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I

ABSTRACT OF THE THESIS

Program Inspection and Testing Techniques for Code
Clones and Refactorings in Evolving Software

Zhiyuan Chen, MS
University of Nebraska, 2017

Advisor: Dr. Myoungkyu Song

Developers often perform copy-and-paste activities. This practice causes the similar
code fragment (aka code clones) to be scattered throughout a code base. Refactoring
for clone removal is beneficial, preventing clones from having negative effects on soft-
ware quality, such as hidden bug propagation and unintentional inconsistent changes.
However, recent research has provided evidence that factoring out clones does not al-
ways reduce the risk of introducing defects, and it is often difficult or impossible to
remove clones using standard refactoring techniques. To investigate which or how
clones can be refactored, developers typically spend a significant amount of their time
managing individual clone instances or clone groups scattered across a large code base.

To address the problem, this research proposes two techniques to inspect and val-
idate refactoring changes. First, we propose a technique for managing clone refac-
torings, Pattern-based clone Refactoring Inspection (PRI), using refactoring pattern
templates. By matching the refactoring pattern templates against a code base, it sum-
marizes refactoring changes of clones, and detects the clone instances not consistently
factored out as potential anomalies. Second, we propose Refactoring Investigation
and Testing technique, called RIT. RIT improves the testing efficiency for validating
refactoring changes. RIT uses PRI to identify refactorings by analyzing original and
edited versions of a program. It then uses the semantic impact of a set of identified
refactoring changes to detect tests whose behavior may have been affected and modi-
fied by refactoring edits. Given each failed asserts, RIT helps developers focus their
attention on logically related program statements by applying program slicing for min-
imizing each test. For debugging purposes, RIT determines specific failure-inducing
refactoring edits, separating from other changes that only affect other asserts or tests.

Keywords: regression testing, code clones, refactorings, program differencing,
code change analysis.
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CHAPTER 1

INTRODUCTION

Code changes are usually repetitive [25, 54]. Recent research has pointed out that over
30% of the total amount of code is repetitive regarding various application domains,
such as operating systems, web server programs and development environments [36,
54, 65, 69]. Changing the code similarly is an easy way to achieve a design goal in
adding new features and fixing numerous bugs, mostly because of the copy-paste(-and-
adapt) programming practice, the framework-based development, and the reuse of the
same design patterns or libraries, thus creating code clones.

While several studies [40, 41, 22] find positive aspects of code clones, in other
studies [30, 3, 49], cloning is considered harmful to software quality, leading to much
effort on detection and removal of code clones. For example, anomalous changes
could repeat either by a developer’s own error or by other developers’ fault unknow-
ingly [3]. Code clones also require that changes to one section of code clones are to be
propagated to multiple locations consistently, incurring additional maintenance costs
to synchronize cloned regions [30, 49].

Despite high performance in detecting code clones [66], understanding clone groups
(i.e., sets consisting of two or more clone instances) remains challenging. To im-
prove understandability and maintainability, clone management tools have been de-
veloped. These techniques represent differences across multiple clone instances [45],
track evolving code clones in a repository on a Version Control System (VCS) [14],
and assist changes of clones and their contexts [28].

In management of code clones, developers often conduct clone refactoring, com-
bining regions of code that are very similar and moving them into a function without
altering the existing functionality. To help developers conduct refactorings for clone
removal, Integrated Development Environments (IDEs), such as Eclipse, provide au-
tomated refactoring features. Unfortunately, not all developers make consistent use of
these features, since refactorings are not always feasible by standard refactoring en-
gines in IDEs [36]. Professional developers also tend not to use automated refactoring
despite their awareness of the refactoring features of IDEs [77]. These manual refac-
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torings often lead to error-proneness. Recent studies [34, 58] report that the ratio of
refactorings affects increasing numbers of bugs, and Park et al. [58] find that regard-
ing an omission error type such as incomplete refactorings, it takes much longer to be
resolved than other types of defects. As a result, it is difficult and time-consuming for
code reviewers to inspect individual or a group of clone instances and answer ques-
tions such as “How should these clones be refactored completely or correctly?” and
“Are there any clones that should be removed along with these clones?”.

This research proposes two techniques for inspecting and validating refactoring
changes. First, we propose a technique for inspecting refactorings of evolving clones
and detecting incomplete refactorings: Pattern-based clone Refactoring Inspection
(PRI). To examine which or how clones are refactored and to determine whether
clones are refactorable, we implemented refactoring pattern templates, which are au-
tomatic Abstract Syntax Tree (AST) matching programs based on standard refactoring
types from Fowler’s catalog [17]. We target five refactoring types: Extract Method, Pull

Up Method, Move Method, Extract Super Class, and Move Type To New File, and two compos-
ite refactorings: Extract & Move Method and Extract & Pull Up Method.

Second, we propose Refactoring Investigation and Testing technique, called RIT

which improves the efficiency of refactoring change validation. RIT is used as fol-
lows. RIT analyzes source code edits between the original and edited versions of a
program’s AST to detect refactorings. Given a suite of regression tests, it then applies
a change impact analysis technique to determine tests whose behaviors are potentially
affected by the changes in refactorings. To reduce the cost of regression testing to run
affected tests, RIT utilizes program slicing and data flow analysis techniques [78] to
only identify semantically dependent statements for executing a failed assert state-
ment in each test. To reduce the time and effort spent in debugging, RIT determines
specific failure-inducing refactoring edits that are responsible for a given test’s failure.

1.1 Research Agenda

In this research, we address the following research questions in light of the challenges
of testing and code review in the process of validating and comprehending an exten-
sively refactored program.

• RQ1: Can PRI accurately summarize clone refactorings?

We evaluate the accuracy of PRI’s clone refactoring summarization. We man-
ually construct the ground truth of refactoring changes to clones on a sampled
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data set from open source projects, such as AlgoUML, Apache Tomcat, Apache
Log4j, Eclipse AspectJ, JEdit, and JRuby. The comparison between the PRI’s
results against this ground truth shows how it demonstrates the summarization
capability.

• RQ2: Can PRI accurately detect incomplete clone refactorings?

We apply PRI to a data set with incomplete refactorings of clones performed by
real developers. We assess how accurately PRI can detect such clone refactoring
anomalies by automatically tracking clones and the corresponding refactorings
across revisions.

• RQ3: Can RIT accurately determine test-slices affected by atomic changes of
refactorings?

We evaluate the accuracy of RIT’s affected test detection. We apply it to a data
set composed by over 100 refactoring transformation on a sampled data set from
open source projects. The comparison between the RIT’s results against this
ground truth demonstrates how effectively it detects tests whose behaviors are
potentially affected by refactoring changes.

• RQ4: Can RIT accurately detect affecting refactorings that cause the failure of
these test-slices?

We apply RIT to a data set with seeded refactoring anomalies, which do not
produce compilation errors. We measure how accurately RIT can detect such
refactoring anomalies (i.e., failure-inducing refactoring edits), and thus can re-
duce the amount of time and effort spent in debugging the changes responsible
for a given test’s failure.

1.2 Major Research Contribution

1.2.1 Summarization for Clone Refactorings (RQ1)

We propose a new approach for inspecting clones for refactoring. PRI provides a
novel integration of program differencing and AST-based code pattern search to track
the changes to clones based on well-known clone removal refactorings [50, 77].
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1.2.2 Detection for Incomplete Clone Refactorings (RQ2)

PRI also detects unrefactored clones, extracts clone differences, and classifies these
clones which either co-evolved, diverged, or remain unchanged. It extracts clone dif-
ferences in the same clone group to provide a related reason of not being refactorable.

1.2.3 Identification for Test-Slices Affected by Refactorings (RQ3)

We propose a novel approach for inspecting and validating changes in manual refac-
torings [50, 37, 53, 77, 52] based on change impact analysis. RIT detects well-known
refactorings [50, 77] by applying program differencing and AST-based code pattern
search techniques. Given refactorings, it applies change impact analysis to determine
tests that are affected by such changes.

1.2.4 Detection for Failure-Inducing Refactorings (RQ4)

RIT also identifies a subset of changes responsible for these anomalies, if a test fails
due to refactoring anomalies. We develop a heuristic-based approach to improve the
atomicity of composite tests. Given program dependence graphs by program slicing,
RIT partitions a composite test and identifies semantically related statements depen-
dent on each assert, merging these statements isolated from others. By applying data
flow tracking, each partitioned test is more cohesive and self-contained with respect to
the issue being addressed.

1.3 Outline

The rest of this research is organized as follows. Chapter 2 surveys related work.
This can be divided into six main categories: Clone Detection, Refactoring Identi-
fication, Manual Refactoring, and Change Impact Analysis, and Fault Localization.
Chapter 3 shows Pattern-based clone Refactoring Inspection (PRI). Chapter 4 de-
scribes another proposed technique Refactoring Investigation and Testing technique,
called RIT. Chapter 5 outlines how we assess our approach. Chapter 6 presents future
work and conclusions.
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CHAPTER 2

RELATED WORK

2.1 Code Search and Inconsistency Detection

Several approaches detect inconsistencies in clones. CP-Miner [44], SecureSync [59]
and Jiang et al.’s technique [30] reveal clone-related bugs by finding recurring vul-
nerable code. CBCD reveals bug propagation in clones by finding similar ASTs in a
program dependence graph [43]. SPA analyzes discrepancies in changes and detects
inconsistent updates in clones [61].

Our approach differs from these inconsistency detection techniques in two ways.
First, PRI automatically accesses to VCS and incrementally identifies inconsistent
changes in clone histories, unlike analysis of one or two versions. Due to these dif-
ferences, in our case studies, we could not directly compare with existing clone-based
code search techniques since these tools are not designed for inspecting clone evolu-
tion and its refactoring edits. Second, in contrast to PRI’s refactoring classification,
the clones found by these tools require manual inspection to determine if these clones
can be removed using standard refactoring techniques [17].

2.2 Clone Detection

Göde and Koshke [23] present an incremental clone detection algorithm to study clone
evolution and find that most clones remain unchanged during their lifetime, and clones
are mostly changed inconsistently. Krinke’s [39, 40] study investigates the changes to
clones in five open source systems and find that some clone groups are changed con-
sistently. Saha et al. [68] investigate the evolution of clones, and their results show that
clone type is more likely to change inconsistently, when clones form gaps among clone
fragments. Aversano et al. [2] study how clones are evolved and find that developers
almost propagate the change consistently. Bettenburg et al. [8] investigate the effect
of inconsistent changes to code clones and observe that 1–3% of inconsistent changes
to clones introduce defects, reporting that most of clones are consistently maintained.
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Although these approaches map clones between revisions of a program, they do not
provide summarization of changes to clones for investigating clone refactorings.

These studies show that removing code clones is not always necessary nor benefi-
cial. PRI helps to summarize clone evolution and refactorings, which developers can
investigate during peer code reviews.

Toomim et al. [75], Duala-Ekoko and Robillard [14], Hou et al. [28] and Nguyen
et al. [55] manage clones in evolving software by tracking the changes in the clones
as code evolves. Lin et al. [45] also design a plug-in built on Eclipse IDE that com-
putes differences among clones and highlights the syntactic differences across multiple
clone instances. Unlike the above approaches, PRI leverages the clone region infor-
mation to help code reviewers detect incomplete refactorings of clone groups which
are omission-prone, supporting clone-aware refactoring recommendations.

2.3 Refactoring Identification

Tsantalis et al. [76] use a program slicing technique to capture code modifying an
object state and design rules to identify refactoring candidates from slices. Bavota
et al.’s [7] approach identifies classes to extract by using similarity and dependence
between methods in a class. While these tools identify refactoring opportunities for
clones, they do not support developers with real refactoring examples. Our approach
provides concrete information of clone differences showing real refactoring examples
of other siblings in the group.

RefFinder [60] could be used to search for refactorings. However, we find that
it includes false negative refactoring cases such as clones that were factored out into
nested method calls. In contrast to analysis of only VCS data in RefFinder, PRI an-
alyzes both clone groups in clone database and source code in VCS to capture more
precise data for identifying clone refactorings.

BeneFactor [19] and WitchDoctor [16] use refactoring patterns to help developers
complete refactorings that were started manually. PRI uses refactoring patterns, but
these patterns are automatically matched with clones across revisions.

Kim et al. [36] study the evolution of clones and provide a manual classification
for evolving code clones. Unlike their approach, we automatically classify clones if
they are not easily refactorable using standard refactoring techniques [17].
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2.4 Manual Refactorings

Opdyke and Johnson [56] create the term refactoring, and later Fowler [17] presents a
catalog of 72 different refactoring types that describes mechanical procedures in terms
of required edits.

Major IDEs such as Eclipse, IntelliJ IDEA, and Visual Studio provide automated
tools for refactorings. Ideally, a developer will always use a refactoring tool if one
is available, since those tools check pre- and post-conditions to prevent refactoring
anomalies. However, recent studies find that most developers underuse automated
refactoring tools. Murphy et al. inspect commits in a repository and usages of the
refactoring tool, and then correlate the refactoring in terms of the application of a refac-
toring tool [50]. They find that 90% of the refactoring edits are done manually. Kim
et al. find that 51% of developers always preform manual refactorings without refac-
toring tools [37]. Negara et al. find that most expert developers perform refactorings
manually instead of applying them by using refactoring tools [53]. Other studies also
observe refactoring tools underused due to usability problems [51], unawareness [77],
and insufficient trust (or distrust) [12, 70, 71, 77].

Manual refactoring can be tedious and error-prone as it often requires complex and
multiple edits across different locations of a software system. According to Dig et
al.’s study, over 80% of the API breaking changes in existing applications are refac-
torings [13]. Weißgerber and Diehl find a correlation between refactoring edits and
increased bug numbers that are reported [79]. Kim et al. find that an increasing num-
ber of bug fixes is followed by API-level refactorings [35].

Several approaches are proposed to avoid refactoring anomalies. Formal verifi-
cation can provide constraints to prevent refactoring edits from breaking behavioral
changes of refactorings [48, 11, 57]. However, these approaches focus on improv-
ing the correctness of automated refactoring through formal specification, as opposed
to finding anomalies during manual refactorings. Similar to refactoring tools in IDEs
adopting condition checking, Ge and Murphy-Hill present refactoring condition check-
ers to ensure the correctness of refactorings and detection of defects introduced by
manual refactorings [19]. In contrast to their approach to leveraging Eclipse refactor-
ing APIs, we apply regression testing to re-run existing tests for validating the correct-
ness of the refactored version of a program.
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2.5 Change Impact Analysis

Change impact analysis [9, 63, 62, 67] aims to determine the semantic impact of a
set of source code changes on other parts of a program. Ren et al. [63, 62] propose
Chianti, which selects a subset of regression tests whose behavior might have changed
and then identifies affecting changes responsible for test failure. For each test failure,
Chianti could produce the number of affecting changes, some of which are irrelevant
to refactoring changes that a developer need to inspect. Also, it could identify failed
tests that interleave multiple asserts that can be partitioned into a set of test-slices,
each test-slice is more semantically cohesive to alleviate many challenges for program
understanding and debugging.

2.6 Fault Localization

Debugging is a labor-intensive task in maintenance activities. To accelerate this task,
several approaches, including selective regression testing [1, 5, 24, 31, 80], have been
proposed to improve fault localization, aiming at reducing tests that must be rerun af-
ter a software change. These approaches rank and reduce the set of potential faulty
statements based on program spectra—an execution profile indicating which parts of
a program are passed and failed during executions of a program. Although they re-
duce the cost of running regression tests, these approaches are not applicable to large
evolving software systems, since they compute the execution profile on all statements
in each program version. However, we leverage information about refactoring edits
between old and new versions, and assist developers with understanding the impact of
refactoring changes.

Zeller introduces the delta debugging approach [81] that identifies change sub-
sets to generate intermediate program versions and localizes failure-inducing changes
among large change sets. The key differences with our work are that our structural con-
straints before and after applying a refactoring to a program are analyzed to identify
change subsets, whereas Zeller considers all changes between old and new program
versions as a candidate set. Furthermore, Zeller determines a set of edits that may
cause a test failure but does not decompose a test into statement subsets that should
be inspected together for each failed assert, leaving it to a developer to examine a
real culprit of a regression test failure among a likely large regression test suite and
potential failure-inducing changes.
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CHAPTER 3

PATTERN-BASED CLONE REFACTORING
INSPECTION

This chapter starts with the following section that motivates our research and describes
PRI with a real example drawn from the JEdit (http://jedit.org) project, which is an open
source project—a text editor written in Java—with 120K lines of source code over 580
Java source files.

3.1 Motivating Example

Suppose Alice changes JEdit’s source code after she has encountered duplicated re-
gions. She manually applies Extract Method to two cloned regions in methods processKeyEvent
and processKeyEventV21, respectively. She validates manual refactorings [77] using
existing test cases; however, she misses refactoring one clone instance of the group in a
different method processMouseEvent in Figure 3.1(c). For another clone instance in
processActionEvent in Figure 3.1(d), she has difficulty conducting the same refac-
toring due to the type variation of variable changeEventAction, which is different
from corresponding variables of other clone siblings in the same group.

To confirm that there is no location Alice missed to refactor during peer code re-
view, Barry needs to investigate line level differences file by file. When Barry finds
suspicious locations, he might want to inspect differences between Alice’s and sub-
sequent revisions. Simply comparing with the newest revision can require Barry to
decompose countless irrelevant changes [4, 73]. Since understanding such compos-
ite changes require non-trivial efforts [73], sub-changes that are aligned with Alice’s
refactoring changes must be investigated by manually comparing Alice’s changes with
other changes committed in subsequent revisions.

The following shows how Barry may use PRI to inspect Alice’s changes. First, he
checks out revision r

i

that she commits changes, and then he runs PRI, a plug-in built
1Method processKeyEventV2 is created to support the different version.
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1 public void processKeyEvent(KeyEvent evt, int from) {
2 Event focusKeyTyped, focusKeyPressed;
3 switch(evt.getID()) {
4 case Event.KEY_TYPED:
5 - if(inputHandler.isActive() && from != VK_CANCEL) { ..
6 - focusKeyTyped = evt.getEvent();
7 - ..}
8 + focusKeyTyped = processEvent(from, focusKeyTyped);
9 ..

10 case Event.KEY_PRESSED:
11 - if(inputHandler.isActive() && from != VK_CANCEL) { ..
12 - focusKeyPressed = evt.getEvent();
13 - ..}
14 + focusPressed = processEvent(from, focusKeyPressed);
15 ..} ..}
16
17 + Event processEvent(int from, Event event) {
18 + if(inputHandler.isActive() && from != VK_CANCEL) { ..
19 + focusKeyTyped = evt.getEvent();
20 + ..}
21 + return event;
22 + }

(a) A clone refactoring in revisions v20060919-7074 and v20060919-7075 in JEdit.

1 public void processKeyEventV2(KeyEvent evt, int from, int enhancedVer) {
2 Event focusKeyTypedEvt, focusKeyPressedEvt;
3 switch(evt.getID()) {
4 case Event.KEY_TYPED:
5 - if(inputHandler.isActive() && from != VK_CANCEL) { ..
6 - focusKeyTypedEvt = evt.getEvent();
7 - ..}
8 + focusKeyTypedEvt = processEvent(from, focusKeyTypedEvt);
9 ..

10 case Event.KEY_PRESSED:
11 - if(inputHandler.isActive() && from != VK_CANCEL) { ..
12 - focusKeyPressedEvt = evt.getEvent();
13 - ..}
14 + focusKeyPressedEvt = processEvent(from, focusKeyPressedEvt);
15 ..} ..}

(b) A refactoring to clones of the same group in a later revision by other developer.

1 void processMouseEvent(MouseEvent evt, int src) {
2 Event focusMousePressed;
3 switch(evt.getID()) {
4 case Event.MOUSE_PRESSED:
5 if(inputHandler.isActive() && src != VK_CANCEL) { ..
6 focusMousePressed = evt.getEvent();
7 ..}
8 ..} ..}

(c) A clone instance that Alice misses to apply a same refactoring as (a) and (b).

1 void processActionEvent(ActionEvent evt, int where) {
2 Action changeEventAction;
3 switch(evt.getID()) {
4 case Event.CTRL_MASK:
5 if(inputHandler.isActive() && where != VK_CANCEL) { ..
6 changeEventAction = evt.getEvent(); // The type of changeEventAction differs from aligned variables in other

siblings in the clone group.
7 ..}
8 ..} ..}

(d) A clone instance in the clone group, which is not refactorable unlike (a) ⇠ (c).

Figure 3.1: A simplified example: A clone group is refactored inconsistently. Cloned regions
are highlighted, deleted code is marked with ‘-’ and added code marked with ‘+’.

atop Eclipse IDE. Based on r
i

, PRI tracks r
i

, r
i+1, .., r

i+n

, and summarizes clone refac-
torings performed by Alice (Figure 3.1(a)) and applied by other developers reusing the
existing code by altering copy-pasted code (Figure 3.1(b)). The results include refac-
tored revisions, types (e.g., Extract Method), locations (e.g., package, class, method, and
line number) and restructuring descriptions (e.g., “Method m1 is refactored and cloned
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Figure 3.2: A viewer in PRI that shows clone refactoring summarization and refactoring
anomaly detection regarding Figure 3.1.

code fragments are replaced with a call to an extracted method m2”). PRI also detects
unrefactored clones in a clone group (Figure 3.1(c)), classifying if a clone instance is
locally refactorable by standard refactorings [17] (Figure 3.1(d)).

Figure 3.2 shows a snapshot of a PRI’s viewer, which shows a clone group that
comprises six clone instances searched in each row of a tree viewer. The first two
rows show the clone instances factored out by Extract Method in revision 7075, and the
next two rows show the clone instances refactored in the same way in the next revision
7076. PRI marks the fifth clone instance with symbol 7, meaning that it detects an
omission error (Figure 3.1(c)). It marks the last clone instance with symbol 7t, mean-
ing that it discovers Alice’s difficulty in applying Extract Method in the same way due
to the type variation (Figure 3.1(d)).2 The viewer in Figure 3.2 is synchronized with a
visualization view designed for inspecting clone refactorings regarding structural and
dependence relationships between clone instances and related contexts.

The aforementioned incomplete refactorings do not produce compilation errors,
passing all existing test cases. Reviewers are likely to overlook these locations. In
fact, it is not always possible to factor out all clones but independent evolution might
be required in some clone instances; however, revealing these locations and classify-
ing them whether to easily be removed using standard refactoring techniques can be
worthwhile during a code review.

3.2 Approach

This section presents PRI consisting of the following three phases. Phase I summa-
rizes clone refactorings using templates, which check the structural constraints before
2Java generic types could be applicable for a refactoring, which is not included in standard refactor-
ings [17].
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and after applying a refactoring to a program and encode ordering relationship between
refactoring types. Phase II detects clone groups incompletely refactored, classifying
the reasons. Phase III provides code visualization to represent historical refactoring
edits that Phases I finds and refactoring opportunities that Phases II detects. Figure 3.3
outlines the workflow of PRI as a pipeline that successively summarizes clone refac-
torings and helps to remove refactorable clones in the incomplete refactorings.

Phase I. Clone 
Refactoring 

SummarizationClone DB

Phase II. Detecting 
Incomplete Clone 

Refactorings

Phase III. Visualizing 
(Incomplete) Clone 

Refactorings
User

Clone Information Clone Change Information Clone Refactoring Results Tool Support For Refactorings

Repository

Figure 3.3: Overview of PRI’s workflow.

3.2.1 Phase I: Change Summarization for Clone Refactorings

Converting Clone to AST Model. Our approach parses clone groups reported by
Deckard a clone detector [29].3 PRI finds the set of AST nodes that contains reported
clones:

{n | offset(clone) � offset(statements) ^
length(clone)  length(statements) ^
n 2 ast(statements)}

(3.1)

where offset(clone) is the starting position of clone instance clone from the be-
ginning of the source file, and length(clone) is the length of the clone instance. The
function ast(statements) finds an AST at the method level, and analyzes the AST to
find inner-most syntactic statements (i.e., least common ancestor) that may contain in-
complete syntactic regions of cloned code fragments. PRI improves the performance
of search by caching ASTs of syntactic clones after computing Equation 3.1. The tool
for parsing Java source code and generating the corresponding ASTs is provided with
the Eclipse JDT framework.4

Tracking Clone Histories. PRI accesses each subsequent revision r
j

2 R =
{r

i+1, .., rn}, and identifies ASTs that are related to clone instances in an original re-
vision r

i

.
3The default settings with 30 minT (minimal number of tokens required for clones), 2 stride (size of the
sliding window), and 0.95 Similarity are used.

4http://www.eclipse.org/jdt/
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PRI presents a clone refactoring aware approach to checking clone change syn-
chronization across revisions. It is integrated with software configuration management
(SCM) tools using an SCM library5 to analyze refactorings of individual clones and
groups, helping developers focus their attention on any revision.

Returning to the motivating example, CI1 in processKeyEvent is a clone of a
fragment CI2 in processKeyEventV2 in the clone group. At revision r1, changes of
Extract Method to CI1 are checked in, and changes of the same refactoring to CI2 are
committed to the next revision r2. To track the evolved clone group, PRI automatically
accesses the consecutive revisions (n � 2, where n is configurable) to search for the
clone siblings (CI1 and CI2) by comparing two revisions.

Extracting Changes between Two Versions of ASTs. PRI leverages ChangeDis-
tiller [15] to compute AST edits to code clones. We chose ChangeDistiller since it
represents concise edit operations between pairs of ASTs by identifying change types
such as adding or deleting a method, inserting or removing a statement, or changing a
method signature. It also provides fine-grained expression with a single statement edit.
PRI uses ChangeDistiller to compute differences between the clone ASTs in revision
r
i

and the evolved clone ASTs in revision r
j

.

N1:CASE

N2:DECL N3:IF N4:INVC N5:BREK

N6:EXPR N7:THEN N8:ELSE

… …

N1:CASE

N2:DECL N9:ASGN N4:INVC N5:BREK

insertdelete

Legend
CASE: case statement
DECL: variable declaration
IF: if statement
INVC: method invocation
BREK: break statement
MTHD: method definition

EXPR: expression
THEN: then body
ELSE: else statement
ASGN: assignment

N10:MTHD

insert
reference

(a) Before refactoring a clone instance (b) After refactoring a clone instance

Figure 3.4: Extracting the edit operations from clone changes.

Continuing with our motivating example, PRI parses the clone region before changes
as shown in Figure 3.4(a), and parses the corresponding region after changes as shown
in Figure 3.4(b). It then uses ChangeDistiller to compute the differences between two
sets of ASTs. In Figure 3.1(a), ChangeDistiller reports the deletion operations of the
statements including if, then and else, and the insertion operations of an assignment
statement including a call to a new method processEvent.
5http://www.svnkit.com/
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When checking changes before and after clone refactorings, it is important to de-
termine if references (e.g., method call and field access) are preserved across clone
instances. Therefore, we create a new reference binding checker, which is not pro-
vided by ChangeDistiller, to assess reference consistency. For example, Figure 3.4(b)
shows a method invocation dependency between a caller in node N9 and a callee in
N10. We check if this reference association is preserved in other regions after changing
clone instances by using bindings to a method.

Matching Clone Refactoring Pattern Templates. Refactoring pattern templates
are AST-based implementations that consist of a pair of pre- and post-edit matchers
such as M

pre

and M
post

. M
pre

is an implementation for matching patterns before
clone refactoring application. M

post

interacts with repositories and traverses ASTs
of the source code in which the clones and their dependent contexts are modified. It
extracts both a match between the nodes of the compared AST subtrees before and
after a refactoring application and an edit script of tree edit operations transforming an
original into a changed tree.

After matching such clone refactoring patterns comprising a set of constraint de-
scriptions where a refactoring can be performed, PRI identifies concrete clone refac-
toring changes (e.g., refactored revisions, refactoring types, locations, and restructur-
ing descriptions). The change pattern descriptions are designed by using declarative
rule-based constraints [60].

Table 3.1 shows clone refactoring templates that our approach can identify based
on pre- and post-edit matchers. We leverage the rules of refactoring types in Fowler’s
catalog [17]. A composite refactoring comprises a set of low-level refactorings. For
example, template 6 describes that Extract Method is applied to a clone group, and the
new method is moved to another class.

ID Type Template

1 EM Extract Method Refactoring
2 MM Single Move Method Refactoring
3 PM Refactoring Pull Up Method Refactoring
4 ES Extract Superclass Refactoring
5 MN Move Type to New File Refactoring

6 EM+MM Composite Extract and Move Method Refactoring
7 EM+PM Refactorings Extract and Pull Up Method Refactoring
8 PM+EM Pull Up and Extract Method Refactoring

Table 3.1: Clone refactoring templates that PRI supports by tracking the evolution of clones
focusing on their removal refactorings.

Algorithm 1 illustrates our approach following this clone refactoring pattern iden-
tification. Our approach first takes a revision scope (REVs) for tracking clone refac-
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Algorithm 1: Identifying Clone Refactoring Evolution.
Input : REVs – a scope of revisions for inspection, OCD – the output of a clone detector, and

PRG – a program to be inspected.
Output: RES – a set of clone groups whose clone instances are classified as refactored,

refactorable, or unfactorable.
1 Algorithm main
2 CGs M

pre

.match (OCD, PRG);
3 foreach Revision r

i

2 REVs do
4 foreach CloneGroup G

clone

2 CGs do
5 RES M

post

.match (G
clone

, r
i

);
6 end
7 end

toring histories and the output of a clone detector (OCD) as input. To match pre-edit
patterns with OCD, it traverses the ASTs of OCD and extracts program elements (e.g.,
packages, classes, methods, and fields) and structural dependencies (e.g., containment,
subtyping, overriding, and method calls). M

pre

.match, a syntactic sugar, uses these
predicates to determine clone structural patterns, such as whether they exist in the same
structural location, or whether they are implemented in classes with the common super-
class (Line 2). It then iterates two tasks: tracking clone groups across revisions (Line
3) and inspecting each clone group (Line 4). This iteration stops when all changed
files in input revisions are inspected with all clone groups. Algorithm 1 returns the fol-
lowing results: (1) clone groups where all clone instances are refactored completely,
(2) clone groups where no clone instance is refactored, and (3) clone groups where
some of the clone instances are refactored. M

post

.match is a syntactic sugar for the
invocation of any template to match with changes to clones (Line 5).

Continuing with our example, PRI matches patterns with changes to clones (Fig-
ures 3.1(a) and (b)) in each revision using templates. During this inspection, Algo-
rithm 2 finds the pattern of Extract Method by performing rules in lines 3-4.

The following structural change matching rules capture Extract Method. (See more
refactoring pattern templates at https://goo.gl/eFpGGn)

• Pattern 1: deleteClone(ci1, m1, t1, r1) – clone instance ci1 is deleted from
method m1 in type t1 in revision r1.

• Pattern 2: addMethod(m2, t1, r1) – method m2 is added in type t1 in revision r1.

• Pattern 3: addCall(m1, m2, r1) – a method call to m2 from method m1 is added
in revision r1.
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Algorithm 2: Matching the Extract Method Refactoring Pattern.
Input : G – a clone group, R – a revision, and Sim – a similarity threshold.
Output: RES – clone instances identified as refactored or not.

1 Template extractMethodRefPattern

2 foreach CloneInstance ci 2 G do
3 if deleteClone (ci, m

i

, t
i

, R) ^ addMethod (m
j

, t
i

, R) ^
4 addCall (m

i

, m
j

, R) ^ similarBody (m
i

, m
j

, Sim) then
5 RES summarize (ci); // clone refactoring
6 end
7 else
8 RES detect (ci); // refactoring anomaly
9 end

10 end

• Pattern 4: similarBody(ci1, m1, m2, Sim) – the similarity level between a
deleted ci1 in m1 and a method body of m2 is greater than threshold Sim.

We believe our approach can be easily extended to support other clone refactorings,
which may reuse similar constituent change steps.

Our clone tracking technique for pattern similarBody uses the Levenshtein distance
algorithm [42], which measures the similarity between two sequences of characters
based on number of deletions, insertions, or substitutions required to transform one
sequence to the other.

Our approach maps a code snippet M
i

in the clone group and the edited state-
ments M

j

related to changes to M
i

(e.g., clone instances and the body of method
processEvent in Figure 3.1(a)). When comparing M

i

and M
j

, our approach gener-
alizes the names of identifiers with abstract variables (e.g., variables, qualifier values,
fields, and method parameters) to create a generalized program comparison that does
not depend on concrete identifiers. This generalization technique was used in previous
works [83, 47], and achieved a high performance to distinguish if two code fragments
are relevant. We define the similarity S between M

i

and M
j

as follows:

S = 1� LevenshteinDistance(M
i

,M
j

)

max(|M
i

|, |M
j

|) (3.2)

The value of S is in the interval (0, 1]. Our technique in similarBody searches for
a portion of code fragments from method m2 with a similarity S of at least a threshold
Sim when compared to a clone instance ci1 deleted in method m1.
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S Clone Refactoring Classification

7 One or more clone instances (CIs) are omitted to apply refactorings in the clone group; however, other clone
siblings are refactored.

7t CIs use different variable types compared to types of aligned AST nodes in other clone siblings. To handle
variations in types, a parameterize type refactoring can be considered [47]. The applicability of this refactoring is
affected by language support for generic types.

7m CIs use different method calls compared to method calls of aligned AST nodes in other clone siblings. To handle
variation in method calls, Form Template Method (pg. 345 in [17]) could be applicable by creating common
APIs in the base class and encapsulating the variation in the derived classes.

7r CIs use different references (e.g., method overriding) compared to references of aligned AST nodes in other clone
siblings. Similar to dynamic-dispatch rule [10], altering inheritance relations is checked if addition or deletion of
an overriding method may result in reference changes.

7o CIs are implemented in different orders compared to execution orders in other clone siblings (e.g., m1();m2(); vs.
m2();m1();). Form Template Method could be used to allow polymorphism to ensure the different sequences
of statements proceed differently.

7s Non-syntactic CIs are detected, and syntactic clones expanding clone regions are not similar between clone sib-
lings according to a threshold (Sim). A possible refactoring type is Form Template Method by implementing
the details of the different process in the derived classes depending on semantic constraints or the length of com-
mon subsequent code.

Table 3.2: The six types of classification that PRI annotates classified clone instances with
symbols in the first column S.

3.2.2 Phase II: Detecting Incomplete Clone Refactorings

PRI detects incomplete clone refactorings—there are clone instances which are un-
refactored inconsistently with other sibling in the group. It also classifies unrefactored
clones if they are locally refactorable or not. Non-locally-refactorable clones means
that a developer has difficulty performing refactorings to remove clones using standard
refactoring techniques [17] due to limitations of a programming language or incom-
plete syntactic units of clones.

To detect unrefactored clone instances, we reuse Equation 3.2. Our approach ex-
tracts differences of changes to clones, generalizes statements before and after changes,
and computes a distance between M

i

and M
j

. If the value of S is less than Sim, our
approach considers M

i

as the unrefactored one and attempts to discover a possible
reason why developers have not removed M

i

by a refactoring.

Table 3.2 summarizes six types of unrefactored clones which can be automatically
classified by PRI. We categorize these cases by manually investigating clone groups
from six subject applications used in our case studies and plan to add more cases in
the future.

Continuing with our example, PRI analyzes an alignment between a pair of two
different strings “focusKeyTyped” and “changeEventAction” in Figures 3.1(a) and (d).
It then maps their locations to AST nodes and searches their declarations by perform-
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ing static interprocedural slicing [27] to determine if their types share a common type.
PRI annotates with symbol 7t a clone instance in Figure 3.1(d), which is not factored
out unlike other clone siblings due to the type variation.6 Figure 3.5 shows how PRI

reports detection results to help developers inspect clones for refactorings. A1, A2, B1

and B2 in Figures 3.1(a) and (b) are summarized as refactorings; however, C and D in
Figures 3.1(c) and (d) are detected as anomalies.

U Unchanged

R Applied clone refactoring

A1

A2

B1

B2

C

D

A1

A2

B1

B2

C

D

A1

A2

B1

B2

C

D

A1

A2

B1

B2

C

R

R

U

U

U

U

R

R

U

U

Detected C and D as
refactoring anomalies,

and classified D as
unfactorable.

R 7074 R 7076 Results

Summarized 
A1, A2, B1, and B2 as

clone refactoring

X

Xt D

X  refactorable but missed 
      to refactor
Xt  unfactorable due to
       the type variation 

R 7075

Clone Refactoring Evolution

clone refactoring
summarization
incomplete clone 
refactoring detection

Legend

Figure 3.5: Detecting refactoring anomalies in clone refactoring evolution.

Figure 3.6: Visualizing clone refactorings and anomalies regarding Extract Method (see more
screenshots at http://faculty.ist.unomaha.edu/msong/pri/).

6Generic types could be considered to remove the clone, but Fowler’s catalog does not include such
techniques and current refactoring engines, such as Eclipse, do not support it,
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3.2.3 Phase III: Visualizing Clone Refactorings and Anomalies

As PRI is intended for interactive use, we have implemented it in the context of the
Java editor of Eclipse, a widely used extensible open-source development environment
for Java. PRI shows the clone refactoring visualization view that graphically represents
refactoring edits and anomalies in a clone group in a tree graph view. Continuing with
our example, Figure 3.6 shows a snapshot of this view. We represent the structural
relationship in a clone group with a solid line denoting their locations (i.e., line num-
ber); the class View (blue) contains six clone instances. We also represent the reference
dependence with a dotted line indicating refactoring histories (i.e., revision); the four
clone instances (green) refactored in processKeyEvent and processKeyEventV2 are
linked to method updateFocus (yellow). The two unrefactored methods (red) are
marked as refactoring anomalies without a link to the extracted method updateFocus.
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CHAPTER 4

REFACTORINGS INVESTIGATION AND TESTING
TECHNIQUE

This chapter describe the proposed work, starting with the below section as our motiva-
tion that illustrates how RIT would help a developer in inspecting and testing changes
by standard refactorings [17].

4.1 Motivating Example

Suppose Sara works as a developer in a program in Figure 4.1. Sara notices an oppor-
tunity to remove code duplication (i.e., code clone removal) in the original version in
Figure 4.1(a). The first and second clone groups1 comprise methods m1() and m3(E) in
classes B and C, respectively. The last clone group consists of clone instances in meth-
ods m5() and m6() in class B. She decides to perform refactorings manually—Pull Up

Method to the first and second clone groups respectively and Extract Method to the last
clone group. Figure 4.1(b) shows the changes made by Sara, whose code insertion is
marked with ‘+’ and deletion with ‘-’.

Sara performs two Pull Up Method and one Extract Method refactorings in Figure 4.1(b):
(1) the first Pull Up Method moving methods m1() from class B and C to class A, (2)
the second Pull Up Method similar to the first one moving from methods B.m3(E) and
C.m3(E) to method A.m3(E), and (3) Extract Method creating method B.m4() by ex-
tracting common code fragments from methods B.m5() and C.m6().

While the first Pull Up Method does not break behavior preservation, Sara does not
notice that the second Pull Up Method forms method overloading by creating A.m3(E),
which has the same method name as A.m3(F) with different implementation. Sara
does not suspect that she mistakenly changed the program semantics. She can find
failures by running entire regression test suites; however, running all of the test cases
in a test suite can require a large amount of effort to ensure the refactoring correctness.
1A clone group is a set of two or more clone instances—the similar code fragment.
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1 class A {
2 int g = 4, h = 2, i = 0, k = 0;
3
4
5
6 int m3(F f) {
7 f.f1 = f.f1 + i;
8 return ++f.f1 + k; }
9

10
11
12
13
14 int m4() { return g; }
15 int m7() { return k; }
16 }

21 class B extends A {
22 void m1() { g = g + 2; }
23
24 int m3(E e1) {
25 e1.f1 = e1.f1 + i;
26 return e1.f1++ + k;}
27
28 int m5() {
29 if (h == 0) return g;
30 return g / h;
31
32 }
33
34 int m6() {
35 if (h == 0) return g;
36 return g / h;
37
38 }
39
40
41
42
43
44 }

51 class C extends A {
52 void m1() { g = g + 2; }
53
54 int m3(E e2) {
55 e2.f1 = e2.f1 + i;
56 return e2.f1++ + k;; }
57 }

61 class E extends F {
62 A x;
63 void foo(A z) {
64 x = z;
65 int w = bar();
66 x.k = w; }
67 }

61 class F {
62 int f1;
63 int bar() { return 1; }
64 }

(a) An original version of an example program.

1 class A {
2 int g = 4, h = 2, i = 0, k = 0;
3
4 + void m1() { g = g + 2; }
5
6 int m3(F f) {
7 f.f1 = f.f1 + i;
8 return ++f.f1 + k; }
9

10 + int m3(E e) {
11 + e.f1 = e.f1 + i;
12 + return e.f1++ + k; }
13
14 int m4() { return g; }
15 int m7() { return k; }
16 }

21 class B extends A {
22 - void m1() { g = g + 2; }
23
24 - int m3(E e1) {
25 - e1.f1 = e1.f1 + i;
26 - return e1.f1++ + k; }
27
28 int m5() {
29 - if (h == 0) return g;
30 - return g / h;
31 + return m4();
32 }
33
34 int m6() {
35 - if (h == 0) return g;
36 - return g / h;
37 + return m4();
38 }
39
40 + int m4() {
41 + if (h == 0) return g;
42 + return g / h;
43 + }
44 }

51 class C extends A {
52 - void m1() { g = g + 2; }
53
54 - int m3(E e2) {
55 - e2.f1 = e2.f1 + i;
56 - return e2.f1++ + k; }
57 }

61 class E extends F {
62 A x;
63 void foo(A z) {
64 x = z;
65 int w = bar();
66 x.k = w; }
67 }

61 class F {
62 int f1;
63 int bar() { return 1; }
64 }

(b) Original and edited versions of an example program.

Figure 4.1: An example: three clone groups are refactored, some of which cause test failures.
Cloned regions are highlighted: the first clone group is highlighted in red, the second one in
blue, and the last one in green.

When using RIT for inspecting and validating her refactoring, Sara or other devel-
opers would easily detect the refactoring anomaly since RIT applies a static analysis to
identify refactoring changes. It then selects a subset of regression tests whose behav-
ior might have been changed and then reports affecting refactoring—Pull Up Method to
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1 @Test
2 public void test1() {
3 A b1 = new B();
4 A c1 = new C();
5 b1.m1();
6 c1.m1();
7
8 Lib.println(b1.g + " eq " + c1.g);
9 assertTrue(b1.g == c1.g);

10 }

21 @Test
22 public void test2() {
23 A b2 = new B();
24 int rt1 = 0, rt2 = 0;

25 rt2 = field1;
26 if (field1 != -1)
27 rt1 = b2.m4();
28
29 A a = new A();
30 E e = new E();
31 e.foo(a);
32 rt2 = a.m3(e);
33
34 Lib.println(b2.g + " eq " + rt1);
35 Lib.println(a.k + " < " + rt2);
36
37 assertTrue(b2.g == rt1);
38 assertTrue(a.mk() < rt2);
39 }

Figure 4.2: Regression tests test1() and test2() for testing an example program in Figure 4.1.

B.m3(E) and C.m3(E) for creating A.m3(E) responsible for a test failure in test2()

Figure 4.2.

Sara performs Extract Method in Figure 4.1(b). She removes code clones from meth-
ods B.m5() and B.m6() to create a common method B.m4(). However, she unex-
pectedly introduces refactoring anomaly by overriding method A.m4() with the new
method B.m4(), leading to changes to semantic preservation. After running all regres-
sion test suites, she finds test failure. It may not be cost-effective when faults should
be quickly detected. Furthermore, she might not be easy to understand a composite
test that interleaves multiple asserts and to debug the root cause(s).

RIT finds composite tests interleaving two or more asserts (e.g., test test2() in
Figure 4.2). Given the assert, RIT applies program slicing [78] to identify the test
context—preceding code relevant to variables for tested data in the assert in terms
of data dependences (e.g., a variable definition and its use at lines 23, 24, 27, 34,
and 37 and at lines 24, 29, 30, 31, 32, 35, and 38 in test2() in Figure 4.2)2 and
control dependences (e.g., the if statement from lines 26 to 27), which are likely to be
related and should be inspected and tested together. RIT forms partitions that can be
understood and tested independently, and produces each reduced, executable test-slice
including relevant statements and control predicates that directly or indirectly affect
the variables used in asserts.

Given a set of partitioned test-slices, RIT further minimizes a test-slice by for-
ward/backward tracking tested variables referenced in asserts. For example, it ex-
cludes read statements referencing a tested variable without affecting its value, since
such read statements are unlikely to affect test behaviors (e.g., statements at lines 8,
34 and 35 in Figure 4.2).3 However, it determines write statements altering the value
2An assignment at line 25 is excluded since it is killed (redefined) by a statement at line 32.
3Unrelated asserts are also excluded exclusively. For example, a test-slice for assert at line 37 excludes
assert at line 38 as a read statement and vice versa.
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1 @Test
2 public void test2_1() {
3 A b2 = new B();
4 int rt1 = 0;
5 if (field1 != -1)
6 rt1 = b2.m4();
7 assertTrue(b2.g == rt1);
8 }

(a) A partitioned test-slice test2_1() which is separated from
a composite test test2() in Figure 4.2. This test is affected by
the Extract Method refactoring.

1 @Test
2 public void test2_2() {
3 A a = new A();
4 E e = new E();
5 e.foo(a);
6 int rt2 = a.m3(e);
7 assertTrue(a.mk() < rt2);
8 }

(b) A partitioned test-slice test2_2() from test2() separated
from a composite test test2() in Figure 4.2. It is affected by
the Pull Up Method refactoring.

Figure 4.3: Generating subtests each of which address an independent development and main-
tenance concern.

of a tested variable responsible for test behaviors (e.g., variable rt2 updated by an
assignment statement at line 32 in Figure 4.2). Regarding a call to E.foo(A) at line
31, it finds aliases of the tested variable whose heap object gets modified by tracking
the respective object (e.g., x.k at line 66 in Figure 4.1(a)). To track tested variables
and search for aliases for the target variable, RIT applies both dynamic and static
techniques for inter-procedural data flow analysis [64].

Figure 4.3 shows a set of test-slices that helps a developer focus on potential
failure-inducing edits (i.e., affecting refactorings). RIT identifies affecting Pull Up

Method by using the affected, partitioned test-slice test2_1() in Figure 4.3(a) and
affecting Extract Method through the test-slice test2_2() in Figure 4.3(b). For exam-
ple, given a test-slice test2_1() reporting a regression test failure, RIT identifies the
affecting Pull Up Method to deletion of methods B.m3() and B.m3() with creation of
method A.m3() in Figure 4.1(b). Given a test-slice test2_2() reporting a failure,
RIT detects the affecting Extract Method to methods B.m5() and B.m6() with creation
of method B.m4() in Figure 4.1(b).

Although such semantic behavior changes may be Sara’s intended edits during
refactorings, it may be worthwhile for others to note these behavior changes or for
Sara to reconfirm her intent, since these refactorings altered the external behavior of
the program.

4.2 Approach

Given the original and edited program versions, P and P ’, RIT first extracts differ-
ences between P and P ’ (Section 4.2.1), analyzes dependences between changes (Sec-
tion 4.2.2), and identifies refactorings. Second, it selects a subset of regression tests
affected tests whose behaviors could be changed by the refactorings. We analyze a call
graph to safely select affected tests that contain at least every test whose behavior may
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have been affected (Section 4.2.3).

Third, if a composite test containing multiple asserts, RIT identifies semantically
dependent statements to execute logically related statements regarding each assert.
Related statements are then merged together and isolated from others. A composite
test can be partitioned into a set of statement-slices (Section 4.2.4).

Forth, regarding a set of partitioned test-slices, RIT minimizes each test-slice by
removing irrelevant statements (i.e., read statements) to perform method assert. It
determines statements modifying tested variables (i.e., write statements) within a test-
slice by tracking these tested variables used in assert, applying data flow and aliases
analysis techniques (Section 4.2.5).

Lastly, for each test-slice that causes failures, RIT determines affecting changes
(i.e., refactoring anomalies) that change behaviors of tests. Given a failed test, RIT

safely determines a set of affecting changes that contains at least every change that may
have caused changes to the test’s behavior (Section 4.2.6). See the system overview in
Figure 4.4.

4.2.1 Change Category

RIT uses a differencing technique [15] to extract program edits as atomic changes
by comparing ASTs of two program versions. These atomic changes are categorized
as added classes (AC), deleted classes (DC), added methods (AM), deleted methods
(DM), change method (CM), added fields (AF), deleted fields (DF), lookup (i.e., dy-
namic dispatch) change (LC), and resolution of overload (i.e., static dispatch) change

A Program

Regression Tests

Original Version

Refactored Version

Refactoring
Change Detector

Call Graph
Builder

Refactoring 
Change Dependence 

Graphs

Call Graphs of Tests

Change Impact 
Analyzer

Change Decomposer

Data Flow Analyzer

Affected Tests
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Composite Tests

A Set of Affected 
Test Slices

Failure 
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Refactoring 
Changes

Developer

Figure 4.4: The system overview of RIT.
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C1: RM
B.m1()

C2: RM
C.m1()

C5: LC
A,A.m1()

C7: CM
A.m1()

C13: CM
B.m4()

C9: CM
B.m5()

C10: CM
B.m6()

C12: AM
B.m4()

C19: CM
A.m1(E)

C14: RM
B.m3(E)
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C18: AM
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(b) Extract method refactoring (c) Pull up method refactoring with method m3()
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C8: LC
B,A.m4()
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E,A.m3(F)

C3: LC
B,B.m1()

C4: LC
C,C.m1()

C6: AM
A.m1()

(a) Pull up method refactoring with method m1()

C16: RC
E,A.m3(E)

Figure 4.5: The refactoring change dependence graphs.
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Figure 4.6: The call graphs for tests before and after the refactorings, representing (1) methods
by rectangles, (2) fields by rectangles with dashed line, (3) call and field-access edges by
directed lines, and (4) associated labels on edges by green rectangle. The partitioned test-slices
are indicated with dotted-gray boxes.

(RC). Most of atomic changes are self-explanatory except for LC and RC. The look-up
change LC can be caused by adding or deleting methods/fields, modifying inheritance
relationships, and it is defined as a change rule, LC = <Y,X.m()>, where Y denotes the
run-time type of the receiver, and X.m() denotes the method that is statically referred
to in the method call on an object with type X. It models changes that the dynamic dis-
patch behavior for a call to method X.m() with run-time type Y leads to a different
method. These change types were also used in previous works [63, 82].

RIT introduces the resolution of overload change (RC) that occurs as a result of
method hiding changes due to a hierarchy of method argument types. For example,
RC can be caused by adding multiple methods of the same name with different be-
haviors passing different argument types, while showing inheritance relationships be-
tween the argument types passed to the methods. It is defined as a change rule, RC
= <Y 0, X.m(Y )>, where Y 0 denotes the resolved type at compile-time, and X.m(Y )

denotes the method that is statically referred to in the method call passing an argument
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type Y , while types Y and Y 0 show an inheritance relationship.4 RC models changes
that a call to method X.m(Y ) with type Y 0 determined by the compile-time resolution
result in the selection of a different method due to the inheritance relationship between
types Y and Y 0.

4.2.2 Change Dependences

RIT identifies dependences between atomic changes, leverages the structural con-
straints of a program before and after each refactoring type, and summarizes refactor-
ing changes. It helps developers understand and debug refactored programs. Atomic
changes in Figures 4.5 shows refactorings applied to the running example. An arrow
from an atomic change A1 to an atomic change A2 indicates that A2 is dependent on
A1 (i.e., A2 is a prerequisite for A1).

Consider, for example, the addition of the call m4() in methods m5() and m6()

during Extract Method. These changes occurs in atomic changes C9 and C10 in Fig-
ure 4.5(b). Adding these calls breaks the semantic preservation without method B.m4()

during Extract Method according to Fowler’s catalogue [17]. Therefore, atomic changes
C9 and C10 create dependence relationship with C12, which is an AM change of
B.m4() for extraction of common code fragments from methods B.m5() and B.m6().5

For every LC change, there is method addition (AM) or deletion (DM) which
caused it, and LC is dependent on these changes. Similarly, every LC change de-
pends on field additions (AF) or deletion (DF). Consider, for example, Extract Method

adding method B.m4(), changing methods B.m5() and B.m6() in Figure 4.1(b). As a
result of this refactoring, a call to A.m4() on an object of type B dispatches to B.m4()

in the refactored program, whereas it used to dispatch A.m4() in the original program
in Figure 4.1(a).

Every RC change depends on corresponding AM or DM changes. Consider, for ex-
ample, Pull Up Method adding method A.m3(E), deleting methods B.m3(E) and C.m3(E)

in Figure 4.1(b). This refactoring changes the behavior of the program because a call
to A.m3(F) passing an argument with type E (a subtype of F) resolves to A.m3(E) in
the refactored program, whereas it used to invoke A.m3(F) in the original program.6

While previous techniques [63, 82] consider dependences among atomic changes,
4Methods are overloaded with different argument numbers; however, we emphasize that RC can be
caused despite no edits in callers or callees.

5There are two steps: the addition of an empty method B.m4() (AM at C12 in Figure 4.5) and the
insertion of the method B.m4() (CM at C13).

6The LC changes to A.m3(), B.m3() and C.m3() are skipped in Figure 4.5(c) due to limited space.



27

they do not model dependences between changes precisely when refactorings (along
with behavior changes) are performed, which results in false positive dependences.
Based on such rules, RIT models dependence relationships among atomic changes of
refactorings more accurately.

4.2.3 Selecting Affected Tests

RIT constructs a dynamic call graph for each test by tracking the execution of the tests.
Given a set of regression tests, it determines a subset of tests that is potentially affected
by the changes in a set of atomic changes. It then correlates these changes against the
call graphs for the tests in the original version of the program.

The call graph is defined as a representation, G = <V,E>, where V = M [ F and
E =

S
m2M({m ! m

i

|m
i

2 callee(m)} [ {m ! f |f 2 access(m)}). M and F

denote a subset of methods and fields reachable from each test in the program under
test, and callee(m) and access(m) denote a subset of called methods and accessed
fields by m respectively.

Figure 4.6(a) shows the call graphs for two tests test1() and test2() before
refactorings have been applied to the running example. A test is determined to be
affected if its call graph in the original version of a program contains a node that
correspond to CM or DM changes. Also, a test is selected if its call graph contains a
node that correspond to LC or RC changes. Given the call graph in Figure 4.6(a), RIT

determines that test1() and test2() are affected by refactorings, because test1()

contains two edges corresponding to a dispatch to methods B.m1() on an object of type
B and C.m1() on an object of type C, which correspond to LC changes C3 and C4. The
test test2() contains edges for LC and RC: (i) an edge corresponding to a dispatch to
method A.m4() on an object of type B, which corresponds to LC change C8, and (ii)
an edge corresponding to a resolution to method A.m3(F) with the subclass argument
type E, which corresponds to RC change C17.

4.2.4 Partitioning Affected Tests

RIT finds a composite test including multiple asserts and parses it into Abstract
Syntax Tree (AST) edits, and it extracts the test context—preceding statements on
which the tested variables in the assert are data and control dependent by performing
static intraprocedural slicing [27]. It identifies all upstream dependent AST nodes
based on a transitive relation within a test.



28

• Data dependence – Statement S2 is data dependent on S1, if S1 defines a variable
v and S2 uses v, such that there exists a path from S1 to S2 which v is not killed
(redefined).

• Control dependence – Statement S2 is control dependent on S1, if execution of
S2 is control dependent on the decision made at S1.

RIT constructs a program dependence graph, which is defined as a representa-
tion, PDG = <DN,DE>, where DN denotes a subset of statements, and DE ✓
DN ⇥DN representing the control and data dependences between statements. It then
decompose a composite test into separate sub-tests (i.e., a set of test-slices) based on
PDG as the primary organizing principle. Figure 4.6 shows the partitioned test-slices
by applying program slicing to tests test1() and test2().

4.2.5 Minimizing Affected Tests

RIT generates a set of partitioned test-slices S from each composite test for validating
a set of tested variables V

t

. It then separates read statements (i.e., statements with
a reference to each tested variable v

t

of V
t

without an update to v
t

in the left hand
side of an assignment) from each test-slice of S, which only includes write statements
(i.e., statements modifying the value of v

t

). This separation of irrelevant statements
(i.e., read statements) that do not affect test-slices’ behaviors reduces the maintenance
efforts for developers and helps them understand specific call dependencies where the
changes to the source code are unlikely to be apparent in the program behavior [73, 26].

To distinguish such read statements from write statements, RIT analyzes the de-
pendent test context by (1) tracking each tested variable v

t

of V
t

propagating across
method calls7 and (2) using “shortcut rules” predefined in XML file format.

Firstly, RIT resolves aliasing by combining a forward-alias analysis and an PDG-
based backward analysis [74]. Continuing with our running example, RIT deduces
that each v

t

is modified at statements S3 and S8 in Figure 4.7 respectively. In step ¨,
based on a constructed PDG for a test-slice test2_2(), RIT tracks variables a and
rt2 in V

t

on dependent statements backward, starting from assert at a statement S11.
Regarding a statement at S8, it considers it as a write statement, because variable rt2

as v
t

is updated in the left hand side of an assignment due to a call to A.m3(E). Due to
an update of the call to v

t

(i.e., rt2) at S8, RIT preserves this statement to run the test-
7RIT analyzes AST nodes except the ones on control predicates in statements to search for read state-
ments.
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Tests.test2_2() F.bar()E.foo(A z)

S1: A a = new A();

S2: E e = new E();

S8: int rt2 = a.m3(e);

S12: assertTrue(a.mk() < rt2);

S4: x = z;

S5: w = bar();

 S7: x.k = w;S3: e.foo(a)

S6: return 1;

6

74

5

A.m3(F f)

S9: f.f1 = f.f1 + this.i;

S10: return ++f.f1 + this.k;

2

3
S11: Lib.println(a.k .. rt2);

1

X

Figure 4.7: Applying data flow and aliases analyses to a test-slice test2_2() to analyze
semantic dependencies between procedures using inter-procedural data flow information such
as alias. S

n

denotes a sequence of statements on control flow graph nodes; a dotted-line a
backward analysis direction; a solid line a forward analysis direction; a underlined statement a
location identified by an aliases analysis, and; a dotted-circle a correspondence of propagated
v

t

. Despite an unperformed analysis within method A.m3(F) skipped by a preceding analysis
result, the access of field variables this.i and this.k can be determined by our approach.

slice test2_2(), stopping steps ≠ and Æ for a forward analysis to track the variable a
as v

t

.

As step Ø continues the tracking backward for a as v
t

, the address of variable a

as v
t

at S3 is propagated across methods through CFG yielding the address value for a
parameter z at method E.foo(A) in step ∞. The forward analysis searches for aliases
of the respective object (z in this case). At S4, the alias x of the respective object z is
found and then propagated forward. Step ± continues the tracking for the alias. RIT

then identifies an update of variable w to the alias x.k at S7, and thus it preserves the
statement at S3 within the test-slice test2_2() after step ≤.

RIT tracks backward and preserves statements S1 and S2 in PDG of the test-slice
test2_2(), because S1 is a definition of a in V

t

, and S2 is a definition of e that is used
in write statements such as S3 and S8.

Secondly, RIT excludes read statements from a test-slice by matching system API
calls, whose arguments corresponding to v

t

of method calls are not updated (e.g., ar-
gument(s) of a call to System.out.println). In Figure 4.7, RIT excludes a statement
at S11 marked with X. External libraries including the JRE platform runtime8 in the
8In this paper, RIT’s goal is to analyze subject applications written in Java.
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analysis potentially requires a large amount of analysis time due to approximations per-
formed during the library’s analysis, resulting in undesired imprecision. Based on a set
of predefined rules, RIT utilizes an interface for external library models. These rules
handles a collection of classes and data structures that are commonly used. Heuristics
to consider a data reachability algorithm in the call graph for libraries are planned as
future work [84].

Continuing with our running example, RIT takes as input tests test1() and test2()

with each PDG, partitions the composite test test2() into test-slices test2_1() and
test2_2 including other tests like test1(), and minimizes these test-slices by ex-
cluding (i.e., read statements) in Figure 4.3.

RIT constructs PDG and analyzes a program data flow by using Eclipse JDT,9 a
static analysis framework to track tested variables forward/backward. To build the
call graphs, we utilize an aspect-oriented programming (AOP) technique [32, 33] for
instrumenting the class files of the original version of the program and their tests. For
the reuse of analysis results, call graphs are stored as XML files. Executing each test
case that has been instrumented by the AOP tool produces an XML file containing the
program’s dynamic call graph.

4.2.6 Selecting Affecting Refactoring Changes

RIT takes as input each test-slice s of a set of partitioned test-slices S. To identify
the refactoring changes that affect a subset of affected s, it constructs a call graph for
those affected s in the refactored version P 0 of the program in Figure 4.6(b). For af-
fected s, RIT selects the set of atomic changes: added methods (AM) and changed
methods (CM) that correspond to a node in the call graph when running on P 0. It
also selects atomic changes in the lookup changes (LC) and the resolution changes
(RC) that correspond to an edge in the call graph in P 0. It determines transitively pre-
requisite atomic changes; otherwise, applying change results in a syntactically invalid
program or breaks rules for behavior preservation of transformation in the context of
refactoring.

Continuing with our running example, given a failed test-slice test2_1(), RIT

selects AM<B.m4()> because the call graph includes an edge LC<B, A.m4()>. It also
reports C8 – C13 as a set of related atomic changes for Extract Method. Given a failed
test-slice test2_2(), RIT selects AM<A.m3(E)> since the call graph includes an edge
RC<E, A.m3(E)>, revealing a set of dependent atomic changes, C14 – C19 for Pull Up

9http://eclipse.org/jdt
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Method.

Given each test-slice s of a set of partitioned test-slices S , selecting affecting
atomic changes A in refactorings is defined as follows:

AffectingChanges(s, A) =
{a0 | s 2 S, a 2 Nodes(P 0, s) \ (CM [ AM), a0�⇤a} [
{a0 | s 2 S, a ⌘ hB,X.mi 2 LC, B <⇤A ⇤X,

n! hB,A.mi 2 Edges(P 0, t),

for some n, A.m 2 Nodes(P 0, s), a0 �⇤ a} [
{a0 | s 2 S, a ⌘ hG, Y.m(H)i 2 RC, G <⇤H, A ⇤ Y,

n! hG,A.m(H)i 2 Edges(P 0, t),

for some n, A.m(H) 2 Nodes(P 0, s), a0 �⇤ a}

In the above definition, we express a transitive ordering using �⇤ to denote depen-
dence relationships between atomic changes of refactorings.10 We represent a transi-
tive hierarchy using <⇤ and ⇤ to denote inheritance relationships between classes.11

We use! to denote call edges between methods.

108a0 2 A such that a0 �⇤
a, a 2 A

0 ) a

0 2 A

0. Given a set of A of atomic changes that transforms
P into P

0, applying A

0 to P results in a syntactically valid program with a guarantee of program
behavior preservation for refactorings.

11
A <

⇤
B means A is a subtype of B, but A 6= B, and; A ⇤

B means A is a subtype of B, or A = B.
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CHAPTER 5

EVALUATION

To guide our investigation, we define the following research questions:

• RQ1. Can PRI accurately summarize clone refactorings?

• RQ2. Can PRI accurately detect incomplete clone refactorings?

• RQ3: Can RIT accurately determine test-slices affected by atomic changes
of refactorings?

• RQ4: Can RIT accurately detect affecting refactorings that cause the fail-
ure of these test-slices?

5.1 Case Studies for Clone Refactoring Inspection

5.1.1 Experimental Design for RQ1 and RQ2

To evaluate PRI, we collect the data set by manually examining clone groups and
their changes where real developers applied clone refactorings in repositories. Ta-
ble 5.1 shows details of six subject applications used in our evaluation. We select
these projects for two main reasons. First, all subject applications are written in Java,
which is one of the most popular programming languages.1 Second, these applications
are under active development and are based on a collaborative work with at least 48
months of active change history.

To measure PRI’s capability, we establish a ground truth set from six subject ap-
plications in Table 5.1 in the following steps. First, we parse commit logs to a bag-
of-words and stemmed the bag-of-words using a standard NLP tool [46]. We then use
keyword matching (e.g., “duplicated code” and “refactoring”) in the stemmed bag-of-
words to find corresponding revisions. Based on these revisions, we manually investi-
1http://www.tiobe.com/tiobe-index/
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Application Description File LOC COR

ArgoUML UML modelling tool 1,559 127,145 46
Apache Tomcat Web Application server 1,537 215,584 42
Apache Log4j Java-based logging utility 817 59,499 1
Eclipse AspectJ Aspect-oriented extension to Java 4,758 326,563 1
JEdit Java text editor 561 107,368 5
JRuby Java implementation of Ruby 1,256 186,514 3

Table 5.1: Subject applications (File: the number of files, LOC: lines of code, and COR: count of
refactorings)

gate changed files to find clone refactorings that real developers performed or missed
one or more clone instance in the same clone group.

To measure PRI’s capability to track the clone evolution, we manually decompose
refactorings into individual changes and committed these changes across revisions to
our evaluation repository.

Each clone refactoring is a pair of (P , P 0) of a program, where P is an original
version with clone groups, and P 0 is a new version that factors out clone groups. If
refactorings in P 0 are performed across revisions by completely removing clone groups
in P , we add these changes in our data set G1 to evaluate RQ1. If any clone instance
of a clone group in P remains unrefactored in P 0 within 10 subsequent revisions,2 we
add these incomplete clone refactorings as anomalies in our data set G2 to evaluate
RQ2.

Using the ground truth data set G1, precision P1 and recall R1 are calculated as
P1 = |G1\S|

|S| , R1 = |G1\S|
|G1| , where P1 is the percentage of our summarization results

that are correct, R1 is the percentage of correct summarization that PRI reports, and
S denotes the clone groups identified by PRI, all clone instances of which are refac-
tored. Using the ground truth data set G2, precision P2 and recall R2 are calculated
as P2 = |G2\D|

|D| , R2 = |G2\D|
|G2| , where P2 is the percentage of our detection results that

are correct, R2 is the percentage of correct detection results that PRI reports, and D

indicates the clone groups detected by PRI, some clone instances of which are not
refactored. We measure accuracy using F1 score by calculating a harmonic mean of
precision and recall.
2As 37% of clone genealogies last an average of 9.6 revisions in Kim et al.’s study [36], we chose 10
subsequent revisions.
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Clone Refactoring Summarization

ID RFT VER TIM CL
s

GT
s

P R A

1 EM 3 1.1 2 / 1 2 / 1 100 100 100
2 PU 3 0.1 5 / 2 6 / 3 100 66.7 80.0
3 PU 4 0.4 6 / 1 7 / 2 100 50.0 66.7
4 ES 9 0.9 20 / 4 20 / 4 100 100 100
5 ES 4 0.4 2 / 1 9 / 3 100 33.3 50.0
6 ES 3 0.8 17 / 7 17 / 7 100 100 100
7 ES 3 0.6 48 / 24 48 / 24 100 100 100
8 EM+PU 7 1.0 3 / 1 8 / 2 100 50.0 66.7
9 EM 3 0.8 4 / 2 4 / 2 100 100 100

10 EM 9 0.9 8 / 1 8 / 1 100 100 100
11 PU 4 0.7 9 / 3 9 / 3 100 100 100
12 PU 3 0.5 2 / 1 2 / 1 100 100 100
13 PU 3 1.1 2 / 1 2 / 1 100 100 100
14 PU 3 0.3 2 / 1 2 / 1 100 100 100
15 PU 3 0.4 2 / 1 2 / 1 100 100 100
16 ES 3 2.3 40 / 20 40 / 20 100 100 100
17 PU+EM 3 2.2 6 / 3 6 / 3 100 100 100
18 ES 3 1.4 11 / 5 12 / 6 71.4 83.3 76.9
19 EM+PU 3 1.5 2 / 1 2 / 1 100 100 100
20 EM 3 0.6 2 / 1 2 / 1 100 100 100
21 MN 3 2.4 2 / 1 2 / 1 100 100 100
22 PU 3 0.1 2 / 1 2 / 1 100 100 100
23 PU 3 0.5 2 / 1 2 / 1 100 100 100
24 EM 3 0.6 2 / 1 2 / 1 100 100 100
25 EM 3 0.6 2 / 1 2 / 1 100 100 100
26 ES 4 0.7 6 / 3 6 / 3 100 100 100
27 EM+MM 5 1.3 8 / 3 8 / 3 100 100 100

TOTAL or AVG. 103 0.9 217 / 92 232 / 98 98.9 92.0 94.1

Table 5.2: Accuracy of PRI’s summarization and detection. RFT: the refactoring types that
developers perform across VER revisions (see Table 3.1 for acronyms), VER: the number of
revisions where developers apply refactorings, TIM: the time that PRI completes each task (an
average of time (sec.) per group), CL

s

: the number of refactored clones correctly summarized
by PRI (instance/group), GT

s

: the number of the ground truth data set for clone refactoring
summarization (instance/group), P: precision (%), R: recall (%), and A: accuracy (%), and each
line represents the evaluation result for a project at a particular revision where developers apply
clone refactoring applications

5.1.2 Study Results and Discussion

Table 5.2 and Table 5.3 summarizes our evaluation result, to answer the questions
raised above. We collect results for PRI and manually assess the outcomes to collect
precision, recall, and accuracy. Regarding validation process, the first author analyzed
PRI’s results. The results then were validated in the meetings with the remaining
authors. When there was any disagreement, each issue was put to a second analysis
round, and a joint decision was made.

RQ1. Can PRI accurately summarize clone refactorings? We assess PRI’s
precision by examining how many of refactorings of clone groups are indeed true clone
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ID RFT CL
d

GT
d

7 7t 7m 7o 7s P R A

1 EM 48 / 3 48 / 3 0 0 43 0 5 100 100 100
2 PU 123 / 52 123 / 52 49 2 8 0 65 98.1 100 99.0
3 PU 102 / 38 105 / 39 83 0 1 7 14 10097.4 98.7
4 ES 449 / 36 449 / 36 43 7 0 0 399 100 100 100
5 ES 318 / 44 322 / 45 109 0 7 0 206 95.797.8 96.7
6 ES 1,430 / 86 1,430 / 86 67 162 49 0 1153 98.9 100 99.4
7 ES 1,118 / 99 1,118 / 99 112 15 18 0 973 100 100 100
8 EM+PU 237 / 50 237 / 50 84 9 17 0 132 96.2 100 98.0
9 EM 20 / 7 20 / 7 7 0 7 0 6 100 100 100

10 EM 2,643 / 103 2,643 / 103 24 6 14 0 2,599 100 100 100
11 PU 2,228 / 218 2,306 / 221 277 20 90 0 1,919 99.198.6 98.9
12 PU 127 / 52 133 / 55 34 8 2 0 89 10094.5 97.2
13 PU 8 / 3 12 / 5 0 0 12 0 0 10060.0 75.0
14 PU 222 / 66 222 / 66 58 3 6 0 155 100 100 100
15 PU 171 / 57 171 / 57 50 3 6 0 112 100 100 100
16 ES 2,597 / 64 2,597 / 64 78 16 7 0 2,496 100 100 100
17 PU+EM 1,218 / 42 1,218 / 42 15 0 15 0 1,188 100 100 100
18 ES 1,210 / 41 1,212 / 42 16 7 13 0 1,176 95.397.6 96.5
19 EM+PU 2 / 1 2 / 1 2 0 0 0 0 100 100 100
20 EM 50 / 15 50 / 15 4 0 0 0 46 100 100 100
21 MN 2 / 1 2 / 1 2 0 0 0 0 100 100 100
22 PU 29 / 12 29 / 12 4 2 0 0 23 100 100 100
23 PU 97 / 32 99 / 33 14 9 2 0 74 10097.0 98.5
24 EM 23 / 11 23 / 11 8 3 0 0 12 100 100 100
25 EM 15 / 7 15 / 7 6 3 0 0 6 100 100 100
26 ES 0 / 0 0 / 0 - - - - - - - -
27 EM+MM 24 / 12 24 / 12 8 0 2 0 14 100 100 100

TOTAL or AVG. 14,511 / 1,152 14,610 / 1,164 1,154 275 319 7 12,862 99.497.8 98.4

Table 5.3: Accuracy of PRI’s summarization and detection. RFT: the refactoring types that
developers perform across revisions, CL

d

: the number of unrefactored clones correctly detected
by PRI (instance/group), GT

d

: the number of the ground truth data set for incomplete clone
refactoring detection (instance/group), 7, 7t, 7m, 7o, and 7s: see Table 3.2, P: precision (%),
R: recall (%), and A: accuracy (%), and each line represents the evaluation result for a project
at a particular revision where developers apply clone refactoring applications.

refactoring. PRI summarizes 94 refactorings of clone groups, 92 of which are correct,
resulting in 98.9% precision. Regarding recall, PRI identifies 92% of all ground truth
data sets. It identifies 92 out of 98 refactored groups. It summarizes refactorings of
clone groups, tracking the clone histories with 94.1% accuracy.

PRI summarizes refactorings of clone groups that are not easy to identify because
they require investigating refactorings of individual versions of a program while track-
ing changes of a clone group, e.g., a clone instance refactored in revision r

i

and its
sibling of the clone refactored in revision r

i+j

. Instead of tracking each version in-
crementally, simply comparing with the latest version can produce every change to
be inspected. However, composite code changes, which intermingle multiple develop-
ment issues together, are commonly difficult to conduct a code review [73].

False Positives. One group is a false positive due to the partitioning issue in clone
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groups. For example, Extract Super Class is applied to a clone group in Apache Tomcat
(r1742245). Although PRI identifies a refactored clone group, the group is not mapped
to the ground truth as a clone detector detects the group as two separate groups. Selec-
tive merging analysis of clone instances of clone groups can prevent this false positive,
which will be included in our heuristics in the future.

False Negatives. One group is not identified by PRI; the refactoring can only be
identified by decreasing a similarity level in a clone detector. As PRI relies on the
output of a clone detector, it is impossible to identify the refactoring of a group until
a clone detector can find all sibling clones. In ArgoUML (r11784), we observed that
changing the default setting from 0.95% to 0.85% can let PRI summarize refactorings
of the group not reported when using the default setting.

Our threshold Sim also prevents PRI from identifying one group, since the re-
ported cloned regions deviate from the regions that a refactoring is applied in real
scenarios. For example, Extract Method is applied to smaller portions than the reported
clones in ArgoUML (r16118). This false negative also negatively affects detection of
incomplete clone refactorings with respect to precision since refactored clones, which
PRI is unable to identify, is considered as unrefactored clones. Controlling Sim can
allow to capture such issues.

Other groups not identified by PRI are modified after refactoring application in
ArgoUML. We manually investigate the changes to the clone groups and find that
refactoring edits includes extra edits without preserving the behavior after applying
refactorings to clone groups. Checking the correctness of refactorings to determine
whether extra edits are added to the pure refactoring version is our future work.

RQ2. Can PRI accurately detect incomplete clone refactorings? We estimate
the precision of PRI by evaluating how many of the unrefactored clones are indeed
a true omission of refactoring. As PRI detects clone groups in which some clone
instances are omitted from refactorings either intentionally or unintentionally, we con-
sider any instance resulting in refactoring deviations of other refactored siblings in the
group as a true clone refactoring anomaly. PRI detects 1,162 unrefactored groups,
1,152 of which are correct, resulting in 99.4% precision. Regarding recall, PRI detects
97.8% of all ground truth data sets. It detects 1,152 out of 1,164 unrefactored groups
with clone refactoring classification with 98.4% accuracy.

PRI helps developers investigate unrefactored clone instances and understand how
these instances are diverged from other clone siblings. It automatically classifies
whether unrefactored clone instances cannot be easily removed by standard refactoring
techniques [17], which is not easy to determine since understanding clone differences
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1 class AbstractAjpProtocol {
2 void pause() {
3 try { ...
4 endpoint.pause();
5 ... } catch { ... }
6 }
7 void resume(byte[] data) {
8 try { ...
9 endpoint.resume();

10 ... } catch { ... }
11 }
12 void stop(byte[] data) {
13 try { ...
14 endpoint.stop();
15 ... } catch { ... }
16 }
17 }

1 class AbstractHttp11Protocol {
2 void pause() {
3 try { ...
4 endpoint.pause();
5 ... } catch { ... }
6 }
7 void resume(byte[] data) {
8 try { ...
9 endpoint.resume();

10 ... } catch { ... }
11 }
12 void stop(byte[] data) {
13 try { ...
14 endpoint.stop();
15 ... } catch { ... }
16 }
17 }

Figure 5.1: A false negative example from the Apache Tomcat (r1042872) project (the regions
with highlighted background are cloned).
between clone instances in the group usually requires both mapping aligned statements
line by line and checking if these statements are implemented with the same program
elements (e.g., types or method calls).

False Positives. Most groups are incorrectly classified due to the lack of capability
to find functionally identical code clones in the clone detector we used.

We investigate the implementations of such clone groups and find that these groups
can be reorganized by common functionality. For example, CI1, CI2, CI3, and CI4 are
reported in the same group. A pair of CI1 and CI3 and a pair of CI2 and CI4 share the
same features, respectively, but the former pair has the type variation and the latter one
has the method call variation. Each reorganized group may be classified depending on
the variations between counterparts. This limitation can be overcome by plugging in
clone detectors that are more resilient to differences in syntax [38, 18].

False Negatives. We inspected the groups not detected by PRI. We found that
some clone instances in a group can be reorganized as a sub-group, and other clone sib-
lings can be moved to another sub-group, which causes false negatives. Figure 5.1 ex-
emplifies the false negatives. As a clone detector reports six clone instances as a group,
PRI tracks the change history and detects the group as unrefactored. However, parti-
tioning based on program semantics can allow PRI to detect three unrefactored sub-
groups: a set of AbstractAjpProtocol.pause and AbstractHttp11Protocol.pause,
a set of AbstractAjpProtocol.resume and AbstractHttp11Protocol. resume, and
a set of AbstractAjpProtocol.stop and AbstractHtt- p11Protocol.stop. These
missing groups are hard to detect using PRI since our current templates are not capa-
ble of partitioning or merging clone groups to detect refactorable subgroups or most
common groups. Heuristics to consider the scenario are planned as future work.
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5.2 Case Studies for Fault Localization of Failure-Inducing Refac-
torings

5.2.1 Experimental Design for RQ3 and RQ4

We apply RIT to three subject applications: Log4J—a Java-based logging library,
Apache Tomcat—a Java Web application server, and JRuby—an implementation of
Ruby on the JVM.

We use a data set of over 100 refactoring transformations with seeded anomalies.
Each transformation is a pair (p1, p2) of Java programs, where both p1 and p2 pro-
duce no compilation error and p2 contains at least one seeded refactoring anomaly that
breaks the behavior preservation of p1. We include four categories of seeded anoma-
lies; (1) ME denotes missing edits that required edits are skipped during refactorings;
(2) EE means extra edits that additional changes are added after refactorings; (3)
LC

a

denotes anomalies by introducing overriding methods during refactorings, and;
(4) RC

a

denotes anomalies by introducing overloading methods during refactorings.
These anomalies are defined as variations from the guidelines of Fowler’s refactoring
mechanics [17] by deliberately performing random changes between refactoring steps.

These faults are collected by the authors experienced when performing and inspect-
ing refactorings, and they are examined based on previous studies that identified issues
in automated refactorings [71, 11, 17]. The data set is assembled by the first author
and later revised by the remaining authors.

Prior empirical studies on refactoring have used similar methodologies to inject
anomalies [6, 12, 20, 21, 70]. For example, Gligoric et al. systematically apply refac-
torings at a large number of locations in open source projects and investigate failures
caused by refactorings or refactoring-related compilation errors [21]. Table 5.4 shows
specific change categories of seeded anomalies.

We apply five refactorings and three composite refactorings with the distribution
of seeded anomalies per refactoring type such as 161 for Extract Method, 10 for Pull

Up Method, 28 for Extract Super Class, 4 for Rename Method, 22 for Add Parameter, 68
for Extract & Move Method, 135 for Extract & Pull Up Method, and 1 for Move & Rename

Method.3

For the studies, we develop a mining strategy to obtain the ground truth data set
3The summation of applied refactorings can be greater than the total number of refactoring transfor-
mations since one refactoring transformation can consist of multiple refactoring types such as Extract
Method and Pullup Method.
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Anomaly Categories

ME

The return value is ignored at a call to the
refactored method. 20%

A call to the refactored method is missed.

EE

The return value is changed at the refactored
method.

40%The argument order of a call to the refactored
method is changed.
The argument value of a call to the refactored
method is changed.
The method name of a call to the refactored
method is changed.
The operator in the if conditional expression
is changed in the refactored method.
A refactoring is applied to wrong code loca-
tion(s).

LC

a

The program semantics are changed by intro-
ducing overriding method during a refactor-
ing.

20%

RC

a

The program semantics are changed by intro-
ducing overloading method during a refactor-
ing.

20%

Table 5.4: The categories of seeded refactoring anomalies, consisting of four major categories
such as ME (20%), EE (40%), LC

a

(20%), and RC

a

(20%)
from the three subject applications. We classify individual regression tests and check
whether they address multiple development issues (i.e., composite tests). To mine
composite tests, we write a program which takes as input call graphs of each test and
the refactored locations, and then identify tests that includes a call to the refactored
method and more than one of asserts. We manually partition these composite tests
into test-slices. The manual inspection results are examined to filter out false positive
composite tests that are mined. The data set was inspected by the first author and later
reviewed by other authors.

In our data set, each refactoring transformation is a pair of (p, p0) of a program,
where if a call graph of a test-slice is involved in refactorings in p0, we add this test-
slice as an affected test in our data set G1 to evaluate RQ1. If any atomic change of
a refactoring in p0 is associated with affected test-slices, we add this refactoring as an
affecting change in our data set G2 to evaluate RQ2.

Based on the ground truth data set G1, precision P1 and recall R1 are measured as
P1 = |G1 \ S|

|S| , R1 = |G1 \ S|
|G1| , where P1 is the percentage of our identification result

that are correct, R1 is the percentage of correct identification that RIT report, and
S denotes the affected tests identified by RIT, all tests of which are automatically
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partitioned into a set of test-slices. Based on the ground truth data set G2, precision P2

and recall R2 are measured as P2 =
|G2 \ C|

|C| , R2 =
|G2 \ C|

|C1| , where P2 is the percentage
of our detection result that are correct, R2 is the percentage of correct detection that
RIT report, and C denotes the affecting refactoring changes detected by RIT, some
atomic changes of which are automatically analyzed by change dependences.

This experiment was conducted on a machine with a quad-core 2.2GHz CPU and
16GB RAM.

5.2.2 Study Results and Discussion

Table 5.5 and Table 5.6 summarizes our evaluation result, to answer the questions
raised above. We run RIT on each pair of the original and refactored program in our
data set. We collect results of affected test-cases and affecting refactoring changes that
RIT has identified, and manually validate their outcomes to collect precision, recall,
and accuracy. During this validation process, the first author analyzed results, and then
the results were validated in the meetings with the remaining authors. When there
were disagreements, each case was discussed in a second analysis phase and a joint
decision was made.

RQ3. Can RIT accurately determine test-slices affected by refactorings? We assess
RIT’s precision by investigating how many of test-slices affected by atomic changes
of refactorings are indeed true affected test-slices. RIT determines 394 affected test-
slices, 343 of which are correct, resulting in 80.0% precision. Regarding recall, RIT

identifies 82.1% of all ground truth data sets. It identifies 343 out of 388 test-slices. It
determines affected test-slices, partitioning composite tests with 80.9% accuracy.

RIT determines test-slices affected by refactoring changes which are not easy to
identify because these test-slices require regression fault analysis, investigating the
impacts of individual atomic changes of refactorings, e.g., a refactoring application
consisting of structural changes such as CM, DM, LC, RC, etc. Instead of decompos-
ing composite tests, simply investigating independent development issues with mul-
tiple asserts often leads to difficulty validating refactoring anomalies by analyzing
change dependencies [37].

False Positive. Test slices that are false positives are mostly due to API mini-
mization issues during the composite test decomposition. For example, a compos-
ite test JRubyEngineTest.testCall() contains three assert statements in JRuby
(r1.7.3). RIT correctly identifies the test JRubyEngineTest.testCall() affected by
refactoring changes and decomposes this composite test into three test-slices based
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Affected Test-Slice Identification

ID PRJ AT
g

AS
g

AT AS AS
t

AS
c

AS
x

P1 R1 A1

1 L-2.0 2 4 2 4 8 4 4 100.00 100.00 100.00
2 L-2.1 4 8 4 8 8 8 0 100.00 100.00 100.00
3 L-2.2 2 4 2 4 4 4 0 100.00 100.00 100.00
4 L-2.3 6 38 6 38 46 38 8 100.00 100.00 100.00
5 L-2.4 1 1 1 1 2 1 1 100.00 100.00 100.00
6 L-2.5 3 9 3 9 23 6 14 66.67 66.67 66.67
7 L-2.6 7 18 7 18 34 18 16 100.00 100.00 100.00
8 L-2.7 9 14 9 17 152 11 135 64.71 78.57 70.97
9 L-2.8 6 42 6 41 48 41 7 100.00 97.62 98.80

10 J-1.0 8 28 8 28 42 28 14 100.00 100.00 100.00
11 J-1.1 3 5 3 5 24 5 19 100.00 100.00 100.00
12 J-1.2 3 5 3 5 13 5 8 100.00 100.00 100.00
13 J-1.3 4 10 4 10 22 10 12 100.00 100.00 100.00
14 J-1.4 3 3 3 3 8 3 5 100.00 100.00 100.00
15 J-1.6 2 2 2 2 7 2 5 100.00 100.00 100.00
16 J-1.7.0 6 9 6 10 43 5 33 50.00 55.56 52.63
17 J-1.7.1 2 4 2 4 4 0 0 0.00 0.00 0.00
18 J-1.7.2 3 4 3 5 13 3 8 60.00 75.00 66.67
19 J-1.7.3 3 5 3 5 8 0 3 0.00 0.00 0.00
20 J-1.7.4 2 2 2 2 4 0 2 0.00 0.00 0.00
21 J-1.7.5 7 15 7 15 37 15 22 100.00 100.00 100.00
22 J-1.7.6 8 8 8 8 27 6 19 75.00 75.00 75.00
23 J-1.7.7 6 17 6 17 52 15 35 88.24 88.24 88.24
24 J-1.7.8 3 8 3 8 13 0 5 0.00 0.00 0.00
25 J-1.7.9 3 4 3 4 15 3 11 75.00 75.00 75.00
26 T-7.0.0 14 46 14 46 63 37 17 80.43 80.43 80.43
27 T-7.0.10 7 14 7 14 35 14 21 100.00 100.00 100.00
28 T-7.0.20 8 12 8 12 59 12 47 100.00 100.00 100.00
29 T-7.0.30 4 5 4 5 24 5 19 100.00 100.00 100.00
30 T-7.0.40 8 8 8 8 40 8 32 100.00 100.00 100.00
31 T-7.0.50 5 19 5 19 20 19 1 100.00 100.00 100.00
32 T-7.0.60 9 9 9 9 78 9 69 100.00 100.00 100.00
33 T-7.0.70 4 5 4 5 16 5 11 100.00 100.00 100.00
34 T-8.0.0 1 3 1 5 6 3 1 60.00 100.00 75.00

TOTAL or AVG. 166 388 166 394 998 343 604 80.00 82.12 80.86

Table 5.5: Accuracy of RIT’s capability to identify affected test-slices and detect failure-
inducing refactorings. PRJ an evaluated project at a particular revision (L for Log4j, J for Jruby
and T for Tomcat), AT

g

the number of affected failed tests in ground truth, AS
g

: the number of
affected failed test-slices in ground truth, AT: the number of affected failed tests identified by
RIT, AS: the number of affected failed test-slices identified by RIT, AS

t

: the number of total
test-slices identified by RIT, AS

c

: the number of affected failed test-slices correctly identified
by RIT, AS

x

: the number of unrelated test-slices of failed test(s), P1: precision of affected
test identification(%), R1: recall of affected test identification(%), A1: accuracy of affected test
identification(%), and each line represents the evaluation result for a project at a particular
revision where manual refactoring changes have been conducted.
on the constructed program dependence graph. However, some domain-specific APIs
(e.g., BSFManager.regist- erScriptingEngine()), which are required for JRuby’s
resource management engine, are missed from each test-slice. The manual investiga-
tion for adding such API names in the RIT’s configuration can remove these issues but
automated heuristics to consider a data reachability algorithm for third-party APIs are
planned as future work [84].
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Affecting Refactoring Change Detection

ID PRJ AR
g

AR AR
u

AR
c

AR
x

P2 R2 A2

1 L-2.0 4/187 4/187 2/65 4/187 0/0 100.00 100.00 100.00
2 L-2.1 8/78 8/78 2/19 8/78 0/0 100.00 100.00 100.00
3 L-2.2 4/48 4/48 1/12 4/48 0/0 100.00 100.00 100.00
4 L-2.3 38/342 38/342 1/9 38/342 0/0 100.00 100.00 100.00
5 L-2.4 1/4 1/4 1/4 1/4 0/0 100.00 100.00 100.00
6 L-2.5 9/90 9/90 1/10 9/90 0/0 100.00 100.00 100.00
7 L-2.6 18/288 18/288 1/16 18/288 0/0 100.00 100.00 100.00
8 L-2.7 14/140 15/151 3/26 14/140 3/33 92.72 100.00 96.22
9 L-2.8 42/310 41/301 4/32 41/301 20/219 100.00 97.10 98.53

10 J-1.0 28/544 28/544 6/112 28/544 13/376 100.00 100.00 100.00
11 J-1.1 5/37 5/37 2/13 5/37 0/0 100.00 100.00 100.00
12 J-1.2 5/72 5/72 3/40 5/72 0/0 100.00 100.00 100.00
13 J-1.3 10/80 10/80 3/24 10/80 0/0 100.00 100.00 100.00
14 J-1.4 3/879 3/879 1/293 3/879 3/18 100.00 100.00 100.00
15 J-1.6 2/17 2/17 2/17 2/17 3/18 100.00 100.00 100.00
16 J-1.7.0 9/84 10/108 2/21 7/72 22/127 66.67 85.71 75.00
17 J-1.7.1 4/28 4/28 1/7 4/28 12/72 100.00 100.00 100.00
18 J-1.7.2 4/45 5/57 2/21 4/45 18/131 78.95 100.00 88.24
19 J-1.7.3 5/34 3/24 2/19 3/24 10/73 100.00 70.59 82.76
20 J-1.7.4 2/14 2/14 1/7 2/14 8/58 100.00 100.00 100.00
21 J-1.7.5 15/136 15/136 5/46 15/136 30/220 100.00 100.00 100.00
22 J-1.7.6 8/2259 8/2259 3/574 8/2259 27/213 100.00 100.00 100.00
23 J-1.7.7 13/109 13/109 4/32 13/109 25/195 100.00 100.00 100.00
24 J-1.7.8 8/56 8/56 2/14 8/56 25/183 100.00 100.00 100.00
25 J-1.7.9 4/34 4/34 3/25 4/34 12/88 100.00 100.00 100.00
26 T-7.0.0 46/393 37/321 2/17 37/321 154/9790 100.00 81.68 89.92
27 T-7.0.10 14/96 14/96 2/12 14/96 0/0 100.00 100.00 100.00
28 T-7.0.20 12/101 12/101 2/17 12/101 0/0 100.00 100.00 100.00
29 T-7.0.30 5/325 5/325 1/65 5/325 15/975 100.00 100.00 100.00
30 T-7.0.40 8/520 8/520 1/65 8/520 36/1696 100.00 100.00 100.00
31 T-7.0.50 19/1235 19/1235 1/65 19/1235 76/1881 100.00 100.00 100.00
32 T-7.0.60 9/585 9/585 1/65 9/585 23/1495 100.00 100.00 100.00
33 T-7.0.70 5/325 5/325 1/65 5/325 30/1145 100.00 100.00 100.00
34 T-8.0.0 3/18 5/30 1/6 3/18 0/0 60.00 100.00 75.00

TOTAL or AVG. 384/9513 377/9481 70/1835 370/9410 565/19006 97.01 98.09 97.23

Table 5.6: Accuracy of RIT’s capability to identify affected test-slices and detect failure-
inducing refactorings. PRJ an evaluated project at a particular revision (L for Log4j, J for Jruby
and T for Tomcat), AR

g

: the number of affecting refactorings in ground truth, AR: the number
of affecting refactorings identified by RIT, AR

u

: the number of affecting unique refactorings
correctly identified by RIT, AR

c

: the number of affecting refactorings correctly identified by
RIT, AR

x

: the number of non-affecting refactorings, P2: precision of affecting refactoring iden-
tification(%), R2: recall of affecting refactoring identification(%), and A2: accuracy of affecting
refactoring identification(%), and each line represents the evaluation result for a project at a
particular revision where manual refactoring changes have been conducted.

False Negative. Our partial PDG construction prevents RIT from identifying some
failed test slices. As RIT relies on the output of a static analysis tool Eclipse JDT
(eclipse.org/jdt), it is hard to find the relevant data flow relationships beyond the method
level. For example, RIT cannot find a failed test-slice of the test method T 4 in Apache
4For the abbreviation for a real method name, T denotes the method IfAccumulated-
FileCountTest.testAcceptCallsNestedConditionsOnlyIfPathAccepted(). See code example at
https://goo.gl/2kwzpj.
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Log4j (r2.8) since it is not affected by the refactoring anomaly due to the incompletely
constructed test-slice. Although RIT computes the complete PDG within the method
T to group relevant statements and predicates, it misses a method invocation statement,
which affects the behavior of a preceding statement outside the method T . Although
we design RIT to avoid unwieldy test-slices primarily caused from overly broad defi-
nition of relevance [72], checking the correctness of the test-slice construction to deter-
mine whether expanded dependences are uncovered for test-slices is our future work.

RQ4. Can RIT accurately detect failure-inducing refactoring edits? We esti-
mate the precision of RIT by examining how many of the affecting refactoring edits
are indeed a true refactoring anomaly. As RIT detects refactorings in which some
atomic changes do not apply behavior-preserving code transformations, we consider
any atomic change affecting the semantics of the program as a true refactoring anomaly.
RIT detects 377 failure-inducing refactorings, 370 of which are correct, resulting in
97.0% precision. Regarding recall, RIT detects 98.1% of all ground truth data sets.
It detects 370 out of 384 failure-inducing refactorings based on partitioned test-slices
with 97.2% accuracy.

RIT helps developers inspect real regression faults by reducing the number of af-
fecting changes related to each test failure that may still too large for manual inspec-
tion. Given failed test-slices separated from others in composite tests, it automatically
identifies a subset of changes responsible for potential refactoring anomalies. Lo-
calizing failure-inducing refactoring edits is not easy since fault localization usually
requires executing large regression test suites, which is time-consuming to run.

False Positive. Most refactorings are incorrectly detected due to the lack of capa-
bility to analyze the behavior impact of test-slices. For example, RIT correctly com-
putes test-slices by collecting related statements and control predicates for each test-
slices (e.g., ConcurrentLocalContextProviderTest.testGetRuntime() in JRuby
(r1.7.0) ). For the detection of failure-inducing refactorings, RIT runs a set of entire
test-slices, which reveals all failures. However, running some test-slices individually
did not report associated failures. We found that the a method call from preceding
test-slice have an impact on the current test-slice behavior, which causes false posi-
tives on the detection of affecting refactorings, finding irrelevant changes. Heuristics
to consider the scenario are planned as future work.

False Negative. We inspected refactoring changes not detected by RIT. We found
that some static method calls defined in the library in tests cannot be analyzed by
PDG due to constant values on the method parameters, which causes false negatives.
Missing such method calls that do not contain any variables dependent on assert
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prevents the detection of affecting refactorings. For example, RIT identifies four test-
slices by correctly partitioning the failed test JRubyEngineTest.testGetBindings()
in JRuby (r1.7.0). Before conducting the detection of refactorings responsible for these
failures, it minimizes each test-slice based on the data and control dependent anal-
ysis, where a static method call System.setProperty("org.jruby.embed.local-
context.scope", "singlethread") is excluded, leading to the incorrect dynamic
call graph generation due to the modified behavior. Other refactorings not detected by
RIT are caused from RQ1’s false negatives. These missing refactoring changes are
hard to detect using RIT since our current implementation of PDG are not capable of
identifying the library call edges accurately. Our future work will consider calcula-
tion of a library call abstraction that can be applied in program slicing and dataflow
analysis.
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CHAPTER 6

CONCLUSION

In this research, we propose two techniques for inspecting and testing for refactor-
ing changes. First, PRI analyzes how clone instances are refactored consistently (or
inconsistently) with other siblings in the same group. To summarize clone refactor-
ings and detect incomplete refactoring anomalies, PRI employs refactoring pattern
templates and traces cloned code fragments across revisions. It further analyzes refac-
toring anomalies to classify if developers are not easy to remove them using standard
refactoring techniques. It also provides a novel visualization tool to highlight refac-
toring edit histories and anomalies. Second, we propose RIT to validate refactoring
changes. Given refactorings, it applies change impact analysis to determine tests that
are affected by such changes. If a test fails due to refactoring anomalies, it identifies
a subset of changes responsible for these anomalies. RIT partitions a composite test
and groups semantically related statements dependent on each assert. It applies data
flow tracking to determine test-slices that are more cohesive and self-contained with
respect to the issue being addressed.

As future work for improving our approach and tool, we intend to (i) create pattern
templates for more refactoring types; (ii) provide tool support for fixing incomplete
clone refactorings; and (iii) implement checking operations to determine the correct-
ness of extra edits to pure refactoring versions. We also plan to conduct user studies
with both student and professional developers to improve the usability.
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