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Multi-label classification (MLC) is one of the major classification approaches in the

context of data mining where each instance in the dataset is annotated with a set of

labels. The nature of multiple labels associated with one instance often demands higher

computational power compared to conventional single-label classification tasks. A

multi-label classification is often simplified by decomposing the task into single-label

classification which ignores correlations among labels. Incorporating label correlations

into classification task can be hard since correlations may be missing, or may exist

among a pair or a large subset of labels. In this study, a novel MLC approach is

introduced called Multi-Label Classification with Label Clusters (MLC–LC), which

incorporates label correlations into a multi-label learning task using label clusters.

MLC–LC uses the well-known Cover-coefficient based Clustering Methodology (C3M) to

partition the set of labels into clusters and then employs either the binary relevance or the

label powerset method to learn a classifier for each label cluster independently. A test

instance is given to each of the classifiers and the label predictions are unioned to obtain

a multi-label assignment. TheC3M method is especially suited for constructing label

clusters since the number of clusters appropriate for a label set as well the initial cluster

seeds are automatically computed from the data set. The predictive of MLC–LC is

compared with many of the matured and well known multi-label classification

techniques on a wide variety of data sets. In all experimental settings, MLC–LC

outperformed the other algorithms.
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Chapter 1

Introduction

1.1 Overview

According to the machine learning literature, there are three main classification

categories namely binary, multi-class, and multi-label classification. This categorization is

mainly based on the number of labels assigned to each instance in the dataset. When

instances are associated with single label from a set which has two outcomes

positive/negative (or true/false) can be recognized as binary classification where as in

Multi- class classification problems each instance in the dataset annotated with single

label from a finite set of outcomes. As an example, detecting a mail whether it is spam or

not (true/ false) is a binary classification problem and categorizing Iris flower into either

an Iris Setosa, Iris Versicolour, or Iris Virginica is a multi-class classification problem.

However, these two classification problems are commonly recognized as Single label

classification problem as final annotation is only having single label. Both of these

classification problems learn a classifier (or a classifier ensemble) using a set of training

instances and then use the classifier (or the ensemble) to assign a single label to a new (or

a test) instance.

Multi-label classification (MLC) is an extension of the traditional single-label
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classification problem where each instance is associated with a set of labels. For example,

according to the single label classification, Figure 1.1 can be annotated beach where as

Multi-label classification approach can annotate the same image with beach, blue, water,

chair, tree, sea for the image. Further, Multi-label classification problems are common in

real-world applications. For example, a given email message may be labeled as both

personal and important. Similarly, a news article may be classified as religious, conservative,

and liberal. Each input instance in a multi-label data set may be labeled with more than

one label. Hence, the challenge is to annotate newer instances with multiple appropriate

labels as possible.

Figure 1.1: Beach scene

Mainly there are two approaches to tackle multi-label classification problem known

as problem transformation method and algorithm adaptation method. Problem

transformation method transfers a multi-label problem into a set of single label

classification problems so that they can be handled by a set of single-label classifiers and

union the outputs to retrieve the final solution. One simple problem transformation
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approach for predicting multiple labels for a given instance is to train a binary classifier

for each label separately, which is also known as the binary relevance (BR) method1

(Figure 2.2). A test instance is given to each binary classifier to find all appropriate labels.

However, using binary classification approach to solve a multi-label classification

problem has severe drawback that it ignores the correlations among labels. For example,

if an image (Ex: Figure 1.1) is labeled with water, it is more likely that it is labeled with

blue. As these set of binary classifiers executes mutually exclusive manner there is no way

to identify or preserve label dependencies. One way to incorporate correlations among

labels is to treat each label combination as a distinct label and transform multi-label

classification problem into multi-class classification problem, known as the label powerset

(LP) method.1 Here, each class label is a boolean vector of the size of all possible label set.

If an instance contains a particular label, then the label in the boolean vector is set to 1,

otherwise, it is set to 0. When a new instance is given to this classifier, it returns one

boolean vector with possible label values set to 1. Though it is true that this approach can

retrieve the complete label correlations, the upper bound of the combinations are

exponential (2n) and class imbalance issues can occur as the number of instances for

each distinct class label may be sparse.

1.2 Aims and Objectives

Label correlation is one of the major criteria which should preserve while building a

multi-label classifier yet it can be challenging with the computational complexities.2 Cost

of the classification task could vary from linear to an exponential with the number of

possible labels. Not only the training task of the multi-label classification task but also a

prediction for a new instance takes extra time as there could be a higher number of

annotations to be done. Therefore, the issue of managing the accuracy of multi-label

classification while preserving the label correlations has received a lot of attention. Some
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of the previous studies3 focused on categorizing label correlation strategies into three

main categories as follows.

• The first-order strategy : label correlations among labels are totally ignored and

consider multi-label classification problem as a number of independent binary

classification problems (Ex : BR method).

• The Second-order strategy : computes pairwise relations among labels to distinguish

between relevant and non-relevant labels or to identify co-occurrences among

labels.4–6

• The Higher-order strategies : considers all possible correlations between all other

labels on one label.2, 7

This study is to incorporate a higher-order strategy for capturing label correlations

in a multi-label data set and build multi-label classifiers that preserve the higher-order

label correlations. The proposed method, which named as Multi-Label Classification

with Label Clusters (MLC–LC) first partitions the set of labels into clusters based on how

they co-occur in data set. Then employee two matured problem transformation to

classify each and every cluster partitions depending on the size of the partition.

However, the clustering method used for this study was well-known Cover-Coefficient

Based Clustering Methodology (C3M ) that computes the label clusters by identifying

labels that occur in many records in the data set. The co-occurrence pattern of labels is

used byC3M to compute the number of clusters sufficient for the data set as well the

initial seeds (centroids) of these clusters. This unique feature ofC3M is exploited to

compute label clusters where the label correlations are captured effectively. The number

of classifiers in the proposed approach is the same as the number of label clusters

generated using theC3M method, which tends to be significantly smaller than the

number of labels.8 Consequently, the number of classifiers that need to be trained and

used to predict new instances are considerably smaller than the total number of labels.
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The main contributions of the study are as follows –

• Proposed a simple, yet novel, a multi-label classification called the MLC–LC method

that first partitions the label set into groups of correlated labels and trains an LP

classifier for each label cluster separately.

• The predictive performance of MLC–LC method was compared with that of several

established MLC methods such as the RAkELd, RAkELo, HOMER, LP, and BR on a

range of diverse data sets. Our method achieved superior performance in almost

all experimental scenarios for all the data sets.

• MLC–LC also outperformed the established MLC methods even for smaller training

set sizes.

1.3 Structure of chapters

A review of related work is presented in chapter 2. The multi-label techniques, evaluation

and validation measures are discussed in chapter 3. Chapter 4 describes the design and

implementation of the experimental environment and results. The dissertation

concludes with chapter 5, which summarizes the key findings and discusses avenues for

future work.
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Chapter 2

Literature Review

2.1 Learning Algorithms

Multi-label classification approaches can be mainly categorized into algorithm

adaptation methods and problem transformation methods.1, 9, 10 Algorithm adaptation

methods extend a specific learning algorithm in order to handle multi-label classification

problem directly whereas problem transformation approaches convert a multi-label

classification problem into several classification or regression problems such as binary

classification or multi-class classification. Several methods have been proposed to

incorporate label correlations and feature-label correlations into learning in both

algorithm adaptation as well as problem transformation methods.4, 6, 10–13 This study

focuses on problem-transformation methods in this study since MLC–LC is also of the

same category.

The Label Power set (LP) method14 (Figure 2.3)converts multi-label classification

problem into a multi-class classification task while preserving label correlations by

considering every label combination in the data set. However, it suffers from scalability

and sparseness issues. The pruned problem transformation method is proposed in15 alleviate

the scalability issues somewhat. The RAndom k-labEL Set (RAkEL) approach7, 11, 14
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Figure 2.1: Symbols and Notations Used in this report

Figure 2.2: BR method

(Figure 2.4) is one of the popular approaches where the labels are randomly selected to

form groups, each containing k labels (k is small compared to the total number of labels)

and an LP classifier is trained for each label set. A simple voting process determines the

set of labels for each test instance.

Hullermeier et al16 learn l(l − 1)/2 binary classifiers, one classifier for each pair of

labels in the label set of size l. The data set used to learn each classifier contains instances
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Figure 2.3: LP method

Figure 2.4: RAkEL method

for which at least one of the labels in the pair is true, but not both. Furnkranz et al in6

introduced the notion of a calibration label that can be used to separate relevant and

irrelevant labels predicted by pairwise classification methods to combine multi-class

classification with ranking of labels.

There are also multi-label classification methods that incorporate higher-order label

dependencies. A classic method is the classifier chains17 that generate l classifiers by

incorporating the feature set of the data set given to each classifier by including the label

associations assigned to each instance by the previously learned classifiers. Since the

performance of a classifier chain may be influenced by the order in which labels are

considered by the binary classifiers, probabilistic classifier chains18 have been proposed to

predict the best chain ordering. In,3 authors use association rules to compute the higher

order label correlations which are used to select the best training examples. Then,

cross-label uncertainty of predicted labels is used to extend the label set of the unseen

examples which are then incorporated into the next learning step. Label correlations are

also identified to combine predictions from multiple models in19 to optimize for ranking

loss.
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The MLC–LC methodology is inspired by the RAkEL methods that generate groups of

labels and learn an LP classifier for each group. The RAkELd method partitions the label

set into equal size subsets, each containing k labels for some random integer k whereas

RAkELo groups the labels into overlapping subsets. MLC–LC also partitions the label set

into subsets, however, the number of subsets and the size of each subset are determined

by the correlations among labels existing in the data set. The cover-coefficient

methodology ofC3M is highly suited for finding the right number of label clusters and

the labels that should be grouped into each cluster. The HOMER2 algorithm for

multi-label classification also uses the balanced clustering, specifically balancedK-means,

to distribute a label set into k groups as evenly as possible. Then, it learns a hierarchy of

multi-label classifiers, each one learning a smaller label set compared to the classifiers at

the previous level. Because of more balanced example distribution, HOMER algorithm

performed better than the BR method. The label clusters generated by our method

MLC–LC may not have balanced sizes. In fact, it is common for some of the label clusters

to contain single labels and other label clusters may even have a dozen labels, all

depending on the data set. Despite this, the results of our experiments show superior

predictive performance when compared to that of RAkELd, RAkELo, HOMER, BR, and

LP methods.

2.2 Evaluation Matrices

Evaluation matrices are an important component in implementing and maintaining

supervised learning model in order to estimate the performances and optimization.

Accuracy, the area under the ORC curve (Receiver Operating Characteristic curve),

precision and recall are used to evaluate supervised learning models for performances in

general. However, evaluating multi-label classification problem is complex than single

label classification problem. Multi-label classification performances should be evaluated
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Figure 2.5: Evaluation matrices categorization

both in example wise as well as label wise. Therefore the two main categories of

evaluation matrices are employed for multi-label classification. Example based

evaluations consider the average prediction difference between actual data in test set

where as label based evaluations consider label at a time and average overall label

prediction performances (see Figure 2.5).

A classifier may assign all/none/few labels wrongly to a test instance during the

prediction phase. Therefore, performance evaluation must take into account each label

that was incorrectly predicted. It is also important to consider partial performances

during the prediction. To cover most of these aspects, there are many evaluation

matrices introduced and most of the evaluation matrices are implemented to capture the

correctness/loss in percentage.

2.2.1 Label-based evaluation matrices

• Macro / micro F1-measure

Recall that L is the set of all labels of a multi-label data set. Let T = {(xi, Zi)}

(1 ≤ i ≤ t) be a multi-label test set with t-test instances where Zi ⊆ L is the set of

true labels for the ith instance. Let Yi ⊆ L be the set of labels predicted by a
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multi-label classifier for the ith instance. The precision of a multi-label classifier

computes the ratio of relevant labels predicted by the classifier whereas recall

measures the proportion of predicted labels that are relevant. An F1-measure is

the harmonic mean of the precision and recall values. It is one of the most

frequently used predictive performance-based evaluation metric in the field of

classification.20 The higher the F1-measure, better the performance.

precision = 1
t

∑t
i=1

|Yi∩Zi|
Zi

recall = 1
t

∑t
i=1

|Yi∩Zi|
Yi

.

There are many different evaluation metrics for multi-label classification (see1).

We use the following three metrics, in order to compare our work with other

popular methods. (1) Micro and Macro F1 scores : The micro-F1 score is the

cumulative F1-measure of over all labels inLwhereas the macro-F1 score computes

the F1-measure for each label independently and averages these values over |L| to

obtain one final measure.1, 10 The formulas for computing the micro-F1 and

macro-F1 scores are given below. Here, Zj
i = 1 if the ith instance contains label j as

one of the true labels, otherwise it is set to 0. Similarly, Y j
i = 1 if label j is predicted

as true for the ith instance, otherwise it is set to 0.

micro-F1 =
2
∑|L|

j=1

∑t
i=1 Z

j
i Y

j
i∑|L|

j=1

∑t
i=1 Z

j
i +

∑|L|
j=1

∑t
i=1 Y

j
i

macro-F1 = 1
|L|
∑|L|

j=1
2
∑t

i=1 Z
j
i Y

j
i∑|L|

j=1

∑t
i=1 Z

j
i +

∑|L|
j=1

∑t
i=1 Y

j
i

2.2.2 Example-based evaluation matrices

• Subset Accuracy: This matrix evaluates the fraction of exactly correct classified

examples. However, subset accuracy evaluation matrix performs poorly when the

label set size of the data set is really high as the evaluation criteria are

comparatively strict.
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subsetaccuracy = 1
t

∑t
i=1

|Yi=Zi|
|L|

• Hamming Loss (HL): Hamming loss is the most commonly used metric to evaluate

the performance of a multi-label classifier. It is the size of the average symmetric

difference between the set of true labels and the set of predicted labels of a data set.

It is computed as follows.

HL = 1
t

∑t
i=1

|Yi∆Zi|
|L|

• One-error: One-error evaluates the fraction of examples such a way that, top-ranked

label is not in the relevant label set.

• Coverage: This matrix evaluates how many instances should be travels through on

average to cover all the relevant labels if the example.

All the above-mentioned evaluation matrices and other matrices have diverse

methods to evaluate predictive and model generalization performances. It is important

to select proper evaluation matrices to evaluate the interesting aspects of classification

results and performances. However, to make evaluation phrase unbiased and precise, a

classification system should be tested with multiple matrices to have a general overview

of quality of classification performance from a different perspective.

2.3 Cover Coefficient Clustering method

According to the Information Retrieval System (IRS) concepts, document-based

information retrievals mainly related to their terms. Similarity functions are used to

determine the relevance of documents. As shown in Figure 2.6 document-term matrix

can be built to process the queries. If the element of this matrix is dij wherem number of

documents and n number of terms then, dij = (1≤ i≤m, 1≤ j≤ n), indicates the

importance of the term tj in document di. These elements can be either binary values or
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D =



t1 t2 t3 t4 t5 t6 t7
d1 X X X X X X X
d2 X X X X X X X
d3 X X X X X X X
d4 X X X X X X X
d5 X X X X X X X
d6 X X X X X X X


Figure 2.6: D matrix representing document-term matrix

weighted. As clustering hypothesis is closely associated documents tend to be relevant to

the given query. C3M method belongs to partitioning based clustering approach for

document based document retrieval.

This method is first proposed by Fazli-Can et.al8 to cluster text documents based on

word similarities. C3M method is a partitioning based clustering algorithm which

chooses a set of documents as seeds and then all the non-seeds documents are assigned

into seed documents so that the set of documents partitioned into clusters lead by seeds.

The base concept ofC3M method is Cover Coefficient concept, which serves to identify

relationships among documents using document term matrices. Determination of the

number of clusters (selecting cluster seeds using cluster seed power) and correlate the

documents are done by Cover coefficient concepts. The resultant clustering is

guaranteed non-hierarchical clustering and seed based. The Cover Coefficient method

determines document relationships of coverage and similarities in multi-dimensional

space. C3M method employees another matrix called C matrix to reflect the

above-mentioned coverage and similarities. C matrix is a Document-by-Document

matrix which single element,Cij (1≤ i,j≤ m) indicates the probability of selecting any

term of di from dj.

C matrix has the information of the relationship between document-based on

two-stage probability experiment. This experiment randomly select terms (t) from

documents (d) in two stages. In the first stage, if tk is the term selected randomly of

document di, then in the second stage, it chooses the selected terms tk from document
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dj . However, to apply the Cover Coefficient concept, the entries of the D matrix must

satisfy the following two conditions. The first condition is no document can be empty

which is each document must have at least one term. The second condition is, there

should not be any term which does not appear in any document. Further, the C matrix

have properties which can be listed as follows,

• Ci1 + Ci2 + Ci3 + ...+ Cim = 1 (All the rows should be sum up to 1)

• For i 6= j, 0≤cij ≤cii and cii > 0

• If cij = 0, then cji = 0 and if cji > 0, then cji > 0.

• If a term of di is appeared in another document, then cii is always less than 1. If

not, it is equal to 1.

• cii = cjj = cij = cji iff coupling and decoupling of di and dj are equal.

C3M method has several characteristics which grab the attention for this study.

Some of the characteristics ofC3M are, its capability of determining the number of

clusters suitable for a given document set, document distributions within clusters are

uniform which ensures moderate cluster sizes (not too large in cluster size or not too

large singleton clusters), Cover Coefficient concept guaranteed the independence of the

order of the documents clustered in the clustering process. This method is further

explained in detail in the methodology section including examples of how it is employed

in this study.
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Chapter 3

METHODOLOGY

3.1 C3M Clustering

The proposed approach uses theC3M clustering method8 to partition labels into clusters

of potentially dependent labels. This section briefly describes the main steps ofC3M

method with simple examples below. The input to the algorithm is anm× n Boolean

matrix,E, whose rows are indexed by the set of labels, L = {l − 1, · · · , lm}, and columns

are indexed by the elements of set of records,R = {r1, · · · , rn}. If label li is assigned to the

record ru,E (i, u) = 1. The assignment profile of label li is given by the ith row ofE and the

labeling profile of record ru is given by the uth column ofE. The matrixE does not contain

any zero columns or zero rows1 The output of the method is a clustering of labels with the

number of clusters being automatically determined by the method. TheC3M method

uses a notion of coverage among labels to group them into clusters. The main steps of the

C3M method are given below.

Consider theE matrix in Figure 3.1 with 6 labels and 7 records. Each row specifies the

labels that are assigned to the records. For instance, first row ofE denotes that test l1 is
1Note that no labels may assigned to a record leading to a zero column corresponding to that record.

Such columns are converted to non-zero columns by assigning to an extra "all-zero" label. If a label is not
assigned to any of the records, then the corresponding zero row and the label are removed from E and L
respectively. More details are provided in the next section.
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E =



r1 r2 r3 r4 r5 r6 r7

l1 1 0 0 1 1 0 0
l2 1 1 0 0 1 0 1
l3 0 0 1 0 0 0 0
l4 1 1 0 1 0 1 0
l5 0 1 1 1 0 1 1
l6 1 1 0 1 1 1 0


Figure 3.1: E matrix representing label assignment

C =



l1 l2 l3 l4 l5 l6
l1 0.278 0.194 0.000 0.167 0.083 0.278
l2 0.146 0.333 0.000 0.125 0.188 0.208
l3 0.000 0.000 0.500 0.000 0.500 0.000
l4 0.125 0.125 0.000 0.271 0.208 0.271
l5 0.050 0.150 0.100 0.167 0.366 0.167
l6 0.167 0.167 0.000 0.216 0.167 0.283


Figure 3.2: The Cover Co-efficient Matrix

assigned to records r1, r4, and r5.

Cover Coefficients: The first step ofC3M method takesE as input and outputs anm×

m square matrixC indexed by the setL. The entries ofC denote pairwise cover coefficients

values among the labels. The cover coefficient cij of a label li with respect to a label lj is the

probability that a record ru labeled by li is also labeled by lj . Informally, the cover

coefficient of a label with respect to another denotes the extent to which the assignment

profile of the first label is covered by that of the second one. Let αi and βu are the

reciprocals of the sum of the entries in the ith row and the uth column of theE matrix

respectively. The entry cij inC is obtained using

cij = αi × rij where rij =
n∑

k=1

(Eik × βk × Ejk). (3.1)

Applying Equation (1) to theE matrix of the previous example to obtain theC matrix

depicted in Figure 3.2. For instance, c14 = α1 × [(E11 × β1 ×E41) + (E12 × β2 ×E42) + · · ·

+ (E17 × β7 ×E47)] = (1/3)× [(1×(1/4)× 1) + (0× (1/4)× 1) + (0× (1/2)× 0) + (1×
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(1/4)× 1) + (1× (1/3)× 0) + (0× (1/3)× 1) + (0× (1/4)× 0)] = (1/3)× (1/4 + 1/4) = 0.167.

As mentioned in Chapter 2, the cover coefficient value cij can be determined using a

two-stage selection process – a) select a record rk that is assigned the label li, and ii)

select label lj from the labels assigned to that record. In Equation (1), the first step of

selecting a record rk that is assigned the label li is given by the product αi ×Eik. The

second step of arbitrarily selecting the label lj from all the labels that have been assigned

the record rk is given by the product βk ×Ejk. To determine the extent to which the

assignment profile of li is covered by that of lj , it is needed to consider all the records r1,

· · · , rn indexing theE matrix and this is given by the sum rij (The sum rij is called the

row-covering of row i by the row j).

Note that the computation of the entry cij uses assignment profiles of all the labels.

In particular, the value of cij does not equal the ratio of the common number of records

assigned both the labels over the total number of records assigned label li.

Partitioning Labels into Clusters: The second step of theC3M method takes the matrix

C as input and outputs the number of clusters and the cluster seeds. Each cluster in

C3M consists of a group of labels that are covered maximally by the seed of that cluster.

Cluster seeds are labels with distinguishing assignment profiles i.e., they are not likely to

be covered by other labels. If a label has a distinguishing assignment profile then it is

assigned to records that others are not assigned to, and hence its profile is unlikely to be

covered by that of the others. The magnitude of a diagonal entry in theC matrix is used

to identify labels with distinguishing profiles. The entry cii of the ith row is called the

decoupling coefficient of that row. The decoupling coefficient of theC matrix, δ, is the mean

value of the decoupling coefficients of its rows. The number of clusters, nc, is: nc =m× δ.

: Continuing, with the running example, the decoupling coefficient for theC matrix in

Figure 3.2 is δ = (0.278 + 0.333 + 0.500 + 0.271 + 0.366 + 0.283)/6 = 0.339. The estimated

number of clusters is nc = 0.339× 6' 3.

As the sharing among the records assigned a label li and assigned other labels
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decreases, the value of the diagonal entry cii increases. The entry has a maximum value

of 1 when there is no sharing among the records assigned the label li and assigned other

labels. In other words, if label li has a high de-coupling coefficient, then it is not likely to

be covered by the other labels and hence is likely to create to its own cluster.It is easy to

see that if every label has a high decoupling coefficient, then nc =m as desired since the

decoupling coefficient of theC matrix δ = 1 in this case. It can also be verified that if all

the labels have identical profiles, then nc = 1.

The clustering power of label li is

Pi = cii × (1− cii)×
n∑

k=1

Eik (3.2)

The labels are ranked based on their clustering power and the top nc labels are

chosen as cluster seeds and are assigned to one cluster each. Ties are broken arbitrarily.

A label lj is considered a false seed and eliminated if there exists a seed li whose cluster

seed power is within a specified threshold δ of that of lj and the coefficients cii, cjj , cji

and cij are sufficiently close, i.e., the magnitude of the pairwise difference of cii, cjj , cij

and cji are all within a specified threshold ε. In this case, the false seed is eliminated and

the next seed in the sorted order is picked. A threshold value of ε = 0.001 was used based

on the spread of the seed values in the experiments. Each remaining label li in L is

assigned to a cluster whose seed lj maximally covers li, i.e., cij is a maximal value, for 1≤

j ≤ nc. If more than one seed maximally covers li then the label is assigned to the cluster

whose maximal covering seed has the higher clustering power (ties are broken

arbitrarily). If there exist labels in L that cannot be assigned to any of the clusters

because none of the seeds cover them, i.e., cij = 0 for all seed tests tj then these tests are

collected into an additional ragbag cluster, [(nc + 1)th cluster].

The clustering powers for the six labels in our running example are P1 = 0.602, P2 =

0.889, P3 = 0.250, P4 = 0.790, P5 = 1.161, and P6 = 1.015. The seeds of the 3 clusters are l2, l5,
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and l6. The clusters obtained areC1 = {l2},C2 = {l3, l5},C3 = {l1, l4, l6}.

3.2 MLC-LC

LetD be a multi-label data set whereD = {(xi, Zi) | 1 ≤ i ≤ n}, where xi is a feature

vector and Zi is a subset of a set of labels L = {l1, · · · , lm}. First, MLC–LC processesD to

produce anm× n Boolean matrix,E, whose rows are indexed by the elements of L and

the columns are indexed by the elements of the set of records,R = {r1, · · · , rn}. If label li

∈ Zu and (xu, Zu) ∈D, thenE (i, u) = 1, meaning that label li is assigned to the record ru.

The assignment profile of label li is given by the ith row ofE and the labeling profile of

record ru is given by the uth column ofE. We assume that all the assignment and

labeling profiles inE to be non-zero, i.e., every record has at least one label assigned to it

and every label is assigned to at least one record. Next, the matrixE is input to theC3M

clustering method to partition the label set L into a disjoint set of label clusters L1, · · · ,

Lc.

Then, MLC–LC learns c classifiers, one for each label cluster. The MLC–LC uses the

BR method to learn the classifier for label clusters with a single label and uses the LP

method otherwise. The training data for a classifier corresponding a singleton label

cluster Lk = {l} is obtained fromD by replacing each pair (xi, Zi) by the pair (xi, 1) if l

belongs to Zi and is replaced by the pair (xi, 0) otherwise. If Lk has more than one label,

then we add a new label al to Lk, the training data is obtained fromD by replacing each

pair (xi, Zi) by the pair (xi, Zi ∩ Lk). In cases where Zi ∩ Lk = {}, (xi, Zi) is replaced by

(xi, {al}). It should be clear that the pair (xi, {al}) is simply a placeholder for a feature

vector xi being assigned all zero values for each of the labels in Lk. Note that MLC–LC

generates at most c/2 new labels. However, this overhead is usually small since the

number of clusters c <<m, the number of labels. Further, extra-label is added to

enhance the balance of negative and positive instances in the learning process.



20

Figure 3.3: Non-overlapped label set training process

At the end of the training process, c classifiers are obtained using the training data.

Some of these classifiers are BR classifiers and others LP classifiers. A test (or a

previously unseen) instance is given to each classifier to get a label assignment. The

resulting label assignments, which are disjoint, are simply unioned to obtain an

assignment of multiple labels to the test instance. The new labels (i.e; al) added while

constructing the training set for LP classifiers are removed in the final assignment of

labels to the test instances since each al is just a place-holder to capture negative

instances with respect to a set of labels.

In the process of MLC-LC, clustered label sets (Ri) are classified using most popular

problem transformation methods, that is BR and LP methods appropriately. Resultant

label clusters use to partition the multi-labeled dataset and run multi-label classification

task for individual partitions. Partition sizes are dynamic as the label contained inRi

could be in the range of 1 to L. However, cluster sets have relatively small number of

labels (λ << L) for most of the multi-label datasets, so that label dimension reduction is

done while preserving the label correlations. Hence both BR and LP methods perform

efficiently on these smaller partitions of data sets.
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Figure 3.4: Classification process

In the training process, single labeled clusters (|λ| = 1) are joined and compute BR

method. Clusters with more than one label (|λ| > 1) train using LP method. Both BR and

LP methods use C5.0 decision tree algorithm on training.

3.3 Computational Complexity of MLC–LC

The MLC–LC algorithm has two phases – the label clustering phase and the training

phase. The time complexity of theC3M algorithm isO(m× xd × tgs) wherem is the

number of labels, xd is the average number of distinct records per label, and tgs is the

average number of seeds per record.8 Although xd is bounded above by n (n is the

number of instances in the data set), it is much smaller in practice2. Also, the number of

seeds is typically much smaller thanm and therefore, tgs is also a small value. Therefore,

C3M method can compute label clusters efficiently which was also observed in our

experimental set up. Once the label clusters are computed, the training phase learns as

many BR/LP classifiers as the number of label clusters. If the complexity of a BR or a LP

classifier isO(g(n)) where n is the size of the training set, and there are c clusters, then

the training phase takesO(cg(n)) time to complete.

2xd can be estimated from the label density of a data set as defined in Section 4.1.
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Chapter 4

EXPERIMENTAL SETUP

This section contains experimental setup in detail with environment used and

experiment results. The main target of this experiment is to compare MLC–LC

performances with respect to the matured and well-established methods (BR, LP,

RAkELd, RAkELo, and HOMER) in the field of multi-label classification. Section 4.1

describes the multi-label data sets, Section 2.2 contains the description of evaluation

metrics used, and Section 4.2 is dedicated to results and discussion.

4.1 Data Sets

For these experiments, a variety of data sets from different domains are used. All the data

sets used to conduct the experiment are listed in Figure 4.1. The first column, Dataset, lists

the name of the data set. The domain column lists the domain the data collection related

to. Columns Instances, Attributes, and Labels show the number of instances, number of

attributes and number of labels respectively in the data set. Another important

characteristic of a data set is the proportion of distinct label combinations listed in

column Distinct. Distinct label combinations capture the complexity of a labeling scheme.

LetD be a multi-label data set consisting of |D|multi-label examples (xi, Zi) where

xi is the ith feature vector and Zi ⊆ L is the set of labels assigned to the ith instance. The
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Dataset Domain Attributes Instances Labels Distinct LC LD
Scene Image 294 2407 6 15 1.07 0.18
Yeast Biology 103 2417 14 198 4.237 0.303

Medical Text 1449 978 45 94 1.245 0.028
Enron Text 1001 1702 53 753 3.378 0.064

Mediamill Video 120 43907 101 6555 4.376 0.043
Bibtex Text 1836 7395 159 2856 2.402 0.015

TMC2007 Text 294 28596 22 1341 2.158 0.098

Table 4.1: Multi-label Data Sets

Label cardinality (LC) ofD is the average number of labels assigned to the examples inD.

It is also known as the standard measure of multi-labeled-ness. The Label density (LD) is the

average number of labels of the examples inD divided by |L|. The last two columns of

the table list these two measures.

LC(D) = 1
|D|

∑|D|
i = 1|Zi|

LD(D) = 1
|D|

∑|D|
i = 1

|Zi|
|L|

The Scene21 data set consists of 2407 natural scene images annotated with up to 6

concepts (beach, sunset, field, fall foliage, mountain and urban). Many images contain

more than one scene and feature representation is based on spatial color moments of

each image. The Yeast22 data set consists of micro-array expressions and phylogenetic

profiles for 2417 yeast genes. Functional classes from the Comprehensive (e.g.

metabolism, energy, etc) from the top level of the functional catalog (FunCat) are

annotated as 14 labels.

The TMC200723 data set is a collection of text data related to aviation safety reports. The

original data set contains 28596 safety reports in text form and 22 problem types that

appear during flights annotated as labels. Text representation is based on Boolean

bag-of-words method. However, in this experiment, the feature set of the TMC2007 data

set was reduced to 500 most relevant features for consistent comparison with other

methods and manageable computation.
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The Medical24 data set is another text-based data set consisting of documents with free

text summaries, patient symptoms histories and prognoses, which were used to predict

insurance codes. This data set consists of 978 clinical reports annotated with one or more

of 45 disease codes. Enron25 is another popular text-based multi-label data set which

contains collection of email messages exchanged between Enron corporation employees.

The number of email messages in the data set is 1702 and each email message is assigned

multiple labels from a total of 53 topics.

The Mediamill data set26 consists of 43907 video frames annotated with 101 labels (e.g.

military, desert, basketball, etc). This data collection was part of the Mediamill challenge

for automated detection of semantic concept in 2006. Video frames were represented as

a set of 120 visual features. The Bibtex data set27 consists of labels of the Bibtex and

Bookmarks corresponds to tags assigned to publications and bookmarks respectively by

users of the social bookmark and publication sharing system Bibsonomy. It contains

7395 bibtex entries from the BibSonomy.

As can be observed from Figure 4.1, the size of the label sets ranges from 6 to 159.

Although the distinct label combinations are only a fraction of the possible exponential

number of label combinations, the number of label combinations is still too high to learn

a model for each distinct label combination (In case of Bibtex data set, the number of

models needed would be 811). The label density values range from 0.015 for the Bibtex

data set to 0.303 for the Yeast data set. This shows that our experiments included data

sets where the training data set for a label combination might be sparse, as well as the

data sets where the training data set may have a large number of training instances for

each label combination.

All the data sets were pre-processed and available in the MLDRR package20 except

the Scene data set that was obtained from Mulan data repository1, which was used in our

experiments.
1http://mulan.sourceforge.net/datasets.html
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4.2 Results of Experiments

The implementation of MLC–LC is mainly done in Java andR statistical programming

language and is compared with some of the popular existing multi-label classification

approaches. TheC3M algorithm was implemented in Java. TheC3M clustering of the

label sets of these sets resulted in 3 clusters for the Yeast data set, 31 clusters for the

Medical data set, 15 clusters for the Enron data set, 19 clusters for the Mediamill data set,

9 clusters for the TMC2007 data set, 66 clusters for the Bibtex data set and 6 clusters for

the Scene data set. Ragbag cluster was not generated for any of the data sets.

The classification was done inR using the packages – utiml (Utilities for Multi-Label

Learning)28 and mldr (Exploratory Data Analysis and Manipulation of Multi-Label Data

Sets).20 We compared the performance of MLC–LC method to BR, LP, RAkELd, RAkELo,

and HOMER methods. All of these methods were available in the utimlR package. The

RAkELd and RAkELo methods were used with the default setting of k = 3 andm = 2|L|,

the same parameter values used in.7, 11 The C5.0 decision tree learning algorithm was

used as the base-level binary classification algorithm forBR, HOMER, and the LP

classifiers of RAkEL and MLC–LC in our experiments. For the HOMER method, the

default cluster size was set to 3 and the method is set to balanced.

All experiments are performed in the Tusker supercomputer cluster hosted by the

Holland Computing Center (HCC), configured with 80 GB memory. The evaluation

measures are estimated using the holdout cross-validation method using both random

sampling and stratified sampling. As the previous studies28 suggest, feature set

normalization and re-scaling are done as dataset preprocessing in order to produce

acceptable results.
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4.2.1 Classification Accuracy of MLC–LC

To validate the performance of the proposed method, the experiment was conducted on

above mentioned multi-label datasets (Scene, Yeast, Medical, Enron, Mediamill, Bibtex

and TMC2007). We compared the classification accuracy of MLC–LC to that of some

previous methods including BR, LP, RAkELd, RAkELo, and HOMER. Each multi label

dataset partitioned into two parts having 66% for the training set and rest for the testing

set, according to holdout cross-validation method. All MLC algorithms including

MLC–LC were trained using the training set and the predictive performance of the

models was collected using the test data set. These steps were iterated for 10 times and

collected macro-F1, micro-F1 scores, and hamming loss values.

For selection of training and testing sets in holdout method, both random sampling

selection, as well as stratified sampling selection was employed, where random selection

provides blind selection over the dataset and stratified selection divides the dataset into

some logical groups (strata) and then samples randomly within those groups. To obtain

more representative results, each dataset with each MLC algorithm ran multiple times

and averaged evaluation results of macro-F1, micro-F1 scores and hamming loss values

over the iterations.

Ranking representation mentioned in the previous study7 used to rank the

performances of each MLC algorithm on each dataset. The algorithm that performs the

best on a data set (that is the highest micro-F1 / highest micro-F1 score / lowest

hamming loss) gets a rank of 1, the MLC algorithm with the next best performance gets a

rank of 2, etc. Then the average of ranks of each algorithm is calculated over all the data

sets. The MLC algorithm with the lowest average rank is considered the best performing

MLC algorithm of all the MLC algorithms that were studied in the experiment.

Figure 4.1 presents the average and standard deviation of the micro-F1, macro-F1

and hamming loss score measure for all MLC method-dataset pairs, for random

sampling whereas 4.2 shows the same for stratified sampling. Overall, MLC–LC shows
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Figure 4.1: micro-F1, macro-F1 and hamming Loss scores for 66% random sampling train-
ing set. Experimental results (mean±std) on data. ↑ (↓) indicates the larger (smaller), the
better
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Figure 4.2: micro-F1, macro-F1 and hamming Loss scores for 66% stratified sampling
training set. Experimental results (mean±std) on data. ↑ (↓) indicates the larger (smaller),
the better
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Figure 4.3: Ranking of MLC methods according to their micro-F1, macro-F1 and hamming
loss scores for 66% random sampling training set

comparatively best results for micro-F1 and macro-F1 scores over all the other MLC

algorithms except for Scene data set. It is same for hamming loss values, as MLC–LC

shows the lowest loss for both random sampling and stratifies sampling results. For

Scene data set, MLC-LC method performs almost same as BR method, since Scene data

set is clustered into six singleton clusters by MLC–LC clustering approach. As can be seen

from these tables, all the evaluation results for stratified sampling are higher than

random sampling due to the higher quality of training set selection.

Figures 4.3 and 4.4 show the ranking of different MLC algorithms on different data

sets based on evaluation scores for random and stratified sampling respectively. The
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Figure 4.4: Ranking of MLC algorithms Based on micro-F1, macro-F1 and hamming Loss
score for stratified sampling

rows in the tables are the data sets and the columns list the MLC algorithms, except the

last row which lists the average rank of each MLC algorithm. For an example, an entry in

row i and column j in the first table in 4.3 lists the rank of the micro-F1 score on the data

set i of the micro-F1 of the MLC algorithm corresponding to j. As can be seen from the

average rank rows of these two tables, MLC–LC has the best performance over all other

MLC algorithms and RAkELo has the next best performance.

To explain further insights of MLC–LC performances, sub-experiment was

conducted on label level evaluation. Figure 4.5 shows the label-wise F1 score for all the
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Figure 4.5: F1 scores for Yeast data set with 66% random sampling training set and 34%
testing set

labels in Yeast data set, which shows significantly higher micro-F1 and macro-F1

compare to the other MLC algorithms. The superior performance of MLC–LC can be

clearly seen from this figure as partitioning method uses in MLC–LC enhances the

predictive performances by categorizing labels by preserving the label dependencies.

Another additional feature introduced in MLC–LC is balancing column (a). It is a

common characteristic in most of the multi-label datasets that label per instance is low

compared to all possible labels in the dataset (Label density). Hence, partitioning the

label space into smaller parts introduces a large number of all zero LP label combinations

within partitions. This leads to decrease predictive performances for some of the labels

with positive bias also known as class imbalance problem. MLC–LC algorithm considers

about the biasness statistics of the labels within clusters in the training set and

determines whether or not to append balancing column into it. This is another reason

for higher predictive performances of the proposed method.
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4.2.2 Classification Accuracy with Different Training Set Sizes

This experiment is to illustrate how training set size effects on the predictive

performance of MLC-LC compared to the other MLC methods. For this experiment

different holdout partitions with 70%, 50%, and 30% of the datasets considered as the

training and rest as the testing set. The holdout partitioning is done for both random

and stratified as mentioned in the section IV(D). Multi-label classifiers were built using

BR, LP, HOMER, RAkELd, RAkELo, and MLC–LC methods. The results are evaluated

using micro-F1, macro-F1 and Hamming Loss matrices. Figure 4.6, Figure 4.7 and

Figure 4.8 show the results for 70%, 50%, and 30% training set and testing set selections

respectively.

It can be seen that MLC–LC method outperforms all the other MLC methods, even

with small training set sizes such as 30%. At the same time, it is clear that RAkELo is the

only MLC method which performs closer to the MLC–LC results. Superior results of

MLC-LC obviously hold as the training size increases despite of the diversity of the

dataset it tested. We also ranked the relative performances (micro-F1, macro-F1 and

hamming loss) of each MLC algorithm on each dataset for different training set sizes.

According to the average ranking of the performances (given a rank 1, indicates the best

performance for a given evaluation score and rank of 2 if it achieves the second highest

score, etc), MLC–LC method shows smaller value as it consistently outperforms other

MLC methods. Hence, in all case, both random and stratified sampling for the training

set, MLC–LC performed better compared to all the other MLC methods it was compared

with.

4.2.3 Classification with Different Label Clustering Algorithms

This experiment compared the performance of an MLC–LC classifier using the label

clusters obtained fromC3M with those obtained from two popular clustering methods –

theK-Means clustering and the hierarchical agglomerative clustering (HAC)29 . Both
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Figure 4.6: micro-F1, macro-F1 Scores and hamming loss values of Different MLC meth-
ods for Training Set Sizes 70% and Testing set size 30%.
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Figure 4.7: micro-F1, macro-F1 Scores and hamming loss values of Different MLC meth-
ods for Training Set Sizes 50% and Testing set size 50%.
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Figure 4.8: micro-F1, macro-F1 scores and hamming loss values of Different MLC meth-
ods for Training Set Sizes 30% and Testing set size 70%.
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these clustering methods lack a crucial aspect – estimating the number of clusters

appropriate for a data set. However, this is a central feature of theC3M method. It

automatically estimates the number of clusters appropriate for a given data set. The

number of clusters play a crucial role in the overall performance since they determine the

number of classifiers (LP and BR) as well their complexity.

For each data set, we estimated the number of clusters usingC3M method by

de-constructing theC3M estimation component and coupling this with other clustering

approaches. The multi-label classifiers generated from these clusters were then

compared in terms of accuracy. TheC3M estimation component was combined with

K-means(C3K) and hierarchical agglomerative(C3H) clustering methods to partition

the label set into the specified number of label clusters.

TheK-means clustering, given the number of clusters (K) and randomly chosenK

labels as centroids (or seeds), iteratively groups labels with the centroids based on a

similarity (or a distance) metric. InC3K , the estimation component ofC3M provides

the parameter valueK and the required number of centroids are randomly chosen. We

executed theK-means algorithm for 10 iterations, each iteration with different

randomly chosen seeds and merged the label clusters obtained from the 10 iterations.

We used the Euclidean distance metric to compute the clusters.

Hierarchical agglomerative clustering is a bottom-up clustering method where

clusters have sub-clusters. For this clustering method, clustering starts with each single

label as a separate cluster. Then for each successive iteration, it merges the closest pair of

clusters by satisfying some similarity criteria, until all the data is in one cluster. This

method provides three different approaches to manipulate the cluster sizes, namely

single linkage, complete linkage, and average linkage.29 We used the complete linkage

method forC3H because it defines the dissimilarity value between two clusters to be the

maximum dissimilarity value between any single data point in the first cluster and any

single data point in the second cluster. Then, in each stage of the clustering process two
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clusters with the smallest dissimilarity score among them are combined into one cluster.

Clusters are repeatedly merged until the number of clusters matches those estimated by

theC3M algorithm for the given data set. We employed the Euclidean distance to

compute the dissimilarity scores.

Table 4.2 shows the statistics of label clusters obtained from the three different

methods. This experiment was conducted using the Yeast, Medical, Enron, Mediamill,

and tmc2007 data sets. The first column in the table lists the name of the data set,

second, third, and fourth columns list the minimum and maximum size of a cluster

obtained fromC3M ,C3K andC3H clustering methods respectively. The last three

columns list the standard deviation in the cluster sizes obtained fromC3M ,C3K and

C3H clustering methods respectively.

As can be seen from the table, although the number of label clusters for each data set

is held constant for the three cluster methods, the actual partitioning of label set into

different clusters was different in different methods. If we observe the standard

deviation of the cluster sizes (columns named sdM, sdK, and sdH),C3M has the least

value for most data sets. This is because the clusters generated fromC3M contain either

many singleton clusters or a small number of larger size clusters. TheC3M algorithm

does not attempt to balance the cluster sizes and groups labels completely based on

cover-coefficient values and do not typically group unrelated labels into the same cluster.

However, the deviation in cluster sizes among the three methods did not have a

significant impact on the classification accuracy as discussed below. Perhaps, this is

because the labels grouped into the same cluster by the three different methods were

largely similar.

Once the label clusters are constructed, the steps outlined in Section 3.2 were

repeated and trained a BR or an LP classifier based on the size of a label cluster. We then

performed holdout cross-validation with the random sample of 66% for training and rest

for testing. Testing results are evaluated using micro-F1 and macro-F1 values, which are
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Data M K H sdM sdK sdH
Yeast 1,10 4,6 2,8 4.72 1.54 3.1
Medical 1,8 1,15 1,15 1.3 2.5 2.5
Enron 1,22 1,35 1,28 5.5 8.7 9.5
Mediamill 1,25 1,74 1,79 7.0 16.6 17.8
tmc2007 1,11 1,14 1,14 3.3 4.3 4.3

Table 4.2: Label Clustering using C3M, C3K, and C3H methods

displayed in Figure 4.9. From this figure, it can be seen that the predictive performance

of the three multi-label classifiers obtained from the three different cluster methods is

approximately the same with respect to the micro-F1 and macro-F1 measures. The small

fluctuations in the micro and macro-F1 scores are perhaps due to the small variations in

the set of labels grouped into the same cluster by the three different clustering methods.

We also computed the Hamming loss of the three multi-label classifiers. We

observed that the Hamming loss was small at most 0.189 and as small as 0.009. The

Hamming loss of the three multi-label classifiers was almost the same for the Enron,

Mediamill, and the tmc2007 data sets. In case of the Yeast and the Medical data sets, the

multi-label classifier obtained fromC3H had the smallest Hamming loss.

This experiment shows that the choice of clustering method may not affect the

predictive performance of the multi-label classifier. However, estimating the

appropriate number of clusters for a data set usingC3M can be a powerful tool that can

be combined with any clustering algorithm such as theK-means to obtain appropriate

partitioning of the data set. Although there are other methods for estimating the number

of clusters such as the gap statistic30 method for a given data set, the estimation method

used byC3M analyzes the data dependencies to compute the number of clusters, and

hence, possibly more accurate.

In case of sparse label sets, the implementation ofC3M is typically more efficient

since it exploits the sparsity in the data. Therefore, one can say that combining the

number of clusters estimation fromC3M and then using any other clustering algorithm
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Figure 4.9: (a) Micro-F1 and (b) Macro-F1 scores of the MLC–LC Classifiers Obtained from
Different Clustering Methods

to find clusters may not be more time-consuming. We are currently studying the cost of

executingC3K andC3H on large data sets.

In our experiments, we observed that the RAkELo method was performing either as

well as MLC–LC or as the next best algorithm on most data sets and experimental

settings. This is not surprising as both MLC–LC and RAkELo attempt to incorporate label

correlations into the classification process. In RAkELo, overlapping subsets of labels are

created so that label correlations get appropriate coverage and the voting system
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ultimately chooses the appropriate label combination for a given instance during the

testing phase. In contrast, MLC–LC computes the label clusters while preserving the label

correlations and the prediction phase is a simple union of predicted labels from multiple

LP/BR classifiers.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

The multi-label classification methodology which incorporates higher-order label

correlations into learning called the multi-label classification with label clusters (MLC–LC)

proposed in this study is a problem-transformation method. The label set is first

partitioned into label clusters depending on how they co-occur in the data set. The

training set is constructed from the original data set for each label cluster by including

only the labels that occur in the label cluster for each training instance to train a

classifier. Therefore, there are as many classifiers as the number of label clusters. Each

classifier predicts a set of labels for each test instance. These labels are then unioned to

generate the final set of labels. C3M , a novel clustering algorithm, is used to generate

label clusters. Unique features ofC3M include automatically estimating the appropriate

number of clusters for a given data set and automatically selecting the cluster seeds.

Based on our experimental results, the MLC–LC has superior predictive performance

over established MLC techniques such as RAkELd, RAkELo, HOMER, etc., on several

diverse multi-label data sets. The superior predictive performance of the MLC–LC does

not suffer even when the training set size is reduced to just 30% of the data set. The

classification accuracy of the MLC–LC technique when the label clusters are generated is

compared using well-known clustering techniques –K-means and complete linkage
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HAC. The number of label clusters appropriate for each label set computed byC3M was

provided to these algorithms as an input. It may be because of these reasons that the

classification accuracies of the MLC classifiers constructed using label clusters from all

three clustering methods were very similar.

In future, we plan to study how to incorporate the effect of feature vector similarity

(or dissimilarities) into label correlations. Also, this study can be further improved to

accommodate databases with missing labels. Missing labels is one of the major problems

that reduces the performance of classification as for some instances are not assigned

labels completely. AsC3M method is capable enough to extract label dependencies, it is

possible to extend the current study to impute missing labels. Further, we planned to

improve the performance of multi-label classification in data streams as another possible

future direction since it requires updating the models incrementally. In stream data, it is

challenging to maintain label dependencies as new labels may be added or removed as

new instances are continuously Incorporated into the analysis.
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