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Modular self-reconfigurable robots (MSRs) are composed of multiple robotic modules

which can change their connections with each other to take different shapes, commonly

known as configurations. Forming different configurations helps the MSR to accomplish

different types of tasks in different environments. In this dissertation, we study three

different problems in MSRs: partitioning of modules, configuration formation planning

and locomotion learning, and we propose algorithmic solutions to solve these problems.

Partitioning of modules is a decision-making problem for MSRs where each module

decides which partition or team of modules it should be in. To find the best set of

partitions is a NP-complete problem. We propose game theory based both centralized

and distributed solutions to solve this problem. Once the modules know which set

of modules they should team-up with, they self-aggregate to form a specific shaped

configuration, known as the configuration formation planning problem. Modules can be

either singletons or connected in smaller configurations from which they need to form the

target configuration. The configuration formation problem is difficult as multiple modules

may select the same location in the target configuration to move to which might result in

occlusion and consequently failure of the configuration formation process. On the other

hand, if the modules are already in connected configurations in the beginning, then it

would be beneficial to preserve those initial configurations for placing them into the target

configuration as disconnections and re-connections are costly operations. We propose



solutions based on an auction-like algorithm and (sub) graph-isomorphism technique to

solve the configuration formation problem.

Once the configuration is built, the MSR needs to move towards its goal location as

a whole configuration for completing its task. If the configuration’s shape and size is

not known a priori, then planning its locomotion is a difficult task as it needs to learn

the locomotion pattern in dynamic time – the problem is known as adaptive locomotion

learning. We have proposed reinforcement learning based fault-tolerant solutions for

locomotion learning by MSRs.
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Chapter 1

Introduction

Modular self-reconfigurable robots (MSRs) are composed of multiple homogeneous or

heterogeneous modules which can change their connections with each other to form

different configurations or shapes [90]. The main advantage of using MSRs is that

the modules can change the connections among themselves to form different shapes

and transition from one shape to another depending on the current environment and

the current task. This configuration adaptability affords a high degree of dexterity

and maneuverability to MSRs and makes them suitable for robotic applications such as

inspection of engineering structures like pipelines [40], extra-terrestrial surface exploration

[17], information collection [32], forming truss-like structures for support [100] etc.

An excellent overview of the state of the art MSRs and related techniques is given in

[100]. Based on architectural properties, modular robots can be divided into three main

categories [100]:

1. Chain: In this type of MSR architecture, modules are connected together in a two-

dimensional graph topology. This type of configuration can fold-up to become space

filling, but the underlying architecture is planar [100].

2. Lattice: This type of architectures have modules that are arranged and connected in

some regular, three-dimensional pattern, such as a simple cubic or hexagonal grid.
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Modules are controlled in a parallel fashion. This type of configurations have a

liquid-flow like locomotion pattern where each module behaves as a molecule of the

liquid [41, 1].

3. Hybrid: This type of architecture is a combination of both chain and lattice type.

Modules tend to form large connected network in hybrid configurations [100].

Figure 1.1: Three different types of MSRs: (left) Chain, (middle) Lattice, and (right)
Hybrid.

In the MSR literature, it has been seen that most of the work is done to solve the

self-reconfiguration problem in MSRs – Given a set of modules connected in a certain

configuration, search for a set of actions for each of the modules such that following the

actions they will transform into a new configuration (or, shape) while maximizing some

given objective function, as well as reducing the time and cost expended to identify and

achieve the new configuration [52]. When an MSR encounters an obstacle while moving,

or when its assigned task requires it to take a certain shape, it requires to dynamically

change or reconfigure from an existing configuration to a new configuration, so that it can

continue to perform its operations autonomously. As the space of possible action set for

modules is exponential in the number of modules involved, conventional search algorithms

are unsuitable to solve the reconfiguration planning problem within a reasonable amount

of computation time and space. The self-reconfiguration is known to be a NP-complete

problem [51]. We look at three other fundamental problems in MSRs which are discussed

as follows.
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1.1 Problems Studied

1.1.1 Partitioning of Modules

First, we address the partitioning problem in MSRs for configuration generation which can

be described as follows: how to identify the best partitioning of modules for forming any

configuration, while maximizing some pre-defined objective function. Finding the best

partitioning of modules for forming shapes or configurations is a non-trivial problem, as

the number of possible partitions is exponential with the number of modules involved.

Moreover, the computation becomes further complicated if we include uncertainty in the

mobility and connections of modules, which are practical considerations for any physical

modular robot operating in an unknown environment.

To address these challenges, we have proposed a search algorithm while using concepts

from cooperative game theory [69], called coalitions and coalition structures. A coalition

is a group of autonomous agents (modules in our scenario) which work together towards

achieving a common goal. From the MSR perspective, a coalition is a configuration formed

by a set of modules which are connected and can maneuver as a single entity. A coalition

structure corresponds to disjoint and exhaustive sets of coalitions (connected modules)

which represent all shapes or configurations formed by a set of MSRs. In this work, we

have modeled the best partition search problem as the best coalition structure generation

problem, as finding the best coalition structure will give us the best partition of modules,

i.e., the best set of possible teams or coalitions of modules.

1.1.2 Configuration Formation

Once the partitioning of modules is complete, i.e., each module has made a decision of

with which other modules it should form the configuration, it moves on to do that task

– configuration formation. This is a fundamental problem for modular robots and also

a pre-requisite of MSR self-reconfiguration and it can be defined as follows: given a set
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of modules as singletons and/or in connected configurations, how to form a user-specified

target configuration using all or some of the initial modules while optimizing some criterion

such as reducing the cost of movement and the number of connections and disconnections

among modules [32]. In a recent survey on MSRs [1], authors have reported that although

configuration formation is a very fundamental and difficult problem to solve in MSRs,

there has not been extensive work done on this particular topic. Most of the studies on

this topic are limited to the MSR platform on which the proposed approach has been

deployed - therefore in most of the cases, they cannot be generalized to all types of MSRs.

In our research, we try to overcome this limitation by proposing algorithms which can

be generalized to configuration formation using any type of MSR. Not only in modular

robotic systems, our work can also be easily extended for automated formation of pre-

defined shapes in industries such as furniture [72].

S1

S2

S3

S4

S5

Figure 1.2: Configuration formation problem in MSRs. Left: 5 modules are located at
arbitrary positions and have to achieve the target configuration (red dotted lines), Right:
Modules after achieving target configuration.

Configuration formation is a way to fulfill shape-formation function, in which modules

aggregate autonomously to a final shape or configuration. In the context of MSRs,

configuration formation enables modular robots to transform into any desired configuration.

For task completion using MSRs, configuration formation is a very important operation.

As a motivating example, we consider a scenario where a set of singleton modules are
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collecting information, e.g., temperature from an environment. To access a specific

region of the environment, e.g., an elevated region, they need to form a certain shape

(configuration) such as a legged configuration, which allows them to navigate the elevation.

To get into this new shape, all the singleton modules will plan their paths from their current

locations to appropriate positions in the target configuration to form the target legged

configuration.

1.1.3 Adaptive Locomotion Learning

After the target configuration is formed, the built configuration needs to move to different

locations to complete the tasks at hand, such as exploration or information collection.

If the size (number of modules) and the topology of the configuration are known,

then coordinated locomotion for all the member modules can be planned a priori in a

deterministic manner [85]. But the difficulty arises when the either the size or the shape,

or both, is unknown. In that case, determining the control sequences for locomotion is

impossible.

In [100], the authors have mentioned that developing algorithms for large-scale

manipulation and adaptive locomotion is one of the most difficult future challenges for

MSR researchers. To solve this problem, we propose two adaptive locomotion algorithms

which learn the best control sequence for all the modules in the configuration. Our

approaches look into this particular problem from a machine learning perspective [42].

Machine learning enables the modules in the configuration to learn the control sequences

which suits their task (locomotion in this case) the best. Particularly, in our research, we

investigate reinforcement learning algorithms for locomotion learning purposes [91]. In

layman terms, reinforcement learning can be best described as the following:

”Reinforcement learning is learning what to do—how to map situations to actions—so

as to maximize a numerical reward signal. The learner is not told which actions to take, as

in most forms of machine learning, but instead must discover which actions yield the most
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reward by trying them.” [91]

In our particular locomotion learning scenario, a ‘situation’ is modeled as the size

and the shape of the configuration and an ‘action’ is modeled as an available locomotion

action to each module. ‘Reward’ is modeled as the distance traveled by the configuration,

i.e., higher distance covered by the configuration earns higher reward and vice-versa

[19]. Modules discover (by learning) which actions (control sequences) earn them higher

rewards and they perform those actions repeatedly to earn more reward and consequently

accomplish locomotion (towards the goal).

1.2 ModRED MSR Platform

The ModRED (Modular Robot for Exploration and Discovery) is a homogeneous modular

robot system and has been developed as part of the NASA sponsored ModRED project

for efficient maneuvering over unstructured surfaces such as can be experienced during

planetary surface exploration [21]. In this section, we briefly discuss the characteristics

of the ModRED MSR. The robot system is characterized by dexterity of modules and a

distributed control architecture. The novel kinematic arrangement of the robot modules is

supported by a rotary plate genderless single-sided docking mechanism (RoGenSiD) [50].

It enables a module to detach itself from a faulty module which is essential for sustaining

the robot system’s functionality by means of self-healing.

Each of the ModRED modules has 4 DOF - 3 rotational and 1 prismatic. The module

has five distinct segments - two end brackets containing the docking interfaces and three

box-shaped segments housing the actuators, transmission, circuit components and power

source, as shown in Fig. 1.4. The module is capable of producing pitch, yaw, and roll

and one extension DOF. The four independent DOF are characterized by specific ranges to

meet the requirements for generating gaits [21] and reconfiguration. The docking brackets

have a rotation range of±90◦. Relative to the central box segment, one end segment has an
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Parameter   Description 
Processing   Arduino Fio (Atmel ATmega328P) 
Motor Driver   Easy Driver Stepper Motor Driver (8 step microstepping, 750 mA
   perphase current rating) 
Navigation and sensing  Infrared with a range of 4-30 cm, Bump switches for tactile
   sensing, 9-DOF Razor Inertial Measurement Unit (triple-axis
   gyro-ITG-3200, triple-axis accelerometer-ADXL345, and triple-
   axis magnetometer-HMC5843) 
Communication   XBee radio modems (Unobstructed range: 120m, transmission
   power: 1mW) 
Power source   3.7 V Lithium-polymer (Li-Po) battery packs 

Figure 1.3: ModRED Modules [7]

Solenoid 2 
(for dockining)

Motor 4 (Rotary)

Motor 3 (Pirsmatic)

Motor 2 (Rotary)

Motor 1 (Rotary)

Solenoid 1 
(for dockining)

4.5"

4.7"

15.5"
(max)

Figure 1.4: Different parts in a single module of ModRED [21]

infinite angle of twist whereas the other end box segment has a 0-1 inch (0-25mm) linear

range of displacement. To allow maximum dexterity, all 4 DOF are made independent, i.e.,

they have individual actuators. The motivation behind such a design was to keep the design

simple with minimal transmission mechanisms. This would result in enhanced robustness

by minimizing the parts count and thus minimizing the probability of failure for an overall

module. Stepper gear motors are used for the 3 rotational DOF whereas a stepper linear

actuator (lead-screw mechanism) is used for the prismatic DOF.

As an autonomous system, each of the ModRED modules is equipped with necessary

electronics to give them such autonomy, i.e., two ATmega328P microcontrollers,

rechargeable lithium-polymer battery packs, XBee modules to enable wireless

communication among modules, one inertial measurement unit (9-DOF Razor), an array
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Xbee 
Radio module

Arduino
Microcontroller

Connector
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Arduino
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FLC
Encoders

Controller

Electronics

Figure 1.5: Electronic Architecture of ModRED Modules

of infrared sensors for proximity sensing and bump sensors for tactile sensing, as shown in

Fig. 1.5. An accurate 3D model of ModRED has been created using the Webots platform

to simulate the execution of different gaits before implementation in the robot, as shown in

Fig. 1.6. Some of the algorithms described in this dissertation have been implemented

on different simulated ModRED configurations and some of the algorithms have been

implemented directly on the ModRED hardware. Although, our algorithms presented here

are not only restricted to ModRED modules, they can be used for any other chain-type

modular robotics platform.

Figure 1.6: Simulated ModRED Modules within Webots Robot Simulator
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1.3 Contributions

Our contributions can be summarized as follows:

• The partitioning problem has been formalized and modeled as a coalition structure

search problem. Both centralized and distributed solutions have been proposed to

solve this problem. To the best of our knowledge, we are the first one to solve this

problem as a coalition structure search problem.

• There has been a very little work done for solving the configuration formation

problem in MSRs [1] and most of the proposed approaches are difficult to generalize

to all types of MSR platforms. In our research, we generalize this by solving the

problem using both centralized and distributed planning approaches.

• A novel problem of simultaneous configuration formation and information collection

has been addressed and solved.

• Solutions have been proposed for the configuration formation problem when modules

are initially part of any arbitrary-shaped configurations. To the best of our

knowledge, the configuration formation problem has not been solved for the case

when initially modules can be connected in some arbitrary configurations and they

need to be placed in the target configuration with as low number of disconnections

in their initial configurations as possible. We have solved this problem in a

distributed manner using concepts like (sub)graph isomorphism and maximum

common subgraph detection. Although, (sub)graph isomorphism and maximum

common subgraph detection have been used in the literature [51, 70] for MSR self-

reconfiguration to detect the maximum portion in the initial configuration which does

not need to be reconfigured to transform into the goal configuration, but they have

not been used for MSR configuration formation.

• A reinforcement learning based solution has been proposed for an MSR’s locomotion
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leaning where the correlation among the neighboring modules’ actions have been

taken into account to learn from for better coordination. To the best of our

knowledge, this work is the first to take the inter-module action-relation into account

for locomotion learning which is unquestionably a major performance-affecting

factor in MSR locomotion.

• We have also proposed a multi-agent learning based solution for MSRs’ adaptive

locomotion learning. Our work is the fist to model the MSR locomotion problem as

a multi-agent learning problem and solve it.

1.4 Document Outline

This dissertation is structured as follows:

• Chapter 2

First, we discuss the partitioning problem in MSRs. We mainly discuss a centralized

approach which we have proposed for size-constrained partitioning. Then, we briefly

mention a novel distributed solution to solve the same problem.

• Chapter 3

In this chapter, we discuss the configuration formation problem in MSRs. We

describe our proposed semi-decentralized and distributed solutions which solve the

configuration formation problem. We also evaluate our proposed approaches in

simulation as well as by implementing them on ModRED hardware.

• Chapter 4

Here, we discuss the adaptive locomotion learning problem in MSRs. We describe

our proposed reinforcement learning based solutions which solve the problem. We

show the effectiveness of our proposed approaches by doing simulated experiments

on ModRED and Yamor MSR platforms within the Webots simulator.
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• Chapter 5

In this chapter, we summarize the main contributions and findings in this dissertation

and discuss a few research directions that we plan to pursue in the future.
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Chapter 2

Decision Making: Partitioning of MSR

Modules

Our approach of solving the partitioning problem in MSRs is based on a game-theoretic

formulation, called the coalition structure search [73]. Coalition structure generation

and searching for the best coalition structure are well-known NP-complete problems

[81] and exhaustively searching for the set of all possible coalition structures becomes

computationally prohibitive even for a relatively small number of coalitions. Coalition

structure generation problems have been proposed for real-world scenarios like voting,

or for task completion while maximizing resource allocation criteria [87]. However

the direct implementation of the previously developed algorithms for the best coalition

structure generation for virtual agents, such as in [74, 73], is infeasible, due to mechanical

constraints, communication constraints, and uncertainty in robots’ movements as well as

in the environment.

Each configuration or shape needs a specific number of modules in it, denoted by nmax,

to form the configuration [51]. In [51], the authors have mentioned that for reconfiguration

from one shape to another, both shapes require exactly the same (nmax) number of modules

present, connected together. If nmax modules are together forming a shape, then the
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probability of forming the desired shape is higher. On the other hand, if there are more

or fewer modules than nmax present to form the desired shape, then the formation is not

completely successful - either the shape will not be complete (if there are< nmax modules)

or it will be bigger in size and also different in shape from the desired configuration (if there

are> nmax number of modules present). Therefore having more or fewer modules will lead

to undesired configuration formation. To incorporate this criterion into our approach, we

have proposed a variant of the classical coalition structure generation problem called size-

constrained coalition structure generation. In this approach, each coalition’s worth or value

is determined by the number of modules it has - if there are exactly nmax modules then

the coalition will receive the highest value, else its value will be diminished. Many real-

world domains, such as sports teams or judging committees, are constrained by a similar

maximum size determined by the game or the competition rules. As a motivating example,

we consider a scenario where a set of singleton ModRED modules [7] are dropped from

an aircraft in an extra-terrestrial environment. The task for them is to form shapes (or

configurations) to inspect parts of the environment, such as volcanic craters. To access a

specific region of the environment, not any configuration of any size can be formed due to

size and shape restrictions. Let us assume that the maximum size any configuration can

have is nmax. Now the modules need to find the best partition among themselves which

also restricts the maximum size of any configuration to nmax.

An example of the working procedure of our algorithm is shown in Figure 2.1, where

the number of modules |A| = 4 and nmax is varied between 2 and 3. Initially modules are

randomly distributed as singletons (Figure 2.1 (left)). By using our proposed algorithm,

modules decide what coalitions they should form among themselves, as shown in Figure 2.1

(left), with red and yellow lines. Figure 2.1 (middle) and (right) show these coalitions being

realized as MSR configurations, while using any of the available MSR reconfiguration

techniques [51]. Thus by appropriate partitioning of the modules, we can find the best

configurations.
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Figure 2.1: An example illustrating the configuration generation process (left) shows the
initial arrangements of the modules, (middle) shows the best partitions calculated, (right)
shows the final configurations of the modules.

2.1 Background

We discuss previous similar studies in this section. The literature is divided into the

following subsections.

Coalition Structure Search: Cooperative or coalition game theory gives a set of

techniques that can be used by a group of agents to form teams or coalitions with each

other [69, 81]. A coalition structure graph (CSG) is usually used to represent the set of all

possible coalition structures among a set of agents in a systematic and hierarchical manner.

Searching for the best coalition structure within a CSG is a NP-complete problem [81].

Heuristic [80] and anytime [101] algorithms were proposed to solve the problem of

finding the best coalition structure. Though heuristic algorithms scale up well with higher

numbers of agents, the algorithms take a significant amount of time to find a good solution.

Anytime algorithms alleviate this problem, but they can end up searching the whole search

space, which is infeasible, due to large time complexity (O(nn)). Sandholm [81] has proved

that all possible coalitions can be found in the first two levels of the CSG and proposed an

anytime algorithm exploiting this property of the CSG. Rahwan [73] proposed an anytime,

dynamic programming based approach called IDP which reduced the space complexity

from a previous dynamic programming based approach [78]. Genetic algorithms have been

used to implement these types of heuristic solutions [82]. Shehory and Kraus [84] have

proposed a decentralized greedy algorithm which takes into account only those coalitions
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which have size less than a permitted value. In addition to the techniques in these solutions,

our approach considers uncertainty while forming coalition structures, as it is an essential

aspect of modular robot configuration generation.

Configuration Generation: In one of our earlier works [34], we proposed an anytime

algorithm for configuration generation which takes the maximum value of permitted

coalition size (nmax) as input and significantly reduces the time and space complexity

compared to previously proposed configuration generation techniques, to find the optimal

coalition structure, similar to [84]. In this work only those coalitions are searched which

have sizes less than or equal to nmax. In another earlier study, we used a graph partitioning

approach for configuration generation [27] without taking uncertainty into account. In our

more recent work, we have used CSG to find the best coalition structure [36]. The work

described here is an extension of our earlier work described in [35].

Figure 2.2: Simulated model of 6 ModRED modules reconfiguring from snake to ring
shape.

2.2 A Centralized Solution: Bottom-Up CSG Search

2.2.1 Dynamic Partitioning of Modules: Preliminaries

Let A be a set of modules. Ai = {ai1 , ai2 , ai3 , ..., ai|Ai|} where {aij , aij+1
}, j =

{1, ..., |Ai| − 1} is the set of physically coupled modules in Ai. When | Ai |= 1, the MSR

is a single module - we call it a singleton. Let Π(A) be the set of all partitions of A. By

a partition of a set A we will mean a collection of nonempty, pairwise disjoint sets whose

union is A. The sets into which A is partitioned are called the classes of the partition [97].
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Level

(4)

(3)

(2)

(1)

Figure 2.3: Coalition structure graph (CSG) with 4 agents

The number of partitions of set A is exponential in |A|, and this number is denoted by bell

numbers B|A| [97], where B|A| = |Π(A)|. Also, let CS(A) = {A1, A2, ..., Ak} ∈ Π(A)

denote a specific partition of A, which is called a coalition structure; note that Ai ⊆ A

is the i-th MSR in that coalition structure. A systematic way to go about analyzing the

partitions in Π(A) is provided by a hierarchical graph structure called a coalition structure

graph (CSG) [69]. A CSG with 4 agents is shown in Figure 2.3. CSG nodes are organized

into levels. Level l indicates that every node in level l in the CSG has exactly l subsets or

coalitions as its members. CSGs offer a structured way of exploring coalition structures

because a node at level l + 1 can be generated by breaking up a coalition from a node at

level l. We assume that initially all the modules are singletons 1.

In a CSG, each partition CS(A) ∈ Π(A) is called a coalition structure and appears as

a node in the CSG. The parts or subsets of a partition are called coalitions, denoted by Ai.

Each coalition Ai has a value associated with it that can be referred to as a virtual reward

received by the agents in that coalition for coming together to perform the task at hand.

The value function is denoted by V al : Ai → <+. The value function assigns to each

coalition Ai a real positive number corresponding to a virtual reward that the coalition can

1This work is published in [37]
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obtain for performing its assigned task. Our value function is modeled in a way such that it

is beneficial for agents to form coalitions up to a certain coalition size nmax but this benefit

starts diminishing for coalition sizes that are larger than nmax.

Size of a coalition

V
a
lu

e

0 |A|nmax

Level in CSG

0 |A|
nmax

|A|[           ]
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Figure 2.4: left: An illustration of the size-constrained value function; right: An illustration
of the effect of this value function on finding higher utility nodes in the CSG.

Size-Constrained Value Function: Each configuration needs exactly nmax number of

modules to form that particular configuration. But if nmax number of modules are not

present there, then forming that particular shape is impossible. To incorporate this, we

have developed a size-constrained value function, which is illustrated in Figure 2.4 (left)

and represented by:

V al(Ai) =


| Ai |k, if | Ai |≤ nmax

e−(|Ai|−nmax) × nmax, otherwise
(2.1)

where k is any integer > 1. The above value function is super-linear, i.e., V al(|Ai| +

1) − V al(|Ai|) > V al(|Ai|) − V al(|Ai| − 1); which ensures that larger coalitions are

better and obtain higher rewards, up to a size of nmax, as it is taking the tally towards

the number of modules required to form that configuration. nmax denotes the maximum

allowable size of a coalition; it is given as input to our algorithm and it does not change the
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operation of the algorithm. Our value function gives preference to larger coalitions only

up to a certain size nmax, beyond which larger coalitions are penalized by yielding lower

values. The preferred size of a coalition is relevant to the task assigned to the MSR. The

value of a coalition structure, CS(A), is given by the summation of the values of coalitions

comprising it, i.e., V al(CS(A)) =
∑

Ai∈CS(A)

V al(Ai). Evidently, if forming coalitions

incurred no cost, the most suitable partition for a set of agents is the one that maximizes

V al(CS(A)). For example, V al({1, 2}, {3, 4}) = V al({1, 2}) + V al({3, 4}). The size of

coalitions {1, 2} and {3, 4} is 2. In equation 2.1, if we assume k = 2 and nmax = 2, then

V al({1, 2}, {3, 4}) = 22 + 22 = 8.

An illustrative example scenario, where the size-constrained value function can be used,

is shown in a snapshot of ModRED from the Webots simulator in Figure 2.2 (right). If the

desired motion of the MSR is to cross an obstacle while in a ring shape, which needs 6

modules to give the MSR sufficient traction for its rolling motion, then the value of nmax

is set to 6. As the focus of this work is on determining the best coalition structure, the

problem of determining the optimal nmax is not considered further in this work.

Uncertainty in Configuration Formation. Unexpected motion and alignment of the

robot modules can cause ModRED’s behavior to deviate from ideal operation. Following

[36], we have considered three major sources of uncertainty under this category that could

affect the mobility of the modules and consequently the configuration generation process.

The uncertainty model is summarized below:

(i) Distance uncertainty is the uncertainty arising out of the distance required to be

traversed by a pair of MSRs before docking with each other. As the modules do not

know the features of the terrain such as obstacles between them beforehand, successful

alignment and docking of the modules’ end connectors becomes more uncertain with higher

distance between them. The distance uncertainty is modeled as a half-Gaussian distribution

N (µdu, σdu) as shown in Figure 2.5 (left).

(ii) Alignment uncertainty is the uncertainty arising out of the angle each MSR in a
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Figure 2.5: Probability of a pair of MSRs to dock successfully with each other for (left)
distance between the MSRs, (middle) angular difference between the MSRs, and, (right)
environment noise values [36].

pair of docking MSRs needs to rotate before they can align with each other. As ModRED

modules have docking faces at two ends [50], if the rotational difference between them is

close to 0◦ or 180◦, then it is easier for them to align and dock; they are most unaligned

when the rotational difference between them is close to 90◦. Alignment uncertainty

between two modules is modeled as a Gaussian distribution, N (µau, σau), as shown in

Figure 2.5 (middle).

(iii) Environment uncertainty is the uncertainty arising from the operational conditions

in the environment due to factors such as terrain conditions, surface friction, etc. that affect

the movement of a pair of MSRs while moving towards and docking with each other. The

uncertainty is modeled as a multi-variate half-Gaussian distributionN (µeu, σeu), as shown

in Figure 2.5 (right).

To combine the Gaussians representing the motion uncertainties, a weighted mean with

variance is considered [67], where weights are inverse of the variance estimates. 2 These

weights are denoted by wdu, wau, and weu respectively. The weighted mean of the three

Gaussians then gives the total motion uncertainty, expressed as a probability, for forming

any coalition Ai by connecting its member modules, as given below:

2According to the central limit theorem, any sum and/or average of samples from any random distribution
with finite mean and standard deviation will always be approximately Gaussian.
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prob(Ai) =
(wdu · pdu + wau · pau + weu · peu)

wdu + wau + weu
, (2.2)

where pdu ∈ N (µdu, σdu), pau ∈ N (µau, σau) and peu ∈ N (µeu, σeu), and, wdu = 1
σ2
du

,

wau = 1
σ2
au

, weu = 1
σ2
eu

.

Expected Cost functions. When a set of modules need to form a configuration,

they move towards each other, the end modules align with the other’s docking faces and

perform the connection operation [50] to finally form the configuration. To perform these

operations, modules have to spend a considerable amount of battery power. Therefore the

modules which are going to form a new configuration should be chosen in such a way that

they expend less energy in moving and aligning. We have represented the energy expended

by modules as the cost to generate configurations. While searching for the best coalition

structure, modules not only need to find the coalition structure which has highest value, but

also which incurs minimum cost.

Let cost(Ai) denote the cost of forming a coalition Ai. cost(Ai) is defined as the cost

of connecting singleton modules in a chain configuration. We denote the expected cost of

forming coalition Ai as: cost(Ai) = cost(Ai) × (1 − prob(Ai)). This indicates that if the

probability of modules connecting together in a coalition is higher, then the corresponding

cost will be lower and vice-versa. Going further, we denote the expected cost of coalition

structure CS(A) as: cost(CS(A)) =
∑

Ai∈CS(A)

cost(Ai).

For notational convenience, we denote expected utility of a coalition structure CS(A)

as U(CS) where U(CS) = V al(CS(A)) − cost(CS(A))). Then, the optimal coalition

structure is given by CS∗ = arg max
CS∈Π(a)

U(CS). Based on the above formulation, we can

now formally define the partitioning problem for modular robots as follows:

Definition 1 Coalition Size-Constrained Partitioning Problem: Given a set of modules

A and an initial coalition structure CSold(A) = {Aold1 , Aold2 , ..., Aoldk } in which

they are deployed (e.g., all singletons), find a new partition (or coalition structure)
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CS(A) = {Anew1 , Anew2 , ..., Anewk′ } such that the following objective is maximized:

max
CS(A)∈Π(A)

U(CS)

An example of the configuration generation using the objective function is shown in

Figure 2.1. Figure 2.1 (left) shows an initial configuration of ModRED, where the modules

are randomly distributed as singletons. nmax is given as input, varied between 2 and

3. Following the proposed bottomUpCSGSearch algorithm, modules determine the best

configuration, which happens to be {{1}, {2, 3, 4}} when nmax = 3 and {{1, 2}, {3, 4}}

when nmax = 2. Modules then move and align themselves to form the new coalitions and

finally the planned configurations are formed (Figure 2.1.(middle), (right)).

In the rest of the chapter, for the sake of legibility, we slightly abuse notations by

referring to expected utility and expected cost as utility and cost respectively. Finally, we

use two notations for convenience in our CSG search algorithm - a coalition of size nmax

is denoted by Cn and the level in the CSG that contains the maximum number of coalitions

of size nmax is denoted by lnmax , where lnmax = b |A|
nmax
c.

2.2.2 Search Algorithm: bottomUpCSGSearch

Size-based Partitioning of CSG. Our value function assigns the highest value to the

coalitions which have size nmax. From coalition size 0 to nmax, the value of a coalition

increases in a super-linear fashion, as discussed earlier, whereas beyond size nmax, the

value of a coalition decreases exponentially (Figure 2.4 (left)). As the utility of a coalition

structure depends on the values of its member coalitions, the coalition structure with

member coalitions having sizes nmax will most likely be part of the best coalition structure.

Our algorithm is designed towards exploiting this property of the value function. The

objective of our proposed CSG search algorithm is to target the search towards nodes

(coalition structures) in the CSG that include coalitions of size nmax (Cn).

Sandholm [81] has proved that in level 2 of CSG, we can get all the possible coalitions.

This means after expanding the bottom most node of the CSG, we can encounter all the
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Algorithm 1: Searching for the best coalition structure
1 bottomUpCSGSearch(vl1 , nmax)

Input: vl1: node at l = 1 of CSG,
nmax: max. allowable size of a coalition
Output: CS∗: Node with highest expected utility U∗

2 Cn is a coalition, where |Cn| = nmax.
3 lnmax : Lowest level with maximum number of Cn.
4 lcurr ← 1;OPEN ← vl1 ;CLOSED = {∅}.
5 while OPEN is non-empty do
6 U∗ ← max

v∈OPEN
U(v)

7 for every v ∈ OPEN do
8 for every vchild ∈ children(v) do
9 if vchild 3 Cn then

10 add vchild to CLOSED;
11 else
12 if lcurr < lnmax then
13 if V al(vchild) > U∗ then
14 add vchild to CLOSED;
15 else
16 start a DFS on subtree of vchild up to level lnmax .
17 At each level ldfs of dfs do
18 if (max. exp. util. of nodes generated at ldfs) ≥ U∗ then
19 add vchild to CLOSED;
20 exit DFS;

21 else
22 if ∃ child(vchild) : Val(child(vchild)) ≥ U∗ then
23 add child(vchild) to CLOSED;

24 OPEN← CLOSED;
25 CLOSED← {φ};
26 lcurr ← lcurr + 1;

27 return CS∗;
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coalitions with size nmax. And we have already discussed earlier that coalitions with size

nmax earn the highest value; therefore coalition structures with these coalitions in them

will have higher chance to be the best coalition structures. This is the main insight of

our approach. Therefore, a search starting from the bottom and going upwards in the

CSG (bottom-up CSG search), unlike our previous approach [36], will be faster and more

efficient. Possible sizes of the member coalitions in any coalition structure can be found

by the integer partitions [5] of the total number of modules |A|. For example, there are 5

possible integer partitions of the number 4, which are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

From the coalition structure perspective, each integer partition indicates the sizes of the

member coalitions in any coalition structure. For example, in Figure 2.3, level 1 of the CSG

consists of only 1 node (coalition structure), which is {1, 2, 3, 4}. This coalition structure

consists of only one coalition of size 4, which is the first integer partition of the number 4 –

(4). In level 2, all the coalition structures have 2 coalitions in them. Either these coalitions

have sizes 3 and 1 (such as {{2}, {1, 3, 4}}) or 2 and 2 (such as {{1, 2}, {3, 4}}). Thus the

nodes in a CSG can be clustered according to their underlying integer partitions.

An illustration of the partitioned CSG with |A| = 7 and nmax = 3 is shown in Figure

2.6. This is a size based partitioning graph of the CSG. Each node represents the partition

size of a coalition structure. For example, node (7) represents that the coalition structure

corresponding to this partition has only one coalition in it with size 7; similarly the node

(3, 3, 1) represents all the coalition structures which have 3 coalitions in them with sizes 3, 3

and 1 respectively. As nmax is 3, the highest valued coalition structures can be found under

the (3, 3, 1) partition. Coalition structures corresponding to that partition can be generated

from coalition structures of two different partition sizes, viz., (4, 3) and (1, 6). Note that

all the coalition structures of partition size (4, 3) have one coalition of size nmax but that

is not the case for (1, 6); however, both of the partitions can generate coalition structures

of highest possible value. Figure 2.4 (right) shows that because of our proposed value

function, the highest valued coalition structures, i.e., the coalition structures which have a
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maximum number of nmax-sized coalitions in them, can be found in level b |A|
nmax
c(lnmax)

in the CSG. Our proposed algorithm takes these factors into account and the search is

designed accordingly.

l=3 

l=2

l=1

|A|=7,  n     =3,  l       =3nmaxmax

[l         ]nmax

(7)

(2, 5) (1, 6)(4, 3)

(3,2,2)(3,3,1)(4,2,1) (5,1,1)

(1, 1, 1, 1, 1, 1, 1)

.

.

.

l=7
.
.
.

Figure 2.6: An abstraction of the CSG for |A| = 7 agents showing the partitions of A that
are inspected at each level. Note that at level l, A has different partitions with exactly l
parts or subsets. With nmax = 3, the maximum number of Cn-s (coalitions of size 3) are at
level lnmax = 3.

Discussion of the bottomUpCSGSearch algorithm. In [73], the authors have shown

that if it is impossible for some node in the CSG to lead to the best coalition structure, then

those unpromising nodes can be pruned right away and the search process can be made

faster. However, identifying these unpromising nodes is a challenge. We have employed

two different pruning strategies to reduce the search space by eliminating the unpromising

nodes as soon as we encounter them. The main search procedure is shown in Algorithm

1. As the name suggests, the search (called bottomUpCSGSearch) for the best coalition

structure starts from the bottom-most node of the CSG. The bottom-most node (coalition

structure) contains only one coalition in it - the grand coalition, i.e., every module is part of

this coalition. All the nodes which need to be explored further are kept in a data structure

called OPEN . Initially the bottom-most node of the CSG is kept in OPEN . At every
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level, all the children nodes of the nodes stored in the OPEN data structure are generated.

3 If a child node contains a Cn (a coalition having size nmax), it is immediately added to

CLOSED for future expansion (lines 10 − 11). If a child node does not contain any Cn,

it might still lead to the optimal coalition structure. To detect the suitability of a generated

child node not including Cn, we check if the current level, lcurr, being explored in the CSG

is less than lnmax .

Let U∗ denote the highest utility found. As utility is the difference between the value

and cost of a coalition structure, if the value of any coalition structure is less than U∗, then

the utility of that coalition structure will always be less than U∗. This is the main insight

behind developing our first pruning strategy, the fitness test. This pruning strategy is applied

only if the current level lcurr < lnmax . For any newly generated coalition structure CS in

level lcurr(< lnmax), we first check whether the value of this coalition structure exceeds

U∗ or not. If V al(CS) ≥ U∗, then it would make sense to explore the node CS further;

therefore CS is added to the set CLOSED for future expansion (lines 13 − 15). On the

other hand, if V al(CS) < U∗, i.e., the value of the coalition structure is already below the

best utility found thus far, then it is evident that the utility of this node will be less than

U∗. Therefore exploring all of its children nodes for further expansion and inspection will

not be beneficial. These are unpromising nodes. For this type of nodes, we only explore

their descendants up to depth lnmax . While performing this depth-first search (DFS) of

the unpromising node CS, if any of the descendants has a value > U∗, then we add CS

to CLOSED for future expansion, as it can lead to a node that has utility better than

the maximum utility obtained till then (lines 16 − 20). Otherwise, we just continue the

search along the child (expanded node) that has the highest utility amongst all its generated

siblings. If none of the descendants of CS, till level lnmax , has higher value than the current

highest utility, then CS is automatically pruned.

Figure 2.4 (right) suggests that up to level lnmax the value of coalition structure

3Children nodes of node v in level l of the CSG, denoted by children(v), are the nodes connected via
edges to node v in the CSG in level l + 1.
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Cn ϵ  node

Cn ϵ  node

Figure 2.7: Illustrative example of the working procedure of the algorithm

increases, and beyond lnmax level, the value decreases. Therefore for expanding the nodes

in any level lcurr ≥ lnmax , we use a more conservative approach to accommodate nodes for

future expansion. As the values of the nodes (coalition structures) are descending beyond

level lnmax , it is evident that if any node in level l(> lnmax) has value lower than U∗, then

none of its descendants will have higher value than U∗. Thus if we encounter any node

beyond level lnmax , having lower value than U∗, then that node can be immediately pruned.

On the other hand, if the node’s value is greater than U∗, then the node is added to the

CLOSED data structure for future expansion (lines 24− 25).

The search proceeds through successive levels, until all nodes that exceed the best

found value of the expected utility U∗ have been explored. The best utility node found

by the search algorithm is returned as CS∗, the node corresponding to the optimal coalition

structure.

An example of the working of our algorithm with |A| = 4, nmax = 2 is shown in Figure

2.7. Here, the maximum valued coalition structure occurs at level l = 2 and is marked with

U∗. The search algorithm expands the bottom node {1, 2, 3, 4} and adds all its children
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to CLOSED. However, in the next iteration, U∗ is set to the maximum valued node in

OPEN (which is also the maximum valued node in the entire CSG). Consequently, no

other node in OPEN or its descendants has a value ≥ U∗, and no other node is expanded

by the search algorithm. The search terminates returning the node CS∗ that corresponds to

utility U∗.

Theoretical Analysis of bottomUpCSGSearch Algorithm

Establishing Worst Case Bound. As our value function (Eqn. 2.1) assigns the

highest value to coalitions of size nmax, when A is partitioned into coalitions of sizes

nmax , V al(CSnmax) =
∑

Ai∈CS(A)

V al(Ai) has the highest value, where CSnmax is

a coalition structure which contains the maximum number of nmax sized coalitions

in it. We denote ideal utility (when there is no cost to reform the coalition) as

Uideal = V al(CSnmax). We call this set of coalition structures ideal coalition

structures. For any coalition structure, CS, let αCS = U(CS)
Uideal

. αCS is dependent on

the cost of forming coalition structure CS and gives a worst case bound. Let CS1

denote the first coalition structure generated by the algorithm (with at least one Cn).

αCS1 = U(CS1)
Uideal

= V al(CS1)−cost(CS1)
V al(CSnmax)

= V al(CS1)−cost(CS1)
β·V al(CS1)

= κ(1− cost(CS1)
V al(CS1)

), where β ≥ 1,

κ ≤ 1 and κ = 1
β

. Note that αCS1 denotes the initial worst case bound on αCS . With

time we keep on improving this bound. This demonstrates the anytime property of our

algorithm. The anytime property is very important from a practical aspect because even

if the algorithm terminates prematurely, it still gives a solution which is guaranteed to be

within a certain bound from the optimal.

Theorem 1 The worst case bound αCS is a function of cost of reconfiguration. (Proof

follows from the earlier discussion.)

Lemma 1 If nmax > 1, a bottom-up search in the CSG (starting from l = 1) can establish

a worst case bound more quickly than a top down-CSG search (starting from l =| A |).
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Proof : A worst case bound can be established by a CSG search algorithm as soon as a

coalition structure with a coalition of size nmax is generated by it. Let lexp denote the

number of levels explored by a CSG search algorithm when it generates a coalition structure

with a coalition of size nmax. For a bottom-up search starting from l = 1, the first coalition

with size nmax is encountered at l = 2, where A is partitioned into two subsets of size

nmax and |A| − nmax respectively. Then lbottomupexp = 2− 1 = 1. In contrast, in a top-down

search starting from l =| A |, the first coalition structure that has a coalition of size nmax is

encountered at level l =| A | −nmax, which gives lbottomupexp = |A| − (|A| − nmax) = nmax.

Clearly, if nmax > 1, lbottomupexp > ltopdownexp and the bottom-up search explores fewer levels

and generates a worst case bound more quickly than a top-down search.

Lemma 2 The bottomUpCSGSearch algorithm does not remove any optimal coalition

structure while removing unpromising nodes.

Proof : (by contradiction) Suppose that, a node v̂ got pruned by fitness test and consequently

the optimal coalition structure also got pruned. That means either v̂ was the optimal

coalition structure or it could have generated the optimal coalition structure in future levels.

v̂ cannot be the optimal coalition structure, because if U(v̂) > U∗, we would not have

deleted v̂. If this happened in level lcurr, where lcurr < lnmax , then before pruning v̂, we

have generated children nodes with the highest value of v̂ for successive levels up to level

lnmax and none of its successor nodes have met the criterion val(child(·)) > U∗. Also,

after level lnmax the value of coalitions encountered in successive levels starts decreasing

(Figure 2.4). And if the pruning happened where lcurr ≥ lnmax , then it was only because

val(child(v̂)) < U∗. So v̂ could not have contributed to finding the optimal node. Hence

proved.

Theorem 2 The bottomUpCSGSearch algorithm is anytime.

Proof : At every level of a CSG, our algorithm generates the nodes first which contain at

least one coalition with size nmax. From Theorem 1, we can say, from the first generated
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Algorithms Complexity
Original complexity O(|A||A|)

Sandholm [81] O(3|A|)
IP algo. [74] O(2|A|)

Graph Partitioning [27] O(log|A|)
BP algo. [34] O(nnmaxmax )

bottomUpCSGSearch algo. O(
b |A|
nmax

c∑
j=2

S(n, j))

Table 2.1: Complexity Comparison

coalition structure, this algorithm will be within a bound. We only admit a coalition

structure if it increases this worst case bound further or it has potential to do so in future

levels. Thus, this worst case bound successively increases with number of levels and

eventually reaches the optimal utility.

Theorem 3 The bottomUpCSGSearch algorithm finds the optimal coalition structure.

Proof : Due to its anytime property, the bottomUpCSGSearch algorithm only admits

coalition structures that have a higher utility than the previously inspected coalition

structures. It also prunes unpromising coalitions that cannot be part of an optimal coalition

structure (by Lemma 2 and Theorem 2). This ensures that our algorithm never accepts a

coalition structure that has a lower utility than a previously seen coalition structure, neither

does it prune a probable candidate node for optimal coalition structure. Hence, it finds the

optimal coalition structure eventually.

The completeness of the proposed algorithm also follows from Theorem 3 which

guarantees that it always finds the optimal coalition structure.

Complexity Analysis. The best case for this algorithm will be where lnmax = 2 and all the

nodes without Cn in it got pruned. In the worst case scenario, all the nodes in the graph

will be generated and that will give us a complexity of O(Bn), where n = |A| and Bn

denotes nth Bell Number. But in an average case, nodes will be generated only between

l = 2 and lnmax . The lower bound of the average time complexity will be S(n, 2), where
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S(n, k) denotes Stirling Number of the second kind and S(n, k) = 1
k!

k∑
j=0

(−1)k−j[k, j]jn

and the upper bound of average case complexity will be
b |A|
nmax

c∑
j=2

S(n, j).

In Table 2.1, we have provided average case complexities for existing coalition structure

search algorithms, in agent coalition formation and MSR configuration generation. Here,

|A| is the number of agents or modules and nmax is the maximum allowed size of a

coalition. Sandholm’s anytime solution [81] has a time complexity of 3|A|, which first

searches the bottom-most 2 layers of the CSG to search through all possible coalitions.

In [74], the authors’ anytime solution, based on integer partitioning, has an improved

time complexity of 2|A|. A graph partitioning algorithm [27] for coalition structure

formation solves the 0− 1 integer linear programming problem (which is part of the graph

clustering technique, a well known NP-Complete problem), by relaxing it to a general

linear programming problem; thus the solution is found in sub-linear time (O(log|A|)).

Our previously proposed BP algorithm’s [34] complexity depends solely on the value of

nmax.

2.2.3 Experimental Evaluation

In this section, we will describe various experiments that we performed to check the

performance of our proposed search algorithm for dynamic partitioning of modules for

configuration generation through extensive simulations.

Experimental Setup

We consider a setting where a set of |A| = [4, .., 12] modules are present in the

system. nmax has been varied through {2, 4, 5, 6}. The size of the environment is 10

m × 10 m. The initial positions of the modules are drawn from uniform distribution

U [(0m, 10m), (0m, 10m)]. Initial orientations of the modules are drawn from uniform

distribution U [0, π]. Noise values are also drawn from uniform distribution U [0, 1]. The
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Figure 2.8: Configuration generation process using our proposed bottomUpCSGSearch
algorithm.

simulations for bottomUpCSGSearch algorithm are run on a desktop PC, with 24GB of

RAM and an Intel(R) Xeon(R) CPU with 2 processors.

Figure 2.8 shows an instance of the experimental setup. Initially 4 modules, {1, 2, 3, 4}

are randomly distributed. The objective of the modules is to find the coalition structure that

gives the highest utility calculated from previously discussed functions. To do this, each

module runs the bottomUpSearchCSG algorithm, where each module starts the search from

the bottom-most node in the CSG. As we assume that all the modules have other modules’

position and orientation information, they first calculate the utility of the coalition structure

where all the modules are connected together (bottom-most node). Whenever any node in

the CSG is searched by a module, first its value is calculated using equation 2.1 and then

the cost of forming this coalition structure from the initial coalition structure is calculated.

Once the value and the cost of a node (i.e., a coalition structure) are calculated, utility can

be calculated from them, to be used in algorithm 1. Finally all the modules find the best

partition to form by using the bottomUpSearchCSG algorithm.

In Figure 2.8, two different sets of configurations, for different nmax values, formed

by the modules are shown. In Figure 2.8, with nmax = 2, the best coalition structure

found is {{1, 3}, {2, 4}}, whereas with nmax = 3, the best coalition structure found is

{{1, 3, 4}, {2}}. The main metrics reported in this article are the time calculated and

number of nodes explored in the CSG while searching for the best configuration, with

different numbers of modules present in the environment.



32

No. of Ratio to Runtime

agents opt. value (ms)

4 1 1
6 1 2
8 1 7
10 1 16
12 1 33

Table 2.2: Ratio of values of best coalition structure found using our algorithm to the
optimal value and corresponding running times.

Simulation Results

Solution quality and run time

In the first set of experiments, we analyzed the effect of the main concept of our algorithm,

i.e., finding the best coalition structure possible from the CSG. As shown in Table 2.2, for

4 ≤ |A| ≤ 12, our algorithm was able to do a search in the space of all coalition structures

and find the optimal coalition structure for all values of |A|. For higher values of |A| the

exhaustive search (complexity O(|A||A|)) becomes prohibitive. The value of lnmax is fixed

to 2 for this test. These data show that our algorithm takes a fraction of a second to find the

best coalition structure. With 6 modules, the algorithm takes only 2 milliseconds, whereas

for 12 modules, the run time of the algorithm is 33 milliseconds. When lnmax is fixed to

3, run time of the algorithm with 12 modules, increased to 667 ms. Figure 2.9 shows how

actual space complexity for our algorithm and the run time to explore the nodes change with

the number of modules. It is evident from this figure that even though space complexity

is increasing exponentially with increasing number of modules, our algorithm maintains

the run time within a reasonable value and finds the optimal coalition structure. This also

shows that our algorithm scales well with number of modules.



33

0

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

4 6 8 10 12

Run �me

Original Complexity

Number of modules

N
u
m

b
e
r o

f n
o
d
e
s e

xp
lo

re
d

               (lo
g
 sc

a
le

)

R
u

n
 t

im
e

 in
 m

s.
 

(l
o
g
 s

ca
le

)

Figure 2.9: Comparison of run time of the bottomUpCSGSearch algorithm and actual
space complexity against the number of modules

Comparisons with existing algorithms

Figure 2.10 shows the comparison between the number of nodes explored by our proposed

algorithm with the existing coalition structure search algorithms proposed in [81] and [74].

These algorithms are anytime in nature and have worst case time complexities O(3|A|) and

O(2|A|) respectively. As these algorithms do not necessarily support size-constrained value

functions, the numbers of nodes explored in the CSG by them are higher than our proposed

algorithm. The graph is shown on a logarithmic (log2) scale. The value of nmax is set to 2

for |A| = 4 modules, 4 for |A| = 6 modules and 6 for |A| ≥ 8 modules. This graph shows

that our algorithm is able to prune more of the unpromising search space than the other two

algorithms and consequently its time and space complexities also reduce.

In our next set of experiments, we compared the number of nodes generated by our

algorithm for 12 modules against previously studied algorithms for coalition structure

generation in [81] and [74]; nmax is varied between 4 and 6. Figure 2.11 (a) shows

the number of nodes generated in all the algorithms on a logarithmic (log2) scale. As can

be seen, our algorithm explores 23 times fewer nodes when nmax = 4 and 28 times fewer

nodes when nmax = 6, than the algorithm in [81]. It also explores 2 times fewer nodes in
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Figure 2.10: Comparison of number of nodes explored by different existing coalition
structure generation algorithm and the proposed bottomUpCSGSearch algorithm.

the case of nmax = 6 than the algorithm in [74]. This illustrates that using a CSG search

algorithm for the unconstrained coalition formation problem can become inefficient for the

coalition size-constrained coalition formation problem, as the number of agents increases.

It is also understood that the algorithm proposed in this chapter is a function of nmax rather

than of |A|.

Next we have compared the run time of our algorithm with existing algorithms

where coalition structure search algorithms have been used for configuration generation in

ModRED [7]. The first algorithm we compared with is searchUCSG. Figure 2.11 (b) shows

the comparison of our algorithm’s running time with searchUCSG [36], where the authors

proposed a top-down, heuristics-based search algorithm to search the CSG. It shows that for

12 agents, the searchUCSG algorithm took 3.81×105 milliseconds whereas our proposed

bottomUpCSGSearch algorithm took only 33 milliseconds to find the optimal solution – a

run time improvement in the order of 104 ms. The main reason behind this improvement

in time is that we start the search from the bottom of the CSG and therefore we reach the

level lnmax , where nodes with maximum number of nmax-sized coalitions are stored, faster
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Figure 2.11: a) Comparison of number of nodes generated with existing algorithms – for
12 modules, with varying nmax; b) Run time comparison with searchUCSG algorithm; c)
Run time comparison with graphPartitioning algorithm; d) Run time comparison with
BP algorithm.

than the searchUCSG algorithm.

Our next comparison was done with the BP algorithm, where the coalition size is

constrained by nmax, using a hard constraint, i.e., no coalition with size more than

nmax was generated. The BP algorithm partitions the coalitions of different sizes into

multiple blocks and searches through these blocks to form the coalition structures. Our

bottomUpCSGSearch algorithm takes less run time than the BP algorithm (Figure 2.11 (c)).

For example, by using the BP algorithm, for 6 and 12 modules, the run times are 78 and 302

milliseconds respectively, whereas for the same number of modules bottomUpCSGSearch

takes 2 and 33 milliseconds run time respectively – an improvement of almost 10 times.
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Lastly, we compared bottomUpCSGSearch with a graph partitioning algorithm [27].

This algorithm restricts the problem to a weighted graph where coalition utilities are

calculated by summing pairwise utilities (edge weights), making it a polynomial problem.

On the other hand, our algorithm tries to deal with the original NP-hard problem without

any assumption or relaxation. This comparison is shown in Figure 2.11 (d). Being a NP-

hard problem, our algorithm performs comparably against the polynomial-relaxed graph

partitioning algorithm - for 12 modules, our bottomUpCSGSearch algorithm takes 33

milliseconds while the graph partitioning algorithm takes 11 milliseconds - only 3 times

worse than a polynomial solution.
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Figure 2.12: (a) - (c) Exploring the anytimeness nature of the proposed
bottomUpCSGSearch algorithm – for 8, 10 and 12 modules; d) Effect of changing nmax
on number of explored nodes – for 10 modules.
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Empirical evaluation of the anytimeness property

In the next set of experiments, we have tested the anytimeness property of our proposed

algorithm. Figure 2.12 (a)-(c) shows the anytimeness nature of our algorithm, for 8, 10 and

12 modules respectively. The x-axis denotes the percentage of total time elapsed and the

y-axis denotes the percentage of the best utility found in that particular time-step. For these

tests, lnmax is set to 2. As can be seen from these figures, for 8 modules (Figure 2.12 (a)),

the best coalition structure is found in about 40% of the total time, whereas for 12 modules

(Figure 2.12 (c)), the best coalition structure is found in about 10% of the total time. One

should note that as the total run times of the algorithm for 8, 10 and 12 modules are not the

same, therefore 10% of the total time for 12 modules is not necessarily less clock time than

40% of the total time for 8 modules.

Experiments with nmax

For the next set of experiments, we varied nmax through 4, 5, 6 while keeping |A| fixed at

10 (Figure 2.12 (d)) and as can be seen, compared to the total number of nodes possible

in those levels, we were able to restrict the number of explored nodes within a polynomial

bound and still achieved optimal utility every time. Also this figure shows that for nmax =

4, more nodes are explored than when nmax = 5 or 6. When nmax = 4, then lnmax = 3,

whereas when nmax = 5 or 6, then lnmax = 2, instead of 3. So, we can see than when nmax

is set to 4, then more need to be explored in order to reach the best level. On the other hand,

when nmax is set to 5 or 6, to reach the best level, fewer nodes are explored. This is why

our algorithm’s complexity depends on both |A| and nmax – more specifically on the value

of lnmax(= b
|A|
nmax
c).

We have also experimented with the effect of the set of {|A|, nmax} on the number of

explored nodes in the CSG. We experimented with different values of |A| and nmax while

maintaining lnmax at 2. The different combinations of |A| and nmax that were used are:

{4, 2}, {6, 3}, {8, 4}, {10, 5} and {12, 6}. From Figure 2.13, it is evident that though the
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Figure 2.13: Comparison of total number of nodes in lnmax = 2 vs. no. of nodes generated.

total number of nodes in level 2 increased exponentially, still our algorithm was able to

keep the number of nodes generated polynomial with respect to the increasing values of

lnmax , while finding the optimal coalition structure.
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Figure 2.14: Ratios between total number of nodes, number of nodes generated and time
taken to find optimal for lnmax = 2 and 3.

For the next set of experiments, we took the ratios between the total number of nodes

up to level 3 and level 2, between the number of nodes explored in those levels and also

between the total time taken for exploring nodes in those two levels. This is shown in

Figure 2.14, which shows that the ratio of total number of nodes possible in level 2 and 3

is exponentially increasing. But in the case of our algorithm, the ratio of total number of

nodes explored in those levels increased in a polynomial fashion. Therefore the graph for

the ratio of time taken for exploring nodes in those two levels did not increase exponentially.
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Figure 2.15: (a) MST generation among modules, (b) distribution of integer partitions
among modules.

2.3 A Distributed Approach: Spanning Tree Partitioning

In this section, we briefly discuss the distributed approach that we have proposed to solve

the partitioning problem. For more details, the readers are referred to [39]. This work

proposes a novel technique that attempts to reduce the search space by first constructing a

minimal reachability graph between modules that are within communication range of each

other, in the form of a minimum spanning tree (MST). We have noticed that the partitions

or coalition structures (shown in Figure 2.3) can be categorized into groups according to

the sizes of their subsets and these groups can be maintained using all possible integer

partitions of n. Then, the possible combinations of only those modules that are connected

in the MST, up to a specific size, nmax, which is determined from the maneuverability

constraints of modules, are explored using an integer partitioning based technique to
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find the combination or configuration of modules that gives the highest expected utility.

The computations are performed in a distributed manner by the modules and portions

of the problem that are solved by each module are allocated to them in proportion of

their available energy (battery) for computation. Figure 2.15 shows an illustration of our

proposed approach. The top-most graph in Figure 2.15(a) shows the reachability graph

– if two modules are within each other’s communication range, then there is an edge

between them. Next, a MST of this graph is calculated based on each module’s uncertain

realization of edge weights originating from it. After the MST is built, the integer partitions

(ip) are distributed among modules. Each module only searches through the coalition

structures corresponding to its allocated integer partitions and only the coalition structures

are considered which contain coalitions that are connected in the MST. We have performed

simulated experiments and shown that our proposed technique is able to rapidly identify

the highest utility configuration for different number of modules and performs significantly

better in terms of time and space complexity than previously existing techniques for

MSR configuration identification and coalition structure search algorithms. We have also

empirically shown that our proposed algorithm scales better than existing techniques.

2.4 Discussions

This chapter discusses a very unique problem in modular robotics – partitioning a set

of modules (robots) for forming the best utility teams (configurations). Our proposed

algorithms are one of the very first approaches to solve this problem. We have experimented

with different values of nmax, maximum size that an MSR can have, and shown that even

with different nmax values, our algorithm scales well.

To solve the problem, we have proposed two dynamic partitioning techniques

for configuration generation in modular robots. Our centralized bottomUpCSGSearch

algorithm models the problem as a CSG search problem for finding the best coalition
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structure and intelligently generates, searches and prunes nodes in the CSG. We have also

provided analysis on worst case guarantee that our proposed algorithm provides. We have

shown that our algorithm is anytime and complete, and also provided a complexity analysis

for the algorithm. We have empirically shown that our algorithm scales well with the

number of modules.

On the other hand, our distributed minimum spanning tree partitioning approach takes

into account different constraints of the real world such as communication, and battery

power and finds the optimal configuration for the current situation. To the best of our

knowledge, this work is the first approach to solve the constrained partitioning problem in

a distributed manner.
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Chapter 3

Planning: Configuration Formation

Over the last decade, the self-reconfiguration problem has been studied most extensively

by MSR researchers [1]. It has been proved to be a NP-complete problem [51]. Several

approaches based on graph theory [52, 6] and control theory [77, 61] have been proposed.

In our research, we look at a fundamental problem and a pre-requisite of the self-

reconfiguration problem, called the configuration formation problem, where modules self-

aggregate to form different configurations. We study the configuration formation problem

from two different aspects:

1. Initially all the modules are singletons (Figure 1.2): Given a set of singleton

modules initially distributed arbitrarily within the environment and a desired target

configuration involving those modules, how can each module(s) select an appropriate

position or spot in the target configuration to move to, so that, after reaching the

position, it can readily connect with adjacent modules and form the shape of the

desired target configuration. Figure 1.2 shows an illustration of the configuration

formation problem with 5 ModRED modules [7]. The initial positions of the modules

and the target configuration are shown in Figure 1.2.(left), while Figure 1.2.(right)

shows the final configuration, where the modules have been allocated to their

respective spots and they have moved there. The configuration formation problem is
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non-trivial as the desired spots of different modules in the target configuration could

conflict with each other, resulting in occlusions and leading to failed attempts to

achieve the target pattern. Additionally, it is beneficial for the modules to reduce the

energy (battery) expenditure, and it would make sense for robots to solve the problem

in a way that reduces the traveled distances to their desired positions, so that the

cost of locomotion is also reduced. To address these issues, we have proposed both

distributed and centralized algorithms using theories ranging from bipartite graph

matching [48] to auctions [10].
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Figure 3.1: (a) A singleton and three initial configurations consisting of 2, 6 and 8
modules respectively, and desired target configuration (marked with yellow dotted lines)
(b) target configuration involving all 17 modules connected in ladder configuration; module
numbers marked in white, yellow and red are retained between between initial and target
configurations.

2. Initially some modules are connected with each other forming (small)

configurations (Figure 3.1): Given a set of singleton modules and set of modules

connected in (multiple) configurations which are initially distributed arbitrarily

within the environment and a desired target configuration involving those modules,

how can the modules be allocated to spots in the target configuration such that

along with the cost of moving from initial locations to the goal locations, the

initially connected configurations can be preserved as much as possible to reduce

the disconnections in the initial configurations and re-connections in the target

configuration. The reason for preserving the initial configurations and thus reducing
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the number of disconnections and re-connections is that the connecting two modules

using their end-connectors is a very costly (energy-wise) and difficult task [50].

This problem is non-trivial as the modules might already be connected in initial

configurations that do not correspond to parts of the target configuration. Moreover,

multiple modules from different initial configurations might end up selecting the

same most-preferred position in the target configuration, leading to failed attempts

to achieve the target configuration. To address these challenges, we propose a

decentralized algorithm that allows modules from initial configurations to select

suitable positions in a target configuration using a technique based on subgraph

isomorphism which aims to reduce the cost of movement as well as the number of

disconnections and re-connections.

Figure 3.2: Complicated configurations formed my ModRED II modules [49].

3.1 Background

First, we briefly review different categories of self-reconfiguration strategies. The self-

reconfiguration problem in MSRs can be classified along three main directions, as

described below:
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• Search-based Reconfiguration: In this technique, the objective is to find a path,

or a sequence of moves among the modules within their configuration space, that

takes the MSR from an initial configuration to a goal configuration. This technique

requires a priori knowledge of the goal configuration [15, 18].

• Control-based Reconfiguration: This technique uses local movement rules for

each module and eventually allows the whole MSR to evolve towards the goal

configuration. This technique also requires a priori knowledge of the goal

configuration [77].

• Task-driven Reconfiguration: This technique is not focused on achieving a specific

goal configuration; rather it tries to get the modules into a configuration that will

enable the MSR to perform its assigned task most effectively. In this technique, the

MSR’s target configuration is selected dynamically based on current conditions (e.g.

environment, assigned task, battery power, etc.). This technique offers flexibility

in selecting intermediate configurations and gives higher robustness as compared to

techniques which require a priori knowledge. This technique has recently shown

considerable success [61] in MSR self-reconfiguration.

In our research, we have looked into the configuration formation problem which can be

imagined as a pre-requisite step for the self-reconfiguration process.

Configuration formation is the way of autonomously aggregating modules together to

form a target pattern. This enables the modules to form the desired pattern. In a recent

survey, authors have found that configuration formation problem has not been studied

extensively in the literature [1] and the solution approaches proposed so far are not always

easy to generalize to all MSRs. A few studies on configuration formation (by means

of programmable self-assembly) can be found for self-actuated modular robots [58], and

for modules that lack innate actuation ability, like stochastically-driven modules in liquid

environments [93]. But these approaches can not be generalized to the ModRED MSR
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directly. Some complicated configurations formed by ModRED II MSRs are shown in

Figure 3.2.

In swarm robotic systems, configuration formation is known as pattern formation or

self-assembly. As the swarm robots are usually not equipped with connectors to connect

with other robots, instead they aggregate nearby to form different patterns. In [96], the

authors have defined self-assembly as the following: “self-assembly can be defined as

a reversible process by which pre-existing discrete entities bind to each other without

being directed externally”. There are many studies on autonomous self-assembly of robot

swarms. Alonso-Mora et al. [4] have solved the problem of forming artistic patterns by

miniature swarm robots where they are initially distributed arbitrarily (spatially) in an

environment and their final objective is to aggregate in such a way that they form the given

pattern. They have used Voronoi partitioning to divide the region, and then each robot is

allocated to unique partitions to go to for forming the desired shapes (shown in Figure 3.3).

Figure 3.3: Artistic patterns formed by robot swarms [4].

Similarly, distributed algorithms for shape construction using swarm robots [95] have

been proposed to solve the problem of arranging blocks to certain positions in a target

shape. These blocks are then carried by the robots to those locations to form the shape.
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Unlike other approaches, in this work, the authors have solved the self-assembly problem in

3D. Specific patterns, such as circle formation by asynchronous robots, have been studied

in [31, 28]. In [43], the authors have proposed distributed approach to solve the self-

assembly problem in S-bots swarm robotic systems. Recently, researchers have proposed

a programmable self-assembly based approach for a swarm containing a thousand robots

[79]. Not only in swarm robotic systems, self-assembly is a phenomenon which can be

observed in nature [96] that uses similar principles across length scales ranging from nano-

size DNA particles [98] to aggregation of social insects [23].

S1

S2

S3

S4

S5

Figure 3.4: Configuration formation problem in MSRs. Left: 5 modules are located at
arbitrary positions and have to achieve the target configuration (red dotted lines), Right:
Modules after achieving target configuration.

3.2 General Problem Formulation

Let A = {a1, a2, ...} denote a set of robot modules. Each ai ∈ A has an initial pose denoted

by aposi = (xi, yi, θi), where (xi, yi) denotes the location of ai and θi denotes its orientation

within a 2D plane corresponding to the environment. Each module has a unique identifier.

For the purpose of navigation, each module uses a map of the environment; the map is

decomposed into grid-like cells using a cellular decomposition technique. We assume that

initially all the modules are within each others’ communication range.

In the variant of configuration formation problem studied in this research work,

singleton robot modules, starting from arbitrary initial locations, are required to get into

a specified target configuration. The target configuration is represented as a graph, denoted
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Figure 3.5: Illustration of how the target configuration T is modeled as a graph.

by GT = (VT , ET ), where VT = {s1, s2, ...} is the set of vertices and ET = {eij = (si, sj)}

is the set of edges. Each vertex in VT is referred to as a spot that a module needs to

occupy. Each spot si ∈ VT is specified by its pose and its neighboring spots in the target

configuration, si = (sposi , neigh(si)), where neigh(si) ⊂ VT . An illustration is shown in

Figure 3.5.

3.3 Simultaneous Configuration Formation and

Information Collection

In this particular work, we impose another criterion on top of the configuration formation,

which is, modules need to plan their paths from their initial locations to the spots in the

target configuration in such a way that that the paths are maximally informative. For

information collection purposes a robot needs to sense the region it is situated in with

its sensors. We discretize the information collection procedure, by using C to denote the

set of information collection locations or cells in the environment. C can be decomposed

into two disjoint subsets, O and U , corresponding to the cells that are visited and not

visited by the robots. Note that, VT ⊂ C. Robot ai’s path from its current location to a

spot, sj , in a target configuration is defined as an ordered sequence of cells it visits, i.e.,
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Pij = {c1, c2, ..., sj} ⊆ C. Cost of a path Pij is defined by the number of cells present in

that path, i.e., cost(Pij) = |Pij| − 1.

To model the environmental phenomena generating the information, we have used

Gaussian processes (GP) [44, 47]. Modeling the environment as a GP requires the

assumption that all the sampling locations C in the environment have a joint Gaussian

distribution. A GP can be defined by its mean m(·) and its co-variance (kernel) k(·, ·)

functions. Given a set of measurements XO, we can predict the information measurement

in the rest of the unobserved locations U , conditioned on XO. A GP can be specified by

the following equations [44]:

µU |O = µU + ΣUOΣ−1
OO(XO − µO)

σ2
U |O = ΣUU − ΣUOΣ−1

OOΣOU

where µU |O is the conditional mean and σ2
U |O is the variance. ΣUO is the co-variance matrix,

with an entry for every location o ∈ O. Following GP formulations, the objective of

informative path planning is to plan a path which maximizes the entropy, where entropy is

given by:

H(U |O) =
1

2
log(2πeσ2

U |O) (3.1)

The main idea behind entropy maximization is to select the locations in the environment

which have the highest amount of uncertainty.

We have modeled the path planning with information collection problem as an instance

of the bounded-cost search problem [89]. In this problem, the evaluation function for a

cell is called its potential. The potential of a cell c is defined in our problem as u(c) =

B−g(c)
h(c)

, where g(c) is the cost of moving from the start cell(location) to cell(location) c,

h(c) is the estimated cost of moving from cell(location) c to the goal location, and B is

the budget that corresponds to the maximum of number of cells in any module’s path from
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its current position to the goal location, i.e., maximum allowable path length. From this it

follows that the cost of the path used by module ai to occupy spot sj is budget-limited to

B, i.e., cost(Pij) ≤ B, ∀ai ∈ A, sj ∈ VT . The informativeness of path Pij is computed as

inf(Pij) =
∑

∀ck∈Pij
H(ck).

For finding the path from every module’s current location to its goal position in the

target configuration, a best-first technique is used which explores nodes with larger entropic

potential (hu(·)) values, defined as hu(c) = u(c) + H(c|O). Formally we can define the

studied problem as follows: Given a set of singleton modules A and a set of spots VT

representing the target configuration, find a suitable allocation f : A → VT such that

∀ai ∈ A, Pij = arg max
P∈Π,sj∈VT

inf(P ) and cost(Pij) < B; ∀ak 6= ai, f(ai) 6= f(ak),

where Π denotes the set of all possible paths from ai’s current location to the goal location.

3.3.1 Algorithm Description

The solution approach is divided into two phases - a planning phase, where modules select

spots in the target configuration and an acting phase, where modules move to their selected

spots.

Planning Phase

In the beginning of the planning phase, all the modules broadcast their positions and

orientations. We assume that each module autonomously and independently plans its paths

to all the spots, and a module is aware of only its local planning information for any spot.

Consequently, multiple modules could have identical maximum informative paths for the

same spot and end up choosing it to move to. This could result in occlusions to each other,

and, in the worst case, a failure of the configuration process. To avoid such a situation,

we propose an additional coordination mechanism by employing a centralized supervisor

to resolve conflicts between modules for the same spots in a structured manner, without

incurring a high computational overhead.
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Computing Informative Paths using Entropic Potential Search (EPS) Algorithm:

Our proposed planning mechanism operates in two phases, as shown in Algorithm 2. In the

first phase, called the computation phase, each module ai first calculates informativeness

of the paths from its current location to each of the spots in VT , using the Entropic Potential

Search algorithm (EPS) (Algorithm 3). This is a modified version of the PTS algorithm

proposed by Stern et al. [89]. The algorithm employs a greedy best-first technique to

explore the cells with high entropic potential values. The EPS algorithm takes a module’s

current location and one of the positions in the target configuration as input, along with

the bounded cost (budget) B. A data structure, called OPEN , is maintained for holding

nodes for further exploration. Another data structure, called CLOSED, is maintained for

holding the nodes which have been explored already.

In each iteration, the node, nmax, with the highest entropic potential value is expanded.

If the current neighbor cell, nn, of nmax is already in OPEN with smaller or equal g(·)

value, then nn is ignored. Because we assume the heuristic function, h(·), to be admissible,

it is necessary to check whether g(nn)+h(nn) surpassesB. If g(nn)+h(nn) > B, then nn

is pruned, as it can never be a part of the required bounded cost solution. If nn is the goal

cell, then the search procedure terminates. Otherwise, nn is pushed back into OPEN , if

the entropy value of cell nn, H(nn), is greater than 0, and the search continues1. This way

we never explore a cell which does not guarantee to have any entropy value. Once EPS is

terminated either we find a path with cost lower than B which is also highly informative or

EPS returns null to notify that no such path with cost lower than B exists.

Every module individually runs the EPS algorithm for every spot sj ∈ VT . Each module

sends its list of spots with computed informativeness to a supervisor node for the following

allocation phase.2

Allocation: During the allocation phase, the supervisor waits until it receives the sorted

1Initial cells of the modules have been treated as obstacles and therefore restricted to be added toOPEN .
2The supervisor could be a centralized external entity or one of the modules with higher computational

capabilities elected using a leader election protocol.
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lists of spots from all the modules. Then it proceeds to allocate spots in rounds, while

allocating one spot in each round, starting from s1. In round j, spot sj is allocated to the

module ai that has the highest informative path inf(Pij) to sj . If a module is allocated

in a certain round, it is not considered for allocation in subsequent rounds. In case every

available module’s path cost exceeds budget B, it means that there is no module available

that can occupy sj while remaining within the battery constraint. In such a case, the module

that has the lowest cost path Pij among the conflicted modules for spot sj is allocated to

sj . A similar strategy is used even if all the modules have the same informative paths for

a specific spot, where path cost is below B. If ties still remain after applying the above

strategy, they are broken at random. At the end of the allocation phase, the supervisor

sends the list of allocated spots to all the modules.

Algorithm 2: Spot Allocation (SA) Algorithm
1 Phase 1: Computation Phase by Modules
2 Each module ai will do the following:
3 For all spots sj ∈ VT , execute pathFormation() algorithm and find a set of paths, P ,

to all spots.
4 Send the list of spots along with the informativeness values of all paths to all spots to

the supervisor.
5 Phase 2: Spot Allocation by Supervisor
6 wait until ranked list of slots recd. from all modules
7 for each spot sj do
8 winners← arg maxai∈A inf(Pij)
9 if only one module ai in winners then

10 winner ← ai

11 else
12 // more than one winner module: multiple modules with same

informativeness for sj
13 winner ← arg minai∈winners cost(Pij);
14 // ties are broken randomly

15 add (winner, sj) to f(·);
16 remove winner from A and remove sj from VT ;

17 Send set of spot allotments f(·) to every module ai.
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Algorithm 3: Entropic Potential Search (EPS) Algorithm
1 pathFormation()

Input: B: Budgeted cost; ccurr: Current cell of the module and sk: A node in the
target configuration.

Output: Pik ∈ Π: Generated path for module ri.
2 OPEN ← ccurr.
3 CLOSED ← {∅}.
4 while OPEN is not empty do
5 nmax ← arg max

n∈OPEN
hu(n)

6 for each neighbor nn of n do
7 if nn is in OPEN or CLOSED and g(nn) ≤ g(nmax) + cost(nmax, nn)

then
8 Continue with the next neighbor of n.

9 g(nn)← g(nmax) + cost(nmax, nn)
10 if g(nn) + h(nn) ≥ B then
11 Continue to the next successor of nmax
12 if nn = sk then
13 return the best path to sk → Pik

14 if nn ∈ OPEN then
15 Update the g(nn) value of nn in OPEN
16 else
17 if H(nn) > 0 then
18 Insert nn to OPEN

19 Insert nmax to CLOSED

20 return Null // no solution exists which has lower cost than B

Acting Phase

In the acting phase, the modules move to their respective allocated spots in a sequential

manner. No module is allowed to move until all the spots are allocated using the allocation

phase. In the absence of a proper order of modules to occupy spots, deadlock situations

might arise. For example, in Figure 3.4, if all the spots except S1 are assumed first, then

when the module which has selected the spot S1 arrives, it will not be able to move to S1,

unless other modules disconnect and make space for it to move. To avoid repeated connects

and disconnects between modules, we allow the module which has selected the spot with

the highest betweenness centrality measure in GT [13], first to occupy its position (ties are
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broken at random). Once it is in its proper position, it will broadcast a message to notify

that it has concluded locomotion, to all other modules. Next the spots neighboring the

center spot will be occupied by modules and so on. Techniques described in [38] can be

used for locomotion of the modules.

Each module, ai, maintains a list of its visited cells, CVi ∈ C, while moving towards

its goal position in the target configuration. In a GP, with a newly added set of visited

cells, the estimated entropy of the unobserved cells gets updated as given by Equation 3.1.

To incorporate this change and also to gain maximum information from the environment,

modules need to update their paths, whenever possible. Modules update their initially

calculated paths by following Algorithm 4. After visiting O new cells, each module

executes the EPS algorithm with its remaining budget.

Algorithm 4: Movement Strategy Of Modules
Input: Br: Remaining budget; ccurr: Current cell of the module and sk ∈ VT : Goal

position in the target configuration.
1 P̄ik ⊂ Pik: Module ai’s remaining path from ccurr to sk.
2 Update the set of visited cells, CVi .
3 if module ai has visited O cells then
4 Execute pathFormation(Br, ccurr, sk) to find a new path, P ∗ik.
5 if inf(P ∗ik) > inf(P̄ik) and cost(P ∗ik) ≤ Br then
6 Follow the new path P ∗ik
7 P̄ik ← P ∗ik
8 else
9 Follow initially generated path P̄ik

10 if module ai has reached its goal position sk ∈ VT then
11 Broadcast REACHED message

If a new path from the module’s current cell to the goal position can be found while

remaining within the budget constraint and improving the informativeness, then the module

selects it to move towards its allocated spot. Otherwise it follows the earlier path P̄ik. Once

a module reaches its goal position in the target configuration, it broadcasts a REACHED

message to notify other modules. Modules are allowed to move exclusively in the order of

the centrality of selected spots; ties are broken at random.



55

45 50 55

160

180

200

220

240

260

280

300

320

Budget

T
im

e
 (

m
s
.)

X coordinate

Y
 c

o
o

rd
in

a
te

5 10 15 20 25 30

5

10

15

20

25

30

B = 45

X coordinate

Y
 c

o
o

rd
in

a
te

5 10 15 20 25 30

5

10

15

20

25

30

B = 55

(a) (b) (c)

Figure 3.6: (a) Run times of EPS algorithm for different budgets; (b), (c) Nodes explored
(shown in white color) by EPS algorithm, with B = 45 and 55 respectively.

3.3.2 Experimental Evaluation

Experimental Settings

We have implemented the algorithms in simulation on a desktop PC (Intel Core i5 -960

3.20GHz, 6GB DDR3 SDRAM). The environment is divided into a 30 × 30, 4-connected

grid structure. Each cell in the environment is represented by its centroid. The information

value of each cell in the environment is drawn from U [1, 10]. We have tested instances

where random target configurations, in forms of graphs, have been generated of sizes, |

VT |= 10 through 50, inside the environment. Each node in the target configuration has

between 1 to 4 neighbor nodes and each edge between two neighbor nodes has unit distance.

In all the cases, |A| = |VT |. Each module is modeled to be a cube of size 1 unit ×1 unit ×1

unit; their initial cells are drawn uniformly from U[(0, 29), (0, 29)]. Similar to [65], 40%

of total cells and their corresponding ground truth data has been provided to the modules

to learn the mean and covariance structure of GP through maximum likelihood estimation.

Budget, B, has been set to 45 cells unless otherwise mentioned. We have used Manhattan

Distance (MD) for calculating cost of a path. Each singleton module runs the SA algorithm

and then moves to its allocated or selected spot in GT . Each test is run 5 times.

We have also compared the performance of the SA algorithm with an auction algorithm

[10], which is a classical assignment algorithm. For implementing the auction algorithm,
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each module is modeled as a bidder and each spot is modeled as an item, which modules

are bidding for.

Experimental Results

First, we have tested the run times of the EPS algorithm for different budget amounts.

For fixed start and goal locations, B is varied through [45, 50, 55], whereMD(start, goal)

> B. The result is shown in Figure 3.6.(a). We can see that with increasing amount of

budget, the run time also increases, as the algorithm needs to search for more possible

paths in the search space. Figure 3.6.(b) and (c) show the cells explored by the EPS

algorithm for B = 45 and 55 respectively in a particular instance. We have observed

that, with B = 55, on an average the EPS algorithm explored about 50% more cells in the

environment than with B = 45, which also can be noticed in Figure 3.6.(b) and (c). Next,

we compared the performances of the proposed SA algorithm and the auction algorithm. In

terms of estimated information collection, both the allocation algorithms performed almost

equally (Figure 3.7.(a)). In terms of total number of messages sent by the modules in

the planning phase, the SA algorithm outperformed the auction algorithm (Figure 3.7.(b)).

For 50 modules, using the auction algorithm, modules have sent about 104 times more

messages. Figure 3.7.(c) shows that auction algorithm takes significantly higher time (with

50 modules, the auction algorithm takes 3 times more) than the proposed SA algorithm.

Next, we have varied the value of O between B
2

and B
10

to evaluate the effect of

frequency of path updates on the information gain and time taken to run the algorithm.

This test has been performed with 1 module only. The result is shown in Figure 3.7.(d).

We observe that although with increasing number of path updates, the module earned up

to 88% extra information than estimated, the running time also increased considerably. For

example, with O = B
2

, run time is 20 ms., whereas with O = B
10

, run time increased to 860

ms. In Figure 3.7.(e), we have shown how with acting phase completion, the percentage

of total information collected by the modules changes. Finally, Figure 3.7.(f) shows an
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Figure 3.7: (a) Comparison of estimated information collection between SA and auction
algorithm.; (b) Comparison of no. of messages sent in planning phase with auction
algorithm; (c) Comparison of planning times between SA and auction algorithm; (d) Effect
of changing values of O; (e) Change in collected information over time; (f) Configuration
formation by 10 modules: boxed + and circled ∗ indicate the start and final locations
respectively.
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instance of the configuration formation procedure. In this experiment, 10 modules start

from arbitrary locations in the environment (boxed + marked points) and form the target

configuration, by following the maximally possible informative paths from their initial

locations to the allocated goal spots in the target configuration (circled ∗ marked points).

3.4 Distributed Configuration Formation From Initial

Smaller Configurations

Unlike our previous configuration formation work, in this work, we assume that the

modules can either be singletons or can be part of any arbitrary shaped configuration in

the beginning. An illustration is shown in Figure 3.8.

12
3

45
6

7
8

9

10
11

12

13

14

15

16
17

2
3 4

5

6
7

8

16
17

10

11
12 13

9
1
15

14

(a) (b)

Figure 3.8: (a) A singleton and three initial configurations consisting of 2, 6 and 8
modules respectively, and desired target configuration (marked with yellow dotted lines)
(b) target configuration involving all 17 modules connected in ladder configuration; module
numbers marked in white, yellow and red are retained between between initial and target
configurations.

3.4.1 Notations

A configuration is a set of modules that are physically connected. A configuration is

denoted as Ai = {a1, a2, .., aj} ⊆ A. The topology of configuration Ai is denoted as a

graph, GAi = (VA, EA), where VA = Ai and EA = {ekj = (ak, aj) : aj and ak are
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physically connected in Ai}. Each configuration has a module that is identified as a leader

[8] and the leader’s pose is used to represent the configuration’s pose.

Visual representations of the two graph structures used here have been shown in Figure

3.9. Even though we have modeled the initial and target configurations as graphs, for testing

purposes, we have used only tree configurations. In the rest of the chapter, for the sake of

legibility, we have slightly abused the notation by using T instead of GT to denote the

target configuration and S instead of VT to denote the spots in the target configuration. Let

costloc() denote the locomotion cost from aposi to sposj , costdock denote the cost of docking

ai with modules in neighboring spots of sj and costundock denote the un-docking costs of

ai from neighboring modules in Ai.

s1 s2 s3

s1 s2 s3

s4

s5

T T
s4

s5

a3

a1

a2

a3

a1

a2

AiAi

(a) (b)

Figure 3.9: (a) Graph abstraction of T ; (b) Graph abstraction of Ai.

Problem Setup

To formulate the configuration formation problem as a utility maximization problem,

we first represent the utility of a single module to occupy a single spot in the target

configuration, and then extend that representation to a set of modules connected as a

configuration to occupy a set of adjacent spots in the target configuration. A single

module’s utility for a spot is given by the value of the spot to the module minus the costs

or energy expended by the module to occupy the spot. As reported in [56], the locomotion

of an MSR is significantly affected by the locomotion of the module(s) in the MSR that
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has more neighbors in the MSR’s configuration. For example, for the configuration shown

in Figure 3.8.(a), module 12’s position at the center of the 6-module configuration is more

critical than the other modules for locomotion as it has more neighbors. If module 12

becomes un-operational at any point of time, then four of its connected neighbor modules

need to un-dock to get rid of module 12 and then reconnect again to continue working. On

the other hand, if any of the terminal modules (e.g., 14) becomes un-operational, then that

particular module can be detached from the MSR body with just one un-dock operation.

To capture this position dependency, we have used a concept from graph theory called

the betweenness centrality [13] to denote the value of spot si, given by:

V al(si) =
∑

si 6=sj 6=sk

σsj sk(si)

σsj sk
(3.2)

where σsj sk is the total number of shortest paths between any pair of nodes sj and sk in GT

and σsj sk(si) is the number of shortest paths between sj and sk which go through si.

The cost to a module ai located at aposi to occupy spot sj at sposj , is calculated as a sum

of ai’s locomotion costs to reach and occupy spot sj , and any costs to undock and re-dock

with neighboring modules before and after it occupies the spot [27]. This is denoted as the

following:

costai(sj) = costloc(aposi , sposj ) +
∑

ak∈neigh(sj)

costdock(ai, ak)+

∑
ai′∈neigh(ai)

costundock(ai, ai′) (3.3)

Note that energy requirements for locomotion of a module are generally higher than those

for docking the module with another module as locomotion requires continuous power

to all motors and much higher torques than docking; also, docking two modules requires

aligning their docking ports first, which takes more energy than un-docking two modules.

When a set of modules is connected in configuration Ai, the cost of occupying a set of
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spots Sj ⊆ VT in the target configuration is given by:

costAi(Sj) =
∑

sl∈Sj ,ak∈Ai

costak(sl)− frwd(|Ai|) (3.4)

where frwd(|Ai|) = |Ai|−2
|A| is a reward function for retaining connections between modules

in the existing configuration Ai while being allocated to the target configuration. Because

frwd(|Ai|) increases (and costAi() decreases) with the size of Ai, it is cost-wise better

to break smaller configurations than to break larger configurations to fit into the target

configuration. So, the reward function ensures that keeping the initial configuration intact

in the target configuration, whenever possible, results in lower cost. Using the above

formulation, it can easily be seen that when Ai can fit entirely into VT (i.e., Sj = VT ),

costAi(Sj) <
∑

sj∈Sj ,ai∈Ai
costai(sj).

The utility of a spot to a module determines how profitable or beneficial that spot is for

the module if it finally ends up occupying that spot. The utility of module ai for spot sj is

given by

Uai(sj) = V al(sj)− costai(sj) (3.5)

Similar to the cost function described above, the utility for initial configurationAi to occupy

a set of spots Sj ⊆ VT is given by the sum of the utilities of the individual modules

comprising Ai to occupy spots in Sj ,

UAi(Sj) =
∑
sl∈Sj

V al(sl)− costAi(Sj) (3.6)

Using the above formulation, the spot allocation problem has to assign modules to spots so

that each module is allocated to the most eligible (highest utility earning) spot and no two

modules are assigned to the same spot.

Formally, we can define the objective function as follows: Given a set of modules A in

a set of initial configurations, and a set of spots S representing the target configuration, find



62

a suitable allocation P ∗ : A→ S such that

P ∗ = arg max
∀P

(
∑

ai∈A,sj∈S

Uai(sj) +
∑

Ai⊆A,Sj⊆S

UAi(Sj);

∀ak 6= ai, P ∗(ai) 6= P ∗(ak). (3.7)

Note that, if two modules ai and ak both have the same highest utility for spot sj , then only

one of them can be allocated to and occupy sj . In the next section, we describe our spot

selection algorithm that provides a suitable allocation of modules to spots for the above

utility maximization problem.

3.4.2 Algorithms for Configuration Formation

We divide the problem into two phases - a planning phase, where modules select spots in

the target configuration, and an acting phase, where modules move to their selected spots

and connect with other modules.

Planning Phase

In the beginning of the planning phase, all the modules broadcast their positions

and orientations. After having this information, each module calculates the location

corresponding to the center target configuration T in the environment, as the mean of all

spots’ positions. However, a specific desired location can also be given as an input to the

modules by the user.3 Singleton modules then rank themselves according to their distances

from the center of T ; the rank of a configuration is calculated using the distance of the

configuration’s leader from the center of T . Singletons and configurations select spots in

T based on their rank. Because costloc has the most significant contribution to the cost

function, the distance-based rank ensures that modules and configurations with lower costs

3A common coordinate system can be maintained by modules for localizing themselves following the
model described in [92].
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(higher utilities) get to select spots in T first. We describe the spot selection techniques in

the planning phase in two parts - spot selection by singleton modules and spot selection by

configurations.

Algorithm 5: Spot Allocation Algorithm for Singleton Modules.
1 procedure: spotAllocation()

Input: S: set of spots, S̄: set of (spot, selector) pairs; acurr: module currently
selecting spot.

2 Ssort ← Sort S in descending order of utility of spots
3 for each sj ∈ Ssort do
4 D ← 0;
5 if (sj is not selected by another module) ∨ ((sj is selected by module

ablock /∈ Ai ⊆ A)∧ (evict(acurr, ablock, D) = TRUE)) then
6 Select spot sj for acurr;
7 Broadcast updated set of spot-selector pairs S̄;
8 return;

9 Broadcast NO SPOT FOUND message;

Algorithm 6: Eviction algorithm used by modules to select alternate spots.
1 procedure: evict(acurr, ablock,D)

Input: acurr: module currently selecting spot scurr; ablock: the module which has
already selected acurr’s best spot scurr; D: current recursion depth.

2 if D < Dmax then
3 sblock ← arg max

si∈S\scurr
Uablock(si);

4 scurr′ ← arg max
si∈S\scurr

Uacurr(si);

5 if (Uacurr(scurr) + Uablock(sblock) > Uacurr(scurr′) + Uablock(scurr)) then
6 if sblock is not selected by any module then
7 return TRUE;
8 else
9 //a′block /∈ Ai ⊆ A is the module occupying sblock

10 return evict(ablock, a′block,D + 1);

11 return FALSE;
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Spot Selection by Singleton Modules

A singleton module acurr selects a spot to occupy using Algorithm 5. acurr first sorts the

spots in order of its expected utility Uacurr(sj),∀sj ∈ S. If a spot sj has not already

been selected by another module, or, if it has been selected by another singleton module

(module that is not part of a configuration) that can be evicted using the evict method, then

acurr selects sj and broadcasts the updated spot-selector pairs to all other modules. If acurr

cannot evict the module currently occupying its highest utility spot, then it successively

reattempts spot selection using the spots for which it has the next highest utilities. If none

of the spots in S can be selected by acurr, it broadcasts a NO SPOT FOUND message to

all other modules.

Eviction Strategy: The evict method is used by module acurr to cancel the selection

of spot scurr done previously by another singleton module ablock. Note that eviction can

be done only for a singleton module, and not for modules that are part of configurations,

as breaking existing configurations will incur additional time as well as costs for docking

and un-docking modules. The method first checks the expected combined utility between

acurr and ablock for selecting their most (conflicting) and second-most preferred spots. If

this combined utility is greater when acurr selects scurr and ablock selects its next highest

utility spot that it can occupy, then acurr evicts the selection of scurr by ablock, as shown in

the evict() method in Algorithm 6. To limit excessively long cycles of eviction, we have

allowed at most Dmax successive evictions. An illustration of the eviction process with

Dmax = 3 is shown in Figure 3.10.

Block Allocation by Modules Connected in a Configuration

Preliminaries: Following are some definitions which will be needed in explaining our

proposed approach.

Definition 2 Graph Isomorphism [75]: Two graphs G1 = (V1, E1) and G2 = (V2, E2) are
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Figure 3.10: Illustration of eviction algorithm for 3 modules with Dmax = 3.

isomorphic if there is a one-to-one mapping between the nodes and edges in G1 and G2.

Formally, this bijection relationship exists - f : V1 → V2.

Loosely speaking, if two graphs are isomorphic, then they will have same number of nodes

and if any two nodes in one graph are adjacent, then those nodes will be adjacent in

the other graph as well. Graph isomorphism is one of those problems which are neither

solvable in polynomial time nor can they be proved to be NP-complete; rather they belong

to an ‘intermediate’ class [59]. Unfortunately, from an algorithmic point of view, even if a

problem cannot be proved to be NP-complete, being outside of the P-class makes it difficult

to solve anyway (in the worst-case scenario). Even though graph isomorphism is a well-

known notorious problem to solve [59], there are efficient linear time algorithms available

for tree isomorphism [2].

Definition 3 Subgraph Isomorphism [94]: Two graphs G1 = (V1, E1) and G2 = (V2, E2)

are subgraph isomorphic if any subgraph G′1 of G1 (G′1 ⊆ G1) is isomorphic to G2.

Usually, in case the of subgraph isomorphism, one graph is larger in size than the other

and the problem becomes to find a subgraph of the larger graph which is isomorphic to the

smaller graph. As can be understood, there can be multiple isomorphic subgraphs available
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Algorithm 7: Block Allocation Algorithm that a set of modules connected in
configuration Acurr uses to select a set of maximally adjacent spots in the target
configuration.
1 blockAllocation(Acurr, S̄)

Input: S̄: Set of (spot, selector) pairs; Acurr: Set of modules connected together as a
configuration and currently selecting spots.

2 Tsub ← Set of all subgraphs of T , which are isomorphic to Acurr.
3 if Tsub == {∅} then
4 Tsub ← Set of all maximum common isomorphic subgraphs of T and Acurr.

5 for each tk ∈ Tsub in descending order of utility UAi(tk) do
6 if No spot in tk has been selected yet then
7 Select tk;
8 Broadcast updated set of spot-selector pairs S̄;
9 else

10 Sblock ← set of spots ∈ tk already selected by {ablock} ⊆ A \ Acurr
11 si ← spot matched to ai ∈ Acurr but already selected by ablock ∈ A \ Acurr
12 if evict(ai, ablock) = TRUE for every si ∈ Sblock then
13 Select tk;
14 Broadcast updated set of spot-selector pairs S̄;
15 else
16 if all tk ∈ Tsub have been checked then
17 for each ai ∈ Acurr where evict(ai, ablock) = FALSE and si ∈ tk do
18 Disconnect ai from Acurr
19 Acurr ← Acurr \ ai;
20 spotAllocation(ai, S̄);
21 Broadcast updated set of spot-selector pairs S̄;

22 if selected tk is MCS of Acurr then
23 for every ai ∈ Acurr, where si 6∈ tk do
24 Disconnect ai from Acurr
25 Acurr ← Acurr \ ai;
26 spotAllocation(ai, S̄)

27 Broadcast updated set of spot-selector pairs S̄;

28

in the smaller graph. This problem is a well-known NP-complete problem [22]. However,

there are approximation algorithms proposed in the literature which solve the problem

in polynomial-time for certain graph structures like trees [83]. We are also interested in

the isomorphic subgraphs which are also maximum in size, which leads us to our next
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definition.

Definition 4 Maximum Common Subgraph (MCS): Given G1 = (V1, E1) and

G2 = (V2, E2), a MCS is a subgraph consisting of the largest number of edges isomorphic

to both G1 and G2.

The problem of finding a MCS between two graphs is a combinatorially intractable

NP-complete problem [75] for which no algorithm of polynomial-time complexity exists

for the general case. For finding all possible MCSs having k nodes in a pair of graphs

G1 = (V1, E1) and G2 = (V2, E2), the total number of comparisons we have to do is:

V1!V2!

(V1 − k)!(V2 − k)!k!
(3.8)

As can be seen in this equation, even with small values of V1, V2 and k, computational

comparisons can reach an astronomical value. Although it is a computationally difficult

problem to solve in graphs, we should mention that polynomial-time approximation

algorithms for finding maximum common subtrees can be found in the literature [3], [76].

As discussed earlier, our main objective is to place the initial configurations (Ai) into the

target configuration (T ) with least number of disconnections between the modules present

in Ai. We have modeled Ai and T as graphs. Therefore if GAi is an isomorphic subgraph

of T , then Ai can readily be allocated to T (provided the spots are free). On the other hand,

if GAi is not an isomorphic subgraph of T , then we look for a MCS so that we can preserve

most of the connections in Ai while allocating it to T while the rest of the modules in Ai

which are not part of that MCS are detached from it.

Algorithm Description: The technique used by configuration Acurr to select a set of

connected spots in the target configuration T is given by the blockAllocation procedure

shown in Algorithm 7. The algorithm is executed on lcurr, the leader of configuration

Acurr, selected using techniques in [8].
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To place Acurr into T without breaking the connections between its modules, we have

to find if T , or a subgraph of T , is isomorphic to Acurr. An example of this problem is

shown in Figure 3.11(a) that shows all possible subgraphs of T which are isomorphic to

the configuration Ai using different colors. This problem requires finding the isomorphic

subgraphs (IS) [22] of T . However, if Acurr is not isomorphic to T or a subgraph of T ,

then Acurr cannot be placed into T without breaking its connections and, thus, changing

its shape. In such a scenario, our objective is to reduce the number of connections that

are removed between Acurr’s modules. For this, we have to find the maximum number of

modules in Acurr, which can be placed directly into T , without first disconnecting them.

An example is shown in Figure 3.11(b), where the red dotted boxes indicate the maximum

common subgraphs of T and Ai, which are isomorphic.

This problem is an instance of the maximum common subgraph (MCS) isomorphism

problem as discussed earlier [75], where, given two graphs T and Acurr, the goal is to

find the largest subgraph which is isomorphic both to a subgraph of T and Acurr. If

|VAcurr | > |VT |, then we find the maximum size subgraph of T which is isomorphic to

A′curr ⊆ Acurr and allocate the spots to matched modules, using a similar technique as in

the blockAllocation algorithm. On the other hand, if |VT | = |VAcurr | and GT , GAcurr are

isomorphic, then Acurr can be allocated to T ; otherwise, we find the MCS between Acurr

and T which can be readily allocated to T while the rest ofAcurr can be allocated following

the proposed blockAllocation algorithm.

Our algorithm first finds subgraphs of GT that are isomorphic to GA. If there are

no isomorphic subgraphs, it checks for maximal common isomorphic subgraphs. These

subgraphs are stored in set Tsub (lines 2 − 4). As modules want to maximize the utility

earned from the allocation, the subgraphs tk within Tsub are ordered by utility to Acurr. The

algorithm then inspects each subgraph tk. If all the spots in tk are free, then tk is selected by

Acurr and lcurr broadcasts a message to notify every module in A about this selection (lines

6− 9). On the other hand, if any spot si ∈ tk is already selected by a singleton ablock, Acurr
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Figure 3.11: (a) A scenario where the colored subgraphs of T are isomorphic to Ai, (b) A
scenario where a subgraph of t is isomorphic to a subgraph ofAi. The red dotted box shows
the maximal common subgraph between T and Ai; the unmatched module a3 is detatched
from Ai and allocated to spot s1 by our block selection algorithm.

checks to see if it can evict ablock using the evict() method. If eviction is successful, tk is

selected for Acurr and the updated set of spot-selector pairs are broadcast to all modules in

A (lines 11− 15). If eviction is not successful, it means that some modules in Acurr could

not occupy some spots in the target configuration (or its subgraph) as some other modules

that did not belong to configuration Acurr had already selected those spots. In this case, the

modules of Acurr that could not find a spot in tk will be disconnected from Acurr. Single

spot selection algorithm is then used to select other spots in tk for these modules (lines

17− 21).

Finally, because selection of tk by a configuration Acurr is done by means of matching

modules of Acurr to unique spots in tk, if tk is an MCS of Acurr (i.e., |Vtk | < |VAcurr |),

then some of the modules in Acurr will not be matched to any spot in tk. Those

unmatched modules will disconnect from Acurr, become singletons and will execute the

spotAllocation() algorithm, in the order of their distances from the center of T , to get

allocated to a spot (lines 22−24). Note that all other modules inAcurr whose matched spots

in tk were free to occupy, will occupy the matched spots while retaining their configuration.

The updated set of spot-selector pairs are broadcast to all modules.
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Algorithm 8: Movement strategy for the modules to assume appropriate spots in T .
1 procedure: MoveToSpots()

Input:
Ssort ← Sorted S in descending order of betweenness centrality values.
ac ← The module which is allocated to the central spot (highest betweenness
centrality).
sc ← The central spot.
A′ ← Set of modules which have already assumed their allocated spots.
Ā← Set of modules which will take neighboring spots of the modules in A′.

2 if ac is a singleton then
3 Move to sc.
4 A′ ← A′ ∪ ac.
5 else
6 //ac ∈ Ai
7 Ai moves to T and therefore ac is allocated to sc.
8 A′ ← A′ ∪ Ai.
9 while configuration is not completely formed do

10 for each a′ ∈ A′ do
11 Notify other modules of the spot that a′ has assumed.

12 Update Ā.
13 Clear A′ (← ∅).
14 for each ā ∈ Ā do
15 Move to T and assume allocated spots.

16 Update A′.

Acting Phase

After the planning phase is finished and all the spots in the target configuration have been

selected by modules, the modules have to move to their respective selected spots. Note that

no module moves until all the spots are selected. If there is no proper order of modules for

assuming spots, then a deadlock situation might arise. For example, in Figure 3.8(b), if all

the modules occupy their spots before module 5 does, assuming module 5 is a singleton,

then it will be difficult for module 5 to occupy its spot properly, unless other modules give

it space for moving. But then they will have to align themselves again, which is a difficult

task. To avoid this, the module which has selected the spot with highest betweenness

centrality value (or, central spot), will move first and assume its position. Once it is in
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(top)

(bottom)

Figure 3.12: Illustration of acting phase: Dotted boxes represent the spots in T . First,
the spot with the maximum betweenness centrality gets allocated (black spot). Next its
neighbors get allocated (red spots) and finally neighbors of red spots get allocated (yellow
boxes). (top) all modules are singletons; (bottom) red modules on the left side were part
of an initial configuration. Therefore they occupied the spots at the same time even though
two of the extreme red modules were not immediate neighbors of the central black module.

its proper position, it will broadcast a message to notify this to all other modules. Next

the spots neighboring the center spot will be filled and so on. The procedure is shown in

Algorithm 8.

If some spot si is allocated to a module which is part of an initial configuration Aj ,

then the whole configuration moves together to assume the allocated spots. As the initial

configuration is a connected graph, therefore si’s neighbors and their neighbors will get

filled up by this. Next, the spots adjacent to Aj’s allocated set of spots and the empty

spots which are closer to si which did not get assumed because of Aj’s allocation will be

assumed. Similar inside-out growth approaches have been proved to be very effective in

mitigating the challenges like hole covering, deadlock avoidance etc. in swarm robotic self-

assembly [79][95][31] and also in our earlier work of configuration formation in modular

robots from singleton modules [32]. Techniques described in [38] can then be used for

locomotion of the modules.
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Theoretical Analysis of Algorithms

In this section, we provide the theoretical analysis of our proposed algorithms for singleton

and initial configuration allocation.

Theorem 1 spotAllocation and blockAllocation algorithms are complete when sufficient

numbers of modules are available to form desired target configurations.

Proof: We prove the completeness of the algorithms by showing that there is no empty

spot or hole in the target configuration when the number of modules is at least equal to the

number of spots in the target configuration T , i.e., when |A| ≥ |S|. A hole exists in T

if there is a spot sh that is not occupied by any module. This can happen because of two

conditions: 1) No module has selected sh, or, 2) module ah, which selected sh, could not

reach its spot because another module blocked the path to its selected spot by occupying

a spot that was further from the center of T than the selected spot. We show that these

two conditions cannot arise. If |A| ≥ |S|, then because of the recursive approach in the

evict method of Algorithm 5, each module will try to select a spot in T , as long as there

are available spots. This guarantees that condition 1 never arises as at least one module ah

will select sh. Condition 2 will never arise because, as described in Section 3.4.2, modules’

priority to move is based on the betweenness centrality of their selected spots, and spots

nearer to the center of T are occupied first, followed by outer ones. In other words, no

module will occupy an outer spot before its neighboring spot, that is nearer to the center of

the target configuration, gets occupied. Consequently, T cannot have a hole. Hence proved.

Lemma 3 Any module ai allocated to any spot sj before the evict() method will still be

allocated to some spot sk after the execution of the evict() method even if sk 6= sj .

Proof: We prove this by contradiction. Let us assume that as a result of the evict() method,

ai will be allocated to a null spot, sk, i.e., sk = NULL. But according to our proposed

eviction strategy, if ai does not get a spot to be allocated to, then the module which is
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trying to evict it will not be able to do that and as a result, ai will still be allocated to its

spot sj 6= NULL. Therefore, the evict() method will not reduce the number of modules

that are already allocated to some spots.

Corollary 1 The number of modules allocated to unique spots in the target configuration

increases monotonically over time.

Lemma 4 Eviction of module is eligible iff the total utility earned by the modules

increases.

Proof: We prove this by contradiction. Let’s assume that module ai evicts another module

aj from spot sk and then aj selects it’s next highest utility spot sl. If U∗ and U ′ denote the

total utility earned by all the modules with and without this eviction and sk′ denote ai’s next

highest utility spot, then we assume U∗ < U ′. For the sake of simplicity, let’s assume that sl

was not selected by any other module before and no other modules are executing the evict()

function. So, U∗ = Uai(sk) + Uaj(sl) + U rest and U ′ = Uai(sk′) + Uaj(sk) + U rest. From

algorithm 6, we can guarantee that eviction is possible iff Uai(sk) + Uaj(sl) > Uai(sk′) +

Uaj(sk) and therefore U∗ > U ′. Hence our initial assumption was incorrect and it’s proved

that the evict() function maximizes the total utility.

Theorem 2 spotAllocation algorithm returns a Pareto-optimal allocation between

modules and spots, i.e., any module’s earned utility cannot be improved without making

another module’s utility worse.

Proof: Let si,k denote the k-th highest utility spot for module ai. Because each module

orders the spots based on utilities, it follows that Uai(si,k) > Uai(si,k+1). Consider two

modules ai and aj that have the highest utility for the same spot s (i.e., si,1 = sj,1 =

s′, but Uai(s
′) > Uaj(s

′). Also, assume that aj has selected spot s′ first. Now, if the

spotAllocation allocates ai to its next best spot, si,2 and aj remains at s′, then the total

utility is U1 = Uai(si,2) + Uaj(s
′). On the other hand, if the spotAllocation method evicts
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aj from s′ and allocates it to its next best spot sj,2 (assuming it is free), then the total

utility becomes U2 = Uai(s
′) + Uaj(sj,2). From Algorithm 5, if eviction is possible, then

U2 > U1. On the other hand, if eviction does not happen, then it implies U1 > U2. For

any other allocation strategy that does not do eviction even if U2 > U1, then the total

utility earned by the alternate allocation strategy is always less than the utility earned by

the spotAllocation algorithm. From the above equations, we can conclude that, if any two

modules ai and aj have same ranking for a particular spot, s′, then one of the modules will

be allocated to that spot and the other will be pushed to its next highest utility spot, i.e., its

earned utility reduces, and no other allocation would increase their utilities as well as the

overall utility. Hence the allocation strategy is Pareto-optimal.

Lemma 5 Both spotAllocation and blockAllocation algorithms are deterministic in

nature, i.e., no two modules will be allocated to the same spot as a result of our proposed

strategy.

Proof: We divide the proof into two following scenarios.

Case I

Let us assume that a singleton ai selects a spot sj which is already allocated to another

singleton module ak and also ak’s allocation does not change due to this, i.e., both ai and

ak are now allocated to sj . But according to Algorithm 5, ai will first try to evict ak from

sj and then it can be allocated. If ak cannot be evicted, then ai will not select sj . Also,

following Lemma 3, we can guarantee that if ak is evicted, then it will be allocated to some

spot sl 6= Sj . On the other hand, if ak is a member of an initial configuration, then ai

cannot evict it anyway; rather it will look for the next best available spot. Therefore it is

not possible that both ai and ak will be allocated to the same spot sj .

Case II

If ai ∈ Am, and ak is a singleton module, then ai has permission to evict ak if all other

required conditions are satisfied. Following the similar logic as before, we can guarantee

that if ak is evicted by ai ∈ Am, then ak will be allocated to some spot sl 6= Sj . If ak
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cannot be evicted, then ai will look for different spot (different isomorphic subgraph or as

a singleton module if detached). A similar thing will happen if ak ∈ Al. Therefore, we can

guarantee that if ai is part of an initial configuration Am, it will not be allocated to the same

spot sj with ak.

Hence proved.

Theorem 3 As Dmax approaches |S|, the total utility earned by the modules (U )

approaches the optimal utility U∗.

Proof: If there is no conflict among the modules about their best spots, i.e., each module’s

highest utility spot is unique, then the spotAllocation algorithm allocates highest utility

spots to all the modules and thus achieves the optimal utility. But if there is a conflict

among modules for the same spots, then the eviction method is invoked. From Algorithm

5, we can conclude that the total utility earned by the modules increases by successively

calling the evict method. For lim
Dmax→|S|

, any subsequent evictions will consequently increase

the total utility. If eviction fails, then that means the total utility cannot be improved any

further. Thus, every time the eviction method is invoked it will increase the total utility,

going towards the optimal utility.

Theorem 4 The proposed configuration formation process converges with time.

Proof: Following Theorem 1, Lemma 3, and Corollary 1, we can guarantee that the

configuration formation process will converge over time.

Note on complexity. The spotAllocation algorithm (Algo. 5) has a time complexity

given by O(|S|Dmax) where |S| is the number of spots in the target configuration and

Dmax is the depth up to which the eviction of modules is allowed. In the blockAllocation

algorithm (Algo. 7), target configurations are considered to be trees and finding all

possible isomorphic subtrees in the target configuration has a polynomial worst case time

complexity of O((|S||Ai|)d+1) [22], where |Ai| and |S| are the number of modules and
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spots in intial and target configurations respectively, and d is the maximum branch factor

of either configuration.

3.4.3 Experimental Evaluation

Settings

We have implemented the spot allocation algorithm on a desktop PC (Intel Core i5 -960

3.20GHz, 6GB DDR3 SDRAM). We tested instances where random numbers of singletons

and initial configurations with sizes between 2 and 10 modules need to be allocated to target

configurations with between 10 and 100 spots. In all cases, unless otherwise mentioned,

the total number of modules in the environment is equal to the total number of spots in

the target configuration. Each module is modeled as a cube of size 1 unit ×1 unit ×1

unit. The modules are placed at random locations within a 16 unit ×16 unit environment,

their initial orientations are drawn from a uniform distribution in U[0, π], and the initial

positions of singletons and leaders of the initial configurations are drawn uniformly from

U[(0, 15), (0, 15)]. For all the tests, Dmax has been set to 3. Changing the value of Dmax

from 3 to 10 affected the algorithm’s performance (both time and quality wise) negligibly;

therefore this is not included in the results.

Extracting ‘better’ isomorphic subgraphs: Initial and target configurations were

restricted to be trees based on the connections the modules in our MSR platform are

capable of, although our algorithms can be applied for any other kinds of graphs as

well. As there can be numerous subtrees present in the target configuration, which are

isomorphic to the initial configuration and finding all possible isomorphic subtrees can

take considerable time, we set an upper bound, MAX , on the number of isomorphic

subtrees that the blockAllocation algorithm (Algo 7) will check. MAX is set to 20;

different values of MAX = 10, 30, or 40 did not change the performance of the algorithm.

To get higher utility isomorphic subtrees, first the nodes in the target configuration are

sorted in descending order of betweenness centrality values, because if the costs to occupy
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two different spots are the same, then higher betweenness centrality (spot value) indicates

higher utility of the spot. For every node in the sorted list of spots, every node in the

current configuration Ai is made the root of Ai once and checked for subtree isomorphism

with target configuration T while making each node in T the root once, for every possible

tree in Ai. The checking of isomorphic subtrees between Ai and T is stopped as soon as

the first MAX isomorphic subtrees are found. All results are averaged over 50 runs.
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Figure 3.13: (a) Time to calculate MCS or IS vs. different initial configuration sizes, (b)
Total planning time for different number of modules in environment.

Results

Performance Analysis of Our Approach: First we have shown how much time it takes

to find MAX number of MCS (or, IS). The result is shown in Figure 3.13(a). The x-axis

denotes the size of a single configuration and the y-axis denotes the time in milliseconds

to find MAX number of MCS (or, IS) of that configuration in the target configuration.

For this test, total spots in the target configuration have been set to 100. Though the run

time increases with the size of the initial configuration, which can be expected because of

the complexity results shown in [83] for finding isomorphic subtrees, still it was always

well within a reasonable bound. In the next set of experiments, we have focused on
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Figure 3.14: (a) Distance traveled by modules to reach target configuration for different number
of modules in the environment, (b) Number of messages exchanged between modules to select
positions in the target configuration for different numbers of modules in the environment.

the main contribution of this work - how to construct a modular robotic system from an

initial set of singletons and configurations. Figure 3.13(b) shows how the planning time

changes with different numbers of modules; the y-axis denotes the total planning time in

milliseconds and the x-axis denotes the number of modules. It can be noted from this plot

that though for a small set of modules, time change is almost constant, as the configuration

size as well as the number of modules increases, elapsed time increases in a polynomial

fashion. This elapsed time indicates only the planning phase execution time of the modules.

Figure 3.14(a) shows how with increasing number of modules the total distance traveled

by them changes. This metric is calculated by adding the distances traveled by each

module from their initial positions to their respective spots in T . The figure shows that

the total distance traveled by the modules increases linearly. We have also calculated

the total number of messages passed among modules while the configuration formation

process is occurring. Figure 3.14(b) shows how the number of total messages changes

with the number of modules. As can be expected, with a higher number of modules in

the environment, the number of messages increases in a polynomial fashion. We are also

interested in understanding the completion rate of the planning phase. The percentage of
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Figure 3.15: (a) Change in % of planning completion with % of time completion, for
different no. of modules; (b) Change in no. of messages at different time steps, for 100
modules.

planning phase completion indicates what percentage of the total modules are allocated to

their spots in T . Figure 3.15(a) shows the planning completion rate for different numbers

of modules between 10 and 100. We can see that with increasing numbers of modules,

the completion rate increases and is more evenly distributed over time. For instance, with

|A| = 10, after 70% time completion, only 30% of planning has been completed, whereas

with |A| = 100, 30% of planning gets completed after only 25% of time completion. The

relationship between planning phase completion and the number of passed messages for

100 modules has been shown in Figure 3.15(b). All the graphs from 50 runs have been

plotted. We observe that the message count is increasing almost-linearly with completion

rate. For the next set of experiments, we have kept the number of spots, |S|, fixed at 50 and

we have varied the number of modules between [50, 100]. Figure 3.16(a) shows planning

completion rate for different numbers of modules. We can see that with increasing number

of modules, completion rate increases and is more evenly distributed over time. This

behavior is similar to what we have seen in Figure 3.15(a). Although in Figure 3.15(a), for

most of the module sets, the planning phase completes almost at the end of their respective

time-lines, in the case of Figure 3.16(a), we can notice that the planning phase finishes at
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different stages of their time-lines, for different numbers of modules. As an example, for

|A| = 100, the planning phase almost converges at 50% the of total elapsed time, whereas

for |A| = 50, it takes almost 100% time to converge. Figure 3.16(b) shows the comparison
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Figure 3.16: (a) Change in % of planning completion with % of time completion, for
different no. of modules and |S| = 50; (b) Change in no. of messages for different no. of
modules and different no. of spots.

of the number of passed messages by the different numbers of modules, between the cases

where |S| = 50 and |S| = |A|. It can be observed from this figure that with same number of

modules, fewer messages are passed if there are fewer spots than modules, i.e., if |S| < |A|.

For example, with, |A| = 100 and |S| = 50, 8 × 105 messages are passed, whereas with

|S| = 100 and keeping |A| fixed to 100, the number of messages increases to 10×105. This

result shows that the total number of messages depends on both the number of modules and

spots. Next we have run experiments to check how the subgraph isomorphism technique

used in this work helps to reduce the number of disconnections from initial configurations.

For this test, we have kept |S| = |A| = 100. Initially all modules were part of some smaller

configurations and each initial configuration has the same size. We have varied the sizes

of each initial configuration between [10, 20, 25, 50] and thus in these cases the number of

initial configurations have been varied between [10, 5, 4, 2]. The planning times and number

of modules required to be disconnected for these cases are shown in Table 3.1. As can be
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Size of All Planning Time No. of Modules
Initial Configurations (ms.) Disconnected

10 171.48 (avg.) 0.12 (avg.)
15.13 (std.) 0.32 (std.)

20 166.66 (avg.) 4.32 (avg.)
12.88 (std.) 3.56 (std.)

25 172.10 (avg.) 8.76 (avg.)
11.30 (std.) 4.85 (std.)

50 218.28 (avg.) 29.68 (avg.)
19.57 (std.) 5.33 (std.)

Table 3.1: Planning times and the numbers of disconnected modules (average and standard
deviation) in the configuration formation process, where all initial configurations have same
sizes (|S| = |A| = 100).

seen, with increasing size of initial configurations, the number of disconnected modules

increases. This is because the probability of finding isomorphic subgraphs in T decreases

with increasing size of initial configurations. But the low numbers of disconnected modules

show that it is always beneficial, in terms of number of connections detachments and re-

attachments, to use our proposed approach than to break all initial configurations into

singletons and then form the target configurations with them.
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Figure 3.17: (a) Log scale comparison of planning phase execution time with auction
algorithm; (b) Comparison of total traveled distances with auction algorithm.
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Comparison with Auction-based Allocation. We have also compared our approach

for MSR configuration formation with an auction algorithm [10] that finds an optimal

assignment between spots and modules. Using the auction mechanism a group of modules

bid for a set of spots. First the modules bid for their most preferred spots; conflict among

modules for the same spot is resolved by revising bids in successive iterations. The

assignment is done in a way such that the utility is maximized. The auction algorithm

does not take connected configurations of modules during allocation. Therefore only for

the tests which compare the performances of our algorithm against the auction algorithm,

initially all the modules are considered to be singletons.

A log scale comparison of planning times between spot allocation and the auction

algorithms is shown in Figure 3.17(a). As can be seen from this graph, with increasing

the number of modules, the difference between planning times of these two algorithms

increases, i.e., our proposed algorithm’s performance gets better with increased number

of modules compared to the auction algorithm. Comparison of distances traveled by the

modules using our algorithm and the auction algorithm is shown in Figure 3.17(b). As

we can see in this plot, in most of the cases total traveled distance by the modules is the

same. But with higher numbers of modules, using the proposed spot allocation algorithm

modules travel less distance than by using the auction algorithm. Thus the spot allocation

algorithm assigns the spots to the modules in very nominal time, keeping the cost for

movement almost the same (or less in some cases), compared to the auction algorithm.

A log scale comparison of number of messages generated, by the spot allocation and

auction algorithms, is shown in Figure 3.18(a). This figure indicates that the spot allocation

algorithm generates fewer messages than the auction algorithm, which helps to reduce the

communication overhead. Figure 3.18(b) compares the completion rates of planning phases

of the auction and spot allocation algorithms - the x-axis denotes the percentage of total

time elapsed. This result indicates that completion rate of the auction algorithm is higher,

even though the auction algorithm takes longer than the spot allocation algorithm.
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Figure 3.18: (a) Log scale comparison of no. of messages with auction algorithm; (b)
Change in % of planning completion with % of time completion and comparison with
auction algorithm. 50 lines indicate 50 runs.

Case Studies

In this section, we have shown 8 specific cases of the configuration formation process that

are shown in Figure 3.19. Each of the initial and target configurations used for this set of

experiments have been shown to be feasible and stable for the ModRED MSR in [49]. To

show the generalization of our approach, we have used both tree and graph structured MSR

configurations as opposed to only tree configurations used in the previous sections. This

was also made possible due to not-so-large configurations used here. Squares represent

the modules and the links between two squares denote the connection between those two

modules.

For each case illustrated, the left-most diagram shows the initial configurations and/or

singletons, the middle diagram shows the detected MCS (or, IS) and the diagram on the

right shows the final formed configuration. The modules are color-coded to show the final

allocations. MCS (or, IS) are shown with dotted boxes. Grey-colored modules represent the

modules that remain connected to the same neighboring module between initial and target

configurations, but only change the connector through which they are connected. Although

this operation requires one un-docking and one re-docking operation, it consumes less
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Case 1: Planning Time: 110 ms., No. of disconnections: 1

Case 2: Planning Time: 113 ms., No. of disconnections: 2

Case 3: Planning Time: 111 ms., No. of disconnections: 1

Case 4: Planning Time: 170 ms., No. of disconnections: 4

Case 5: Planning Time: 182 ms., No. of disconnections: 3
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Case 6: Planning Time: 173 ms., No. of disconnections: 3

Case 7: Planning Time: 190 ms., No. of disconnections: 2

Case 8: Planning Time: 184 ms., No. of disconnections: 4

Figure 3.19: Cases showing configuration formation procedure along with corresponding
planning times and number of disconnections required. Leftmost figure in each case shows
the initial configurations and singletons, middle figure shows the MCS (or, IS) found
(marked by dotted boxes) by executing our algorithms, rightmost figure shows the final
formed target configuration with modules selecting spots (shown in a color-coded fashion).
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energy than if the module were to be connected to a non-neighbor module. The planning

time and number of disconnections for each case are provided alongside each configuration

formation case in Figure 3.19. We can see that each of the test cases requires less than 200

milliseconds of planning time. Target configurations are also formed with relatively few

link disconnections (maximum being 4).

(a) (b) (c)

Figure 3.20: A single ModRED module used for the configuration formation algorithm
(a) CAD drawing, (b) hardware. Each module has 4 connectors which enables it to form
branched configurations. (c) A 17-module branched, ladder configuration similar to Figure
3.8(b) that is capable of complex maneuvers and forming truss-like structures [7].

Hardware Experiments with ModRED II MSR

The main objective of hardware experiments is to show how much time it takes for the

singleton modules and the leader modules to do the local computations. We have chosen

the ModRED II modular self-reconfigurable robot platform [49] for experimental purposes.

Each ModRED II module is a 4-DOF robot (similar to its predecessor ModRED I [7]) with

four connectors (unlike its predecessor which has only two connectors, one at each end).

Due to its four in-built connectors, ModRED II is able to form more complex configurations

compared to ModRED I. For more details on ModRED II hardware architecture and

features, readers are referred to [49]. Each ModRED II module also houses a BeagleBone

Black, a Linux based computer, on-board. It has 512MB DDR3 RAM and 4GB 8-bit

eMMC on-board flash storage. It is also equipped with a AM335x 1GHz ARM R© Cortex-

A8 processor.
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Figure 3.21: (a) Comparison of run times to elect a leader and map the topology of the
ModRED configuration against the configuration size; (b) Change in run time to find MCS
with different number of modules in the initial configuration.

As we have mentioned earlier that our main objective is to show how much on-board

computation is needed by the singletons and the leader modules, we have used a single

ModRED II module for our experiments which alternatively worked as a singleton and

a leader module. For these experiments, we have implemented our algorithms on the

Beaglebone Black Processor inside the ModRED II module and collected the results.

We have also compared our algorithms’ performance against the auction algorithm’s

performance by implementing the auction algorithm on the ModRED II as well. As we

ran hardware tests on a single module, the reported run time results only consider the

computational time, and do not include the communication time between modules.

First, the ModRED module acted as a leader. In our earlier work [8], we have shown

how much time it takes to elect a leader and to map the topology of the configuration

for varying sizes of the configuration. This result is reproduced here in Figure 3.21(a) to

show how much pre-processing will be needed before we can start executing our proposed

algorithms. This shows that with 7 modules present in the configuration, it takes less than

a second of time to elect the leader and map the topology of the configuration.
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Next, the elected leader module searches for MAX MCS (or IS) for the given target

configuration. For this test, we have provided the topology of the initial configuration and

also the target configuration to the leader module. Similar to the simulation results, these

configuration trees have been generated randomly. Figure 3.21(b) shows how with the

increasing size of the configuration, run time to search the MCS changes. Note that the

size of the target configuration was set to 100 for all the cases here. We can observe that the

run time increases almost linearly in fashion even though it took more time than simulated

experiments. We noticed that running the blockAllocation() algorithm along with this took

a negligible amount of extra time, so that result is not included. The main reason behind

this is that calculating the possible MCSs is the most computationally intensive component

in our proposed blockAllocation() algorithm.
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Figure 3.22: (a) Change in run time of the spotAllocation() algorithm with different number
of spots; (b) Change in run time of the auction algorithm with different number of spots.

Next, we have implemented the spotAllocation() algorithm on the singleton ModRED

module. The result is shown in Figure 3.22(a). This result shows that a singleton module

will take much less time (0.019 sec.) even with 100 spots. Finally, we implemented the

auction algorithm on the ModRED module and in this case, the ModRED module acts

as a centralized auctioneer agent. The number of spots is set equal to the number of
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modules in this case. The result of this test is shown in Figure 3.22(b). We can notice

that with increasing numbers of modules, the run time of the auction algorithm increases

significantly. For example, with 100 spots, the ModRED module takes 29 sec. to run the

auction algorithm whereas it takes only 0.019 sec. to run the spotAllocation() algorithm, a

1526-times improvement.

3.5 Discussions

Our main objective was to find an efficient solution for the configuration formation

problem where initially, modules could be either singletons or part of an already connected

configuration. We have argued that as docking and un-docking of modules are costly

operations, these operations should be minimized by preserving the initially formed

configurations as much as possible. We have proposed subgraph isomorphism based

checking and allocation algorithms that retain maximal portions of connected modules

while forming a target configuration. Even though our solution approaches are studied

and tested for 2D planar configurations, we believe that in the future this technique can be

extended to 3D scenarios. From our results, we can notice that our both of our solutions

produced good results consistently, both in terms of planning time, distance traveled

and number of connections/disconnections among modules, given the combinatorially

intractable nature of the used techniques. Although most of the results reported here

are produced using tree-like MSR structures, our case studies show that even with graph

structures, our methods are able to produce considerably good results especially in terms

of number of disconnections among the initially formed configurations.

As allocating modules to target spots is an instance of the classical bipartite graph

matching problem, algorithms like Hungarian matching can also be used for the allocation

process (at least for singleton modules) [60]. As our second approach is distributed in

nature, a relevant issue is the scalability of the number of messages passed between
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modules for synchronizing intermediate calculations of the algorithms. As the modules

need to reach consensus about allocation in a distributed manner, they need to continuously

exchange information about the current state of the allocation process with each other.

A semi-centralized method, where part of the decision is made by a central supervisor

(as discussed in Section 3.3), can be used to mitigate this problem [32]. However,

this increases the risk of potential failure of the whole process if the supervisor fails.

Finally, we have tested our approaches with homogeneous modules only, but it remains

an open research problem for future researchers to investigate the configuration formation

problem with heterogeneous modules where initially modules can be part of different

configurations instead of just singletons. A preliminary study done by us on self-

assembling heterogeneous agents can be found in [30]. Besides modular robotics, we

believe that our proposed approach can be used for parts assembling in the manufacturing

and automobile industries where smaller portions (initial configurations and/or singletons)

of objects, can be brought together and assembled to form a large object (target

configuration).
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Chapter 4

Learning: Adaptive Locomotion

Learning

After the configuration is formed, the MSR needs to move from its current location as

a whole to go to a goal position to complete some task. The task can be exploration,

monitoring or information collection. If the topology of the configuration is pre-defined,

then its locomotion can be planned beforehand. But if the configuration is arbitrarily

formed depending on the current task, then we cannot plan the locomotion for that

particular configuration a priori. Therefore generating the locomotion pattern on-the-fly

depending on the current configuration’s topology is a very important problem in MSRs.

In a recent study, the authors have identified this problem as one of the most important and

challenging to be accomplished by future researchers [1].

4.1 Background

Unlike the configuration formation planning problem, locomotion planning in modular

robotic systems has been studied in the literature extensively. Despite that, it has remained

a big challenge for MSR researchers to find a solution which quickly adapts to the shape

of the current configuration of the MSR and consequently, the configuration learns to
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move towards its goal within a short amount of time [1]. Most of the research in MSR

locomotion tried to develop pre-defined locomotion plans for any particular configuration,

one of the first of which is found in [99]. In this work, the authors have proposed (pre-

defined) locomotion plans for the Polypod MSR which can take various shapes like snake,

rolling track and hexapod. Many of these works on locomotion planning in MSRs have

proposed solutions based on gait tables. Gaits are synchronized patterns of locomotion

used by animals, humans and machines such as robots [71]. Since [99], many researchers

have used gait tables for the purpose of locomotion in modular robotic systems. In the

context of MSRs, a gait control table can be defined as the following:

“A gait control table is a two-dimensional table of actuator actions (e.g., a goal position

or to act as a spring), where the columns are identified with an actuator id and the rows

are identified with a condition for transition to the following row (e.g., a time-stamp or a

sensor condition) [20].”

Usually, gait control tables are executed in a cyclic order to produce periodic

locomotion patterns in MSRs. Hand-coded locomotion patterns using gait control tables

for ModRED MSR have been proposed in [21]. Though popular, this can be mostly

useful for chain type modular robotic systems [19]. In [19], the authors have proposed

a novel reinforcement learning based technique for gait adaption for locomotion learning

in MSRs. They have applied their proposed locomotion strategy on seven different shaped

configurations (containing up to 12 modules) and they have shown that for six of those

tested configurations, the locomotion strategy converges in most of the trials.

Not only for self-reconfigurable robots, gait tables have been used for locomotion

pattern generations for fixed-shape robots such as biped [46], hexapod [63] etc. The main

difference between MSR gait tables and these approaches is that these gait tables are for

fixed-shape configurations and therefore the gait control tables can be hand-coded before

deployment. But in the case of MSRs, as the configuration shape might not be known a

priori, therefore fixed gait control tables are not useful. Also it has been found that learning
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gait tables for MSRs is a computationally hard task to accomplish as the search-space for

finding the best gait table increases exponentially with the action space of each module

[19]. Recently, researchers have proposed a learning strategy for a fixed-shape hexapod

robot which learns to adapt its locomotion even after some part of the robot’s body has

been damaged [25].

CPGs: Central pattern generators (CPGs) have also been studied for locomotion

planning in MSRs [55]. According to [14], “CPGs are neural networks that can

produce rhythmic patterned outputs without rhythmic sensory or central input and they

underlie the production of most rhythmic motor patterns”. The goal of the CPG is to

generate synchronized oscillations (locomotion patterns/rhythms) in connected oscillators

(modules) [88]. CPGs have also been used for locomotion control in monolithic robots

[53]. Locomotion in MSRs using CPGs have been first studied by Kamimura et al. for

their M-TRAN MSR [56]. In [88], the authors have proposed a CPG-based approach for

locomotion learning in Yamor, a chain-type modular robotic system. In this work, along

with the basic CPG, the authors have proposed an online optimization technique which

is executed in parallel with CPG generation. The authors have also mentioned that it is

more beneficial to use CPGs for locomotion learning than gait control tables as it provides

better handling of synchronization among modules. Also they have mentioned that CPGs

offer smoother changes in produced oscillations (locomotion patterns) than gait tables. But

CPGs are mostly useful when the locomotion is periodic [53]. Not only for MSRs, CPGs

have been used for locomotion planning in other types of robots as well, e.g., swimming-

pattern planning in a fish-like robot [24]. Similar to CPGs, approaches based on biological

phenomena, such as hormone-based controllers for MSR locomotion planning have also

been studied [45].

Synchronization: Synchronization plays a very important role in locomotion planning.

If the movements of multiple modules are not synchronized, then the locomotion is not

synchronized and therefore the locomotion is not proper, i.e., either the configuration will
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not move towards the correct direction and/or the speed of the configuration will be very

slow [85]. Several different approaches for maintaining synchronization among modules

in a configuration have been proposed. A biology-inspired hormone based approach

has been proposed in [85] where modules pass hormones (information-coded) among

themselves in the configuration and can detect any change in the topology of the current

configuration; this is also used for synchronization of their actions in a distributed manner.

In a leader-follower approach, every module detects its local leader module and coordinates

its actions with that leader module only and thus the synchronized behavior flows through

the configuration [86, 26]. On the other hand, in a master-slave approach, a central leader

is elected for the whole configuration (called the master) and control is passed to all other

‘slave’ modules [16]. In a recent work, Baca et al. [9] proposed a master-slave approach

for configuration discovery in modular robots where the master is elected using a bully

algorithm [66].

Multi-agent Learning: An excellent overview of multi-agent learning algorithms

can be found in a recent survey [11]. Researchers have come up with algorithms

to solve problems in both cooperative [57] and competitive [12] multi-agent systems.

Various approaches, like independent action learners [57], joint-action learners [64], and

optimization techniques (e.g., gradient ascent) [12], have been proposed to solve different

multi-agent learning problems. We have proposed an independent action learning algorithm

to solve the locomotion learning problem in MSRs in Section 4.4.

4.2 General Problem Formulation

Let M = {m1,m2, ..,mN} denote the set of N modules connected together forming

a certain configuration. The configuration is connected, i.e., any two modules in the

configuration are connected either physically or through other modules. neigh(mi) denotes

the set of neighboring modules, i.e., the modules which are physically connected to
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mi. Each module has a unique identification (ID). Module mi’s position and orientation

are denoted by (xi, yi, θi). We assume that each module knows the topology of the

configuration [8]. We also assume that each module is able to calculate its own position

using a GPS or an overhead tracking system.

Each module performs an action by actuating its motors. An action aj is a vector

which specifies the actuation provided to each of the K motors present in the module, i.e.,

aj = {ac1, ac2, .., acK}. Each module is provided a library of actions, A, from which it

can choose its action at any given time-step. The actions present in the library are known

beforehand and given as an input by the user. Each module, mi, receives a reward by

performing an action aj in a specific time-step t, denoted by Ri(aj, t). Reward can be

calculated as the Euclidean distance traveled by a module since its last time step, given by:

Ri(aj, t) = ||pi(t)− pi(t− 1)|| (4.1)

where pi(t) is the position of the modulemi at time-step t. Let abesti denote the best (highest

reward earning) action. We have modeled the learning strategy as a stateless Q-learning

approach [91, 57, 19]. Let Q(aj) denote the Q-value of an action aj . The Q-value provides

an estimate of the usefulness of executing any action in the next iteration, and this value

is updated after each learning cycle according to the reward received for the action. Also,

let ε denote the ratio between exploration of new actions and exploitation of past high

reward-earning actions.

4.3 Locomotion Learning via Joint Action Learning

First, we propose a reinforcement learning-based adaptive locomotion strategy which

learns the best action for each module. We have observed that each module’s locomotion

performance (e.g., distance traveled) is highly dependent not only on the action that

particular module is taking, but also on the actions taken by its neighboring modules (i.e.,
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the modules directly connected to it). This observation led us to build our learning strategy

in such a way that it does not only learn from its own previous actions, but it also learns from

the correlation of that past action with the neighboring modules’ actions at that particular

time-step.

4.3.1 Q-Learning Based Approach for Distributed Locomotion

Learning

In this approach for solving the locomotion learning problem, we try to capture the

following idea: each module not only learns from its own current and past actions, but

also from the relationship among the actions performed by its neighboring modules at any

particular time-step. The pseudo-code of our proposed approach is shown in Algorithm 9.

Algorithm 9: Q-Learning Based Distributed Locomotion Learning Algorithm
1 Perform every action aj ∈ A in sequential order.
2 Receive corresponding rewards Ri(aj , t).
3 Q(aj)← Ri(aj , t),∀aj ∈ A.
4 ADS ← Data structure for storing best action-pair.
5 Loop
6 abesti ← arg max

ak∈A
Q(ak).

7 With ε probability, anxt ← abesti .
8 With (1− ε) probability, anxt ← arand.
9 apres ← Prescribed best action for anxt to be send to neighbor modules.

10 Send {anxt, apres, Ri(anxt, t)} to the neighboring modules.
11 Receive similar message from the neighbor modules: {a′nxt, a′pres, Rj(anxt, t)′}.
12 Let a′′pres be the already prescribed action stored with mi in ADS for a′nxt with

corresponding reward Ri(a′nxt, t)
′′.

13 if Rj(anxt, t)′ > Ri(anxt, t)
′′ then

14 With τ probability, anxt ← a′pres./*switch to prescribed action*/

15 Perform the action anxt and receive reward Ri(anxt, t).
16 Update Q-value: Q(anxt) = Q(anxt) + α · (Ri(anxt, t)−Q(anxt)).
17 Update abesti and {a′nxt, a′′pres, Ri(a′nxt, t)′′} if necessary.

First each module, mi ∈ M , performs every action, aj , available in the action library,

A, in a sequential order and calculates the rewards,Ri(aj, t), for all the actions. Q-values of

all the actions are also initialized to these reward amounts, i.e.,Q(aj) = Ri(aj, t). Next, the
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modules follow the modified Q-learning strategy as shown in Algorithm 9. In the beginning

of every learning iteration, each module finds out which action has maximum Q-value

associated with it so far, i.e., the best action. This information is local to every module, i.e.,

each module has its local best action, abesti , calculated by the following equation: abesti ←

arg max
ak∈A

Q(ak). We have observed that the behavior of the modules are highly coupled

and if the actions taken by them are not synchronized in any way, then the modules take a

longer time to reach the final learned behavior [1]. To alleviate this problem, each module

communicates its next action information with its neighboring modules before performing

any action. Each module chooses its best action seen so far abesti , to execute in the next

learning iteration with ε probability or a random action arand with (1− ε) probability. Each

module sends this calculated next action for the next iteration, anxt, to the neighboring

modules. Similarly, it receives the next actions of its neighboring modules for the next

iteration.

Joint-Action Learning

Each module mi maintains an action-pair data-structure ADS which can be imagined

as a |A| × 3 matrix. Each row in ADS contains an action ak ∈ A (first column), a

prescribed best (highest reward earning) action apres ∈ A for ak (second column) and

corresponding reward received by mi by performing apres: Ri(apres, t) (third column).

ak ∈ ADS represents the action performed by a neighboring module, mj ∈ neigh(mi),

at any particular time-step t. apres represents the corresponding action from the action set

performed by mi at that time-step t and which earned mi a reward of Ri(apres, t). For any

module mi, ADS contains only one copy of each action ak ∈ A in its first column, even if

multiple neighboring modules might have performed that action. Only the corresponding

best action performed by mi at those time-steps and the reward earned by it (column 2

and 3) change over time. Initially all the prescribed actions in ADS and the corresponding

rewards earned for those actions are unknown and therefore initialized to a null value. Over
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time, when the modules start communicating their current actions, this data structure gets

populated accordingly. While communicating, each module not only sends its next action,

anxt, but also the information about the corresponding prescribed best action available with

it, apres, for its neighboring modules and the reward received for that action pair,Ri(anxt, t).

Once the module receives this information from its neighboring modules, it checks

whether any of the neighboring modules has any prescribed best action for that current

learning iteration or not. Only if the prescribed action received from the neighboring

module, apres, has been shown to earn higher reward than the prescribed action already

available with the module, then the module selects apres as its next action with τ probability

or keeps anxt to be its next action with (1 − τ) probability. After the next action is

decided, the module performs that action and receives reward for that action. Following

[57, 91], each module then updates the Q-value of the action performed following the

update equation:

Q(anxt) = Q(anxt) + α · (Ri(anxt, t)−Q(anxt)) (4.2)

where α ∈ [0, 1] is the learning rate. Also, it updates the best action and action-pair data

structure ADS as necessary.

4.3.2 Experimental Evaluation

Settings

We have mainly implemented our proposed adaptive locomotion learning strategy on

simulated ModRED modules within the Webots robot simulator [68]. Each ModRED

module is a 4-DOF robot with connectors in both ends. For more details on ModRED

hardware architecture and features, readers are referred to [7]. Simulated ModRED

modules within the Webots simulator and actual ModRED hardware are shown in Table

1. We have tested our approach on ModRED chain configurations having 2, 3, 4, 5 modules
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(a) (b)

Figure 4.1: a) Simulated ModRED Modules within Webots Robot Simulator and (b)
Hardware of ModRED.

(denoted by M2, M3, M4, and M5 respectively). 1

ModRED actions: Each ModRED module can have 54 unique actions [21]. In this

work, we have shortlisted 10 of them for inchworm locomotion and 5 actions for rolling

motion which have been used for our testing purpose. These actions have also been

used in [21] for creating hand-coded gaits. More actions can always be used for more

robust locomotion behavior, but at the same time it will slow down the learning process

exponentially.

In [21], the authors have described hand-coded gait tables for ModRED’s locomotion

(inchworm and rolling). As described earlier, ModRED has 4 degrees of freedom and

consequently 4 motors. Tables 2 and 3 summarize the action set used for ModRED

modules for inchworm and rolling locomotion. Two end connectors (front (FC) and rear

(RC) connector) can go up (0.7 rad), down (−0.7 rad) or stay in neutral (0 rad) positions

represented as +1,−1 and 0 respectively in the action table. Similarly, the translational

motor (T) of ModRED helps to extend or contract the body of the module and is represented

by +1 and −1 in the gait tables. The rotational degree of freedom (R) of the module

either rotates the module in clockwise (+1: 6.28 rad) or anti-clockwise (−1: −6.28 rad)

directions or just stays neutral (0: 0 rad). For inchworm locomotion, the rotational motor

is always inactive (0 throughout the column). After one action is executed, the module

calculates its local reward for that particular performed action using Equation 4.1.

1Because each module has 4 DOF, testing with ModRED modules becomes computationally intensive
with more than 5 modules. Testing with larger configurations is reported for a 1-DOF robot called Yamor.
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FC T R RC
Action 1 0 -1 0 0
Action 2 -1 -1 0 1
Action 3 -1 1 0 1
Action 4 1 -1 0 -1
Action 5 -1 -1 0 0
Action 6 0 1 0 -1
Action 7 1 1 0 1
Action 8 -1 -1 0 -1
Action 9 0 -1 0 -1
Action 10 -1 1 0 0

Table 4.1: Actions for inchworm locomotion

FC T R RC
Action 1 0 -1 0 0
Action 2 -1 -1 0 1
Action 3 -1 -1 1 1
Action 4 1 -1 0 -1
Action 5 1 -1 1 -1

Table 4.2: Actions for rolling
locomotion

We have also tested our approach on Yamor modular robots, which is a 1-DOF robot

[29]. We have used the sample of Yamor’s simulated model provided in Webots. For more

details on Yamor hardware, readers are referred to [29]. We have tested on 10, 12 and 14

Yamor chain configurations (denoted by Y10, Y12, and Y14 respectively). Each Yamor

module has 3 available actions: go up (+0.5 rad), go down (−1.57 rad) or stay neutral (0

rad).

We have compared our proposed approach against a random locomotion approach.

Modules select a random action in every iteration and execute that. Random action

strategies have been shown to provide steady performance in ATRON and M-TRAN

robots [19]. The main performance metrics shown here are: distance traveled from

the start point by the front module, maximum speed achieved by the configuration and

number of messages passed between modules. The faint lines in the plots (Figure 4.2,

4.3, 4.4, 4.8) denote multiple runs and the bold red/blue lines indicate the best-fit line.

Three variables in the Q-learning approach, α, ε and τ , have been set to 0.1, 0.8 and 0.9

respectively for all the tests (these values were determined experimentally). In our tests,

each configuration runs Algorithm 9 for learning different types of locomotion (such as

inchworm and rolling motions). Each test has been run for 30 minutes (clock-time) and

10 times each. Videos can be found here: https://youtu.be/8YiAj5xF8ag and
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https://youtu.be/zjKkNW_r0ZI.

Results

Inchworm Locomotion: As the hand-coded gait tables for the 2-module ModRED chain

configuration are already available [21], we first compare the performance (distance metric)

of our proposed algorithm applied on the 2-module ModRED chain configuration against

the same using the hand-coded gaits. The result is shown in Figure 4.2(a). This result

shows that using our approach, the ModRED configuration was able to move further than

by using hand-coded gaits. The reason for this is the hand-coded gaits were built in such a

way that no part of the chain is dragged along the ground, but our proposed approach learns

from all available actions - does not necessarily restrict some modules being dragged. That

is why our approach performed better.
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Figure 4.2: Performance comparison of our proposed approach when applied on ModRED
configurations: (a) 2-module chain and against hand-coded gaits (b) 5-module chain and
against the random approach.

Next we compare our algorithm’s performance (distance metric) on M3, M4 and M5

against the random approach (Figure 4.2(b) and 4.3). Although in almost all of the cases,

the random approach initially performed better than our approach, over time our algorithm
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was able to perform better than the random approach. In some of the plots one might

notice that the distance metric (y-axis) decreases sometimes. The reason for this is we have

calculated the distance from the start point - not the total distance traveled. The reward

is based on distance traveled (regardless of the direction). In some cases, after traveling

towards a certain direction for some time, the configurations started to move towards the

start direction again. This behavior of the configurations caused the dips in distance metric

in some of the plots.
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Figure 4.3: Performance comparison of our proposed approach when applied on ModRED
configurations: (a) 4-module and (b) 5-module chains against the random approach.

Next we show the result of applying our proposed approach for locomotion learning

in the Yamor modular robot [29]. As Yamor modules have fewer DOFs and each Yamor

module can perform a very limited set of actions (only 3), we could test on longer Yamor

chain configurations than we could do with ModRED within Webots. The performance

(distance metric) of our proposed approach when applied on different Yamor configurations

has been shown in Figure 4.4. The results show that Yamor configurations could travel

longer distances than ModRED configurations. We believe the main reason for this is

the smaller size and lighter Yamor modules compared to ModRED modules. Also due to

larger chain sizes, we have noticed some abrupt jumps during locomotion which helped the
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configurations to travel a longer distance in one learning cycle.
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Figure 4.4: Performance of our proposed approach when applied on Yamor configurations:
(a) 10-module, (b) 12-module and (c) 14-module chains.
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Figure 4.5: (a) Maximum distance traveled in any direction from the start location by
different configurations, (b) Maximum speed achieved by different configurations and (c)
Average number of messages sent by each module in different configurations.

Next we summarize the results for maximum distance traveled in any direction from the

start location by different configurations (Figure 4.5(a)), maximum speed achieved (Figure

4.5(b)) and the number of messages sent by each module in different configurations (Figure

4.5(c)). As can be seen in Figure 4.5(a), maximum distance has been traveled by M3, but

at the same time we can also observe a very high variance in that performance. As we

have run each test for 30 minutes, in the case of (larger) ModRED configurations, M4 and

M5, due to the slow simulation, we notice a low overall distance traveled. However, these

configurations achieved the maximum speeds among all ModRED configurations (Figure

4.5(b)). In terms of maximum achieved speed, the Yamor configurations performed very
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similarly, though we can notice a slight increase in maximum speed in Y14. This makes us

believe that the longer chain sizes and corresponding (rare) abrupt jumps during inchworm

locomotion were the reasons for larger configurations achieving higher maximum speed

in both ModRED and Yamor. Figure 4.6 shows the snapshots of inchworm locomotion

in ModRED and Yamor configurations (M3 and Y12 respectively). Green and red marks

denote the start location in those pictures.

Figure 4.6: Snapshot of inchworm locomotion performed by (top) ModRED and (bottom)
Yamor configurations using our proposed approach.

Fault Adaptation: We are also interested in understanding how our proposed

approach adapts itself if some module becomes faulty during the operation. We have

tested the fault adaptability of our approach on M3 and have performed three adaptability

tests: how the algorithm performs when the middle, end or last two modules stop working

(i.e., stop moving and communicating). For the first 30 minutes in the experiment, all

modules were functional, and then for the next 30 minutes one of the above situations

occurs. Depending on the relative position of the faulty module within the configuration,

the performance of the algorithm (distance metric) varies. For example, when the middle

module becomes faulty, we can see a very nominal change in the distance traveled by the

configuration: the slope of the best-fit lines are almost the same (Figure 4.7(b)). But when

the end module stops working (irrespective of the middle module’s faulty condition), then

the total amount of distance traveled by the configuration drops drastically (Figure 4.7(a)
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and 4.8(a)). But even with any type of fault, we can notice that our algorithm performs

steadily and was able to adapt to any module’s fault in the configuration.
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Figure 4.7: Performance of our proposed algorithm after (a) the end and (b) the middle
module becomes non-operational.
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Figure 4.8: (a) Performance of our proposed algorithm after two end modules become
non-operational. (b) Comparison of performance of our algorithms for rolling locomotion
against the same by using hand-coded gaits.

Rolling motion of ModRED: We also present preliminary results of applying our

proposed approach on a ModRED 2-module chain configuration for rolling locomotion.
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We compare the performance of our approach applied on the 2-module ModRED chain for

rolling motion against the hand-coded gaits for ModRED proposed in [21]. The result is

shown in Figure 4.8(b). This figure shows that using our proposed approach the ModRED

configuration was able to travel almost double the distance than by using the hand-coded

gaits.

Figure 4.9: Snapshot of rolling locomotion by 2-module ModRED chain using our
approach.

4.4 Locomotion Learning via Independent Action

Learning

In our previous work, we have seen that although our approach achieves good locomotion

performance, it also imposes a high communication overhead which in turn might become

a drawback if the correct synchronization is not achieved. Also, our previous approach

did not necessarily move the configuration in any particular direction similar to other

existing approaches [19]. To solve these challenges, we have proposed a game-theoretic

solution which formulates the modules’ actions in every round as a normal-form game

and the objective of the modules is to learn the actions in that game which helps the

configuration to travel faster when executed. For the learning purpose, we use a multi-

agent reinforcement learning framework. In a single-agent setting, each module executes

an action in an environment and the feedback from the environment is taken into account

while deciding the future actions. On the other hand, in a multi-agent learning setting,
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multiple modules interact with the environment and also with each other to learn their best

actions simultaneously.

Multi-agent learning is an inherently complex problem as a change in one module’s

best action may in turn change the best actions of all other modules in the configuration.

As the modules are executing and learning their actions to achieve a common goal (i.e.,

movement of the whole configuration), their actions must coordinate in a sense that any

individual module’s local action should not obstruct the configuration from achieving

a better performance. An MSR consists of multiple modules where each of them is

learning to move simultaneously and each one’s actions are affecting the overall locomotion

performance of the configuration; that is why the MSR locomotion learning problem can

be solved using a multi-agent learning technique. In this work, we bring these two domains

together so that any arbitrary-shaped configuration can learn to move faster. To the best

of our knowledge, this work is the first one to employ a game theory-based multi-agent

learning solution for solving the locomotion learning problem in MSRs.

4.4.1 Goal Directed Reward Formulation

Each module, mi, receives a reward for contributing towards the configuration’s

locomotion, denoted by Ri(aj, τ) where aj is an action taken at iteration τ . Each

configuration is given a goal location G which is characterized by (xG, yG). The objective

of the modules is to learn a locomotion pattern so that they can achieve a goal-directed

locomotion. In goal-directed locomotion, the whole configuration moves towards a fixed

direction, unlike in [19, 38] where modules can move in any arbitrary direction. In our

particular scenario, before the learning process begins, a leader module is elected [8] which

calculates the distance traveled by the configuration. The leader module is elected at the

beginning of the process and does not change during the mission. Each module’s local

reward can be calculated as a fraction of the total Euclidean distance traveled by the leader
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module towards the goal since its last iteration. This can be formulated as follows:

Rj(ai, τ) =
||Dτ−1 −Dτ ||

N
(4.3)

whereDτ−1 andDτ denote the distances between the goal locationG and the leader module

before and after taking the local action ai. Each module receives 1
N

-th of the reward earned

by the whole configuration, which can be seen as its contribution to the goal-directed

locomotion objective.

4.4.2 Normal-form Games

Definition 5 (Normal-form game [87]) A normal-form game is a tuple (M,A,R), where:

• M is a finite set of N agents;

• A = A1 × · · · × AN , where Ai is a finite set of actions available to the i-th agent.

• R = (R1, · · · , RN) where Ri : A → R is a real-valued reward (or payoff). Ri is

called the reward function or the payoff function for the i-th agent.

Normal-form games are one-shot interactive games among agents. In the game, all the

involved agents (modules in our case) simultaneously play one action (locomotion actions

in our case) and each one of them consequently receives a reward (Euclidean distance

traveled in our case) for taking those actions, after which the game ends. The game is

played repeatedly, but every time as a stand-alone interaction. Therefore, there is no state-

transition function involved between two consecutive games played. The payoff to the

agents can be visualized using an N -dimensional matrix, an example of which is shown

in Table 4.3. In this example, row actions are of agent 1 and column actions are of agent

2. If both the agents play action a2, they both will receive a reward of 5, whereas for all

other possible action combinations their earned reward is less than that. Note that, as per

our reward setting (Eq. 4.3), Ri = Rj,∀mi,mj ∈M .
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Within normal-form games, we are mostly interested in the cooperative normal-form

games where multiple agents execute their actions for a global common goal (such as the

locomotion of the configuration in our problem). From a multi-agent learning perspective,

the objective of the modules is to learn the best (possibly joint) action-reward relation so

that such actions are played which earn higher reward. In the normal-form game setting,

each module performs an action, receives a corresponding reward and plays the game again,

and by playing the game multiple times, they should learn which actions are better.

Table 4.3: A 2-player normal-form game’s payoff matrix

Actions a1 a2

a1 1 5
a2 2 0.5

4.4.3 Independent Action Learning vs. Joint Action Learning

Two main classes of multi-agent learning approaches emerge from the literature [11]: 1)

Independent Action Learning, and 2) Joint Action Learning. Independent action learning

algorithms extend the single-agent learning algorithms where each agent learns its own

best actions based on the interactions with other agents. As an agent in the system is solely

concerned about modifying its own actions so that they match the other agents’ best actions

and consequently overall reward gain increases, these algorithms scale up very easily [11].

This work employs an independent learner.

Our earlier work on locomotion learning of MSRs [38] was more geared towards the

joint-action learning. These algorithms are inherently more complex than the independent

action learning algorithms, as they try to learn the best joint-action pattern for all the

agents involved. As can be understood, even with a small set of ten agents and each agent

having only ten actions, the number of possible joint-actions reaches an astronomical value

(|A|N = 10 billion) which in turn becomes very difficult to learn (both time and space

complexities grow exponentially). Even though these algorithms have higher complexities,
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they usually provide better performance guarantees. Another drawback of this approach

is that the agents need to continuously communicate to be updated about other agents’

actions and then they need to synchronize those actions which is a very difficult task to

accomplish in modular robotic systems. Even though these algorithms come with these

drawbacks, they are proven to provide better means of coordination among the agents and

consequently better performance guarantees.

4.4.4 Game Theoretic Solution Using Independent Q-Learner

This solution approach is modeled as a normal-form game where each module

independently learns the best action-reward structure of the game using a Q-learning

technique. Q-learning, a popular form of reinforcement learning technique, has been used

before for locomotion learning in MSRs [19, 38]. A Q-learner maintains a data-structure

containing the Q-values for each action in the library. The Q-value provides an estimate

of how useful one action is. After an action, ai, is performed by module mj and its

corresponding reward is received following the normal-form game structure, the Q-value,

Qj(ai), of that action, ai, is updated using the following equation:

Qj(ai)← Qj(ai) + α(Rj(ai, τ)−Qj(ai)) (4.4)

Note that the Q-value of any action is local to a module, i.e., the estimate of how good an

action is can be different for different modules. α (∈ [0, 1]) is the learning rate in Eq. 4.4.

As normal-form games do not have a transition function, an agent’s payoff function is just

a probability distribution over its actions [54].

Q-learning is guaranteed to converge to the optimal solution in the case of a single-

agent scenario. But in the case of our multi-agent setting, convergence to an optimal

solution is not always guaranteed, and the action selection strategy plays an important

role in convergence. Two main classes of action selection strategies can be found in the
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literature, as follows:

(Greedy Selection) In this strategy, the best action seen so far, i.e., the action which

yields maximum expected reward, is exploited heavily. Therefore, each module performs

the best action abest with a high probability (e.g., > 90%). On the other hand, other actions

are also explored from time to time to find out whether there is any action available or not

besides the best action which can yield better reward than the best action. Mathematically,

the probability of any action selection (pr(ai)) can be determined using the following

equation [54]:

pr(ai) =


ε if ai = abest

1− ε otherwise
(4.5)

(Boltzmann Selection) In this strategy [54], the probability of any action is calculated

as:

pr(ai) =
e
ER(ai)

T (τ)∑
a∈A

e
ER(a)
T (τ)

(4.6)

whereER(ai) denotes the expected reward of action ai (see the next section for details) and

T (τ) is the temperature variable at any learning iteration τ which controls the exploration

and exploitation ratio. We start with a very high value of T which motivates the modules

to explore the un-attempted actions. With time, the value of T is decreased. As after

several phases of exploration, best actions are most likely to emerge, therefore the weight

of exploration is turned down.

Our proposed strategy uses both the greedy and Boltzmann action selection strategies

depending on the value of T (lines 5 − 8 in Algorithm 10). We initialize T with a very

high value (MAX T) and exponentially decrease the value of T until it reaches a certain

lower limit (MIN T). The following equation has been used to calculate the value of T at

any iteration τ [57]:

T (τ) = e−sτMAX T + 1 (4.7)
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where s controls the decay parameter. +1 in the above equation makes sure that ER(·)

does not get divided by a 0 in Equation 4.6. Once the temperature reaches the lowest

limit (i.e., MIN T), we know that the modules have done enough exploration of actions

and they are more certain about which actions are better than the others (in terms of how

much distance the configuration can travel by executing them). Therefore, at that point (i.e.,

when T < MIN T ), we switch our action selection strategy to the greedy strategy from

the initial Boltzmann strategy. As the modules have better idea about the ‘good’ actions

now, therefore they exploit these ‘good’ actions more rather than exploring other actions.

Expected Reward and Heuristic

In this work, we use the Frequency Maximum Q-value (FMQ) Heuristic that has been

proposed in [57] for calculating the expected reward of any action. The FMQ heuristic

follows a similar idea as the optimistic assumption which has been proposed in [62] for

multi-agent learning. The optimistic assumption idea implies that an agent will always

take the best action expecting that other agents will also play their best actions accordingly.

For example, in the normal-form game shown in Table 4.3, agent 1 should always take

action a1 provided agent 2 is playing action a2 - and over time, the optimal joint action (a1,

a2) will emerge even in an independent learner. On the other hand, if both the agents take

action a2, then they will both receive a very low reward.

In classical single-agent Q-learning, as soon as a low-reward joint-action (a2, a2) is

played, the Q-value of a2 is updated (e.g., Q-value goes down) even though the optimal

joint action (a1, a2) contains a2 as agent 2’s best action. To alleviate this problem, the

FMQ heuristic proposes that even though in one round one particular action is yielding

lower reward, that might not necessarily be the fault of that agent’s action. As this is a

multi-agent scenario, even if one agent is taking its optimal action, other agents’ worse

action choices may harm the overall reward yield. That is why the expected reward of any

action ai is changed based on the maximum reward earned by that action so far, Rmax(ai),
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and how many times the maximum reward has been earned by playing that action, i.e., the

frequency of Rmax(ai), denoted by f(Rmax(ai)). Formally, the expected reward, ER(ai),

can be calculated using the following equation [57]:

ER(ai) = Q(ai) + w ∗ f(Rmax(ai)) ∗Rmax(ai) (4.8)

where w is a weight that determines how influential the FMQ heuristic is in the action

selection strategy. This calculated expected reward value is then used in Eq. 4.6. Note that,

if w = 0, then FMQ heuristic actually boils down to the classical Q-learning algorithm,

where ER(ai) = Q(ai). As according to our strategy, each module is exploring different

actions in the beginning, enough such exploration increases the probability that the optimal

joint-action will be encountered once by the modules. The overall locomotion learning

procedure is shown in Algorithm 10.

Algorithm 10: Multi-agent Q-Learning Based Locomotion Learning Algorithm
1 τ ← 0.
2 Loop
3 τ ← τ + 1.
4 Update T (τ) using Eq. 4.7.
5 if T (τ) > MIN T then
6 select an action aj using the Boltzmann action selection strategy (Eq. 4.6)
7 else
8 select an action aj using the greedy action selection strategy (Eq. 4.5)

9 Perform aj and receive the reward, Ri(aj , τ).
10 Update Q(aj) and ER(aj).

4.4.5 Experimental Evaluation

Settings

We have implemented our proposed game theory-based locomotion learning strategy on

simulated ModRED and Yamor modules within the Webots robot simulator. We have tested

our approach on three different types of configurations - 1) configurations where modules
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have only inchworm motion, 2) configurations where modules have only rolling motion,

and 3) configurations where some modules have inchworm motion and the others have

only rolling motion (called hybrid). Three tested configurations are shown in Fig. 4.10.

‘M’ or ‘Y’ indicates if the configuration is formed by ModRED or Yamor modules. The

number indicates how many modules are present in that configuration. ‘I’, ‘R’, and ‘H+’

indicate that the configuration follows inchworm, rolling or hybrid motion. In the case of

inchworm or rolling motion, modules are always connected in a chain configuration.2

M6I Y12
M6H+

Figure 4.10: Different configurations used for our experiments. Snapshots are captured
within Webots simulator.

Figure 4.11: Webots snapshot of inchworm locomotion performed by a 3-module ModRED
chain.

For our algorithm, α is set to 0.9 and 0.1 for the Boltzmann and the greedy action

selection strategies respectively. The decay parameter s is set to 0.01, and MAX T

and w are set to 500 and 5 respectively. As only the leader module sends one

message in every learning cycle, and all other modules only receive that, therefore the
2Because each module has 4 DOF, testing with ModRED modules becomes computationally intensive

with more than 6 modules. Testing with larger configurations is reported for a 1-DOF robot called Yamor.
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communication complexity is constant (O(1)) and does not depend on N . We have

compared the performance of our approach against the single-agent Q-learning (SAQL)

approach proposed in [19]. This approach employs a Q-learning algorithm on each of the

modules in the configuration and a greedy action selection strategy is used. For this case,

α and ε are set to 0.1 and 0.9 respectively. Each test case has been run for 30 minutes and

results have been averaged over 5 runs.
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Figure 4.12: Change in distance from goal over time for configurations a) M3I and b) Y12.
The faint lines denote multiple runs and the bold blue line indicates the average line.

Results

A 3-module ModRED chain’s locomotion towards the goal direction using our proposed

approach has been shown in Figure 4.11. Next, we discuss our quantitative results. The

faint lines in the plots (Fig. 4.12, 4.14, 4.15) denote multiple runs and the bold blue

lines indicate the average line. First, we show that for different chain configurations, the

distance to goal changes with time. This result is shown in Fig. 4.12. We show this result

for 3-module ModRED and 12-module Yamor chains. Because of smaller chain size and

consequently much smaller set of possible action sequences (1000 compared to 531441) to

learn from, M3I could travel more distance than Y12 in 30 mins. time and it achieved 2.17
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times higher average speed than Y12. Note that the SAQL approach does not necessarily

push the configuration towards a specific direction; rather the configuration can move in

any direction.

Comparison with a single-agent Q-learner: Next, we compare another performance

metric, average speed achieved by the configurations, against the SAQL approach. The

result is shown in Fig. 4.13. Six different configurations with different locomotion

patterns have been tested. It can be seen that in almost all of the cases our proposed

approach outperforms the SAQL approach. In the case of the M6I configuration, our

approach performs 7.86 times better than the SAQL approach. One interesting thing we

have observed here is that if each module’s action library is small in size (e.g., 3 actions

for Yamor modules and 5 actions for ModRED rolling), then SAQL performs better than

our approach. But when the number of available actions is large (e.g., 10 in ModRED

inchworm motion), then the SAQL approach is outperformed. Even then, our proposed

approach achieved 88% and 72% of the average speed achieved by the SAQL approach for

Y12 and M2R respectively. On average, across all 6 tested configurations, our proposed

approach achieved 2.82 times higher speed than the SAQL approach.

Fault tolerance: Finally, we test the fault-tolerant nature of our proposed approach.

We also wanted to more precisely pinpoint which modules are more important to the

configuration in terms of their contribution towards the locomotion of the configuration. To

do this, we have implemented two different test cases on a 3-module ModRED chain (M3I)

which has a unique middle and end module. For this experiment, we let the configuration

follow our algorithm for the first 5 mins. with all modules working. Next, we disable either

the end or the middle module and let the configuration move for 25 mins. and then we stop.

We study how the distance traveled by the configuration changes with and without module

failures.

In the first test case, we disable the end module. The result is shown in Fig. 4.14.

The best linear-fit line’s equation is also shown. This slope of the best-fit line shows that
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Figure 4.13: Average speeds achieved by different configurations along with standard
deviations. Comparison against the single-agent Q-learning based (SAQL) adaptive
locomotion work is shown [19].

even though the performance of the configuration was affected by the module failure, using

our proposed strategy, the other two modules could adapt their locomotion patterns and

therefore the configuration continued to move towards the goal direction.

0 20 40 60 80 100 120 140 160

Number of cycles

18

18.5

19

19.5

20

20.5

D
is

ta
n
c
e
 f
ro

m
 g

o
a
l (

m
e
te

rs
)

All modules are functional

y = -0.0075x + 20

200 300 400 500 600 700 800

Number of cycles

12

13

14

15

16

17

18

19

20

21

D
is

ta
n
ce

 f
ro

m
 g

o
a
l (

m
e
te

rs
)

After the end module becomes non-functional

y = -0.0063x + 20

Figure 4.14: Comparison of configuration’s performances before and after the failure of
the end module.



118

0 50 100 150

Number of cycles

17.5

18

18.5

19

19.5

20

20.5

D
is

ta
n

c
e

 f
ro

m
 g

o
a

l (
m

e
te

rs
)

All modules are functional

y = -0.0076x + 20

200 300 400 500 600 700 800

Number of cycles

13

14

15

16

17

18

19

20

D
is

ta
n

ce
 f

ro
m

 g
o

a
l (

m
e

te
rs

)

After the middle module becomes non-functional

y = -0.0051x + 19

Figure 4.15: Comparison of configuration’s performances before and after the failure of
the middle module.

In the second test case, we disable the middle module. The result is shown in Fig. 4.15.

The performance of the configuration before the module failure is pretty much similar to

that of the previous case. But the slope of the best-fit line reduces a little from the case when

the end module failed. This phenomenon can be explained by the fact that as the modules

do not have any explicit coordination among them, it was easier for them to continue to pull

the end module when it stopped working, but on the other hand when the middle module

stopped working, then it stopped pulling the end module. But still, using our approach the

whole configuration continued to move towards the goal direction.

4.5 Discussions

We have proposed two different approaches to solve the adaptive locomotion learning

problem in MSRs. Although the two proposed solutions are very different in their

approaches to solve the problem, a common theme has been used in both the cases: as

one module’s bad action can lead to worse performance of the whole configuration even

if the other modules are taking better actions, each module needs to take this inter-module

action-relation into account.
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To do this, both joint-action and independent action learners have been proposed. As

can be imagined, the joint-action learner needs more communication among the modules

to get the information about all the neighboring modules’ actions. This communication

overhead has been mitigated in the independent learning approach. Also, using the joint

learner, each module needs to maintain a complicated data structure of all the best joint-

action sequences for all of its own actions which might be difficult to maintain if there are

more actions available to each of the modules. On the other hand, the independent learner

does not need to save any other modules’ information which helps it to run using a very

low memory space.

Both of our proposed approaches are fault-tolerant in nature. If one or more modules

become faulty during the MSR’s mission, then it has been empirically shown that the

configurations were still able to move forward by adapting the locomotion pattern using our

proposed approaches. This characteristic adds more robustness to our solutions. Moreover,

our independent learning approach was able to push the tested configurations towards a

specific goal direction unlike the joint learner and other existing approaches [19]. In the

future, it would be interesting to see how the change in the size of the neighborhood of

each module from which it is learning the best joint-action, affects the performance of the

configuration in terms of speed and distance traveled. Currently, we are implementing

these two proposed approaches on real ModRED hardware. Our goal is to test these

algorithms on a 2-module ModRED chain and observe the difference in performance with

the simulation results.
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Chapter 5

Conclusion

5.1 Summary

In our research, we have proposed several algorithms for solving three different types of

problems in MSRs which involved decision making, planning, and learning. We have

solved three very important and fundamental problems in MSRs, namely, partitioning of

modules, configuration formation planning and adaptive locomotion learning.

Our proposed distributed configuration formation problem not only forms the

configuration from singleton modules, it also offers a technique which is able handle the

situation where the modules can be in any arbitrary configuration in the beginning. To the

best of our knowledge, we are the first ones to solve the configuration formation problem

where the modules can start as a part of already connected arbitrary shaped configurations.

Most of the previous works on this topic cannot be generalized to all types of MSRs.

Our work mainly aims to generalize the configuration formation in MSRs by proposing

algorithmic solutions which do not depend on the characteristics of the MSR platform

used.

We have also proposed a novel problem, named simultaneous configuration formation

and information collection problem, where initially randomly distributed singleton modules
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plan the paths to the spots in the target configuration in such a way that the paths are

maximally informative. This work is a novel approach which merges two different existing

problems – information collection in multi-robot systems and configuration formation in

modular robots. Our work is also the first one to solve this novel problem.

For locomotion learning purposes, we have proposed a reinforcement learning based

adaptive locomotion learning strategy which learns from the module’s past actions as well

as from the correlation between its own actions with its neighboring modules’ actions. As

modules are physically connected with each other, therefore one module’s action selection

strategy impacts the overall locomotion performance of the configuration. Almost none

of the related works on this topic took this inter-module action-relation into account. We

have also proposed a game theoretic multi-agent learning approach for adaptive locomotion

learning in MSRs. To the best of our knowledge, this work is one of the first to address the

issue and solve it using multi-agent learning where each module learns the best sequence of

actions among all the modules by playing a normal-form game. At the same time, modules

only spend a constant communication cost to achieve the goal.

5.2 Future Directions

We now present some future directions of our research.

• Path planning in MSRs: Path planning is one of the most important problems for

any mobile robot – how to move from point A to point B by covering the least

distance. As we have already solved the locomotion learning problem in MSRs,

the next natural step for us would be to solve the path planning problem. We plan to

use a sampling-based path planning approach, e.g., PRM or RRT, as the base of our

solution approach. We also plan to use a bipartite graph matching based coordination

strategy similar to what has been proposed in one of our recent works [33].

• Information collection using MSRs: MSRs are usually sent where humans cannot
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go and we expect the modules to collect as much information as possible for

us. If different modules can be equipped with different sensors then they can

actually collect different types of information. But that also brings challenges

like distribution of the area among the modules, communication constraints, and

redundant information collection. We plan to extend our current information

collection approach for heterogeneous sensor-equipped modules.

• Self-repair of MSR modules: Animals like lizards can reproduce and/or repair their

body parts such as tails if that is harmed. We plan to solve the self-repair problem

in MSRs by getting inspired from nature. As we have discussed earlier, one or more

modules can become faulty during the MSR’s mission. Therefore, it would be very

useful for the configuration if it can get rid of the faulty module(s) and attach working

modules in its place. We plan to solve this problem in future.

• Self-disassembly of MSR configuration: We have solved the problem where

multiple modules need to come together and physically attach to form a specific

shape/configuration. But it is also very common in nature to reach a shape by

getting rid of different body parts. We plan to look at this problem next where a

larger configuration needs to get rid of some of its constituting modules to reach the

target shape. This is a reverse self-assembly problem, known as the self-disassembly

problem.

• Other applications: We also plan to use MSRs for some real-world applications

such as object manipulation. One example of object manipulation is an MSR

configuration pushing an object towards a specific direction. If solved, this can be

used for aged persons or patients at home who cannot move much otherwise. The

MSR configuration can be used to help them get objects. Along similar lines, MSRs

can be used for monitoring of environments or human activity.
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5.3 Remarks

In this dissertation, we have introduced a series of algorithms which solve three

fundamental problems in modular self-reconfigurable robots. The solutions presented here

have a broad range of applications including exploration, extra-terrestrial applications, and

information collection. Our algorithms have been implemented in simulation and also have

been proved to be feasible to be deployed on ModRED hardware. We plan to extend these

solutions to solve problems like path planning and information collection using modular

self-reconfigurable robots.
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[78] M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable
combinational auctions. Management science, 44(8):1131–1147, 1998.

[79] M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable self-assembly in a
thousand-robot swarm. Science, 345(6198):795–799, 2014.

[80] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial
intelligence: a modern approach, volume 74. Prentice hall Englewood Cliffs, 1995.

[81] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme. Coalition
structure generation with worst case guarantees. Artificial Intelligence, 111(1-
2):209–238, 1999.

[82] S. Sen and P. S. Dutta. Searching for optimal coalition structures. In MultiAgent
Systems, 2000. Proceedings. Fourth International Conference on, pages 287–292.
IEEE, 2000.

[83] R. Shamir and D. Tsur. Faster subtree isomorphism. In Theory of Computing and
Systems, 1997., Proceedings of the Fifth Israeli Symposium on, pages 126–131.
IEEE, 1997.

[84] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1):165–200, 1998.

[85] W.-M. Shen, B. Salemi, and P. Will. Hormone-inspired adaptive communication and
distributed control for conro self-reconfigurable robots. Robotics and Automation,
IEEE Transactions on, 18(5):700–712, 2002.

[86] W.-M. Shen and P. Will. Docking in self-reconfigurable robots. In Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference
on, volume 2, pages 1049–1054. IEEE, 2001.

[87] Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press, 2008.

[88] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert. Learning to move in modular
robots using central pattern generators and online optimization. The International
Journal of Robotics Research, 27(3-4):423–443, 2008.

[89] R. Stern, A. Felner, J. van den Berg, R. Puzis, R. Shah, and K. Goldberg. Potential-
based bounded-cost search and anytime non-parametric a. Artificial Intelligence,
214:1–25, 2014.



131

[90] K. Stoy, D. Brandt, and D. J. Christensen. Self-Reconfigurable Robots: An
Introduction. The MIT Press, 2010.

[91] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
1998.

[92] I. Suzuki and M. Yamashita. Agreement on a common x-y coordinate system by a
group of mobile robots. In Intelligent Robots, pages 305–321, 1996.

[93] M. T. Tolley and H. Lipson. Fluidic manipulation for scalable stochastic 3d assembly
of modular robots. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2473–2478. IEEE, 2010.

[94] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM
(JACM), 23(1):31–42, 1976.

[95] J. Werfel and R. Nagpal. Three-dimensional construction with mobile robots and
modular blocks. The International Journal of Robotics Research, 27(3-4):463–479,
2008.

[96] G. M. Whitesides and B. Grzybowski. Self-assembly at all scales. Science,
295(5564):2418–2421, 2002.

[97] H. S. Wilf. generatingfunctionology. Elsevier, 2013.

[98] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. Dna-
templated self-assembly of protein arrays and highly conductive nanowires. Science,
301(5641):1882–1884, 2003.

[99] M. Yim. Locomotion with a unit-modular reconfigurable robot. PhD thesis, Citeseer,
1994.

[100] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and
G. S. Chirikjian. Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

[101] S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine,
17(3):73, 1996.


	University of Nebraska at Omaha
	DigitalCommons@UNO
	5-2017

	Algorithms for Modular Self-reconfigurable Robots: Decision Making, Planning, and Learning
	Ayan Dutta

	tmp.1561651051.pdf.5uSdy

