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TOWARDS STUDENT ENGAGEMENT ANALATYICS: APPLYING MACHINE

LEARNING TO STUDENT POSTS IN ONLINE LECTURE VIDEOS

Nicholas R. Stepanek, MS

University of Nebraska, 2017

Advisor: Brian Dorn

The use of online learning environments in higher education is becoming ever more

prevalent with the inception of MOOCs (Massive Open Online Courses) and the increase

in online and flipped courses at universities. Although the online systems used to deliver

course content make education more accessible, students often express frustration with the

lack of assistance during online lecture videos. Instructors express concern that students

are not engaging with the course material in online environments, and rely on affordances

within these systems to figure out what students are doing. With many online learning

environments storing log data about students usage of these systems, research into learning

analytics, the measurement, collection, analysis, and reporting data about learning and

their contexts, can help inform instructors about student learning in the online context.

This thesis aims to lay the groundwork for learning analytics that provide instruc-

tors high-level student engagement data in online learning environments. Recent research

has shown that instructors using these systems are concerned about their lack of aware-

ness about student engagement, and educational psychology has shown that engagement is

necessary for student success. Specifically, this thesis explores the feasibility of applying ma-

chine learning to categorize student posts by their level of engagement. These engagement

categories are derived from the ICAP framework, which categorizes overt student behaviors

into four tiers of engagement: Interactive, Constructive, Active, and Passive. Contribu-

tions include showing what natural language features are most indicative of engagement,

exploring whether this machine learning method can be generalized to many courses, and

using previous research to develop mockups of what analytics using data from this machine

learning method might look like.
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Introduction 1

Chapter 1

Introduction

Using online avenues to deliver course content is becoming more popular in higher education,

not only to be used in online classes, but also for providing lectures outside of class in

flipped courses [3]. Additionally, MOOCs (Massive Open Online Courses) are becoming

increasingly prevalent and aim to make higher education more accessible to those interested

for little to no cost. Commonly, the systems used to deliver course content online store

fine-grained, click-level data about student usage, leaving the door open for a myriad of

in-depth analyses on student behaviors. Some examples include sentiment analysis of text

artifacts [48], clustering activity patterns [29], language analysis [47], and social network

analysis [42]. However, one problem with the storage and analysis of all these student logs

is figuring out how to use the results for improvement in instruction.

One method of helping instructors receive the benefits of all of this log data is through

research in learning analytics, the measurement, collection, analysis, and reporting of data

about learning and their contexts [19]. These analytics can help us deliver high-level infor-

mation to instructors as students use the system, enabling instructors to use the results to

modify instruction in near real time. Learning analytics can deliver many different kinds
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of information based on what data is collected in a system, but this thesis focuses on one

aspect of learning, student engagement. Figuring out how student engagement manifests

itself in student logs and what to do with that information is a major area of research with

these online learning systems [1, 23, 26, 47, 53]. Additionally, information about how en-

gaged students are with lecture videos is something instructors using an online video lecture

system have commonly asked for during interviews [18].

The goal of this thesis is to address the need for more instructor awareness about

student engagement during online learning. To do this, text artifacts produced by students

in an asynchronous media platform that multiple universities use to host lecture videos

are utilized. Using the ICAP framework, “a taxonomy that differentiates four modes or

categories of engagement, based on the overt behaviors displayed or undertaken by students”

[8], student texts are categorized based on their engagement with the course material and

a machine learning algorithm is trained for future classification of student engagement.

Specifically, the following research questions will be addressed:

• What language features are most important for classifying student posts by engage-

ment?

• Can some classifier be generalized to work on any course, or is success dependent on

training data from that specific course?

• To what extent can machine learning automatically categorize engagement in lecture

videos using text artifacts as data?

The overarching objective is to test the feasibility of using text artifacts to communicate

engagement information to instructors using machine learning, as opposed to instructors

needing to manually analyze every artifact produced by students. The first question helps
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inform the machine learning stage by discovering what features will lead to the best accuracy,

in addition to providing a qualitative description of how engagement manifests itself in text

artifacts. The second question helps discover what a classifier identifying engagement looks

like when generalized to multiple courses. The last question addresses whether a machine

learning algorithm to categorize engagement is possible, preceding the development of a

learning analytic conveying engagement information to instructors.

The rest of this chapter further introduces the contexts of concern (MOOCs and flipped

courses), why engagement is important to study, and how instructors play a crucial role in

student engagement. Chapter 2 covers work related to this thesis and introduces the ICAP

framework, a psychological framework for student engagement. Chapter 3 describes the

methodology of gathering the dataset, coding annotations, and the analyses used on the

data set. Chapter 4 contains the results of those analyses and discussions of the interesting

results. Chapter 5 uses the results and discussions from the previous chapter and prior work

with TrACE instructors to produce mock-ups of what an engagement analytic might look

like. Chapter 6 summarizes and concludes this thesis.

1.1 MOOCs, Flipped Courses, and Engagement

One area that online lecture videos and online learning is becoming more prevalent in is in

MOOCs, or Massive Open Online Courses. Through MOOCs, classes are delivered through

the web using online lecture videos and use forms of automation such as automatically

graded quizzes to reduce the workload of instructors. This allows instructors to virtually

replicate the classroom experience for any number of students without requiring the same

instructor to student ratio typically found in universities [25]. The lecture videos, reading
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materials, quizzes, discussion boards, and more, are used to deliver all course content and

replace the experience of lectures in a traditional classroom.

Many leading MOOC platforms such as EDx and Coursera allow anyone to take their

classes for free [51]. This has produced extremely high enrollment numbers for some popular

courses, with some classes having over 100,000 students initially enrolled [27]. However, this

also means that instructors are not often capable of giving individual help and attention to

students who may need it. The concept of office hours from traditional university classrooms

simply does not exist for large MOOCs, and the extremely high dropout rates [27] suggests

that students in MOOCs may find it difficult to engage with the material, other students,

and instructors. The ability for MOOCs to scale to any number of students comes with the

drawback of instructors not being able to pay much personal attention towards individual

students and their progress. The impact that this lack of personal attention may be having

will be discussed later in this section.

The second context in which lecture videos are seeing more use is in flipped classes.

The flipped classroom model has been increasing in popularity in higher education [15, 41],

which may be due to a gaining legitimacy of constructivist educational psychology and active

learning in the minds of instructors [3]. In a flipped classroom, students independently

consume traditional lecture material outside of class so that class time can be used for

active learning, including problem and discussion based tasks [33]. The core of the flipped

classroom is at the active learning component, and it is worth noting that the model only

demands some form of learning outside of class to replace traditional lectures, not necessarily

the use of online lecture videos. However, many instructors find them convenient in replacing

the traditional lecture experience.

Another frequently touted benefit of the flipped course model is the ability for students
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to revisit lecture material at their own pace [24]. If the content is overwhelming to a student

at first, they can take a break, or go over that material again later. Recent empirical

evidence however suggests that students do not often revisit lecture videos, let alone view

the material for a first time before class when there are no participation grades associated

with the videos [13]. A possible explanation may be the introduction of a problem similar to

that of the MOOC. With online lecture videos, instructors are removed from that portion

of the learning process, and students may become discouraged without the ability to ask

questions and receive immediate feedback. Students have reported becoming discouraged

during the lecture process because they feel like they have to learn the course material “all

on their own” [40]. Instructors report that students in flipped classes express frustration due

to the lack of assistance while watching videos and find students watching videos passively

[39].

Discussed here have been various aspects of flipped courses and MOOCs that may af-

fect student engagement, specifically a lack of instructor presence, but why is engagement

so important to learning? Learning is the ongoing process of knowledge construction dur-

ing interactions among learners, instructors, and resources [4]. Student engagement, or a

student’s level of interaction with other learners, instructors, and resources, is then vital to

learning as these interactions resulting from engagement are where knowledge construction

occurs. Many studies in online learning systems, discussed in the related works chapter,

find correlations between engagement and student success or performance. The goal of this

thesis is to provide a learning analytic that will inform instructors on student engagement

so that they are more capable of instructor intervention, something instructors often lose

when moving to online learning environments. To better understand how an instructor can

affect engagement, the next section looks closer at how instructors can affect the learning
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Figure 1.1: The affective states of learning, the x-axis referring to emotion and the y-axis
referring to the construction or destruction of knowledge [31].

process.

1.2 The Affective States of Learning

To better understand the learning process and in what ways instructors affect student

engagement, consider figure 1.1. Represented are the four affective states of learning [31]

which are tied to emotions and type of learning that the student will experience during

each state. For the rest of this paper, the states from figure 1.1 will be referred to as

satisfaction (I), confusion (II), frustration (III), and hopefulness (IV) respectively. The four

categories are split by two different attributes, the type of learning and emotional affect.

Generally, students begin the learning process in the confusion or satisfaction state, and

although different experiences can move the student anywhere, a typical learning process

moves counter-clockwise around the circle [30].

Starting on the side of constructive learning, the goal state for students is the satisfac-

tion state. In this state, the student is both experiencing constructive learning as well as a
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positive emotional state, more specifically an emotional state where they are curious about

the new material and confident that they are building an understanding of it. However,

students who do not grasp as much of the course material upon initial explanation will

start in the confusion state. In this state the student is still learning, but is experiencing a

negative emotional state due to being dissatisfied about not immediately grasping all of the

material. On the the other side, frustration occurs when a student is experiencing negative

emotions and is unlearning, in that the student is gaining misconceptions about the course

material. Kort [30] provides the example of a student writing a computer program, only to

find that it does not work properly. The reason it does not work is due to a misconception

the student holds, and upon realizing this the student experiences a negative emotional

state. This is the most challenging state as the student needs motivation to move to the

hopefulness state where misconceptions can be unlearned. The hopefulness state is both

positive emotionally and a state of unlearning. In this state the student has acknowledged

their misconceptions and is working to remove them, and will then likely move to confusion

or satisfaction states when they are ready for constructive learning again.

1.2.1 Moving Students through the Affective States

Modeling learning in this way, it would seem obvious to try and ensure students are experi-

encing the satisfaction state as much as possible. However, confusion naturally occurs when

students are learning something new and it is impossible to completely prevent misconcep-

tions. Experiencing confusion is essential in learning as the affective state of confusion is

positively correlated with learning outcomes [11]. Students who experience confusion during

the learning process are more likely to learn more, or deeper, than students who learn in a

comfortable environment that does not challenge their already established knowledge [17].
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More intuitively, a student will not learn from material they already understand as they

already know it. Additionally, students do not immediately understand new course content

the first moment they are exposed to it, and it will most often take time working in the con-

fusion and other states before the student can move to the satisfaction state. Knowing that

students often move counter-clockwise through the affective states, it is crucial that stu-

dents remain engaged enough and are provided enough assistance to move through phases

of frustration. This creates a danger for learning in the online context, where instructors

lack the control they typically have in traditional classrooms.

Instructors are the main mediators for ensuring students remain engaged and have their

questions resolved, meaning that they play a vital role in ensuring that students make it

to the satisfied state. In the traditional classroom, students who are confused or frustrated

have the opportunity to ask questions for further explanations. In the online lecture video

context, there is no method for students to quickly contact the instructor with questions

(though many researchers are developing systems to replace these lost affordances, the

system used in this thesis being one of them [16, 43, 52]). As discussed earlier, this leaves

students with the feeling of needing to learn the material all on their own, and frustrated

students then have no external aid in resolving their misconceptions as they would in a

traditional classroom.

To summarize this portion, it is more likely that students become disengaged and

therefore experience frustration in the online context. Providing instructors more informa-

tion about student engagement in the online context would greatly improve their ability to

quickly identify students stuck in the frustration state to then push their learning forward

through the affective states. Alternatively, students may give up on learning entirely, pos-

sibly producing the high drop rates in MOOCs seen today [27] and lack of student viewing
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in flipped courses [13].

1.2.2 Frustration and Learning Outcomes

Another concern with instructors having less ability to engage with students in the online

context is that this may be disproportionately affecting weaker students. Looking closer to

the roots of active learning, another way to look at the learning process is that the new

material needs to be just outside the realm of the students already established knowledge

for acquisition. Vygotsky coined this area as the zone of proximal development. He defined

the zone of proximal development as the distance between a child’s “actual developmental

level as determined by independent problem solving” and the “potential development as

determined through problem solving under adult guidance or in collaboration with more

capable peers” [49], and that all new knowledge is constructed in this zone. Generally,

students who are attempting to learn course material that is further outside of their zone

of proximal development will spend more time in the frustration state. On the other hand,

students already familiar with more background knowledge and preparation for the course

will experience less frustration and require less intervention from the instructor.

Students spending more time in the frustration is very troubling for learning outcomes,

especially when weaker students who need the help are most affected. Two studies on

students’ affective states have found that frustration is often a normal occurrence, but

students spending longer periods of time frustrated is correlated with reduced learning out-

comes [34, 35]. Course material that is outside a student’s zone of proximal development will

quickly lead a student to frustration, and there is nothing the instructor can do in the on-

line context excluding advanced collaborative systems to intervene. The negative emotional

state may lead the weaker students to give up comprehending the material, significantly
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impacting learning outcomes. A learning analytic that enables faster instructor intervention

in the online context may enable instructors to give weaker students the attention needed

to excel in the course.

1.3 Summary

To conclude this section, analyzing student engagement in online learning systems is an

increasingly popular research topic, but systems for actually improving engagement are

relatively few. Given the amount of log data stored in these kinds of systems, the challenge

remains of finding methods to use with that data to improve student success. This thesis

attempts to solve the problem of instructor awareness about student engagement during

lecture videos in online systems, as student engagement is crucial to success and instructors

lose the power of intervention they typically have in traditional classrooms. To accomplish

this, machine learning methods will be applied to a collected data set of annotations to see

if automatic categorization is possible under the ICAP framework. If so, learning analytic

systems can be built providing this engagement data to instructors to enable intervention.

This thesis makes the following contributions:

• Features that indicate engagement - The language attributes that text artifacts in the

courses studied that largely determine engagement are found through statistical anal-

yses. Performance evaluation of a machine learning method utilizing these features

shows that the machine learning method proposed in this thesis is possible.

• How engagement changes for different courses - Through statistical analyses compar-

ing the different courses studied, it is shown that the features studied in this thesis
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have the same relationships with engagement between courses, but more work is likely

needed to generalize this machine learning method to many courses.

• Initial designs of engagement learning analytics - With a machine learning method

that is able to categorize new text artifacts into the ICAP categories, the results from

this thesis and prior research are used to develop mockups of what a learning analytic

built on top of this machine learning method might look like.
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Chapter 2

Related Work

This section is a discussion of recent literature that has analyzed MOOC behaviors through

click-stream data, their findings, and the implications of them on this thesis. Next is a

discussion of studies that have applied text analyses and natural language processing on

MOOC and learning system data. Then, the ICAP framework will be introduced. A

discussion on prior research with it in education and text artifact contexts will describe

why the ICAP framework is fit for use in this thesis. Finally, a summary describes the

implications of the discussed literature on this thesis.

2.1 Analyses of MOOC Behaviors

With large-scale MOOCs such as EdX and Coursera that collect click stream data about

thousands of users, the challenge of analyzing all that data in meaningful ways for both

instructors and researchers arises. One major area of research with this data is developing

a model for MOOCs and learning management systems that predicts student performance,

which may then be used to inform instructors about students who may need extra help

succeeding in the course. Brinton and Chiang looked at predicting course performance in
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two Coursera classes by analyzing variables generated by students video viewing behaviors

[6]. The variables found to be correlated to performance were those indicating engagement

with the videos, including skipping within the video, changing the playback speed, pausing

the video, and rewinding at least once. Coleman et al. attempted to predict certification

in an MITx course on EdX [10]. They considered video watching behaviors, assignment

viewing behaviors, and quiz performance to create a model that could predict certification

with 81% accuracy. The models developed in these two pieces focus on using click-stream

from the MOOC, providing an objective look at what students are doing in the system, and

MOOC studies looking at different issues generally rely on similar metrics derived from log

data.

A study on the same MITx course in EdX sought to report correlations between certifi-

cate earners and more qualitative data collected through surveys, such as study strategies

and educational background, as a precursor to their performance prediction model [5]. There

were correlations between success and past degrees and experience in mathematics, and a

strong correlation between people who reported collaborating with another student in the

course or someone who has expertise in the field and success. Using demographic data as in

this study paints a broader picture of each student, but requires extra participation on the

part of the student. Other studies with learning management systems that already collect

this kind of data have tried to combine both click-stream data and demographic information

to identify students in need of help.

Wolff, Zedenek et al. created a predictive model to identify at-risk students using

Open University [50]. By combining demographic data, assessment scores, and click-level

data within Open University they were able to predict failing students with high confidence.

Course Signals also predicts at-risk students, but allows students to know if they are labeled
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at risk [2]. Signals was designed to give at-risk students extra help and alerts instructors

about at-risk students to allow for prompt intervention. They concluded that Signals had

a positive impact on overall grades, and a study on perceptions of Signals found that

instructors saw in increase of students utilizing extra resources such as tutors and office

hours [28].

The analyses in this section have looked at engagement through the lens of click-level

behaviors and demographics in various systems with the goal of identifying performance. It

is worth noting that all studies found correlations between student success and metrics that

indicate engagement, such as video watching, building a stronger case for engagement being

a worthy indicator to study in this thesis. Recently, researchers have began to apply NLP

techniques to the text artifacts in these systems as another source of data to supplement the

results from these strictly log and demographic data studies. Although log data provides

objective insight into how students are using these systems, text artifacts go a step further

by providing evidence into how students are actually thinking about the course materials.

2.2 Text Analyses in MOOCs

Although a much newer trend than analyses on click-level data, some researchers have began

applying NLP methods to the text artifacts in online lecture systems, often with the same

goal of predicting engagement and student performance. Wen et al. performed a sentiment

analysis of all text documents produced by students in three different MOOC courses to see

if sentiment was correlated with dropping out of the course [48]. The sentiments measured

where simple positive/negative measurements based on the individual words in the texts. In

a Python course, both positivity and negativity were correlated with dropping out, though

in a fantasy writing course negativity was correlated with staying in the course. This seemed
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due to users sharing stories often containing negative words as being more likely to stay in

the course, leading to the conclusion that sentiment in text artifacts in very dependent on

the context of the course. A course where students are commonly posting works of fiction

to share with others will likely influence results.

Kavanović et al. developed a system to automatically classify text artifacts based on

their level of cognitive presence in an online research course in software engineering [32].

Cognitive presence is one of the three constructs in the Community of Inquiry model for

computer-mediated communication and is necessary for student success in online learning

environments [21]. This framework describes cognitive presence as being the extent that

participants are able to construct meaning through sustained communication. Kavanović

et al. found some of the most important features to be word counts, text coherence metrics,

the number of replies a message received, how deep a message was in a thread, similarity

to nearby messages, and whether the message was first or last in a thread. They trained

a random-forest classifier which achieved 70.3% accuracy in predicting cognitive presence.

Random-forest classifiers are able to identify which features were most important for clas-

sification, and they provide a table of feature importance for research in similar contexts.

Crossley et al. noticing the lack of student success models combining both click-stream

data and NLP analyses, developed a model for predicting student success in a MOOC based

on both activity data and text artifacts [12]. The activity metrics they used included the

average amount of times they accessed data in the MOOC per week they were active, the

percentage of videos they had watched by their due date, how many times they accessed

a forum, created a post, or commented, viewed a page in the course, and their number of

assignment submissions. From these metrics, and a number of NLP metrics calculated from

student posts in the discussion board, they applied a MANOVA to determine which ones
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were most effective in identifying students who completed the course. Their most useful

NLP features included high school essay score, total number of words produced, average

post length, concreteness, tri-gram frequency, and semantic similarity between paragraphs.

These studies including text analyses help inform what features to use for classification

in this thesis. Furthermore, the features that were found to be most useful for identifying

cognitive presence and student success were again features describing student engagement.

Next, the ICAP framework is introduced, used in this thesis as the theoretical framework

for categorizing engagement.

2.3 ICAP

The ICAP framework attempts to classify the degree to which a student is engaged through

their overt behaviors [8]. ICAP defines four modes of overt engagement behaviors: inter-

active, constructive, active, and passive. The framework specifies overt behaviors as it only

classifies what is visible to others, or in the scope of this thesis text documents. It does not

attempt to account for other thoughts of the student, only the product, though research

discussed in this section has shown that the products will reflect the actual thought and

engagement of the student.

The first category, passive, includes behaviors where students are not interacting with

the course material in any overt way. This includes situations where students are only

present for observing course material, like simply listening to a lecture or video. The active

category means the student is physically manipulating the course material, by taking notes

or highlighting a text, but is not inferring any new knowledge that goes beyond what is

explicitly stated by the materials. Constructive behaviors are those where students build

knowledge by comparing the materials with prior knowledge or by inferring new conclusions
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with the course material. This is observed through actions such as self-explaining, general-

izing information, or generating new ideas that go beyond the course content. The final and

most highly engaged category, interactive, involves dialogue between two students. These

behaviors construct knowledge by discussing different ideas and perspectives with peers that

go beyond the explicit ideas in the course materials. For more examples of what types of

behaviors would be classified as which of the modes of engagement, see 2.1. More succinct

definitions of the four categories by Chi and Wylie follow:

Interactive - Dialogues where both partner’s utterances must be primarily constructive

with a sufficient degree of turn taking.

Constructive - Behaviors in which learners generate or produce additional externalized

outputs or products beyond what was provided in the learning materials.

Active - Behaviors in which some form of overt motoric action or physical manipulation

is undertaken.

Passive - Behaviors in which learners are oriented towards and receiving information from

the instructional materials without overtly doing anything else.
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2.3.1 Evidence for the ICAP Framework

ICAP, although a relatively new framework, has many published papers including appli-

cations of the framework supporting its legitimacy. The first paper introducing the ICAP

Framework by Chi [7] provides a brief literature review citing example studies in prior

research that support the ICAP hypothesis (that learning outcomes increase as artifacts

display higher levels of engagement as defined in the ICAP framework). No studies com-

pare all four modes of engagement, but by combining many studies that all make pairwise

comparisons between two of the four modes each, a case for the ICAP hypothesis is built.

In total, for the 6 possible comparisons (that interactive is better than constructive, active,

and passive, constructive is better than active and passive, and that active is better than

passive) two studies were found supporting each. Also, one study for each of interactive,

constructive, and active was found showing that different activities within the same mode of

engagement produced equal results. As Chi states in the paper, the purpose of the examples

are not to show exhaustively that the ICAP hypothesis is true, but to provide a starting

point showing the feasibility and usefulness of ICAP.

A study by Menekse et al. [37] sought to test the ICAP hypothesis in the context

of a real engineering classroom followed by a laboratory study. In the classroom study,

they classified 19 activities that were already a part of the class pedagogy with minor

modifications within the interactive, constructive, and active categories. During the first

three weeks of the semester, they had students participate in activities that were a part of

the three categories and take a quiz to test their knowledge at the end of class. Overall, the

resulting quiz scores had significant differences between the three tested active types in favor

of the ICAP hypothesis. However, when looking at the type of quiz question categorized as

“integration”, the constructive activity type produced better quiz scores than the other two
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activity types. The authors theorize that this was due to the quiz question being shallower

and asking for answers directly out of the instructional material.

In the same paper, Menekse et al. conducted a laboratory study with more control

then the classroom study. Using textbooks on atomic bonding and physical properties they

created 24 questions to be used both as a pretest and posttest. There were 15 true-false,

seven multiple-choice, and two open-ended questions. There were four conditions relating

to each of the ICAP modes. The passive condition had students students read a text

passage based on the textbooks aloud without doing anything else. In the active condition

students were instructed to highlight important sentences in the text. The constructive

condition had students complete a graphs and figures interpretation activity, but only were

able to read a shorter text than the previous two conditions. The interactive condition had

pairs of students do the same as the constructive condition but were instructed to come to

a consensus before writing their answers on a shared paper. Comparing each of the four

groups pairwise showed statistically significant differences between every pair in favor of the

ICAP hypothesis. The authors conclude that this is quality evidence, though they mention

that this study only measured short term gains and not long term retention.

The all inclusive journal article on ICAP [8] includes the studies by Menekse and

expands upon the literature review done by Chi in [7]. Throughout the literature they

found the categorized learning activities such as note taking strategies and methods of

forming concept maps to ICAP to then compare the performance within those studies.

The paper includes many tables documenting studies that show greater learning gains for

higher level ICAP categories. An example can be seen in figure 2.2. They include studies

concentrating on those certain activities, as well as overall classroom studies, and conclude

by saying that this empirical evidence supports the ICAP hypothesis.
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These papers by Chi and Menekse et al. make a solid case for the ICAP framework being

a legitimate way to categorize engagement and provide evidence that learning outcomes

increase with higher engagement as hypothesized. Knowing this, the ICAP framework is a

reasonable method of categorizing engagement for this thesis, but even more support comes

from the large amount of research utilizing the ICAP framework in various ways.

2.3.2 ICAP in Education

In addition to these studies directly testing the feasibility of ICAP, many recent studies have

been applying ICAP for different purposes throughout education research. One recent study

applied the ICAP framework in the context of their nStudy learning system with the goal

of proposing new learning analytics [36]. These analytics were to be for student use, so that

students would be made aware of their own learning activities as opposed to an instructor

learning about student activities. Additionally, a goal of these analytics was to improve

the students’ metacognitive skills. One of these analytics that the authors generated relies

on classifying student behaviors in the system within the ICAP categories. For example,

the authors describe passive behaviors as accessing URLs but not doing anything with the

content besides reading. Interactive behaviors would involve using the discussion section of

the system, and active and constructive behaviors would depend on whether the student’s

notes contain material that goes beyond the course content or not. The final analytic that

the student sees displays a pie chart showing the proportion of time spent doing behaviors

in each ICAP category. This is a very similar idea to this thesis, where increasing awareness

about engagement during learning is one of the main end goals.

Another study was interested in the effects of constructive behaviors instead of ac-

tive behaviors on understanding fractions [9]. Previous research in the domain of fractions
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has shown that exposing students to multiple representations of the concept supports their

conceptual knowledge. This study hypothesized that in addition to the number of repre-

sentations affecting learning outcomes, students participating in constructing new fraction

representations will result in more learning than only participating actively. In the active

only condition students answered questions about fractions given to them in a web-based

tutoring system. In the constructive and active condition, students split time between the

web-based tutoring system and another system that allows students to explore fractions

by manipulating objects, such as a jug of liquid, or sets of shapes. They found that the

students who participated in constructive behaviors experienced a greater improvement

between their pre and posttests and were also more flexible in generating fraction represen-

tations. Not only do these results back up the ICAP hypothesis, but this study is another

interesting application of the ICAP framework.

2.3.3 Applying ICAP to Text Artifacts

Wang et al. studied an introductory psychology MOOC with a pre and posttest to discover

whether higher quantities of participation and “higher-order” thinking behaviors are asso-

ciated with higher learning gains, and then what exactly are those higher-order thinking

behaviors [46]. Based in the ICAP framework, they developed a coding scheme that cate-

gorized all text artifacts as one of the four modes of engagement. Half of the data set was

manually coded, and the other half used a bag of words model to automatically assign cat-

egories with around 75% accuracy. They controlled for pretest and textbook registration,

but found that the active and constructive modes were most correlated with learning gains.

Their explanation for the mixed results was that the posttest may have not targeted the
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skills that students developed from higher-order thinking activities, and the coding scheme

may have not been entirely accurate with the ICAP framework.

In their next paper, Wang et al. improved their coding scheme in the same course

for further analysis [45]. They grouped students into a higher-order category of they had

posted one interactive or constructive post, a paying-attention category if they had posted

one active post, or an off-topic category for neither. They found that, over the entire course

and controlling for the number of activities students did on the site, the higher-order cat-

egory was correlated with higher course performance. For a more rigorous test, they used

propensity score matching to compare pairs of students with the same activity and back-

ground but different higher-order groupings. The higher-order students had significantly,

though marginally more performance. These results fall in line with the ICAP hypothesis,

unlike their previous paper suggesting that the new coding rubric is more representative

of the ICAP framework. Finally, they used LDA to determine what kinds of words were

associated with the higher-order category. They hypothesized that higher-order texts use

words connecting the material to real life situations, where other texts use more formal

language from the material.

These papers by Wang et al. provide much of the basis for this thesis. They have shown

that text artifacts from online lecture systems can be used with the ICAP framework and

hypothesis in the same way that classroom interactions, language, and text artifacts can be

used. Also, they have provided a coding rubric for text artifacts that result from discussions

of lecture videos. How these fit into the methodology of this thesis is discussed in the next

section where the coding rubric will be discussed further.
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Chapter 3

Methodology

This chapter outlines the methodology used in this thesis. The first section describes

TrACE, the system where annotations are generated and collected. Next, the process

for annotation collection and coding to build data sets is described. Finally, the analyses

used on the coded data sets and a description of the machine learning methods tested are

discussed.

3.1 Data Collection

3.1.1 TrACE

This thesis uses TrACE, the Transformative Anchored Collaboration Environment, for data

collection [16]. Instructors at multiple universities host lecture videos on TrACE and require

students to view them outside of class. Often, these courses are flipped courses or taught

completely online. At any point while viewing videos, students can post spatial and tempo-

ral annotations that other students will see as dots on the video. If a student clicks one of

these dots, the video will pause and the annotation will be selected in the annotation bar.
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Figure 3.1: The TrACE video player. The annotation bar on the right hand side scrolls
automatically with the video, showing annotation students have posted near where they
are. The blue dot on the player is an annotation someone has posted. Students can reply

to threads by selecting a reply type and typing their comment in the annotation bar.

Instructors also use these annotations to seed videos to promote discussion and reflection

on video content. Annotations are stored as threads so other users can reply to allow for

discussion. Figure 3.1 contains a screenshot of the TrACE video player, an annotation that

someone posted, and a reply to that annotation.

Similar to other lecture video systems, click-level data about what students are doing

in the system is logged, and that data is then used to produce learning analytics that give

instructors insights into how students are using the lecture videos. Example actions that are

logged include when students open a video, click play, pause a video, seek in a video, and

leave an annotation. With this data, it is possible to recreate the stream of action students

go through for behavior analyses and to calculate various metrics to be provided provided

in the learning analytics. Since the lecture process occurs asynchronously in the context of
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Figure 3.2: Examples of learning analytics within TrACE. Displayed are the percentages
of each video that a student has watched (top-left), how many top-level and reply annota-
tions a student has posted in each video (top-middle), video stats about a certain video for
a student (top-right), and counts of actions plotted across the time line of a video (bottom).

TrACE (students watch at different times, and the instructor does not have any knowledge

of the learning process) these learning analytics are essential to providing clues on student

engagement with the lecture content to instructors. Figure 3.2 shows some of the analytics

included in TrACE. As discussed in the introduction, TrACE is one of a number of research

systems that use these analytics to try and recreate the affordances lost when moving from

traditional lectures to online lectures.

3.1.2 Annotation Collection and Coding

To build a data sets of text artifacts, annotations from sections of the courses “Introduction

to Computer Programming,” “Introduction to Web Development,” and “Foundations of

Information Assurance” were collected. A breakdown of information about each course

section can be found in table 3.1. These courses were chosen for this thesis due to being

continually offered over many semesters, generating a large enough set of annotations to
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Table 3.1: Course section information.

Course Name Semester Videos Students Total Annotations

Computer Programming Spring 2015 26 19 282
Computer Programming Summer 2015 26 14 404
Computer Programming Fall 2015 26 26 728
Computer Programming Fall 2015 26 17 370
Computer Programming Spring 2016 26 17 507
Computer Programming Spring 2016 26 14 279
Computer Programming Summer 2016 26 14 323
Web Development Spring 2015 31 11 306
Web Development Fall 2015 31 16 315
Web Development Spring 2016 31 17 589
Web Development Summer 2016 31 13 274
Information Assurance Spring 2015 10 18 116
Information Assurance Fall 2015 10 18 133
Information Assurance Spring 2016 10 21 154

make applying machine learning and statistical methods to them possible. Additionally,

taking annotations from many sections means a wider variety of students have posted these

annotations. Studying one section of students means any behaviors observed may be specific

to some of those students and not generalizable to other classes or contexts.

All annotations were manually coded into the five categories summarized in table 3.2

using the same coding rubric by Wang et al. that was derived from the ICAP framework

[45]. The off-topic category does not appear in our summary, as annotations in TrACE

all refer to course content or some part of the video. Three coders were used in total, one

coder working on all three courses with one coder working on one, and another working on

the other two. Each course was split approximately half way between each coder working

on that course. Unweighted Cohen’s kappa was used to ensure intercoder reliability before

coding the entire data sets. The data set for “Introduction to Computer Science” received

a kappa of 0.82 on 9.0% of the data set (260 annotations), indicating strong agreement [20].

The data set for “Introduction to Web Development” received a kappa of 0.84 on 6.8% of

the data set (100 annotations), indicating strong agreement. The data set for “Foundations
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Table 3.2: ICAP coding categories.

Category Description

Active (A1) Directly mentions course content, either by asking a question
about course material or repeating what is explicitly stated.

Active (A2) Does not mention any course material, but displays attention to-
wards the video, such as by acknowledging something said.

Constructive (C1) Goes beyond course content by explaining or providing examples
supporting ideas going beyond what is explicitly stated.

Constructive (C2) Proposes an idea going beyond what is explicitly stated, but does
not provide justification, or links to external sources.

Interactive (I) A C1 or C2 behavior, but in a discussion with another student.

of Information Assurance” received a kappa of 0.80 on 12% of the data set (48 annotations),

indicating strong agreement.

The rest of this thesis considers only three categories of annotations, A1, A2, and

C, C including all constructive and interactive behaviors (C1, C2, and I ). Wang et al.

looked at their data this way, labeling constructive and interactive behaviors as “higher-

order” behaviors, since all represent building knowledge beyond explicit course content

in different ways. “Higher-order” behaviors only accounted for 12.62% of annotations,

so collapsing the data in this way prevents a very small sample size for some categories

precluding statistical analysis and machine learning performance evaluation. Also, this is

likely the most important distinction for instructors, not the subtle differences between C1

and C2. I behaviors, being constructive behaviors but in a dialogue with another student,

could still be detected by checking if the text artifact was constructive and a reply to another

student, meaning this method is still capable of distinguishing interactive behaviors.
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3.2 Data Analysis

3.2.1 Feature Selection

To generate features for machine learning, a combination of natural language features and

bag-of-words features were programmatically generated. The natural language features

calculated on each annotation follow. Most features are binary (can only be 1 or 0) with

the exception of length, sentences, complexity, and sentiment.

Length - How long the annotation is in words. The word count is divided by 3.

Sentences - How many sentences are in the annotation.

Link - Whether the annotation contains a URL.

Code - Whether the annotation contains common code characters not usually found in

normal text (’{’, ’}’, ’;’, ’=’, ’+’). Includes HTML detection on the “Introduction to

Web Development” data set. Not used on the “Foundations of Information Assurance”

data set.

Question - Whether the annotation contains a question mark, indicating that the student

has asked a question.

Reply to Instructor - Whether this annotation is a reply to an instructor’s annotation.

Reply to Student - Whether this annotation is a reply to a student’s annotation.

Complexity - The complexity of the annotation, calculated with the Automated Read-

ability Index [44] which was designed to resemble the grade-level of the text.

Sentiment - The degree of positive or negative sentiment in the text from -1 to 1. The

average is calculated from word sentiments taken from the WordNet corpus [38].
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For all three data sets, bag-of-words features were selected from the most popular words

found in those data sets. Bag-of-words methods simply count the number of appearances

each word has in a text, and provides those counts as features. The most popular words

were selected to be counted so that there were enough instances of that word for meaningful

analysis. Additionally, the most popular words were selected after stop words were removed

from each text, so words such as “the,” “and,” and “a” are not included. 300, 120, and 80

bag-of-words features were included for the “Introduction to Programming”, “Introduction

to Web Development”, and “Foundations of Information Assurance” data sets respectively.

These numbers were chosen based on a limitation of applying a MANOVA (Multivariate

Analysis of Variance) to these data sets, where there needs to be less dependent variables

(features) than there are samples in the smallest independent variable category. The other

natural language features were selected based on the information TrACE provides and what

features were seen in relevant literature (see text analyses in chapter 2). All natural language

features were calculated the same way on both data sets except code.

3.2.2 Statistical Analyses and Machine Learning

One goal of this thesis is to discover what features are most useful for categorizing posts

within the five engagement categories. After calculating these features for all annotations,

MANOVAs are conducted on each data set with the engagement category as the independent

variable and each feature as dependent variables. A MANOVA (multivariate analysis of

variance) tests for a difference in means between two or more groups. In this context, given

some annotations where each includes a vector of features and its category of engagement,

a MANOVA tests whether the means of each feature is different when grouping annotations

by level of engagement. The results of a MANOVA list, in order, which features are best at
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separating annotations by engagement category. Features that were not at least marginally

significant (α = 0.1) were filtered out of the feature sets before applying machine learning.

One requirement for a MANOVA is that the number of dependent variables is less than

the number of data points in the smallest independent group. In this work, constructive

annotations were the smallest engagement group for each data set, and the number of

bag-of-words features for each data set were chosen based on this limitation.

The F values produced by a MANOVA describe the amount of variance between cat-

egories, but do not tell us what direction that variance goes. For example, a high F value

for the length feature would indicate that length has a high level of variance between en-

gagement category groups, and is a good feature for machine learning, but does not tell

us whether C annotations are generally longer than A1 categories or vice versa. To per-

form this sort of analysis, separate ANOVAs are run with each feature as the dependent

variable and ICAP category as the independent variable for features that were significant

(α = 0.05) in the MANOVA. A post-hoc Tukey’s Honest Significant Test (TukeyHSD) is

then conducted to calculate the variance between each pair of engagement categories (A1

with A2, C1 with A1, and C1 with A2 ), enabling an analysis of how these features affect

engagement category. Another TukeyHSD test looks to see if the means are significantly dif-

ferent between posts in one engagement category between courses, showing if this machine

learning model can be easily generalized to many courses.

Finally, performance of a machine learning algorithm was tested on the programming

and web development data sets using all of the marginally significant features from the

MANOVAs. The information assurance data set was not included in machine learning

testing due to the much smaller sample of annotations, making machine learning impractical.

The machine learning algorithm used is a multilayer perceptron, a type of neural network
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Figure 3.3: The connections of a multilayer perceptron, where there can be many hidden
layers between the inputs and outputs [14].

that in this case is trained to map features to engagement category. Between the input layer

and output layer are one or more hidden layers of nodes or neurons. Figure 3.3 contains a

diagram of a multilayer perceptron with one hidden layer. The multilayer perceptron was

chosen based on its presence in related work and the success of neural networks in language

learning problems.

3.3 Summary

This study collects all data from TrACE, a website where instructors host lecture videos

for students who watch and annotate them. Annotations from sections of “Introduction

to Computer Programming,” “Introduction to Web Development,” and “Foundations of

Information Assurance” were collected from TrACE. Using a coding rubric based on the

ICAP framework, annotations were manually coded based on the level of engagement with
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course material that was displayed. With each data set, a MANOVA was run to filter the

feature sets, pairwise comparisons were run to observe the differences between engagement

categories, and the filtered feature sets were used to test the feasibility of a multilayer

perceptron automatically categorizing new annotations. In the last step, sketches of what an

implementation of a learning analytic using this automatic categorization of new annotations

were made based on previous research on TrACE instructor behaviors. The next section

begins the results of these methods.
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Chapter 4

Results and Discussion

In this chapter, the results from all of the methods in the previous chapter are provided with

notable findings highlighted. First, the MANOVA results for each dataset are shown to help

answer the first research question, what features are most important for classification. Next,

pairwise comparisons of each feature from post-hoc TukeyHSD tests are given helping answer

the second research question of whether a machine learning model can be generalized to

different classes. Then, the results of more TukeyHSD tests are shown to test the variance

in features between courses, further answering the second research question. Lastly, the

results of testing a multilayer perceptron on automatically classifying annotations with the

filtered list of features is shown to answer weather applying machine learning in this context

is feasible. The results from this chapter also help inform the design of learning analytics

that would use such a system in the next chapter.

4.1 MANOVA

The first statistical method used on all data sets is the MANOVA, which compares the

variance between means of features when grouped by engagement category. The purpose
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Table 4.1: MANOVA F values for natural language features where p<0.05. Features are
ordered by programming F value. Rank indicates that feature’s place in all features of that

data set ordered by F value.

Feature Programming F Rank Web Dev. F Rank IA F Rank

Length 455.26 1 168.28 1 76.79 1
Complexity 323.20 2 138.37 2 68.34 2
Question 279.86 3 83.03 4 6.67 18
Reply to Inst. 132.36 4 114.31 3 5.32 23
Code 115.27 5 15.39 19
Link 78.245 7 53.43 5 29.28 4
Reply to Stu. 70.81 8 17.70 15 15.89 10
Sentences 44.929 15 35.01 6 32.571 3
Sentiment 34.853 22 16.62 17

of this test is two-fold; It shows what features had significant differences between means,

indicating that that feature is useful for machine learning, and also shows which features had

the highest variance in means through the F value. The results from the natural language

features are given first, and the bag-of-words features second.

4.1.1 Natural Language Features

Table 4.1 contains the F values from each MANOVA for the natural language features,

ordered by the F values from the programming data set. Missing numbers indicate that the

means of that feature was not significantly different between engagement category. This

occurs with the code and sentiment features on the information assurance data set, the code

feature explained by the lack of coding in that course.

The length feature had the highest F value for all three data sets, followed by the

complexity feature, indicating that these features have the most varied means between

engagement categories. Intuitively, this result suggests that students who put more effort

into their annotations, resulting in longer and more complex language, results in higher

engagement. Similar results correlating length and complexity with engagement have been



Results and Discussion 37

found in prior work [2, 32]. Furthermore, almost all works discussed in the related works

section that looked at performance as compared to activity behaviors in learning systems

found correlations between effort and performance. Pairwise analyses in the next section

will discover whether it is indeed higher engaged annotations that have higher length and

complexity.

Largely, the programming and web development data sets display similar patterns in

terms of their feature orders when ranked by F values. The main differences come from

the code and reply to student features which had very different rank placements. The web

development course had a much smaller emphasis on code, and many lectures discussed web

technologies. On the other hand, the introduction to programming course focused almost

entirely on coding, and videos largely consisted of programming examples. The change in

code rank then makes sense, as students writing code in their annotations suggests that they

are asking more detailed questions than those who are not, indicative of higher engagement.

In the information assurance data set, question, reply to instructor, and reply to student

scored much lower than in the other two data sets. One hypothesis as to the discrepancy

between the reply features is that the instructor for the information assurance course in-

cluded question annotations that students were supposed to answer as they watched the

video. The other two courses did not have these questions, only general comments by the

instructor. Students then in the information assurance course were likely to respond to

these instructor posts with simple answers to these questions without detailed explanation

resulting in lower engagement categories.

Despite some differences observed between the data sets, almost all of the natural

language features had significantly varied means between engagement categories, with the

exception of code (expected) and sentiment on the information assurance data set. All
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of these features will then be included as features for the machine learning performance

evaluation and the programming and web development data sets. Having chosen these

features based on natural language analyses in previous research looking at student success,

these results provide evidence that these engagement categories may also be correlated with

student success.

4.1.2 Bag of Words Features

Table 4.2 contains the F values resulting from the MANOVAs for the top 10 bag-of-words

features of each course ranked by F value. Looking at these words, many of them refer to

specific topics that are discussed in their courses such as “array,” “variable,” and “int” for

the programming course, “html,” “css,” and “perl” for the web development course, and

“access,” “passwords,” and “com” for the information assurance course. This relationship

between course “keywords” and engagement category is expected, as students who are

more engaged with the course material use these words to discuss course topics. Students

posting off topic or simple questions will likely not refer much to these keywords, resulting

in a lower engagement category. To see if this is the case however, pairwise comparisons

between groups in the next section are needed to see if it is actually the more engaged

annotations that are using these words more often.

Interestingly, the word “would” appears in the programming and web development

data sets, as well as the word “understand” and “use” or “using” in the web development

and information assurance data sets. These words are the only words in the top 10 that

have no direct relationship with the course material. What exactly the relationship between

these words and engagement is will be teased out with the next statistical analysis.
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Table 4.2: MANOVA F values for bag-of-words features where p<0.05. Shown are the
10 words with the highest F values for each course.

Progamming Word F Web Dev. Word F IA Word F

would 79.40 html 29.63 video 28.79
array 60.06 css 26.17 access 21.90
variable 58.83 perl 23.74 passwords 18.88
int 56.82 way 22.60 com 17.76
java 55.68 web 19.05 password 15.95
arrays 55.30 chrome 18.33 attacker 10.17
method 53.06 color 18.01 https 9.26
value 43.03 use 17.77 using 9.13
number 42.96 would 17.42 understand 9.12
material 40.84 understand 15.85 hash 8.08

4.2 Pairwise Comparisons

Beginning pairwise comparisons between engagement categories, the following results come

from running an ANOVA with a feature as the dependent variable and engagement category

as the independent variable with a post-hoc TukeyHSD test. The TukeyHSD test runs

pairwise comparisons to test the variance between engagement categories, providing insight

into whether features are indicative of engagement or disengagement. By observing the

direction of these differences for the same feature in different courses, the last research

question of whether this method can be generalized to all courses can be better answered.

The results from the natural language features are given first, and the bag-of-words features

second.

4.2.1 Natural Language Features

Table 4.3 contains the results from running post-hoc TukeyHSD tests on the natural lan-

guage features. For each natural language feature, all differences between engagement

groups that were significant have the same polarity between courses. For example, the

differences show that a longer length means the annotation is more likely to be of higher
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engagement for all courses, as the differences are all positive. On the other hand, an an-

notation being a reply to an instructor’s annotation means that it is more likely to be of

lower engagement for all courses, as the differences are all negative. This result is evidence

that the method used in this thesis to automatically categorize annotations by engagement

can be generalized to more courses. If the polarity of some features were reversed between

features in different courses, that would mean that engagement manifests itself in different

ways through text artifacts in those courses. Then, it would be necessary for a machine

learning algorithm to be trained and used on only that course. This is not the case here, and

suggests that engagement manifests itself in similar ways through text artifacts in TrACE,

at least in the courses studied in this thesis.

The only natural language features that have inverse relationships with engagement are

reply to instructor, sentiment, and reply to student between A1 and A2 posts, where all

other natural language features are indicative of higher engagement. To explain the inverse

relationship with instructor replies, often instructors post annotations containing simple

questions to try and make students reflect on the video material. Students responding

to these annotations often answer the question, without constructing any new knowledge,

resulting in lower engagement levels for those student annotations. On the other hand,

student replies result in higher engagement, except between A1 and A2 posts. This means

that C has the highest mean for the reply to student feature, followed by A2 and then A1.

One hypothesis for this result is that if a student is replying to another student, they are

doing so either because they are building upon a question they had (resulting in a C post),

or for meta discussion about the course or video resulting in A2 posts (meta discussion

examples from the programming data set include “In the long run, classes like these are

great...,” “Kind of. There is just so much information in this course!” and “I didn’t even



Results and Discussion 41

Table 4.3: Pairwise TukeyHSD results for natural language features. “Diff” columns show,
for a feature and course data set, the variance between means of that feature between the
specified engagement groups. Missing values indicate that the variance in means between

those two engagement groups was not significant (α = 0.05).

Course Feature A1-A2 Diff C-A1 Diff C-A2 Diff MANOVA Rank

Programming Length 1.157 2.396 3.553 1
Web Dev. Length 1.703 1.436 3.139 1
Info. Assurance Length 5.080 6.000 1

Programming Complexity 3.416 6.804 10.221 2
Web Dev. Complexity 5.055 3.641 8.697 2
Info. Assurance Complexity 14.006 17.330 2

Programming Question 0.245 0.225 0.470 3
Web Dev. Question 0.182 0.159 0.340 4
Info. Assurance Question 0.216 18

Programming Reply to Ins. -0.158 -0.293 -0.451 4
Web Dev. Reply to Ins. -0.180 -0.443 -0.623 3
Info. Assurance Reply to Ins. -0.166 -0.255 23

Programming Code 0.047 0.153 0.200 5
Web Dev. Code 0.051 0.088 19
Info. Assurance Code

Programming Link 0.059 0.059 7
Web Dev. Link 0.088 0.088 5
Info. Assurance Link 0.167 0.167 4

Programming Reply to Stu. -0.031 0.177 0.147 8
Web Dev. Reply to Stu. -0.055 0.133 0.079 15
Info. Assurance Reply to Stu. 0.190 0.157 10

Programming Sentences 0.123 0.281 0.404 15
Web Dev. Sentences 0.319 0.416 6
Info. Assurance Sentences 1.026 0.912 3

Programming Sentiment -0.058 -0.052 -0.110 22
Web Dev. Sentiment -0.034 -0.101 -0.136 17
Info. Assurance Sentiment
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notice that ‘till you pointed it out.”). Students may be unlikely to respond to another

student with an A1 post that does not build upon what the first student said.

Another interesting result is that the sentiment feature had an inverse relationship with

engagement for all engagement categories. Although the variance in means is small (0.034

to 0.110, where the sentiment feature is bounded by -1 and 1), this result shows that higher

engaged annotations have a slightly more negative sentiment. This may be explained by

the affective states of learning discussed in the introduction. If a student is in the satisfied

state, being confident that they have a mastery of the video material, they will not post any

questions or attempt to resolve any confusion. Likewise, students experiencing the hope-

fulness state are unlearning their misconceptions and confident that they are on their way

to learning. The students experiencing negative affective states (confusion and frustration)

may be the ones posting more engaged annotations in an attempt to ask questions, con-

struct knowledge, and unlearn misconceptions by engaging with peers and the instructor.

In related work studying MOOC attrition with sentiment analysis, a Python course found

that very positive or very negative posts were correlated with dropping out of the MOOC

[48]. That result always plays into the narrative of affective states, where students experi-

encing higher amounts of frustration post very negative posts, and unable to overcome the

frustration drop out of the MOOC. In the context of TrACE, this could mean that students

somewhere in the middle are those posting higher engaged posts, with those experiencing

a more negative state posting questions to resolve that confusion. Although interesting,

future work with sentiment in this context is needed to further study this phenomenon.
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4.2.2 Bag of Words Features

Table 4.4 contains the results of running post-hoc TukeyHSD tests on the 10 highest ranked

words from the MANOVA results for each course. One interesting result is that most courses

“keywords” correlate with higher engagement, with the exception of “arrays” between C1

and A1 in the programming data set.

The word “understand,” which appeared in the web development and information

assurance data sets, has an inverse relationship with engagement, as well as “video” in the

information assurance data set and “material” in the programming data set. Although

discovering the reason for these relationships requires further research, we can conclude

that these words are used more often in less engaged posts. One explanation for the word

“understand” could be that students often use the word when they are simply reporting

whether they understood the material, or asking a simple question while saying that they do

not understand something as in an A1 post. The words “video” and “material” may have

an inverse relationship since they are commonly used for meta discussion, such as through

suggesting improvements to the video, or reporting that they did or did not understand the

video material. Finally, the only non-keyword feature to have a positive relationship with

engagement was “would,” which even had the highest F value of bag-of-words features in

the programming data set. It could be that the word “would” is often used in hypothetical

questions, often resulting in higher levels of engagement an students are trying to construct

knowledge. With all of these words, more qualitative research methods are needed to

discover why these relationships with engagement exist.

To summarize this section, the results from these pairwise comparisons is evidence

that the methods used to train a machine learning algorithm to automatically classify

annotations by engagement may be generalizable to different courses. All of the natural
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Table 4.4: Pairwise TukeyHSD results for the top 10 bag-of-words features. “Diff”
columns show, for a word and course data set, the variance between means of word occur-
rences between the specified engagement groups. Missing values indicate that the variance

in means between those two engagement groups was not significant (α = 0.05)

Course Word A1-A2 Diff C-A1 Diff C-A2 Diff MANOVA Rank

Programming “would” 0.072 0.195 0.267 6
Programming “array” 0.048 0.120 0.168 9
Programming “variable” 0.016 0.088 0.104 10
Programming “int” 0.098 0.112 11
Programming “java” 0.023 0.108 0.131 12
Programming “arrays” 0.118 -0.051 0.067 13
Programming “method” 0.057 0.118 0.175 14
Programming “value” 0.028 0.070 0.098 16
Programming “number” 0.028 0.074 0.102 17
Programming “material” -0.077 -0.045 -0.122 18

Web Dev. “html” 0.111 0.111 7
Web Dev. “css” 0.095 0.055 8
Web Dev. “perl” 0.089 0.080 9
Web Dev. “way” 0.033 0.077 0.120 10
Web Dev. “web” 0.053 0.060 0.113 11
Web Dev. “chrome” 0.075 0.088 12
Web Dev. “color” 0.068 0.083 13
Web Dev. “use” 0.099 0.110 14
Web Dev. “would” 0.081 0.144 16
Web Dev. “understand” -0.074 -0.140 18

Info. Assurance “video” -0.455 -0.520 5
Info. Assurance “access” 0.317 0.382 6
Info. Assurance “passwords” 0.394 0.431 7
Info. Assurance “com” 0.133 0.137 8
Info. Assurance “password” 0.465 0.598 9
Info. Assurance “attacker” 0.164 0.225 11
Info. Assurance “https” 0.115 0.127 12
Info. Assurance “using” 0.143 0.196 13
Info. Assurance “understand” -0.116 -0.157 14
Info. Assurance “hash” 0.078 0.197 0.275 15
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language features had the same relationship with engagement in each course. Although this

thesis uses bag-of-words features, which have been shown to be course specific, the most

important features have been the natural language features. Furthermore, a clear pattern

from the pairwise analysis of bag-of-words features shows that course “keywords” are the

important words, and that they have positive relationships with engagement. Given a list

of course keywords, a system could count only them for bag-of-words features or count a

single keyword feature for classification in place of the bag-of-words method used in this

work. Likely, having seen the much greater F values for the natural language features and

keywords making up the vast majority of the top 10 words, performance would not be

hindered using this keyword method. The next section includes an additional analysis of

features to more concretely answer the second research question.

4.3 Between Course Comparisons

In the previous section, the TukeyHSD results comparing the variance in means of features

between engagement category showed that the natural language features, as well as course

“keywords” in the bag-of-words features, all had the same relationships with engagement.

This is evidence that the method for classifying student posts by engagement is able to be

generalized to many courses, but for a machine learning model to be trained on one course

and applied to a different course would require little variance in the means of features. Table

4.5 shows the significant results from running the same TukeyHSD test as the previous

section, but comparing the means of features for some engagement category with those

from a different course. For example, the first row in the table shows the differences in the

length feature for A2 posts between the programming, web development, and information

assurance data sets. There was not a significant variance in the length feature between
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Table 4.5: TukeyHSD results comparing feature means for engagement categories be-
tween courses. “Diff” columns show the variance in means of that feature between courses.
Missing values indicate that the variance in means between those two courses was not sig-
nificant (α = 0.05). The code feature was not used in the information assurance data set

resulting in missing values for that feature.

Category Feature Prog.-Web. Diff Prog.-Info. Diff Web.-Info. Diff

A2 Length 1.844 1.786
A1 Length 0.603 1.603 1.000
C Length 4.291 4.648

A2 Complexity 5.294 5.423
A1 Complexity 1.505 5.202 3.697
C Complexity 12.404 14.057

A2 Question 0.281 -0.264
A1 Question -0.073
C Question -0.139 -0.335 -0.196

A2 Reply to Instructor 0.188 0.311
A1 Reply to Instructor 0.166 0.303
C Reply to Instructor 0.507 0.491

A2 Code
A1 Code
C Code -0.108

A2 Link
A1 Link
C Link 0.108

A2 Reply to Student 0.030
A1 Reply to Student
C Reply to Student

A2 Sentences 0.083 0.346 0.263
A1 Sentences 0.279 -0.170
C Sentences 0.854 0.759

A2 Sentiment 0.041 -0.119
A1 Sentiment 0.065 -0.064 -0.129
C Sentiment

the programming and web development data sets for A2 posts. However, programming A2

posts and web development A2 posts were significantly longer than information assurance

A2 posts.

Many features had significant variances in means between courses for some engagement
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categories, indicating that more work is likely needed to generalize the machine learning

method in this thesis to many courses. C posts in the programming and web development

data sets were on average around 13 words longer than C posts in the information assurance

data set. Complexity, which when calculated with the Automated Readability Index is

supposed to resemble the grade-level of a text [44], was much lower in C posts for the

information assurance data set than the other two data sets. These results show that

students in the information assurance course were making C posts that were much shorter

and less complex than those in the other two courses. Another major difference can be seen

in the reply to instructor feature. One of the largest differences comes from C posts in the

programming and web development data sets being significantly more likely to be replies to

instructors than C posts in the information assurance data sets. There were also significant

differences in the reply to instructor feature for A2 and A1 posts between programming

and the other two data sets. Mentioned here have been some notable findings, though there

are many more significant differences to be seen in table 4.5.

The larger implication of these significant differences is that a machine learning model

trained on one course would likely have poor accuracy when applied to a different course,

especially with the information assurance course having much lower complexity for all types

of posts. Discovering the reason behind these differences is outside the scope of this thesis,

but future work would need to consider these findings when attempting to develop a similar

machine learning model for many courses. Knowing this, the next section looks to test the

viability of this model by training and testing on data within courses.



Results and Discussion 48

4.4 Machine Learning

Table 4.6 contains metrics from the performance evaluation of a multilayer perceptron

categorizing annotations based on engagement category. Again, the information assurance

course was not included here due to the much smaller sample size making machine learning

applications infeasible (403 annotations versus 1484 in the web development data set and

2893 in the programming data set). The metrics were calculated by testing and training

on 10 randomly stratified samples where 15% of the data was chosen as the test set and

the rest for training. Samples were stratified by grouping annotations by what video they

were posted in, and then selecting 15% of annotations from each video for the test set.

For example, each test set contained 15% of the annotations from video 1, 15% of the

annotations from video 2, 15% of the annotations from video 3 etc. This stratification was

done to ensure that the train and test sets were representative of discourse throughout the

whole course, as the content being discussed may influence behavior. Bag-of-words features

specifically will change depending on the video an annotation is in because of the new

material and course keywords being discussed.

The performance evaluation of a multilayer perceptron automatically categorizing an-

notations by engagement category resulted in good performance overall, achieving 80.03%

accuracy on the programming data set and 74.06% on the web development data set. Clas-

sification of A1 and A2 posts performed well with precision and recall metrics all over 70%.

However, precision and recall for C posts leaves room for improvement. Specifically, recall

for C posts was very poor on the web development data set with an average of 25.25%.

One cause of this may be the much smaller number of C posts in the web development data

set, only 146 where the programming data set had 349. Splitting 146 annotations into test

and train sets means that any machine learning algorithm might not have enough data for
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Table 4.6: Classifier metrics, averaged from 10 randomly stratified samples.

Metric Programming Dataset Web Development Dataset

Overall Accuracy 80.03% (σ = 1.95%) 74.06% (σ = 1.68%)
A1 Precision 77.81% (σ = 3.77%) 71.39% (σ = 4.82%)
A1 Recall 78.18% (σ = 4.47%) 79.20% (σ = 3.50%)
A2 Precision 83.44% (σ = 3.10%) 78.29% (σ = 3.51%)
A2 Recall 90.04% (σ = 2.02%) 79.87% (σ = 4.64%)
C Precision 76.54% (σ = 11.71%) 64.35% (σ = 17.23%)
C Recall 52.45% (σ = 7.60%) 25.25% (σ = 7.00%)

a full understanding of C behavior to categorize new C posts. The significantly improved

metrics on the programming data set suggests that this may be the case.

To answer the last research question, whether it is feasible to use a machine learning

algorithm to categorize posts by engagement category, the data suggests that it is indeed

possible. With the exception of poor performance with C annotations on the web develop-

ment data set, all performance metrics suggest that the methods used to run this algorithm

provide enough accuracy to be used in a real-life environment with learning analytics. Larger

systems with data from a greater number of students would be able to overcome the small

proportions of C posts that seem to be affecting performance in this thesis. Furthermore,

having found that generalizing the methods used in this thesis to all courses is likely pos-

sible, future research could combine the data sets for each course to remove this issue of

sample size.

4.5 Summary

In this chapter, the results of three different analyses were presented to answer the three

research questions posed in the introduction. First, MANOVAs were run on each data set

to determine which features were most important for classification. It was found that all

of the natural language features selected were significant indicators of engagement, though
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sentiment was by far the least important. Looking at the bag-of-words features, course key-

words, such as “variable,” “java,” and “arrays” in the programming data set, were found

to be the most important classification. Only a few words, “would,” “understand,” “use,”

and “video,” made it to the top 10 of some data sets and were not a word related to course

content. Next, pairwise analyses were conducted to answer to help answer the second re-

search question, whether the machine learning methods in this thesis can be generalized to

more courses. Based on all natural language features and course keyword features having

the same relationship with engagement (with the exception of “arrays” on the programming

data set), generalizing to multiple courses seems possible. However, the next pairwise anal-

ysis showing that means are often significantly different between posts in different courses

shows that the model in this thesis would need to be modified before generalizing it is possi-

ble. Lastly, all marginally significant features from the MANOVA results were used to train

and a test a multilayer perceptron for automatic categorization of engagement. Performance

metrics indicate that this method is feasible, and better performance can theoretically be

achieved using a larger data set. In the next chapter, these results and previous research

instructors are combined to generate mockups of what a learning analytic built on this

machine learning method would look like.
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Chapter 5

Implications for Design

This chapter utilizes the results from the previous chapter, in addition to prior research on

instructor’s use of TrACE and its analytics, to create mockups of an analytic utilizing the

proposed machine learning system that categorizes engagement. In previous work studying

the role of formative assessment in the classrooms of TrACE instructors, journals written by

instructors and interview transcripts were used in a thematic analysis to identify themes in

instructors experiences of TrACE [18]. Table 5.1 shows the themes discovered via superor-

dinate and subordinate categories. Following are a subset of those themes that help inform

the design of learning analytics that would use the machine learning method described in

the previous chapter to provide student engagement data to instructors. Each category is

paraphrased here. For full descriptions see [18].

• Knowledge of Students: This first superordinate category was chosen due to in-

structor often speaking about their awareness of student activity and how they con-

ceive student knowledge and understanding. The two subordinate categories described

next show instructor desires that influenced the topic of this thesis, specifically work-

ing towards a student engagement learning analytic.
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Table 5.1: The superordinate and subordinate themes from research into how instructors
apply formative assessment within TrACE.

Superordinate Categories Subordinate Categories

Knowledge of Students Engagement

Viewing Patterns

Understanding

Experiencing Difficulty

Quality of Materials –

Educator Action Individual Student Intervention

Group Action or Instructional Change

Next Course Iteration

General Limitations System Shortcomings

Educator Struggles

– Engagement: This subordinate category describes instructor’s use of analytics

to learn how students are engaging with the video content. On the macro level,

instructors used both analytics and annotation summaries in TrACE to discover

suspicious activity and whether students are meeting course expectations. At the

micro level, instructors used finer grained analytics that describe their actions

in the system to see if students were focusing on the important content and not

cherry picking parts of the video.

– Experiencing Difficulty: Instructors, in addition to wanting to know how

students use TrACE, sought to identify confused or struggling students. One

instructor used analytics showing where students made actions in the video to

get an idea of what concepts students were struggling with. A common sentiment

was that the analytics were not enough to judge whether students were struggling.

• Educator Action: After instructors acquired knowledge of students through themes

in the first superordinate category, the next step for instructors was to put that
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information into action.

– Individual Student Intervention: One instructor showed an analytic of a

students behavior to that student to open a discussion on why the instructor is

concerned about the student’s progress. Other instructors also used analytics to

identify students needing intervention to try and get them engaged in the course.

– Group Action or Instructional Change: In addition to targeting individ-

ual students, instructors also addressed the course as a whole when engagement

seemed low, and altered the course in some way such as by changing the require-

ments for using TrACE. One instructor would give quizzes to students who did

not watch the entire video for that day, and another discussed common questions

they saw in TrACE.

5.1 Analytics on Classes

The two analytic mockups in this section focus on analytics that provide information about

the class as a whole. Instructors will not be able to discern specific information about

students from these, but may be able to identify general class trends for group action or

instructional change.

Figure 5.1 displays a mockup of an analytic that aims to show how post counts in

each engagement category change over time. In the analytic is a graph that displays the

total number of annotations in each engagement category for each video in the course.

This analytic mainly addresses the needs found in the subordinate category “Group Action

or Instructional Change.” Instructors, often looking at analytics to observe the overall

engagement levels of the class, may use this information to make instructional change that
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then promotes engagement. Although there are currently analytics in TrACE that describe

engagement through log data (such as the number of annotations posted in a video by each

student) over all videos in a course, instructors need to look at many analytics to build an

overall picture of engagement. Using levels of engagement instead of log data also provides

a more accurate depiction of how engaged the student is with the course material since log

data may not be representative of student understanding.

One possible use case of this graph is an instructor looking to see how engagement levels

change throughout the course. If half way through the course the levels of engagement begin

to dip, it may mean that the instructor’s expectations are not in line with what students

believe the expectations are. The instructor may then intervene or change course policy to

remedy the problem. This analytic might also be used to identify what videos students most

struggle with. Lower levels of engagement may suggest that students are not connecting

with the material, and negative affective states are resulting in disengagement. If a video

consistently has lower engagement than the others over multiple iterations of a course, it

may mean that students need more help with that material, or that the video production

is of less quality than the others resulting in disengagement [23].
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Figure 5.2 shows an analytic with a different type of graph, one that displays the number

of annotations in each engagement category at different times in the video. As annotations in

TrACE are anchored in time and pixel coordinates on the video, looking at the annotations

in this way shows which annotations correspond to what course material based on what time

the annotation is posted at. This most helps the category “Engagement,” where instructors

wanted to discover suspicious activity and whether students were cherry picking content

and not paying attention to all of the material. This graph enables instructors to do so by

allowing them to see trends in where engagement is and is not occurring within the video.

Spots of no annotations or low engagement annotations may indicate that students need

help with that section of course content.

Another possible use case is using the changes in engagement levels to help discover

what videos or portions of the course students struggle with the most, whether this be due

to the difficulty of the material or video production. Previous research looking at log data

in a MOOC found that the type of video segment influenced behavior, and that looking

at engagement data can help inform instructors about where videos can be improved [23].

They also developed a list of video production practices based on instructor interviews that

promote student engagement [22]. Knowing this, instructors using this graph may be able

to identify where videos can be improved for future iterations of the course.
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5.2 Analytics on Students

The two analytics in this section focus on providing information to instructors about indi-

vidual students. Where the previous two analytics allowed instructors to observe general

class trends, these will enable instructors to see trends in each student’s behavior. These an-

alytics more directly address issues with online learning discussed in the introduction: that

instructors are unaware of student engagement during the learning process, are unable to

intervene students, and are not able to scaffold learning for students to move them through

the affective states of learning which may disproportionately affect weaker students.

The analytic in figure 5.3 seeks to address needs from the categories “Experiencing

Difficulty” and “Individual Student Intervention.” Displayed is a chart with videos on the

x-axis and students on the y-axis, which each box representing the number of annotations

in an engagement category that student has posted. The current engagement category can

be changed by the drop-down box at the top, which in the figure is set to constructive. As

it is in the figure, the number of constructive annotations each student has posted in each

video is being displayed.

A possible use case for this analytic is that by observing which students consistently

post no constructive annotations in videos, instructors may be able to identify students

who are struggling with keeping up in the course. Also, changing the type of annotations

displayed to active 2 may show students who are posting annotations as the instructor

expects, but are consistently not using those annotations to discuss course content. The

instructor then may use other analytics to see what the student is using the annotations for,

and then may decide if individual student intervention would be beneficial. This analytic

overall aids instructors in discovering how engaged each student is with course content.
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The last analytic in figure 5.4 provides similar information to that of the previous

analytic, but enables instructors to better view how a student’s engagement with course

content is changing over time. After selecting a student to view, the total number of

annotations posted by that student in each engagement category is shown at the top, along

with the proportion of annotations that category contains. Underneath is a bar graph that

shows, for each video, how many annotations in each category that student has posted.

With the example data in the figure, it is shown that student 5 has posted one constructive

annotation, two active 1 annotations, and one active 2 annotations in video 3. As the

previous analytic did, this one also helps with the categories “Experiencing Difficulty” and

“Individual Student Intervention.”

A use-case that this analytic would be better for than the previous analytic is that

of discovering students who are becoming more disengaged as the course proceeds. Where

the previous analytic is better at discovering consistently disengaged students, this one

can be used to more quickly identify students who were previously very engaged, but are

experiencing a drop-off in engagement, possibly warranting individual student intervention

would be helpful for that student. The post counts and proportions displayed above the

graph in the analytic help with this task, as the instructor can compare a student’s average

post proportions with the post proportions of the most recent videos. Flipping this scenario,

an instructor might use this analytic after concluding that intervention is needed to see if

that student’s engagement with course content is improving.
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5.3 In Video Use

In addition to using engagement data to create analytics for instructors, the data could be

used to enhance the ability of instructors to learn about student engagement while going

through annotations on the video page. Figure 5.5 shows the TrACE video player, but

the data from each annotation being categorized by engagement is used to enhance the

instructor’s ability to work through annotations. When an instructor opens a video, the

colored bars on the right of each annotation represents its engagement level, and annotations

can be filtered by engagement level using the drop down at the top. These features would

help with all of the categories mentioned from the thematic analysis of instructor use of

TrACE. As instructors are going through the video annotations, the blue bars representing

constructive posts would help them discover where important or detailed discussion might

be happening within the video, and the ability to filter annotations by engagement would

streamline this further. These features would help instructors get a better idea of both

what students individually are doing and what the class as a whole is doing.

The ability for the video player page to filter annotations by engagement could also

be tied in with the previous analytic mockups to make them more useful. For example, by

clicking on the dot representing 20 constructive posts in video 6 in figure 5.1, the user could

be sent to the video page for video 6 with annotations pre-filtered by constructive posts.

Annotations could also be filtered by student, so an analytic such as in figure 5.3 could send

the user to video 7 with annotations filtered to constructive annotations posted by student

5 if they click on the box for student 5 and video 7. These links to the video pages would

more easily allow an instructor to dig deeper into the engagement of their students after

they discover interesting behaviors in the analytics.
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5.4 Summary and Design Limitations

Presented in this chapter have been four learning analytic mockups, two that enable instruc-

tors to observe class trends in engagement and two that allow instructors to observe trends

in student behavior, as well as what adding engagement features to a video player might

look like. These analytics aim to resolve some of the issues with online learning brought up

in the introduction by making instructors more aware of how students are engaging with

course content and better enabling instructor intervention. Furthermore, these analytics

all address specific pieces of information that instructors reported wanting in the analytics

during interviews about their usage of TrACE.

It is important to note that this chapter is exploratory, and not meant to be an exhaus-

tive list of how a system categorizing engagement can be used in learning environments.

Additionally, these designs have revolved around the system studied in this thesis, TrACE.

Being grounded in previous research on online learning environments, these designs are

likely a solid starting point for building within other lecture video systems, but the context

and affordances of those systems may necessitate changes. The specific affordances of those

systems may also be able to enhance these analytic designs. For example, although these

mockups have been designed with only the machine learning model from this thesis in mind,

TrACE has the ability to embed quiz questions and forced pauses into videos. Results from

these types of interactions could be combined with student engagement data to generate

analytics that provide a higher overview of engagement.

One limitation of these mockups is their use of the three engagement category names,

constructive, active 1, and active 2. Instructors will likely not know what these mean and

therefore not understand these metrics having not worked with the ICAP framework before.

Before actually building these analytics, replacement names for the three categories would
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be needed, and explanations of what each category stands for would need to be provided

to instructors for them to fully understand them.

Another limitation is that these metrics are all based on a machine learning model,

and even if accuracy can be significantly improved from the results in the previous chapter

of this thesis, these metrics can not be taken as absolute fact about student engagement or

as absolutely representing their understanding of course material. This is the case with any

data based on machine learning, as 100% accuracy can not be guaranteed and should not

be expected.

As discussed in the introduction, the goal of testing this application of machine learning

and designing these analytics is to help instructors build a better understanding of their stu-

dents’ engagement while using online learning systems, especially when there are hundreds

of students and instructors can not possibly read the posts of every student. The analytics

in this section aim to point instructors in the right direction, and filter information when

going through every data point is not possible. The instructor should then further explore

the system themselves, hopefully using the links to the video pages from the analytics to

make a more personal decision of whether intervention would be helpful for a student, or

to build a broader understanding of how the class is engaging with the material as a whole.

This is of particular concern as instructors often use TrACE analytics for grading [18], and

anecdotally, instructors may become too heavily reliant on the analytics when they are short

for time. These mockups have been designed with exploration in mind to prevent these use

cases from occurring.
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Chapter 6

Conclusion

The increasing use of online systems for learning has given birth to new fields of research

looking at factors impacting student learning in the online context. This thesis has at-

tempted to address one of these factors, that of increasing instructor awareness of student

engagement during the learning process in online systems. Previous research in this area has

mostly involved analyzing the log data stored in these systems, but only few recent studies

have begun to apply natural language processing methods to the text artifacts generated

by students. Additionally, these prior studies have largely only studied student behavior or

created models for performance prediction, and have not taken steps to use this research

to actually impact student success. This thesis has used these previous studies, the ICAP

framework, and previous research with the ICAP framework to provide a machine learning

model and set of analytic mockups that future online learning systems can potentially use

to impact student success.

This thesis has provided three main contributions. First, a machine learning method

that is capable of categorizing student posts by their level of engagement has been described

in this work. The performance evaluation suggests that this method is indeed feasible, and
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future work with larger data sets can likely improve the accuracy of this method. Second,

statistical analyses and qualitative discussions of the results from those analyses have shown

what features are important for machine learning, and, for the bag-of-words features, that

course keywords are the features important for engagement. Future iterations of similar

engagement models should be more capable of generalizing these methods to many courses

using the insights provided by these analyses. Lastly, mockups of what learning analytics

might be built on top of this engagement classification method have been designed. These

designs were informed by the problems with online systems identified by previous research

and a prior study performing a thematic analysis on interviews and journals made by

instructors using TrACE. Although the mockups were based in the TrACE environment,

they should be applicable to other learning systems that afford similar discussion and posting

functions.

6.1 Limitations and Future Work

One limitation of this work is the relatively small sample size of annotations, and the small

number of courses that had a large enough sample size to be included in this thesis. The

especially small sample of constructive annotations in the data sets seems to have affected

the performance of identifying constructive annotations, and performance evaluation on the

information assurance data set was not possible due to the very small sample of annotations.

Only three courses were offered in enough semesters and generated enough annotation data

to be useful for analysis. Unfortunately, these three courses were all STEM, and specifically

information technology related classes. Being able to analyze data from courses in different

fields would have been useful in further studying how generalizable these methods are. It

may be that features have different correlations with engagement in different areas of study,
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and these methods are not useful outside of STEM courses. Future work should try to

obtain data from various fields of study to see if this is true.

Another limitation is that of replicating these methods in other systems. This thesis

was not able to conclude that these methods are generalizable to many courses, but the

method of discourse in TrACE (annotations tied to a time and place on the video) may

affect the length or depth of language used. Other systems may have to go through the

process of manually annotating data to train a model for their system. On the other hand,

the insights and correlations that features have with engagement should be the same and

still be able to inform the development of engagement classification methods in different

systems. The analytic designs especially should still be applicable to other systems, as

they were informed by prior literature working with many different types of learning and

instructors using TrACE who teach in both the flipped and online formats.

Looking at the performance evaluation portion of this thesis, only one version of a

neural network, a multilayer perceptron, was evaluated. This method was chosen based

on the prevalence of neural networks used in previous research conducting various natural

language tasks. Future research that looks to implement such a system should spend more

time testing different machine learning algorithms to improve accuracy as much as possible.

The scope of this thesis was to test the feasibility of this application of machine learning,

so it did not look into what kind of biases the multilayer perceptron may have and how

that affected performance. Similarly, this thesis did not look into what exactly was causing

the lower recall metrics for constructive posts in the performance evaluation. Although

outside the scope of this thesis, taking a qualitative look into what kinds of posts were

being classified incorrectly may be able to shed light on what features could be added or

removed to increase performance.
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This thesis has laid the groundwork for the analytics to be built on top of engagement

categorization data, but there is still work left to be done for systems planning on imple-

menting this design. As previously discussed, this thesis could only look at how general these

methods were to a certain extent, and systems with more varied courses and data should

continue to research this. Likely, there are other natural language features that correlate

with engagement, and future work should look at testing more complex features and larger

numbers of them to see how the accuracy of this model can be improved. Additionally,

the hypothesis presented in this thesis that bag-of-words features can be replaced by one or

multiple course keyword features should be tested. Finally, after actually building the sys-

tem or prototypes of it, conducting usability tests as well as studies using other qualitative

methods to see how analytic designs can be improved should be conducted. Although the

designs in this work took inspiration from many different sources, there may be other use

cases or desirable features that were missed.

6.2 Final Thoughts

This thesis has attempted to use the large amounts of data generated in TrACE to explore

the feasibility of a system that would use machine learning to impact instructors use of the

system, and therefor student success. As discussed earlier, machine learning applications

and studies in the domain of online learning are plentiful, but far too often do they sim-

ply look at predicting performance or behaviors without actually implementing anything

that impacts users. Hopefully the grounding in educational psychology, consideration of

how instructors use TrACE analytics while designing mockups, and focus on an issue that

instructors themselves are concerned about brings this work closer to having an impact on

online education.
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