognitive strategies and looping
constructs: An empirical study. Communications of the ACM, 26(11):853–860.

Spiza, S. and Hanenberg, S. (2014). Type names without static type checking already
improve the usability of APIs. In Proceedings of the 13th International Conference on
Modularity, pages 99–108.

Stefik, A. and Siebert, S. (2013). An empirical investigation into programming language
syntax. ACM Transactions on Computing Education, 13(4):19.

Uesbeck, P. M., Stefik, A., Hanenberg, S., Pedersen, J., and Daleiden, P. (2016). An
empirical study on the impact of C++ lambdas and programming experience. In
Proceedings of the 38th International Conference on Software Engineering, pages
760–771.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	11-2018

	An Investigation into the Imposed Cognitive Load of Static & Dynamic Type Systems on Programmers
	Ian Vaughn Koeppe
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Cognitive Load & Subjective Measures
	2.2 Language Usability & Type Systems

	3 Methodology
	3.1 Methods & Procedure
	3.1.1 Experiment Design
	3.1.2 Data Collection

	3.2 Environment & Task Design
	3.2.1 Task 1: Using a Data Object
	3.2.2 Task 2: Coordination Between Objects
	3.2.3 Task 3: Invalid Subclass
	3.2.4 Task 4: Debug Integer Divide

	3.3 Participant Procedures & Privacy Protection
	3.3.1 Pilot
	3.3.2 Number of Participants
	3.3.3 Protection of Privacy
	3.3.4 Participant Recruitment
	3.3.5 Participant Characteristics

	4 Results
	4.1 Cognitive Load Index & Subjective Measures
	4.2 Research Question 1
	4.3 Research Question 2

	5 Discussion
	5.1 Eye-tracking as a Cognitive Load Measurement Tool
	5.2 Tasks Isomorphism & Difficulty
	5.3 Alternative Analyses of ICA
	5.4 A Comparison to Past Studies
	5.5 Future Work
	5.6 Limitations

	6 Conclusion
	A Analysis Scripts
	Bibliography

