
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

5-2017

Applications of Graph Embedding in Mesh
Untangling
Jake Quinn
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Quinn, Jake, "Applications of Graph Embedding in Mesh Untangling" (2017). Student Work. 2916.
https://digitalcommons.unomaha.edu/studentwork/2916

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2916?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2916&utm_medium=PDF&utm_campaign=PDFCoverPages

Applications of Graph Embedding in Mesh Untangling

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Science, Computer Science

University of Nebraska at Omaha

by

Jake Quinn

May 2017

Supervisory Committee:

Dr. Sanjukta Bhowmick

Dr. Robin Gandhi

Dr. Yulia Lierler

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10271481

10271481

2017

Applications of Graph Embedding in Mesh Untangling

Jake Quinn, BSCS

University of Nebraska, 2017

Advisor:

Dr. Sanjukta Bhowmick

Abstract:

 The subject of this thesis is mesh untangling through graph embedding, a method of

laying out graphs on a planar surface, using an algorithm based on the work of Fruchterman

and Reingold[1]. Meshes are a variety of graph used to represent surfaces with a wide

number of applications, particularly in simulation and modelling. In the process of

simulation, simulated forces can tangle the mesh through deformation and stress. The goal of

this thesis was to create a tool to untangle structured meshes of complicated shapes and

surfaces, including meshes with holes or concave sides. The goals of graph embedding, such

as minimizing edge crossings align very well with the objectives of mesh untangling. I have

designed and tested a tool which I named MUT (Mesh Untangling Tool) on meshes of various

types including triangular, polygonal, and hybrid meshes.

 Previous methods of mesh untangling have largely been numeric or optimization-

based. Additionally, most untangling methods produce low quality graphs which must be

smoothed separately to produce good meshes. Currently graph embedding techniques have

only been used for smoothing of untangled meshes. I have developed a tool based on the

Fruchterman-Reingold algorithm for force-directed layout[1] that effectively untangles and

smooths meshes simultaneously using graph embedding techniques. It can untangle

complicated meshes with irregular polygonal frames, internal holes, and other complications

that previous methods struggle with. The MUT does this by using several different

approaches: untangling the mesh in stages from the frame in and anchoring the mesh at corner

points to stabilize the untangling.

iii

Table of Contents:

1: Introduction 1

2: Background 4

2.1: Terminology 4

2.2: Graph Theory 5

2.3: Fruchterman-Reingold Algorithm 5

2.4: Graph Drawing 8

2.5: Related Work in Mesh Untangling 11

3: Methods and Implementation 12

3.1: Fruchterman-Reingold Influence 12

3.2: Challenges 13

3.2.1: Mesh rotation and deformation 13

3.2.2: Irregular Frames 14

3.3: MUT Operation Modes 17

3.3.1: General mode 18

3.3.2: Fixed-Frame mode 18

3.3.3: Corners-Attract mode 19

3.4: Pseudocode 20

3.5: Mathematical quantification of untangling 22

4: Experimental Results 24

4.1: Triangular meshes 24

4.2: Quadrilateral meshes 36

4.3: Hybrid meshes 44

5: Conclusions 47

5.1: Summary 47

5.2: Future Work 47

References: 52

Appendix A: Source Code: 54

iv

List of Multimedia Objects:

Figure 1: Example Mesh 1 – Tangled 26

Figure 2: Example Mesh 1 – General 27

Figure 3: Square Mesh with Square Hole – Tangled 28

Figure 4: Square Mesh with Square Hole – General 29

Figure 5: Square Mesh with Square Hole – Corners-Attract 30

Figure 6: Disk – Tangled 31

Figure 7: Disk – General 32

Figure 8: Disk – Corners-Attract 33

Figure 9: Disk – Fixed-Frame 34

Figure 10: Texas – Tangled 35

Figure 11: Texas – Fixed-Frame 36

Figure 12: Eye of the Tiger Quad – Tangled 37

Figure 13: Eye of the Tiger Quad – General 38

Figure 14: Eye of the Tiger Quad – Corners-Attract 39

Figure 15: Eye of the Tiger Quad – Fixed-Frame 40

Figure 16: Annulus Quad – Tangled 41

Figure 17: Annulus Quad – General 42

Figure 18: Annulus Quad – Corners-Attract 43

Figure 19: Annulus Quad – Fixed-Frame 44

Figure 20: Eye of the Tiger Hybrid – Tangled 45

Figure 21: Eye of the Tiger Hybrid – Corners-Attract 46

Figure 22: Eye of the Tiger Hybrid – Fixed-Frame 47

Figure 23: MUT User Interface Mock-Up 50

1

1. Introduction

Graph theory is an influential field of mathematics that can revolutionize

production and industry as well as influence modern engineering. Take for example

the study of medicine. It is difficult and dangerous to observe the effects of stress on

a human heart, but it is possible to simulate this scenario using meshes. Car

manufacturers have long relied on crash tests to determine the safety of their vehicles

when subjected to extreme stress, which requires the destruction of potentially many

expensive vehicles. With the rise of more powerful computing, simulation has

provided an alternative to real-world testing in many industries such as medicine,

engineering, and others.

It is impossible to perfectly replicate a physical object digitally. To do this, the

location of every atom would have to be determined and recorded, and to simulate

any interaction with the object, algorithms would have to be executed on every one of

those points. Instead, when modelling an object, a number of points are selected from

the surface of the object. Adjacent points are then connected, and the resulting

structure is called the mesh of the object. A mesh is a specific type of graph, which is

itself a mathematical structure most simply defined as being a collection of vertices

and edges together with a relationship stating that every edge of the graph connects

either two vertices or a vertex to itself. More formally a mesh is a graph that defines

the shape of an object in modelling and includes polygonal faces formed by

components of the graph. Additionally, a mesh is a type of simple graph, in which

there are no edges connecting a vertex to itself.

A mesh in a physical simulation is subject to any number of forces upon itself.

These forces are represented as a system of equations. The force on any given point

is defined by a partial differential equation. In the continuous domain, these

2

equations are not solvable, so in order to perform calculations on a mesh, the partial

differential equations must be transformed into the discrete domain where they

become solvable. This system of equations can be treated as a matrix, and can be

solved using matrix operations.

This approach is not without challenges. For the matrix to be easily solved, the

matrix must be well-conditioned. For the matrix of a mesh to be well-conditioned, the

mesh cannot be tangled, and the shapes of the components, or bounded regions,

should be as regular as possible. When affected by forces or other influences, a mesh

can become tangled in order to conform with the surface it represents. When the

mesh becomes tangled it could simply be re-formed based on the new locations of the

vertices; however this loses all information about the original connections. In many

circumstances, this is undesirable. Imagine a muscle that has torn; simply sewing it

back together wherever it ends up would likely permanently damage it.

To summarize, in order to perform the operations necessary for simulation on a

mesh, it must be well-conditioned, with the most significant factor of this being that

the mesh must be untangled. The challenge then is to untangle the mesh. In

particular, this is difficult when the boundary of the mesh is not a convex shape, or is

otherwise irregular. There are a number of paradigms and methodologies that have

been explored in the pursuit of effective and efficient mesh untangling. Traditional

approaches include numeric approaches, which seek to use linear algebra techniques

to make the mesh well-conditioned. However, this tends to be very limited depending

on the type of mesh components involved. Triangular meshes must be treated very

differently from quadrilateral meshes, and so on.

This thesis will present the Mesh Untangling Tool, or MUT, which provides a

different paradigm. My research opted for a holistic approach, treating a mesh as one

3

would any other graph and using graph embedding to untangle the mesh. Graph

embedding is a method of laying out a graph on a surface. This strategy is viable

because the goals of mesh untangling are very similar to the goals of graph

embedding. Notably, both seek to avoid edge crossings. In addition, graph

embedding seeks to normalize angle measures and side lengths of components within

the graph, which leads to a more untangled mesh.

In the remainder of this thesis, I will present the MUT, the implementation, and

theory behind it, as well as experimental results in the space of two-dimensional mesh

untangling for a myriad variety of mesh types. The MUT provides significant

advances over previous work using graph embedding as it addresses weaknesses of

the graph embedding method such as handling irregular mesh boundaries as well as

cases when internal vertices may be tangled outside of the main frame of the mesh.

Additionally, we will address the limitations of the MUT and discuss future research

to be carried out using this paradigm.

4

2. Background:

To understand the MUT and its function, a basic understanding of graph theory

and other concepts is necessary. The necessary background for understanding the

theory and basic implementation of the MUT is presented below.

2.1: Terminology

-Graph: Mathematically defined as “an ordered triple

𝐺 = (𝑉, 𝐸, 𝜑), 𝑤ℎ𝑒𝑟𝑒 𝑉 ≠ ∅, 𝑉 ∩ 𝐸 = ∅, 𝑎𝑛𝑑 𝜑: 𝐸 →

𝑃(𝑉)𝑖𝑠 𝑎 𝑚𝑎𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝜑(𝑒)| ∈ {1,2}𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒 ∈ 𝐸”[2]. Put more

simply, it is a collection of edges and vertices and the relationship between

them.

-Mesh: A type of graph used to represent the surface of an object in a

simulation.

-Vertex: Part of a graph represented visually by points.

-Edge: A component of a graph representing a connection between two

vertices.

-Adjacency matrix: An n by n matrix where n is the number of vertices in a

graph. Each element e(i,j) = 1 if there is an edge between vertices i and j.

- Partial Differential Equation: an equation containing unknown multivariable

functions and their partial derivatives.

- Fruchterman-Reingold algorithm: An algorithm for better graph drawing

through force-directed placement.

- Graph Embedding: A method of laying out a graph onto a surface such that

there are no edge intersections.

5

2.2: Graph Theory

Graph theory is a field of discrete mathematics that has many applications to

solve real-world issues. Graphs can be used to model many problems that exist in

the physical world in order to solve them[2]. One of the fundamental concepts of

graph theory is that when a real-world problem has been mapped to the domain of

graph theory, solving the graph problem also provides the solution to the real-

world problem.

 Graph theory serves as the foundation of the MUT. In pure graph theory, a

graph can be described entirely with an adjacency matrix. An adjacency matrix is

a matrix with values describing which pairs of vertices share an edge. However,

in the case of meshes like those dealt with by the MUT, the location of the

vertices in a plane is also significant.

2.3: Fruchterman-Reingold Algorithm

The Fruchterman-Reingold algorithm, introduced in [1], formed the basis for

my methods. The premise of the paper is to use a force-directed method of vertex

placement in order to produce graphs that are aesthetically pleasing. The

algorithm the authors developed seeks to: “Distribute the vertices evenly within

the frame, minimize edge crossings, and make edge lengths uniform”[1] among

other goals. The challenge here is that the processes required to make a graph

aesthetically pleasing are generally NP-hard problems [3].

The basis for the Fruchterman-Reingold research has its roots in physics.

According to the authors, they based their algorithm largely on work of Eades[1].

Conceptually, the graph is regarded as a physical system of rings and springs

wherein the springs, representing the edges of the graph, exert force on the rings,

6

representing the vertices. In Eades’ work, the forces seek out a state of minimal

energy. The Fruchterman-Reingold algorithm takes advantage of this based on

the assumption that a low energy system most closely reflects the criteria of

aesthetics. In both Eades and Fruchterman-Reingold, the forces exerted on the

graph are not modelled on actual physical forces such as Hooke’s Law, but rather

developed specifically for the desired results.

Similar to [4], the Fruchterman-Reingold algorithm restricts edges within the

graph to straight lines. This not only better fits the spring metaphor but it also

simplifies the concept of edge crossing by making it possible to determine if two

edges cross by solving a system of linear equations. However, [4] prioritizes

aesthetics over planarity, meaning that edge crossings are more permissible in [4]

than in [1].

The Fruchterman-Reingold method relies on two simple requirements for

vertex placement: that two vertices connected by an edge should be close

together, but that no two vertices should be too close together. These are both

somewhat abstract. The definitions of what is “too close” and what is “close

enough” depend on the graph in question and its density. To obey these two rules,

Fruchterman and Reingold looked to particle physics. Nucleons attract each other

very strongly at close range, with the attraction reducing very rapidly the further

apart they are. However when two nucleons are very close to one another, the

strong nuclear force instead repulses the particles from one another, preventing the

nuclei from collapsing. Following this principle, the Fruchterman-Reingold

algorithm causes vertices that are connected by an edge to attract one another until

balanced out by repulsive forces. While only vertices sharing an edge can attract,

all vertices will repel one another when in close proximity.

7

The forces of attraction and repulsion in the Fruchterman-Reingold algorithm

are based on the size of the bounding box. They define the optimal distance

between vertices to be 𝑘 = 𝐶√
𝑎𝑟𝑒𝑎

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
, where C is a constant. Based on

this, the authors determined that the following equations most accurately model

the attractive and repulsive forces: 𝑓𝑎(𝑑) =
𝑑2

𝑘
, and 𝑓𝑟(𝑑) = −

𝑘2

𝑑
 [1] where k is

the optimal distance between vertices and d is the current distance between

vertices. According to the paper, these particular equations help to overcome the

challenge of moving a vertex past another to overcome bad placement, which

would be difficult with linear equations.

An important factor of the Fruchterman-Reingold algorithm is the bounding

box, or ‘frame’ as it is referred to in the paper. We do not use this term in this

paper, as ‘frame’ has a very different meaning in the MUT with respect to the

Fixed-Frame type operation mode. In the Fruchterman-Reingold algorithm the

dimensions of the bounding box are input by the user, and the movement of

vertices is restricted within it. This is one factor that prevents the mesh from

expanding too greatly. Another factor is the so-called temperature of the mesh,

which decreases over time. Similar to temperature in physics, the temperature of

the mesh in the Fruchterman-Reingold algorithm determines the maximum

movement possible for a vertex during an iteration. Over time, the temperature

decreases, reducing the overall movement in each step in an attempt to reach

equilibrium.

2.4: Graph drawing

8

One of the simplest but most frustrating challenges in any graph drawing

approach is that the pursuit of some goals of aesthetics can harm the pursuit of

others. In [5], the example is given of the goals of uniform edge lengths and the

avoidance of edge crossings competing. In [1] as well as the MUT, strong

prioritization has been given to the minimization of edge crossings over other

criteria, as even when a graph has vastly different edge lengths, the mesh can still

be untangled based on the intersections of the edges. Other methods focus on the

minimization rather than the elimination of all edge crossings. For example, [6]

discusses the mechanics of drawing complete graphs such that certain subgraphs

have no edge crossings, or edge crossings for the graph as a whole are minimized.

[7] discusses a more generalized approach pertaining to minimizing edge

crossings in general graphs.

In [9] another method of graph drawing is proposed wherein the vertices are

all placed along a straight line and the edges are drawn as curved arcs between

them. This dispenses of the effort to equalize edge lengths in favor of fewer edge

crossing as well. As discussed before the curved edge model is not ideal for the

purposes of mesh untangling, at least with regard to a spring model untangling

paradigm. In addition, Fáry’s theorem [23] states that for any planar graph, there

exists an embedding in which all edges are drawn as straight line segments which

do not intersect. This is proved in [23]. Due to this it is possible to avoid the

significantly more difficult matter of handling curved line segments in the pursuit

of untangling.

Additionally, related to the theorem in [23], [24] proves that minimizing the

edge lengths of a convex planar drawing produces a unique convex polygon as

well. This is similar in certain ways to logic of [1] in that it attempts to normalize

9

edge lengths, in this case through minimization. The Fruchterman-Reingold

algorithm tends to benefit more from expansion to perform this. However,

according to [25] it is an NP-hard problem to construct a planar graph with only

straight line segments with a predetermined edge length[3]. According to [26]

any planar graph “can be drawn on a grid of quadratic size” [26] in linear time per

[27] and [28]. However, [26] deals largely with 1-planar graphs, which differ

from planar graphs in that each edge can cross at most one other edge[30]. While

this is intended to deal with a larger variety of graphs, with regards to the MUT

the focus is on planar graphs that can be completely untangled.

The influence of [10] on the development of the Fruchterman-Reingold

algorithm is clear, as it introduces the “spring embedder” concept discussed again

in [3]. In the MUT the spring model system is superior to earlier models such as

[11] which rely on symmetry, though both [1] and [10] also seek symmetry as a

byproduct of other processes. The reason in particular why symmetry is not ideal

in the MUT is that while a tangled mesh can certainly be symmetric, an untangled

mesh does not have to be. While symmetry is not unwelcome, it is not sufficient

for untangling.

Like the MUT, the approach discussed in [12] focuses on the minimization of

edge crossings over other criteria for readability. However, in this case like many

of the others, the focus is only on minimization rather than elimination.

According to [13], at the time of its 2011 writing the best complexity for solving

the problem of edge crossing minimization is O(n·poly(d)·log
3/2

n) where d is the

maximum degree of a node, poly(d) is a polynomial equation of d, and n is the

number of nodes in the graph. Technically speaking, if the graph can be drawn in

such a way that there are no edge crossings, such algorithms will produce a graph

10

without them, effectively untangling the mesh. However, not only are the

methods such as those discussed in [13] and others complicated mathematically,

the problem of edge crossing minimization is still considered an NP-hard problem

as per [3]. A review of the process of crossing number reduction in these works

and [16] as well as methods of graph planarization as in [17], [18], [19], and [20]

all suggest that a heuristic-based approach would yield the maximum efficiency.

Planarization is an interesting subject with regards to mesh untangling.

Determination of a planar embedding is the subject of many papers as mentioned

previously. While it is not a simple subject, there is research to suggest that

planar graphs can be embedded in linear time, as in [21] which builds off the work

done in [22] using PQ trees, a variety of permutation based tree. Many methods

for aesthetic graph drawing are based on the idea of drawing a planar graph in a

particular way.

These challenges could result in lengthy computation at best, and total

insolvability at worst. This is why many approaches such as those in [1] as well

as [14] and [15] rely on heuristics. In [14], which builds on the work of [15], the

approach taken involves the subject of simulated annealing. [14] treats graph

drawing as an optimization problem and incorporates a concept from physics

called annealing, in which changes to the system formed by the graph that result

in a lowering of the graph’s overall energy are more likely than ones that raise it

when changes are random. In some ways this is similar to [1] and to the MUT as

it treats the graph as a physical system with energy. In both cases the overall

energy of the graph is higher when the system is more tangled, and as the graph

approaches an untangled state the energy reaches lower values. However in [1]

11

and the MUT the changes made to the system are specifically those which reduce

the overall energy and there is no element of randomness.

Ultimately the Fruchterman-Reingold method in [1] was chosen as the basis

for the MUT for several reasons. The most obvious of these is the relative

simplicity of the algorithm, to say nothing of how closely the definition of

aesthetics presented in [1] aligns with the goals for mesh untangling.

Additionally, as the Fruchterman-Reingold algorithm is very general, it was easy

to expand upon and modify to meet the needs of a variety of different types of

meshes.

2.5: Related Work in Mesh Untangling

 The Fruchterman-Reingold algorithm is not the only method that can be used

to untangle meshes. According to [31], many methods for mesh untangling are

optimization-based, wherein the base untangling is performed with one

optimization problem, and then the result is smoothed in another optimization

problem. There are a number of methods that involve repositioning of vertices

based on the sets they should belong in.

 There are many different methods of mesh untangling, with varied

methodology and origin. In [32] the problem is also approached as an

optimization problem, in which the area of components of the graph is maximized.

According to the paper this can be solved in linear time, however while effective

for untangling this method tends to produce low quality meshes. The work in [33]

tries a different approach with the goal of improving the quality of the mesh and

untangling it concurrently. This is done by applying the smoothing optimization

to the tangled mesh in such a way that it will also untangle. Overall the paper

12

states that this reduces the number or iterations required to reach a certain quality

of mesh. The methods in [33] operate on tetrahedral meshes, which are

essentially three-dimensional triangular meshes, so it is possible that the same

methods would work on triangular meshes. More in line with the methods of [1]

is the work in [34], which utilizes a force-directed method for the smoothing of

meshes. The main difference between [34] and the MUT is that in [34] this

approach is solely used for smoothing and not untangling.

 Other physics-based methods such as the Fruchterman-Reingold algorithm of

[1] have been explored in other research. One example of this is the spring

embedder mentioned in [10]. However, as is the case [33], many such methods

are intended for mesh smoothing rather than untangling as a whole. In [31] the

concept of using the Fruchterman-Reingold algorithm as an untangling tool is

introduced, a subject which is expanded upon in this thesis.

13

3. Methods and Implementation: The MUT

The MUT is the tool I have developed to untangle meshes through graph

embedding. It has three modes of operation designed to handle different

untangling needs effectively. It draws upon the Fruchterman-Reingold algorithm

but also extends and modifies it in order to overcome some of the limitations of

the original method.

3.1: Fruchterman-Reingold Influence:

The Fruchterman-Reingold algorithm is important because one can map the

goals of the algorithm to the conditions of untangling a mesh. In particular, the

goals of equalizing edge length, minimizing edge crossings, and distributing

vertices evenly within the frame are beneficial to the task of mesh untangling.

The MUT relies upon the Fruchterman-Reingold algorithm or modified variants of

it to perform the untangling. However, there are some notable differences.

While in the original Fruchterman-Reingold algorithm, the concept of

temperature is used to limit the spread of the vertices of the mesh, in the MUT,

this is not employed. This is because it was found through experimentation that

the algorithm performs satisfactorily without this limitation. Additionally, there

are several advances intended for ease of use present in the MUT that do not exist

M U T

mesh untangling tool

14

in the algorithm presented in Fruchterman and Reingold. The MUT automatically

processes mesh files of the VTK file format without requiring any conversion.

This is useful as the VTK format is a common and open source format for

computer graphics and modelling. The MUT does not currently accept other file

types. Additionally, the MUT generates data files containing the adjacency matrix

and vertex descriptions that can be used by a program such as MATLAB to graph

the untangled mesh.

The MUT has multiple operational modes intended to handle various cases of

meshes that may commonly be encountered or that are important to untangle.

This is another advancement over the Fruchterman-Reingold algorithm which is

designed only for a general case and does not deal well with many types of

meshes.

3.2: Challenges

3.2.1: Mesh rotation and deformation

One of the issues encountered in the early versions of the MUT was the

concept of mesh rotation and deformation using the standard Fruchterman-

Reingold algorithm on certain types of meshes. In applications where the

original shape and rotation of the mesh are significant, the Fruchterman-

Reingold algorithm struggles to produce acceptable results. This issue is most

pronounced in meshes with square frames comprised of multiple edges per

side. Due to the nature of the attractive forces, these sides easily became bent

inwards away from the corners of the original frame, producing convex sides

instead of flat ones. This has the effect of pulling the vertices away from the

15

four corners of the bounding box. Because for a variety of meshes, these four

points serves to anchor the mesh, this can be a problem.

In addition, due to the non-fixed nature of mesh frames in certain

untangling attempts, the resulting untangled mesh could become rotated as a

result of the Fruchterman-Reingold process. Again, this can cause some

issues in situations where the position of the mesh in relation to other surfaces

is significant. It is generally impossible or at least prohibitively difficult and

time consuming to determine the degree of rotation a mesh will undergo in the

untangling process mathematically, and the amount of rotation can vary from

mesh to mesh. As a result it is not sufficient to simply rotate the mesh by a set

amount. This also does nothing to flatten sides that have become convex.

This challenge led to the rise of the Corners-Attract mode. It removes the

deformation issue by essentially stretching the corner vertices into the corners

and allowing the rest of the graph to adjust to this. Because the Fruchterman-

Reingold algorithm seeks to equalize edge lengths, this also has the effect of

fixing the rotation issue. When the graph is rotated, fixing the corner vertices

causes some edges to become longer as the vertex is pulled away, while other

edges become shorter as the vertex moves relatively closer to them. In order

to amend this while maintaining these vertices in the corners, the entire graph

is forced to shift.

3.2.2: Irregular Frames

Arguably the most significant and influential problem faced in the

development of the MUT was how to untangle a mesh with an irregularly

shaped boundary in such a way that the boundary is preserved. The defining

example of this is the mesh in the shape of the state of Texas, which can be

16

seen in section 4.1.4. While the Fruchterman-Reingold algorithm is effective

on meshes with convex boundaries, it is difficult to adapt to graphs with

concave sides and internal holes. Some research has been done in [8] on the

subject of convex graphs, but this is of little benefit in the subject of mesh

untangling because [8] provides little more than a formal definition, and it

certainly does not suggest a way to convert a concave structure into a convex

one. Even more pressing is the fact that is generally not advantageous to

distort the frame of a mesh during untangling as frame vertex positions should

be preserved. Naturally, concave and irregularly framed meshes are rather

common, and it is therefore quite important to be able to untangle these

despite the challenges they present.

The most defining issue with irregular frames is that it is very difficult to

maintain the shape of the frame through the untangling process while still

utilizing the Fruchterman-Reingold algorithm. While it is possible to convert

most tangled meshes into amorphous untangled cloud-like shapes, this is not

desirable in many cases. If the frame of the mesh is distorted when it becomes

tangled, without knowledge of the original positions of the mesh vertices, it is

nearly impossible to regain the original shape of the mesh. However, if only

the internal vertices are displaced when the mesh becomes tangled,

opportunities arise.

Another issue stemming from irregular frames is that vertices internal to

the frame may become displaced to the outside of the frame, particularly when

concave sides are involved. These vertices need to somehow be moved across

the frame of the mesh in order to untangle it. Several strategies were tested for

this.

17

First, an attempt was made to simply place every non-frame vertex into the

same location internal to the frame. This approach was problematic in a

number of ways. In the very first tests, it was determined that the

Fruchterman-Reingold algorithm was not equipped to handle the event that

two vertices were located in precisely the same location. This resulted in

division-by-zero errors in the calculation of attractive and repulsive forces.

This minor obstacle was mitigated in the MUT by modifying the algorithm to

treat vertices located at the same coordinates as slightly apart, resulting in a

powerful repulsive force. However, this was not sufficient to make this

method totally reliable, sometimes leading to oddly tangled components or

similar bugs.

The second attempt to resolve the issue of irregular frames followed a

similar line of thinking to the first, this time only placing the external vertices

to an internal location in the frame. This required more complex calculations

to determine which vertices were external to the frame. To be more specific,

for every edge, calculations had to be performed against every frame edge to

determine if they intersected. Not only was this computationally expensive, it

was little more effective than the previous method.

The third method to resolve the problem of untangling irregular frames at

first met with many obstacles. Conceptually, it was simple. Rather than

attempt to untangle the entire mesh at one time, the mesh could be untangled

starting from the vertices adjacent to the frame based only on the frame

vertices. Due to the stability of the frame structure, it should be possible to

move the vertices of just the first layer approximately into their final positions.

However, through a series of tests using different levels of attraction and

18

repulsion as well as varying repetitions for each stage, the results were not as

expected.

It was at this point that several issues were discovered. Due to the fact that

the MUT was based on the Fruchterman-Reingold algorithm, it possessed

several vestigial elements from the original algorithm. Initially, the MUT

contained the cooling code possessed by the original, as well as the logic used

to prevent vertices from leaving the square bounding box used in the base

algorithm. Both of these factors actually negatively impacted the performance

of the MUT, especially as the nature of the code changed, and these vestigial

sections of logic began to actively interfere with the output. Fortunately, once

these were removed, the Fixed-Frame mode was produced which is adept at

untangling meshes with irregular boundaries.

3.3: MUT Operation Modes

The MUT has three distinct modes of operation designed to best deal with a

variety of different types of meshes. The modes of the MUT are the General

mode, the Fixed-Frame mode, and the Corners-Attract mode. The most generally

useful mode is Fixed-Frame, with the limitation that the static vertices have to

defined as such within the VTK file. Additionally, both the General and the

Corners-Attract modes require more room to expand due to their nature. This

means that while they may be sufficient for an isolated mesh, the output of these

modes may need to be scaled down to fit the original space they took up.

Essentially, the various modes of operation of the MUT provide multiple

methods for untangling any given mesh. If the General mode utilizing the

Fruchterman-Reingold method is not sufficient and there is present a fixed frame,

19

one can employ the method of the stage-based untangling presented by the Fixed-

Frame mode. In the absence of a fixed frame or presence of a defined square

bounding box, the methodology of the Corners-Attract mode provides another

possible method of untangling the mesh.

3.3.1: General mode

The General mode of operation is the most basic function of the MUT, and

is mostly closely related to the Fruchterman-Reingold algorithm as presented

by the authors. The only major difference, as mentioned before, is that the

MUT does not employ the concept of temperature, and instead limits the

spread of the graph by applying a greater level of internodal attraction. The

result of running the MUT in the General mode is usually a more dispersed

graph with a roughly circular shape as the structure of the graph allows and

relatively evenly distributed vertices. Due to the lack of other restrictions, the

mesh spreads out and edge lengths become as close to equal as possible.

The General mode has difficulty untangling meshes with highly unusual

shapes. In particular it struggles to produce reasonable untangled solutions for

meshes with concave sides and internal holes. It does well with meshes that

have a generally vacuous shape or for meshes for which untangling is more

important than form; that is to say that is acceptable for the untangled mesh to

not resemble the original mesh at all.

3.3.2: Fixed-Frame mode

The arguably most useful mode of MUT operation is the Fixed-Frame

mode. It is the most advanced form of mesh untangling implemented in the

MUT, and uses a version of the Fruchterman-Reingold algorithm that operates

in stages. In the VTK file for a fixed-frame mesh, the vertices that comprise a

20

static, immobile frame are specified. The code takes the set of vertices

directly adjacent to the frame vertices as the first set of adjacent vertices. The

Fruchterman-Reingold algorithm is executed as normal over the set of all

vertices, but only the adjacent vertices are permitted to move at the movement

step.

After a fixed number of iterations, the neighboring vertices to the current

set are selected as the next set of adjacent vertices, and the current set of

adjacent vertices is added to the set of processed vertices. During the move

step, the set of processed vertices are allowed to move, but at a greatly reduced

rate to avoid the impairment of properly untangled vertices while still allowing

for improvement. The process repeats several times, after which the

remaining vertices are all considered to be the next set of adjacent vertices and

are untangled as described above.

The major weakness of the Fixed-Frame mode of operation is that the

frame vertices must be specified in the VTK, and not all meshes may be

compatible as a result. However, the performance of the Fixed-Frame mode

generally far outweighs this limitation. As will be demonstrated in the

experimental results, the Fixed Frame mode accurately untangles meshes of

very unusual shapes, including meshes with concave sides, internal holes, and

others.

3.3.3: Corners-Attract mode

The third and final operational mode of the MUT is the Corners-Attract

mode. It is a highly specialized mode to deal with a particular special case of

tangled mesh. In the event that a mesh is not of the Fixed-Frame variety, but

the mesh fits in a rectangular frame such that there is a vertex in each of the

21

corners, a slightly modified application of the standard Fruchterman-Reingold

algorithm can produce satisfactory results. The Corners-Attract mode operates

identically to the General mode for a given number of iterations to produce an

initial untangling. However, due to the untangling process this variety of

square mesh is often twisted or rotated from the original, in addition to

deforming from the overall square shape. To compensate for this, the

Corners-Attract mode heuristically determines the proper vertices to affix to

the corners and forcibly moves them there. The Fruchterman-Reingold

algorithm is repeated on the mesh for a number of iterations with the corner

vertices in the corners, causing the mesh to conform to the rectangular frame.

The main weakness of the Corners-Attract mode is that it applies only to

specific cases of meshes. However, it can be used for general case meshes if

the user desires the output mesh be square. The advantage of the Corners-

Attract mode is primarily its ability to untangle rectangular meshes in the

absence of a fixed frame.

3.4: Psuedocode

Below is the final version of the psuedocode of the algorithm developed. The

implementation of the final algorithm in the Java programming language can be

found in appendix (A).

Given:

-G(V,E) is the input graph

-xmax/xmin and ymax/ymin describe the location of the frame’s corners in a

Corners-Attract style mesh and are also used to determine the value of k

-An edge E is an ordered pair of vertices v and u

22

-F is the list of fixed frame vertices in a Fixed-Frame type mesh

-A is the list of adjacent vertices in a Fixed-Frame type mesh

-P is the list of proximal vertices in a Fixed-Frame type mesh

𝑤𝑖𝑑𝑡ℎ ∶= 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

ℎ𝑒𝑖𝑔ℎ𝑡 ∶= 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

𝑎𝑟𝑒𝑎 ∶= 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

𝑘 ∶= √
𝑎𝑟𝑒𝑎

|𝑉|⁄

for 𝑖 from 1 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 begin

 { repulsive forces }

 for 𝑣 in 𝑉 begin

 𝑣. 𝑑𝑖𝑠𝑝 ∶= 0

 for 𝑢 in 𝑉 begin

 if 𝑢 ≠ 𝑣

 ∆ ∶= 𝑣. 𝑝𝑜𝑠 − 𝑢. 𝑝𝑜𝑠

 if |∆| == 0

 { treat vertices with same position as slightly apart }

 |∆| ∶=. 001

 𝑣. 𝑑𝑖𝑠𝑝 += (∆
|∆|⁄) × (𝑘2

|∆|⁄)

 end

 end

 { attractive forces }

 for 𝑒 in 𝐸 begin

 ∆ ∶= 𝑒. 𝑣. 𝑝𝑜𝑠 − 𝑒. 𝑢. 𝑝𝑜𝑠

 if |∆| == 0

 { treat vertices with same position as slightly apart }

 |∆| ∶=. 001

 𝑣. 𝑑𝑖𝑠𝑝 += (∆
|∆|⁄) × (

|∆|2

𝑘
⁄)

23

 𝑢. 𝑑𝑖𝑠𝑝 −= (∆
|∆|⁄) × (

|∆|2

𝑘
⁄)

 end

 { move vertices }

 for 𝑣 in 𝑉 begin

 𝑑 ∶= |𝑣. 𝑑𝑖𝑠𝑝|

{ for Fixed-Frame type mesh, reduce movement for processed vertices }

 if 𝑡𝑦𝑝𝑒 == 𝐹𝑖𝑥𝑒𝑑-𝐹𝑟𝑎𝑚𝑒 and 𝑣 ∈ 𝑃

 𝑑 ∶= 𝑑 × 10

 { for Fixed-Frame type mesh, don't move vertex if not frame or adjacent}

 if 𝑡𝑦𝑝𝑒 ≠ 𝐹𝑖𝑥𝑒𝑑-𝐹𝑟𝑎𝑚𝑒 or (¬𝑣 ∈ 𝐹 and 𝑣 ∈ 𝐴)

 𝑣. 𝑝𝑜𝑠 += (
𝑣. 𝑑𝑖𝑠𝑝

𝑑
⁄)

 End

3.5: Mathematic Quantification of Untangling

The concept of mesh untangling is obviously very important to this thesis, but

the mathematically definition of an untangled mesh has not been discussed. It is

relatively simple to assess the status of a mesh visually, as it can be determined

whether there are edge crossings and deformation by viewing the plot the mesh is

Cartesian space. However, this is not always an option, and in the case of an

active system it may be necessary to be able to determine if a mesh is untangled

mathematically.

 Fortunately, it is possible to determine mathematically if a mesh is untangled,

and even the degree of untangling of the mesh is based on several factors. The

most basic metric for mesh quality is inversion of components. In a triangular

mesh, a triangular component is said to be inverted if the volume of the

24

component is negative. If a mesh contains inverted components, then it can be

said to be tangled.

 The case of polygonal meshes is essentially the same. For quadrilateral

meshes, if any of the quadrilaterals are inverted then the mesh is considered to be

tangled. This is done slightly differently, however. There are four triangles that

can be formed out of the vertices for a quadrilateral, and each one is checked for

inversion in the same way the components of triangular mesh are. If any of these

triangles are inverted, it can be determined that the quad itself is inverted.

 The case of hybrid meshes with components of multiple varieties is very

straightforward. Put simply, the test appropriate to that component is run for each

component to determine if it is inverted, and thus if the mesh is tangled. It is also

possible to determine the approximate level of tangling by comparing the number

of tangled components to the overall number of components in the mesh.

25

4. Experimental Results

The following consists of examples of the results of running the MUT on various

types of meshes. All operational modes are demonstrated to illustrate the

effectiveness of the various modes on disparate mesh types. The quantification of

how tangled various results are based on the concepts in section 3.5 is presented along

with the graphs in the form of the graph’s tangling number which represents the

number of components that are inverted. The initial tangling number of the tangled

graph before it is processed will be given, but the tangling number for an untangled

graph will be omitted as it is always 0.

4.1: Triangular Meshes

 The most basic mesh structure is that of the triangular mesh. The components

of a triangular mesh are all triangles, which are stable structures from a geometric

perspective. The MUT has very good success with the untangling of triangular

meshes, several examples of which will be shown below.

4.1.1: Example Mesh 1

A relatively humble and simple mesh, Example Mesh 1 was the first mesh

that the MUT was tested on in the prototype stages. Tangled, it is shown in

Figure 1. The tangling number is 0, because while this mesh is certainly

distorted it is not genuinely tangled. The purpose of this mesh was to test the

functionality of the Fruchterman-Reingold algorithm on simple meshes.

26

(Figure 1: Example Mesh 1 – Tangled)

It does not have a fixed frame, so that mode of operation produces no

results. Additionally, the result of running the Corners-Attract mode on this

mesh has been omitted. Example Mesh 1 is a good example of the type of

mesh that the base Fruchterman-Reingold algorithm performs well on. Figure

2 shows the mesh untangled with the General mode of operation.

27

(Figure 2: Example Mesh 1 – General)

28

4.1.2: Square Mesh with Square Hole

This mesh is another simple triangular mesh. It has both a square frame

when untangled and an internal hole, also in the shape of a square. Tangled, it

is shown in Figure 3. It has a tangling number of 16.

(Figure 3: Square Mesh with Square Hole – Tangled)

The General operation mode meets with near success for this mesh. In

order to allow enough room for expansion, the bounding box given to the

mesh was 1000 by 1000 units. Despite this large space, the attractive forces

between vertices restrain the expansion of the mesh as seen in Figure 4 below.

Unfortunately, there is some tangling still present in the lower right hand

corner of the mesh. The tangling number is 3.

29

(Figure 4: Square Mesh with Square Hole – General)

The Corners-Attract mode functions admirably for this mesh. With the

parameters properly assigned, the MUT correctly identifies the four corner

vertices and untangles the graph as shown in Figure 5.

30

(Figure 5: Square Mesh with Square Hole – Corners-Attract)

While this does not completely overcome the distortion produced by

tangling, it effectively untangles the mesh and most significantly preserves the

four corners of the original mesh. As there are no frame vertices specified in

the file, the Fixed-Frame mode cannot process this mesh.

31

4.1.3: Disk

The Disk mesh is slightly more complicated of a mesh than those viewed

previously. Untangled, it consists of a “disk” formed by a large outer polygon

with the rest of the vertices within this frame. This mesh is the first example

of a mesh with a fixed frame that we will discuss. While still tangled, it is

shown in Figure 6. It has a tangling number of 15

(Figure 6: Disk – Tangled)

The General mode of operation comes quite close to a proper untangling,

as shown in Figure 7 below. However, there is still tangling present in the

bottom-right section of the graph. As there is one inverted component, the

tangling number is 1.

32

(Figure 7: Disk – General)

The Corners-Attract mode falls short for the Disk mesh due to

misidentification of the corner vertices, which is understandable considering

the mesh had none to begin with. This leads to a mesh that is still tangled as

in Figure 8. The tangling number for this graph is 2.

33

(Figure 8: Disk – Corners-Attract)

As mentioned prior, the Disk mesh has a frame that is fixed and identified

within the original file. These vertices are not moved during the tangling

process and can be used to anchor the rest of the untangling effort when using

the Fixed-Frame mode. This mode is successful in untangling the mesh as

shown in Figure 9.

34

(Figure 9: Disk – Fixed-Frame)

35

4.1.4: Texas

The Texas mesh was the inspiring example for the MUT. When the

problem was proposed, it was in the following terms: “How would you

untangle a mesh with an irregular border, for example, the state of Texas?”

This mesh inspired the creation of the Fixed-Frame mode, and not surprisingly

only shows results under that treatment. As the shape of the mesh is of

paramount importance, only the tangled mesh and the untangled mesh using

the Fixed-Frame mode are presented. The tangled mesh is as shown below in

Figure 10. The tangling number of the tangled mesh is 46.

(Figure 10: Texas – Tangled)

The successfully untangled mesh using the Fixed-Frame mode is shown

below in Figure 11.

36

(Figure 11: Texas – Fixed-Frame)

37

4.2: Quadrilateral Meshes

More complicated than triangular meshes are quadrilateral or quad meshes.

Fundamentally they are very similar to triangular meshes, but with quadrilateral

components. This makes them somewhat more complicated to untangle because

the triangle is a very geometrically stable structure, and the quadrilateral is much

less so.

4.2.1: Eye of the Tiger Quad

The so-called Eye of the Tiger Quad mesh gets its name from its original

shape, consisting of a spiral of quads with a rhomboid hole in the center. The

tangled version of this mesh is shown in Figure 12 below. The tangling

number is 19.

(Figure 12: Eye of the Tiger Quad – Tangled)

38

The General mode struggles greatly with quad meshes. The output of the

General mode on this mesh is still very tangled as shown in Figure 13. The

tangling number is 6.

(Figure 13: Eye of the Tiger Quad – General)

The Corners-Attract mode works surprisingly well with the Eye of the

Tiger Quad mesh despite the fact that the original shape is not a square.

However, the correct corner vertices were identified by the MUT, and the

output is shown in Figure 14.

39

(Figure 14: Eye of the Tiger Quad – Corners-Attract)

The Fixed-Frame mode is also effective at untangling the mesh, and

preserves more of the original shape as shown in Figure 15.

40

(Figure 15: Eye of the Tiger Quad – Fixed-Frame)

From an aesthetic standpoint it is difficult to determine which of the two

successful untangled meshes is preferable. However, in a practical application

the Fixed-Frame mode would likely be superior as it has preserved the original

frame of the mesh.

41

4.2.2: Annulus Quad

The Annulus mesh consists of a rhomboid hole in the center of a polygonal

mesh. In the original mesh, the square hole is very large compared to the size

of the mesh. The tangled mesh is shown below in Figure 16. It has a tangling

number of 12.

(Figure 16: Annulus Quad – Tangled)

The General mode comes surprisingly close to untangling this mesh but

there are still several areas of tangling as shown in Figure 17. The tangling

number is 4.

42

(Figure 17: Annulus Quad – General)

Much like the Eye of the Tiger Quad mesh, the Annulus Quad mesh also

responds relatively well to the Corners-Attract mode, untangling though it

loses its shape as in Figure 18.

43

(Figure 18: Annulus Quad – Corners-Attract)

Perhaps the most surprising thing about the Annulus Quad mesh is its

inability to be untangled with the Fixed-Frame mode. Despite trying many

different values to increase and decrease the force of attraction between

vertices, it was not possible to determine how to untangle the mesh with this

mode in a reasonable amount of time, making it of little use in an active

simulation. One such attempt is shown below in Figure 19. The tangling

number for this graph is 4, proving that it is no more effective than the General

mode.

44

(Figure 19: Annulus Quad – Fixed-Frame)

It is likely that the issues the MUT has in untangling this mesh stem from

the relative size of the internal hole compared to the size of the mesh as a

whole. Since the Fruchterman-Reingold algorithm attempts to approximately

equalize edge lengths, the very long, fixed edges of the internal hole make the

algorithm fail. Since the edge lengths are not fixed in the Corners-Attract

mode, and the mesh is stretched a great deal, this is not a problem. However,

as discussed before, the output of the Corners-Attract mode may not be very

useful given that the original shape is lost.

45

4.3: Hybrid Meshes

 Hybrid Meshes consist of components of multiple varieties. Here we will

examine a hybrid mesh consisting of quads and triangles.

4.3.1: Eye of the Tiger Hybrid

The Eye of the Tiger Hybrid mesh is a simple conversion of the quad

version created by converting some of the quads to triangles by connecting a

pair of diagonal vertices. The tangled version of the mesh is shown in Figure

20 below.

(Figure 20: Eye of the Tiger Hybrid – Tangled)

The General mode produces very similar results to the quad version and

will not be shown. Surprisingly, the Corners-Attract mode manages to

untangle the mesh, if rather unattractively as in Figure 21.

46

(Figure 21: Eye of the Tiger Hybrid – Corners-Attract)

The Fixed-Frame mode produces more desirable results as shown in

Figure 22.

47

(Figure 22: Eye of the Tiger Hybrid – Fixed-Frame)

Like the other meshes for which both Corners-Attract and Fixed-Frame

modes produce untangled results, it is likely that the latter will be more

valuable as it more accurately matches the shape of the original mesh.

48

5. Conclusions

5.1: Summary

 Overall, the MUT (Mesh Untangling Tool) and the methodologies applied in it

are very successful at untangling meshes. Utilizing three different operating

paradigms, the MUT was able to untangle many complicated meshes that were

previously impossible to untangle through a graph embedding approach. It is

capable of preserving complex frames with concave elements and internal holes as

well as meshes without frames that conform to a rectangular bounding box. The

untangling is performed with a high degree of accuracy and some constants can be

modified on a graph by graph basis in order to adapt to special cases.

 One of the major weaknesses of the MUT is that it cannot presently process

graphs in three-dimensional space. Additionally, some cases require large

changes to constants or are impossible to accurately untangle using the MUT.

These include cases where an internal hole is very large, such as the Annulus

Quad mesh. Because the Fruchterman-Reingold algorithm strives to make edge

lengths uniform, having a component that is much larger than the others reduces

the effectiveness of the method.

5.2: Future Work

 The most immediately obvious area of expansion for the MUT and graph

embedding-based mesh untangling paradigm is to move into the three-

dimensional space. In real-world applications many meshes will be three-

dimensional in nature, which limits the usefulness of a solely two-dimensional

untangling tool. Theoretically speaking, it should be straightforward to take three

dimensions into account. The principles of making edge lengths as uniform as

49

possible and avoiding edge crossing are both applicable to three-dimensional

space as well as two-dimensional.

 Another area to explore would be a better method of handling extreme

meshes, such as the aforementioned Annulus Quad mesh that are currently

difficult to handle with the MUT. Introducing a new mode of operation to deal

with meshes that have components of unusually large size compared to the other

components of the mesh could potentially alleviate this problem. More work has

to be done to determine what should be done differently in the algorithm to handle

such cases. Lastly, I have not researched the efficiency of the MUT compared to

other mesh untangling methods as that is outside the scope of this project. Such

research would be essential in order to advocate the use of the methods used in the

MUT over other contemporary methods for mesh untangling.

 Possibly the most beneficial area of expansion for the MUT would be to

produce an attractive and easy to use user interface for the tool. Currently, the

program is run from the command line on the mesh files, and the output of the

MUT is used by a program such as MATLAB to produce graphs. For a lone

researcher, this is acceptable; however one way the tool would be more useful

would be if it were easily usable by someone with less programming experience,

and less familiarity with the nuances of the code, though the MUT is not currently

available online. Nonetheless a short description of how to run the code is given

below:

1. Run the MUT from the command line: “./MUT”

2. Provide the file path to VTK file to untangle: “../VTK_files/disk_tangled.vtk”

3. Respond to prompt for the operation mode (all modes take the same

parameters)

50

4. Respond to prompts for bounding box corner coordinates (in the case of fixed

frame, minimize bounding box to be no larger than the frame requires)

5. Respond to prompt for attraction factor (1 for standard attraction)

A user interface where the VTK file could be uploaded and all options set up and

edited at once would be highly useful. A mock-up of what this could possibly

look like is shown in Figure 23 below. The untangled graph in VTK format a

picture of it could be returned to the user.

 (Figure 23: MUT User Interface Mock-Up)

In line with the idea of a user interface, an even more audacious area of future

expansion also comes to mind. The MUT along with many other algorithms and

methods of mesh untangling operate independently of user input, at least after initial

information. They run as they are programmed to and produce output that hopeful

will be untangled. One way to expand the MUT would be to allow users to interact

with the untangling process. There are two main ways I imagine this may be useful.

51

First, in the Corners-Attract mode, sometimes the algorithm determines the wrong

vertices to be the corner vertices if the mesh is not sufficiently untangled at the point

this is determined. It would be very useful if at that point the user were able to audit

the code’s selections to correct them. The other place where interaction between the

user and the MUT may be useful would be in the Fixed-Frame mode.

In the case of the Fixed-Frame mode, the most logical time for user interaction

would likely be in between stages. At that point, the user could make several

modifications to the output. First, I think it would be useful for the user to be able to

freeze certain vertices as if they were frame vertices at will. This could improve the

quality of the untangling by ensuring key non-frame vertices were in the ideal

position. Additionally, it may be useful to allow the user to move vertices in order to

help overcome very bad placements which the code is unsuccessful at fixing. This

could also improve the quality of the output and allow the MUT to successfully

untangle meshes it could not before, such as the Annulus quad mesh using the Fixed-

Frame mode.

To do this, several things would have to be done. First, it would be necessary to

be able to display an image of the mesh in real time. It would also be necessary to

map this image of the graph to the data in such a way that the user could modify the

mesh through this interaction. Allowing user interaction in the untangling process in

this way could provide significant improvements in function for the MUT over the

success it has already seen.

52

References:

[1] Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph Drawing by Force-

Directed Placement. Software: Practice and Experience, 21(11).

[2] G. Agnarsson and R. Greenlaw, Graph theory: Modeling, applications, and

algorithms, Graph Theory: Modeling, Applications, and Algorithms, Pearson/Prentice

Hall, 2007

[3] G. Di Battista , P. Eades , R. Tamassia , I. Tollis, “Algorithms for drawing graphs:

an annotated bibliography,” Computational Geometry: Theory and Applications, v.4

n.5, p.235-282, 1994.

[4] T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected

Graphs," Information Processing Letters, vol. 31, pp. 7-15, 1989.

[5] D. Tunkelang, “A Practical Approach to Drawing Undirected Graphs," M.S.

Thesis, School of Computer Science, Carnegie Mellon, 1994.

[6] H. Harborth and I. Mengersen, “Edges Without Crossings in Drawings of

Complete Graphs," J. Combinatorial Theory (B), vol. 17, no. 3, pp. 229-311, 1974.

[7] D. Ferrari and L. Mezzalira, “On Drawing a Graph with the Minimum Number of

Crossings," Technical Report n. 69-11, Istituto di Elettrotecnica ed Elettronica,

Politecnico di Milano, 1969.

[8] S.K. Stein, “Convex Maps," Proc. Amer. Math. Soc., vol. 2, pp. 464-466, 1951.

[9] T. Ozawa, “Planarity Testing for IC Layout with Constraints for Pin Order and

Congestion Between Pins," IEEE Conf. Record of the 14th Asilomar Conf. on

Circuits, Systems Computers, pp. 188-192, 1980.

[10] P. Eades, “A Heuristic for Graph Drawing," Congressus Numerantium, vol. 42,

pp. 149-160, 1984.

[11] R. Lipton, S. North, and J. Sandberg, “A Method for Drawing Graphs," Proc.

ACM Symp. on Computational Geometry, pp. 153-160, 1985.

[12] A. Yamaguchi, and H. Toh, “Visualization of Genetic Networks: Edge Crossing

Minimization of a Graph Drawing with Vertex Pairs," Genome Informatics 11, pp.

245–246, 2000.

[13] Julia Chuzhoy, “An Algorithm for the Graph Crossing Number Problem,” Proc.

ACM Symp. on Theory of Computing, 2011.

[14] J. Brank, “Drawing graphs using simulated annealing and gradient descent,”

Department of Knowledge Technologies, Jozef Stefan Institute.

[15] R. Davidson, D. Harel, “Drawing graphs nicely using simulated annealing,”

ACM Transactions on Graphics, 15(4):301–331, 1996.

[16] R.K. Guy, “Crossing Numbers of Graphs," Graph Theory and Applications,

Lecture Notes in Mathematics, vol. 303, pp. 111-124, 1972.

[17] R. Jayakumar, K. Thulasiraman, and M.N.S. Swamy, “On Maximal Planarization

of Nonplanar Graphs," IEEE Trans. Circuits and Systems, vol. CAS-33, no. 8, 843-

854, 1986.

53

[18] R. Jayakumar, K. Thulasiraman, and M.N.S Swamy, “O(n
2
) Algorithms for

Graph Planarization," Technical Report CSD-88-01, Dept. Computer Science,

Concordia Univ., 1988.

[19] N. Chiba, I. Nishioka, and I. Shirakawa, “An Algorithm of Maximal

Planarization of Graphs," Proc. IEEE Int. Symp. on Circuits and Systems, pp. 649

652, 1979.

[20] M. Marek-Sadowska, “Planarization Algorithms for Integrated Circuits

Engineering," Proc. IEEE Int. Symp. on Circuits and Systems, pp. 919-923, 1978.

[21] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, “A Linear Algorithm for

Embedding Planar Graphs Using PQ-Trees," J. of Computer and System Sciences,

vol. 30, no. 1, pp. 54-76, 1985.

[22] K. Booth and G. Lueker, “Testing for the Consecutive Ones Property, Interval

Graphs, and Graph Planarity Using PQ-Tree Algorithms," J. of Computer and System

Sciences, vol. 13, pp. 335-379, 1976.

[23] F. István, “On straight-line representation of planar graphs”, Acta Sci. Math.

(Szeged), 11: 229–233

[24] B. Becker and G. Hotz, “On The Optimal Layout of Planar Graphs with Fixed

Boundary," SIAM J. Computing, vol. 16, no. 5, pp. 946-972, 1987.

[25] P. Eades and N. Wormald, “Fixed Edge Length Graph Drawing is NP- hard,"

Discrete Applied Mathematics, vol. 28, pp. 111-134, 1990.

[26] J. Alam, F. Brandenburg, and S. Kobourov, “Straight-Line Grid Drawings of 3-

Connected 1-Planar Graphs,” Graph Drawing. GD 2013. Lecture Notes in Computer

Science, vol 8242. Springer, Cham

[27] H. de Fraysseix, J. Pach, R. Pollack, “How to draw a planar graph on a grid,”

Combinatorica 10(1), 41–51 1990.

[28] W. Schnyder, “Embedding planar graphs on the grid,” Symposium on Discrete

Algorithms. pp. 138–148 1990.

[29] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, 1979.

[30] S. Hong, P. Eades, G. Liotta, S. Poon, “Fary's theorem for 1-planar graphs,”

Lecture Notes in Computer Science (LNCS), 7434, 335-346. 2012.

[31] S. Bhowmick and S. Shontz, “Towards High Quality, Untangled Meshes via a

Force-Directed Graph Embedding Approach,” Procedia Computer Science 2008.

[32] L. Freitag, P. Plassmann, “Local optimization-based untangling algorithms for

quadrilateral meshes,” Proc. of the Tenth International Meshing Roundtable, Sandia

National Laboratories, 2001

[33] J. Escobar, E. Rodriguez, R. Montenegro, G. Montero, J. Gonzalez-Yuste,

“Simultaneous untangling and smoothing of tetrahedral meshes,” Comput. Method.

Appl. M. 192 (2003) 2775–2787.

[34] H. Djidjev, “Force-directed methods for smoothing unstructured triangular and

tetrahedral meshes,” Proc. of the Ninth International Meshing Roundtable, Sandia

National Laboratories, 2000

54

APPENDIX

55

Appendix A: Source Code

import java.lang.Math;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.BufferedWriter;

import java.util.Scanner;

import java.lang.String;

import java.io.File;

public class Fruchterman-Reingold_algorithm_from_vtk_final

{

public static void main(String [] args)

{

 Scanner scan = new Scanner(System.in);

 System.out.print("Please enter the filepath to the input

file: ");

 String str = scan.next();

 System.out.print("Please enter the number of dimensions

specified in the file: ");

 int dimension = scan.nextInt();

 File f = new File(str);

 Scanner scan2;

 try

 {

 scan2 = new Scanner(f);

 }

 catch(Exception ex)

 {

 return;

 }

 String dummy = scan2.nextLine();

 dummy = scan2.nextLine();

 dummy = scan2.nextLine();

 dummy = scan2.nextLine();

 dummy = scan2.next();

 int numv = scan2.nextInt();

 dummy = scan2.next();

 double[][] verts = new double[numv][dimension];

 int[] degree = new int[numv];

 int[][] adj = new int[numv][numv];

 for(int i = 0; i < numv; i++)

 {

 for(int j = 0; j < dimension; j++)

 {

 verts[i][j] = scan2.nextDouble();

 }

 }

 dummy = scan2.next();

56

 int numc = scan2.nextInt();

 int nume2 = scan2.nextInt();

 int nume = 0;

 int numvc = nume2/numc;

 for(int i= 0; i < numc; i++)

 {

 int[] vs = new int[numvc];

 for(int j = 0; j < numvc; j++)

 {

 vs[j] = scan2.nextInt();

 }

 for(int j = 1; j < numvc - 1; j++)

 {

 if(adj[vs[j]][vs[j+1]] != 1)

 {

 adj[vs[j]][vs[j+1]] = 1;

 adj[vs[j+1]][vs[j]] = 1;

 nume++;

 }

 }

 if(adj[vs[numvc-1]][vs[1]] != 1)

 {

 adj[vs[numvc-1]][vs[1]] = 1;

 adj[vs[1]][vs[numvc-1]] = 1;

 nume++;

 }

 }

 int[][] edges = new int[nume][2];

 int ed = 0;

 //adj mat

 try

 {

 BufferedWriter bw = new BufferedWriter(new

FileWriter("adjmat.dat"));

 for(int i = 0; i < numv; i++)

 {

 for(int j = 0; j < numv; j++)

 {

 bw.write(adj[i][j] + " ");

 if(j > i)

 continue;

 if(adj[i][j] == 1)

 {

 edges[ed][0] = i;

 edges[ed][1] = j;

 ed++;

 }

 }

 bw.newLine();

 }

 bw.close();

 }

57

 catch(Exception e1)

 {

 System.out.println("Error in writing adjmat file");

 return;

 }

 dummy = scan2.next();

 int num = scan2.nextInt();

 for(int i = 0; i < num + 4; i++)

 {

 dummy = scan2.nextLine();

 }

 int[] frameverts = new int[numv];

 int[] adjverts = new int[numv];

 int[] procverts = new int[numv];

 for(int i = 0; i < numv; i++)

 {

 num = scan2.nextInt();

 if (num == 1)

 {

 frameverts[i] = 1;

 }

 else

 {

 frameverts[i] = 0;

 }

 }

 for (int e = 0; e < nume; e++)

 {

 degree[edges[e][0]]++;

 degree[edges[e][1]]++;

 if(frameverts[edges[e][0]] == 1 &&

frameverts[edges[e][1]] != 1)

 {

 adjverts[edges[e][1]] = 1;

 }

 else if(frameverts[edges[e][1]] == 1 &&

frameverts[edges[e][0]] != 1)

 {

 adjverts[edges[e][0]] = 1;

 }

 }

 System.out.print("Please enter the number of iterations:

");

 int iterations = scan.nextInt();

 double fxmin, fxmax, fymin, fymax; //frame boundaries

 System.out.print("Please enter the xmin value for the

frame: ");

 fxmin = scan.nextDouble();

58

 System.out.print("Please enter the xmax value for the

frame: ");

 fxmax = scan.nextDouble();

 System.out.print("Please enter the ymin value for the

frame: ");

 fymin = scan.nextDouble();

 System.out.print("Please enter the ymax value for the

frame: ");

 fymax = scan.nextDouble();

 System.out.println("Please enter the correct number for

the type of mesh you are processing:");

 System.out.println("0: Corners-attract style mesh");

 System.out.println("1: Fixed-frame style mesh");

 System.out.println("2: General case mesh");

 System.out.print("Please enter your selection: ");

 int choice = scan.nextInt();

 double width = fxmax-fxmin;

 double height = fymax-fymin;

 double area = width * height;

 double k = Math.sqrt(area/numv);

 double[][] vpos = new double[numv][2];

 for(int i = 0; i < numv; i++)

 {

 vpos[i][0] = verts[i][0];

 vpos[i][1] = verts[i][1];

 }

 double[][] vdisp = new double[numv][2];

 for (int i = 0; i < iterations; i++) //Main Fruchterman-

Reingold code

 {

 for (int v = 0; v<numv; v++) //repulsive forces

 {

 vdisp[v][0] = 0;

 vdisp[v][1] = 0;

 for (int u = 0; u<numv; u++) //loop

through every vertex

 {

 if(v == u) //vertex cannot repel itself

 continue;

 double[] delta = new double[2];

 delta[0] = vpos[v][0] - vpos[u][0];

 delta[1] = vpos[v][1] - vpos[u][1];

 if(delta[0] == 0) //act as if they

are very slightly apart if they are on the same spot

 delta[0] = .001;

 if(delta[1] == 0)

 delta[1] = .001;

59

 double magd = (Math.pow(delta[0],2) +

Math.pow(delta[1],2)); //distance between

 //magd *= 20; //reduce intensity for

this

 vdisp[v][0] +=

(Math.pow(k,2)/magd)*(delta[0]/magd);

 vdisp[v][1] +=

(Math.pow(k,2)/magd)*(delta[1]/magd);

 }

 }

 for(int e = 0; e<nume;e++) //attractive forces

 {

 int v = edges[e][0];

 int u = edges[e][1];

 double[] delta = new double[2];

 delta[0] = vpos[v][0] - vpos[u][0];

 delta[1] = vpos[v][1] - vpos[u][1];

 if(delta[0] == 0) //act as if they are

very slightly apart if they are on the same spot

 delta[0] = .001;

 if(delta[1] == 0)

 delta[1] = .001;

 double magd = (Math.pow(delta[0],2) +

Math.pow(delta[1],2));

 double mult1 = 1;

 double mult2 = 1;

 if(frameverts[u] != 1)

 mult1 = 1;

 if(frameverts[v] != 1)

 mult2 = 1;

 vdisp[v][0] -=

(Math.pow(magd,2)/k)*(delta[0]/magd)/mult1;

 vdisp[v][1] -=

(Math.pow(magd,2)/k)*(delta[1]/magd)/mult2;

 vdisp[u][0] +=

(Math.pow(magd,2)/k)*(delta[0]/magd);

 vdisp[u][1] +=

(Math.pow(magd,2)/k)*(delta[1]/magd);

 }

 //move vertices

 for (int v = 0; v<numv; v++)

 {

 //int adjverts =

 if(frameverts[v] == 1 || adjverts[v] != 1)

 {

60

 continue;

 }

 double magv =

Math.sqrt(Math.pow(vdisp[v][0],2) + Math.pow(vdisp[v][1],2));

 if(procverts[v] == 1 && choice == 1) //reduce

movement for vertices already processed.

 {

 magv *= 10;

 }

 vpos[v][0] += vdisp[v][0]/magv;

 vpos[v][1] += vdisp[v][1]/magv;

 }

 if(i % 1000 == 0)

 {

 for(int counter2 = 0; counter2 < numv;

counter2++)

 {

 //continue;

 if(adjverts[counter2] == 1)

 {

 //adjverts[counter2] = 0;

 procverts[counter2] = 1;

 }

 }

 for(int counter = 0; counter < nume;

counter++)

 {

 int v = edges[counter][0];

 int u = edges[counter][1];

 if((frameverts[v] == 1 || procverts[v] ==

1 || adjverts[v] == 1))

 {

 adjverts[u] = 1;

 }

 else if((frameverts[u] == 1 ||

procverts[u] == 1 || adjverts[u] == 1))

 {

 adjverts[edges[counter][0]] = 1;

 }

 }

 }

 }

 try

 {

 BufferedWriter bw3 = new BufferedWriter(new

FileWriter("verts.dat"));

 for(int v = 0; v<numv; v++)

 {

 bw3.write(vpos[v][0] + " " + vpos[v][1] + " " +

"0");

61

 bw3.newLine();

 }

 //bw.close();

 bw3.close();

 }

 catch(Exception ex)

 {

 return;

 }

}

}

	University of Nebraska at Omaha
	DigitalCommons@UNO
	5-2017

	Applications of Graph Embedding in Mesh Untangling
	Jake Quinn
	Recommended Citation

	tmp.1561652585.pdf.yHm37

