N mesw]m
e ra's University of Nebraska at Omaha

Omaha Digital Commons@UNO

Student Work

7-201S8

Efhcient Simultaneous Task and Motion Planning

for Multiple Mobile Robots Using Task
Reachabill)ity Graphs

Brad Woosley
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

b Part of the Computer Sciences Commons

Recommended Citation
Woosley, Brad, "Efficient Simultaneous Task and Motion Planning for Multiple Mobile Robots Using Task Reachability Graphs"

(2015). Student Work. 2904.
https://digitalcommons.unomaha.edu/studentwork/2904

This Thesis is brought to you for free and open access by
Digital Commons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of Digital Commons@UNO. For

and Mabel L.

RICS | IR

P 1)
J
)

more information, please contact unodigitalcommons@unomaha.edu.

1Ty

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2904?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2904&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient Simultaneous Task and Motion
Planning for Multiple Mobile Robots
Using Task Reachability Graphs

A Thesis
Presented to the
Department of Computer Science
and the
Faculty of the Graduate College
University of Nebraska
In Partial Fulfillment
of the Requirements for the Degree
Masters of Science
University of Nebraska at Omaha
by
Brad Woosley
July 2015

Supervisory Committee:

Raj Dasgupta
Victor Winter

Vyacheslav Rykov

ProQuest Number: 1597579

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQQuest.
/ \

ProQuest 1597579
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

Efficient Simultaneous Task and Motion Planning for Multiple Mobile
Robots Using Task Reachability Graphs
Brad Woosley, MSc
University of Nebraska, 2015

Advisor: Raj Dasgupta

In this thesis, we consider the problem of efficient navigation by robots itrallp unknown
environments while performing tasks at certain locations. In initially unknomirenments, the
path plans might change dynamically as the robot discovers obstaclesi@langte. Because
robots have limited energy, adaptations to the task schedule of the robafjimction with updates
to its path plan are required so that the robot can perform its tasks whileingctime and energy
expended. However, most existing techniques consider robot pathimiaand task planning
as separate problems. This thesis plans to bridge this gap by developinijed approach for
navigating multiple robots in uncertain environments. We first formalize this asldegm called
task ordering with path uncertainty (TOP-U) where robots are providthget of task locations to
visit in a bounded environment, but the length of the path between a paikdbtadions is initially
known only coarsely by the robots. The robots must find the order o$ tslt reduces the path
length to visit the task locations. We then propose an abstraction called setagiability graph
(TRG) that integrates the robots task ordering and path planning. TheiS®R&slated dynamically
based on inter-task path costs calculated by the path planner. A HiddékowWlsiodel-based
technique calculates the belief in the current path costs based on thenemsitoperceived by
the robot’s sensors. We then describe a Markov Decision ProcesstHaéggorithm used by each
robot in a distributed manner to reason about the path lengths betweeratakkslect the paths
that reduce the overall path length to visit the task locations. We have &@loar algorithm in
simulated and hardware robots. Our results show that the TRG-basedapperforms up t60%
better in planning and locomotion times with% fewer replans, while traveling almost-similar

distances as compared to a greedy, nearest task-first selection ahgorith

Grant Acknowledgement

This work was funded in part by the Office of Naval Research asgbdhe COMRADES

project, and a GRACA Grant from the University of Nebraska ata@a

Contents
1 Introduction 1
2 Related Work 5

2.1 TaskAllocation
2.2 Pathplanning e
2.2.1 Singlerobotpathplanning

2.2.2 Multi-robot path planning and collision avoidance 10
3 STAMP Problem Formation 13
4 Techniques for Solving STAMP Problem 18

4.1 UpdatingEdge Costs

4.2 Updating Edge Availabilities 21
4.3 TOP-U Solution using Markov Decision Process 24
4.4 Robot Navigation and Task Selection 26

4.5 Coordinating paths between robots to avoid collisions. 28
4.6 Example

5 Experimental Results 36
5.1 Simulated Experiments 36
511 Setup

5.1.2 Results

5.2 PhysicalRobots
521 Setup e e e
5,22 Results

6 Conclusions and Future Work 49
6.1 LessonslLearned

6.2 Future Works

List of Figures

1.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Pathsgenerated 2
Example TRG 14

Structure of proposed technique 18
Bayesian Network 21
Example collisionavoidance 30
Example part 1, tasks are shown by redcircles 33
Example part 2, tasks are shown byredcircles 34
Example part 3, tasks are shown by redcircles 34

Example part 4, tasks are shown byredcircles 35

Simulationsetup 38
Robotsused 40
Simulationresull' = 1000 o 41
Replansresultsdschanges 42
Distanceresultsdschanges 43
Timingresultsaschanges. 45
Overhead and side view of environment used for testirtg physical

robots, white dots represent the task locations 47

Vi

List of Tables

4.1

5.1

5.2

Table of PLL observations for eachedgeof TRG 32

Change in Distance, Non-switching replans, Switchimpdares, Plan time,
and Navigation time aB increases

Physical robot experimentresults L. 48

Vil

List of Algorithms
1 SelectTask
2 Update TRG

3 Collision Avoidance e

Chapter 1

Introduction

In this thesis we investigate the scenaric where there exists a boundei ervironment ancin
this ervironment there are a groug of speially distributec task:thatmus be corrpletecby a
groug of robots Due to the limited resource thairobots have especially their powelsource,
it is very impoitani to minimize the total cos expende: by the robots in accorrplishing all
of the tasks.

This proklem is ercourterec in many agplicetions of multi-robot systems such
as actomatec surveillance [35 robotic demining [25] anc attomatec inspetion of
ergineeing structures [27 As a mctivaling exanple, for pefforming stancoff detection
of explosives or lancmines using attonomou robots multiple robots with different types
of sersors are prcvidec with a coarsi may cortaining locetions of okjects of intelest The
robots are requirec to attonomousl plar their path¢ to get in proximity of eact okject of
intetes sc thai they car aralyze the object with their detection sersors Due to the likely
remote are: thal the robots are ogeraling in, it is very impoitant thai the robot’s corserve
their resource anc peiform as muct of the giver task: as possible with their resources .

In this scenario, there are two important problems that must be solvagk-yplanning
and motion planning. The goal of task planning is to find aneardy over the set of

tasks that the robots must perform. The found ordering mursinmze some cost metric,

------ Initial Path robot 1 | wwwee-- Actual path robot 1

=== Initial Path robot 2 —-—- Actual path robot 2

—— TRG edges (not selected)
—— TRG selected edges

~

eay
LETs

(@) Path planned by robots without (b) Paths planned by robots using TRG
knowledge of obstacles using task locations
only

Figure 1.1: Paths generated

such as the distance traveled or energy expended by robeisttthe task locations, and
be feasible. A feasible task ordering is one that maintaims @nstraintsimpose(on
the task: or dependencies between tasks. For example, if there aréasks, collecting
a soil sample, and delivering it to scientists for analyigre is a dependency between
the two tasks, the soil sample must be collected before itbeadelivered for analysis.
Certain tasks may require visits from multiple robots, wiesengle robot can only perform
a fraction of the task and a second robot is required to On therdand, the goal of
motion planning is to find a path for the robot to follow thrduthe environment while
avoiding collisions with obstacles in the environment andimizing some cost metric.
Conventionally, these two problems have been solved sebgratith the task planning
methods assuming that cost to reach a task is fixed and knoalhrtmbots as soon as the
robot becomes aware of the task [4]. However, this assumplib@s not hold in initially
unknown, or partially unknown, environments. As a roboldek along its initial path to
a task, it may discover the locations of new obstacles thaefthe path to be updated,

thus increasing the length of the path. An example of thifiesw in Figure 1.1(a) where

3

two robots are tasked with visiting 5 task locations, whexehetask location only requires
a visit from one robot. However, initially the robots have kriowledge of the wall-like
obstacles in the environment, or the paths that the othext il take. As can be seen,
both robot’s paths and will intersect with obstacles, wtuohke they are detected will cause
the path lengths to increas The goa is to incorpcrate date from the patt plarnelinto the
task plarnel to acjust the task plar as there are change to the robots peiceftion of the
ervironment

Computing a task plan is a computationally challenging pwbland quickly becomes
infeasible as the number of tasks and robots increase, araklea shown to be an NP-hard
problem [12]. In order to handle this problem, researchee lpaoposed approximations
to task allocation to provide close to optimal solutions afypomial time.

To address this problem, we propose an approach that dyadyniecalculates the
task plan based on the length of the current best path bettasks, and a belief in the
availability of the tasks for completion. To facilitate $hive propose an abstraction called
a task reachability graph (TRG) that represents the reddyaietween tasks. Each edge
in the TRG represents a path between two task locations orothat end a single task
location, and has associated with it the cost of the pathretliby a path planner. Each
edge also has a probability associated with it that reptesikea robot’s belief in the current
edge cost. The beliefs are calculatec anc updatec using a Tenrpcral Bayesial Network
(TBN) thal ercode: the interactions betweer the state of the world anc what the robot can
okserve abou the lengtt of the paths betweer all of the tasks Solving of the TBN is then
hardled using a Hidden Markov Model (HMM). The beliefs are theediinside a Markov
Decision Process (MDP) model to calculate the best taskh®rdobot to travel to, this
induces a schedule over the tasks for the robot to visit. dduses only select edges from
the TRG to be selected for the robot to move along, which careba s Figure 1.1(b),
which shows all the edges of the TRG, and the edges that eaoh gelects to navigate

until all tasks have been visited by exactly one robot.

4

To verify our approach, we tested it in both simulation andpbgsical robots while
varying the environment layout, number of tasks, and howymabots are needed to
complete a task. Our results show that the TRG-based apppeafdrms up t@&0% better
in planning and locomotion times witht% fewer replans, while traveling almost-similar
distances as compared to a greedy, nearest task-firstiselalgorithm.

The rest of this document has the following structure. In @Gap we discuss the
related works on this topic. Chapter 3 presents a model foulsameous Task and Motion
Planning, then in Chapter 4 we present our proposed approatttai model. Then in
Chapter 5 we discuss the experiments we performed to vatitiatapproach and the results
of the various experiments. And finally in Chapter 6 we summsaour work, discuss the

conclusions we can draw, and provide a discussion on thesfutark for this topic.

Chapter 2

Related Work

2.1 Task Allocation

To properly discuss the problem of task allocation, it is @amgnt to provide a method for
defining the various parameters that are apparent in theugtypes of task allocation.
This was what Gerkey and Mataric did in [12]. They proposeldrad axis based system.
The first axis describes how many tasks a robot can be exgcsitinultaneous, a single
task (ST) system means that every robot in the environmantoody execute a single
task at a time, where as a multiple task (MT) environment rag¢hat some of the roots
in the environment can execute multiple tasks at the exanedane. The second axis
describes how many robots are required to execute a taskghesiobot (SR) environment
has every task in the environment require only a single red@omplete it, where as a
multiple robot (MR) environment has tasks that require mbentone robot to complete
the task. The third, and final, axis describes how the rols@mlabout the environment
and allocate the tasks among the robots. An instantanetacatidn (IA) environment

has all of the information available at the start, thus meguthat the initial allocation

of tasks is the final one as there is no more new informationaghto later update the

allocation of tasks. A time-extended allocation (TA) eowiment, on the other hand, has

more information available over time to allow for updatestie current task allocation.
Using the aforementioned taxonomy, the system we are piregp@ssolution to would
be described as a ST-MR-TA system. A robot can only executattempt to execute a
single task at a time, multiple robots are required for eask to be completed, and more
information is available over time about the environmerd &asks, requiring updates to
the initial allocation, or task plan.

In [11], Gerkey and Mataric proposed a task allocation methsing auctions. The
auction runs in a distributed manner with each robot platigg on how well they can
complete the task. An auctioneer — which could be the usee-sgheduled task coming
available or any other source — announces to the robots whewatask is available,
including the details of the task needed for the robot to makkecision about it. The
robots then evaluate how well they can accomplish that taskd on the metrics for the
task given. The robots publish how well they can accomphghtask, and the one with the
best bid is assigned the task. The robot is also only allowegbtk on the task for a certain
amount of time before it is revoked, unless there was suffigpeogress on completing the
task during that time budget.

In [32], Wicke, Freelan, and Luke proposed a method in cehti@ the allocation-
based methods, like mentioned above. Their proposed goligimodeled after the idea
of bail bondsmen and bounty hunters. The bondsmen issueaddar completion of
a task by the robots, the reward offered increases over tsrntask goes without being
completed. The robots then select, based on the reward aedteppion of how well the
task could be completed, a task to complete. Unlike auctietinods, where only robot can
commit to a task, their approach allows multiple robots tmouot to the same task, which
provides robustness in-case the initial robot assigneldedask is unable to complete it in
a reasonable time, because another robot will select is dpproach is similar to the one
we propose in that multiple robots can attempt to completaglestask at any given time.

However, our approach does not provide a reward for cormgetitask, instead, the task

is selected based on the distance to the task and the likelibbbeing able to complete
it. Also, in our approach, the cost (analogous to their relvdbes not change over time,
instead it always represents the robot’s perception oftk#@ment and cost to reach that
particular task from the previous replanning point.

There have also been several symbolic task allocation plahat have been proposed
in the past [26]. For example, in [33], Wolfe, Marthi, and Relspropose a symbolic Al
to integrate information about the tasks into the path plamof a robot while handling
uncertainty in the robot’s motion in the environment. Thegwsed method provides a
means to encode mobile manipulator problems as verticatggrated hierarchical task
networks (HTNs), where the low level motions handled usimgidly-exploring random
trees (RRT). The authors also provide an algorithm calleteSthstracted Hierarchical
Task Network (SAHTN) which provides a mechanism for spegdip the search by
determining what information for a particular subtask iglevant. This mechanism
allows for re-use of previous plans that have the same paeasiey discarding irrelevant
information.

In [34], we proposed a solution to the Multi-Robot Task Allboa (MRTA) problem.

In this approach, robots only considered the straight liséadce between their current
location and all other tasks that needed to still be done. drtie time a robot was told
to switch what task they were going to was when the straigletdiistance to another task
became less then the straight line distance to the task icwasntly going to. Our current
approach, however, adds information about the actual pattitie robot will need to follow
between tasks, allowing it to much sooner determine thath@ndask is better. Also our
current approach calculates a belief in the current patithetinat represents the certainty
that the robot has in each path being available for following

Task and motion planning has also been studied in the cooterbbile manipulator
robots. For example, Sucan and Kavraki proposed a datawsteucalled a Task Motion

Multigraph (TMM) to encode the task and motion dependenoetgieen the tasks in [29].

8

This approach exploits a property of mobile manipulatorotsb Namely that there are
multiple abstract motions that can accomplish the same tagkexample, to pick up an
object, the robot can move its base, left arm, right arm, gr @mbination of them to
accomplish this task. To find the order of motions needed toraplish the sequence of
tasks, the authors used Dijkstra’s algorithm to deterntiede¢ast cost sequence of actions
to perform. The authors then extended this approach to uskadvi®ecision Processes
(MDPs) in [30]. These works provide a good system for the Néoblanipulator problem,
however, our approach is an approach for mobile robots, evtitex only mechanism to
complete a task is to navigate to it. Due to this differenceliract mapping between
the TMM and this problem domain does not provide the samerogdtions as the TMM
takes advantage of. For a mobile robot, the ways to accompéish task are to large to
enumerate in the TMM, and instead mapping the goal of regcaihtasks, causes the
graph to grow very large and become impractical. In our aggipwe keep the same idea
of using a task graph to maintain the relationships betwaskst but instead of encoding
all the ways to accomplish a task, we instead find the optirat petween two tasks given
the current knowledge of the environment, and select tHettago to that minimizes our

expected cost overall.

2.2 Path planning

2.2.1 Single robot path planning

Single robot motion planning is an important component skt@and motion planning, as
each robot requires a path to follow to reach their specifal gmcation. A simple path

planner is called the Bug Algorithm [23]. In this algorithrhetrobot travels towards the
goal until it finds an obstacle, then similar to how a bug naigg, follows the boundary of
the obstacle until it can find a way towards the goal. Howewés,approach does not take

into account the location or geometry of obstacles untilrthit®ot encounters it. Another

method is potential fields [15] where two functions are defitleat provide attraction
towards the goal and repulsion away from obstacles. Howewacave obstacles can cause
a problem with local minima, where the robot gets stuck incatmn that any motion from
that point causes the robot to move to a worse location béfoas make progress towards
the goal.

In visibility graph roadmaps [21], the corners of the oblaare connected by straight
lines if that line does not intersect with another obstattie,robot then navigates on this
graph between the closest point to the robot, and leaves#umap at the closest point to
the goal. Another roadmap based path planner is Silhouttgmap [3], where the robot
plans paths using straight lines to the edges of the obstdu the robot can see while
moving in the direction of the goal. In Voronoi roadmaps [the Generalized Voronoi
Diagram is created, which are the points that are equalrdisgafrom the closest two
obstacles.

Extending the idea of roadmaps, is Probabilistic Roadmaprela(PRM) [14], where
random collision free configurations are sampled from thgigaration space and a simple
path is planned between the samples, for example, by sdeirapilision free straight line
path between the samples is possible. Over time, this ptdrasebeen extended to handle
various special cases. For example, Missiuro and Roy in [Bdpgsed an extension to
PRM that accounts for uncertainty in the location of obstatethe environment. This
was done by having the weight of each edge in the roadmap bactida of not only
euclidean distance, but also the probability of collidingwvan obstacle in the environment.
The obstacles are defined by a sequence of vertices withiabGaussian distributions
that represent the positions where the obstacle verteky/ realld be. In our work, we
have used this planner as the underlying path planner, beaauit’'s ability to account
for the noise inherent in the robot’s localization, obstaiétection, and representation of
obstacles in memory. This helps ensure that the robot ddesohime with any obstacles

in the environment.

10

In the same vein as PRM, are Rapidly-Exploring Random Trees (RBTL8, 17, 22,
9]. Like PRM, RRTs build a roadmap by sampling collision freaftggurations of the robot
from the configuration space, and connects samples witlsioollfree straight line paths.
However, instead of building a graph that can be used foriptelpath planning queries,
RRT builds a single tree that is useful only for finding a patimfithe start to goal location.
This helps speed up planning in cases where only one pathetdede However, in our
work, we need to be able to generate multiple paths, thexeRIRM was a better choice.

There have also been methods proposed that use Markov @eélsocesses (MDP)
[26] to find paths in dynamic environments. One such planres proposed by Loibl,
Meyer-Delius, and Pfaff in [20]. They proposed using an MDReve the states were a
tuple of the location in the environment, and the arrivaldiat that state. The actions are
moving to any adjacent state, with a probability of sucadgsmoving between the states,
and a cost function based on the time needed to move betwestates. We have modeled
our task planner on this idea. However, instead of planmrtfe configuration space, we
use the MDP to plan in the task space to help find an orderingtbedasks.

Another path planning method is D* [8, 19, 16], which focusesdecomposing the
environment into grid squares, where each grid square isfigewation of the robot, then
uses an informed search algorithm, with modifications taantfor obstacles discovered

during runtime, to find a path from the start grid square togb&l grid square.

2.2.2 Multi-robot path planning and collision avoidance

A common problem in multi-robot environments is handlindguial collisions between
robots. Single robot path planners do not take into accdwntdcations of other robots
in the environment or their paths through the environments Teads to a high likelihood
of collisions between robots. To solve this problem, it isgble to plan in the joint
configuration space, accounting for every possible acti@aoh robot in the environment.

However planning in the joint configuration space can becorfeasible as the number

11

of robots increase. To handle this problem, Wagner and Chwsgbsed a decoupled
planning system in [31], which allowed for planning in muitibot systems, while avoiding
robot-robot collisions and without requiring a search efémtire joint configuration space.
They do this through use of an algorithm named M*, which is aiied A* search that
limits the number of states that are expanded at from eatd stdhe search. They have
also proven that M* is both complete and optimal.

Another approach to handling multi-robot coordination \wagposed by Desaraju and
How in [6]. The proposed method is the Decentralized MulieAt Rapidly-exploring
Random Tree (DMA-RRT) technique. It is an approach to planmatips for multiple
agents operating in the same environment, while still beiblg to plan quickly. The
coordination strategy that they proposed was to have tha&tsgidan their paths using the
paths of the other robots in the environment as obstaclestd.alo resolve the problem of
what order the robots replan and update their paths, the thabhas the highest potential
gain from replanning is allowed to update its path.

Another approach to planning with multiple robots workimgthe environment was
proposed by Saha and Isto in [28]. They proposed a decoupkbdatanning method for
multi-robot environments. They propose an algorithm caMRP-1C which sequentially
creates a path for each robot in the environment. As the mdxit’s path is generated,
the previous robot's paths are treated as known mobile cdlestawhich the planner then
avoids like stationary obstacles. The planner also adibstspeed of the previous robot’s
motion along their path to help find a collision free path.

Our approach to collision avoidance between robots diffeosn the previously
mentioned techniques, because instead of coordinatinghthénteractions between the
robots at the time that the robot generates the path fromuit®iet location to the goal
location, we instead only perform the coordination whenritgot's are within a certain
distance of each other, where there is a high likelihood tistans. At that point we use

the bully algorithm [10] to determine which robot is allowedmove out of the collision

12

range first.

In [7], Dou, et. al proposed a method for multi-robot path planning and dohis
avoidance through an extension of artificial bee colony (AB@)ich generates paths for
the robots through use of three phases for each robot. Saootisrwhich explore for better
food sources, worker robots which travel to the food soyraed onlooker robots waiting
for better sources of food to be found. Their algorithm,edlmproved artificial bee colony
(IABC), extends ABC to simplify the setting of parameters an@rove its performance.
In our approach, the path planning between the robots dddsme exploration phase that
ABC and IABC contain. Our approach also handles collisions tdu®bots being near

each other by stopping one all but one robot from moving dinéilmoving robot is free of

collisions.

13

Chapter 3

Simultaneous Task and Motion Planning

Problem Formation

We consider a set of wheeled mobile robdts,deployed withira bounded environment.
Robots are capable of localizing themselves within the enwirent and can also
communicate wirelessly with each other. The environmentaios a set of taskg;, which
correspond tc a se of speially distributed, distinct locations in the environment. Robots
have to visit the locations of tasks to perform operatiompired to complete the tasks.
Each task can require visits by one or more robots to get cetenbl the number of robots
required to complete a task is providagbriori to the robots. We consider the case where
task execution time is negligible, such that visiting theglion of the task corresponds to
completing the task. We also consider tasks that are loaselgled and all robots required
to complete a task do not necessarily need to visit the téstéion at the same time.

Each robot is initially aware of the locations of the taskg, does not know the exact
paths between the tasksor the obstacles along those paths. The robots containrsens
necessary to perceive the portion of the environment neetmbot and determine where

obstacles are located.

LIn the rest of this thesis, we have referred to task locatsnssks for legibility.

14

(a) Fully connected TRG (b) TRG where task 3 can only be done after
task 2

Figure 3.1: Example TRG

We first define the corcep of the availability of a task for a robot to peiform it. A task
is available for peiforming if it is a gooc choice for the robot to peiform thai task next A
tasl car eithel be available for peiforming, or not avaiable It is not possible for the robot
to directly okserve the locetion of othel robots the path:they will take anc whattask:they
plar to acconrplish, this make: it difficult, if notimpossible for the robotto directly okserve
the availability of a task instead we use a prokability that reflects the cuirent belief in the
task being available for peiforming. The mair caus: of atask being unavailable is that other
robots have or will shortly conrplete the task before this robot coulc comrplete it. This is
relatec to the lengtt of the path anc the unceitainty in the patt cost« due to change in the
path: as static okstecles are detected or mcbile okstecles move into the patt of the robot

We define an abstraction called a task reachability graph [TtB@present the tasks’
spatio-temporal distribution. The TRG is a graph where theicgs correspond to the
tasks that the robot needs to visit along with the robot'senirlocation. The TRG edges
correspond to the reachability between vertices such tie@ktis an edge between two
vertices if it is possible to travel between their corregfing tasks. Each edge in the TRG
is weighted with a tuple of two values. The first value repneséhe the path cost or energy
expended by the robot to travel between tasks. Because thermment is unknown, the

edge weights in the TRG (path costs) are only approximate tfladget updated as the

15

robot discovers obstacles while traveling between tasksrepresent the uncertainty in
path costs and in the robots ability to choose the best tagk to, the second value is the
probability of the edge being available to complete. Thesdaes will also change as the
robot gathers more information about the environment. kanmple, Figure 3.1(a) shows a
TRG where all five tasks can be reached from one another. Howtbidoes not strictly
need to be the case, as can be seen in Figure 3.1(b), whethrslkan only be completed
after task two has been completed, because that is the ogéytbdt enters task three.

Due to the dynamic neture of the ervirorment it is importani to define the TRG to be
variable ovel time. Vertices car be adde(to the TRG due to the discovery of othel tasks
thaimus be conpletec by the robots Likewise veltices car alsc be removecwher the task
nc longeineed to be done by thairobot As veltices are adde(or removed edge will also
neec to be addec or removec from the TRG. The initial estimate: of the patt length: are
likely to be inaccurate due to the limited informetion thai the robot has abou the locetion
anc geometry of okstecles in the ervirorment As the robot movesthrougt the ervironment
following the edge in the TRG, it is likely to update its may of the ervironmen and
become more certain of the layout of the okstecles in the ervirorment Becaus: of this,
the patl lengtl betweer tasks car chang: ovel time. Likewise the availability of ar edge
car chang as the robot gets more informetion abou the ervironment

Formally, letTRG = (V, E,C, P,t) denote a fully connected graph wherg? =
{v'” U veur } is the vertex set and.,,, is the robot’s current locatior;®) = {eg) : egf) =

(v L

;’,v;")} is the edge se)") = {cg)} is the cost expended by a robot to traverse the
path underlying edgeg), PO = {pg)} is the probability corresponding to the availability
of edgeeg) andt is a time parameter. Let = (v',v?,...) denote a single possible path
through the TRG, and Iét be the set of all possible pathghrough the TRG. We can then
define the schedulg : V' —) as a function that returns an ordering over the set of tasks
starting at a given node in the TRG. Each robot maintains its copy of the TRG and

plans its path using its local TRG. The problem facing eaclotrabspecified by the Task

16

Ordering under Path Uncertainty (TOP-U) problem given Welo
TOP-U Problem. GivenTRG = (V, E,C, P,t) representing the set of tasks, task
reachabilities and inter-task costs at timeletermine a schedules(1)® that induces an

ordering(vt, v?, v3...) over the tasks, given by:

S (V)® =argmin > (1-p,)e, (3.1)

we
(vgt),vgj_)l)Ew

S*(V)® represents the path through the TRG with the best cost weighith
availability. Because maximum availability of an edge isnidieal to its minimum
unavailability, we have considered the latter to solve $5(1)® as a minimization
problem. An instance of the TOP-U problem corresponds towbk-known traveling
salesman problem (TSP) [5]. However, finding an optimal tswhuto conventional TSP a
known NP-hard problem [12]; also, an optimal solution to¢beresponding TSP may not
guarantee an optimal path for the robot as edge availa@siléthd costsp(;-s andc;;-s) can
change dynamically while the robot is traversing an edge.

In this thesis, we only consider cases where the cost to atvipetween tasks is
symmetric and does not depend on which direction betwe&s ths robot has to navigate.
This allows us to consider cases where the TRG is undirectezlal®d only consider a
connected environment where every task is reachable froothar tasks, and

there are no temporal dependencies between tasks, meduainghe TRG is fully
connected. However, due to the dynamic nature of the TRG pth&ts require methods to
determine estimates of edge costs and availabilities aobw gathers more information
about the reachability between tasks as it explores theamwient. Then the robot requires
a method to utilise this information to determine the besk ta navigate towards. To do
this, we first propose a method to update the edge costs abdlplites based on sensor
data from the robot. Then we use the most recent estimatésdarost and availabilities

within an MDP-based framework to determine what the nexkt tias robot should travel to

17

will be. In the rest of this thesis, for legibility, we have ttad the time notation from the

TRG parameters, assuming it to be understood from context.

18

Chapter 4

Techniques for Solving Simultaneous

Task and Motion Planning Problem

In the previous chajter, we prcposer the Task Reaclability Grapt (TRG) a< a mean of
ercocing the date abou the distribution of task« anc their availability. In this chajter, we
prcpose a tecknique to use the TRG in finding a task plar thal minimizes the expected
cos of the robol to trave betweer all tasks Figure 4.. show: the gerera schemati of
our prcposet tectnique Our tecknique is corrposet of two layers the top layel is a task
plarner which gererate: the order in which the task« shoulc be peiformec by the robot.
This layer communicate: with the bottom layer which is a mction plarner The mction
plarnel gerelate: path: for the roboi to gei betweer the tasks anc cortrols the robot’s

mction in the ervironment

Task Planning

3

Motion
Planning

Figure 4.1: Structure of proposed technique

19

Eacl of the two layers share informéetion thai allows the roboi to always make
movement: towards the task thai bes minimizes the expecte(cos to conplete all tasks.
The task plarnei share with the mction plarnei the task to move towards anc the se of all
tasks which allows the mction plarneir to moritor the paths betweer the tasks In return,
the mction plarnel share with the task plarnel update: to the patt lengths sc thai the task

plarnei car always evauate the bes task to work towards corrpleting.

4.1 Updating Edge Costs

The mction plarning layel hardles the updaing of the patt cos pottion of the edge
weights in the TRG. The mction plarnel use: a state-of-the-art probabilistic roadmap
planner (PRM) that can handle uncertainty in paths [zOkstecles are prcvidec to the
plarnetin the form of a sequenc: of points thai corresponc to ar estimate of the okstecles’
boundng polygon’s vertices This sequenc: of points defines what the atthors refer to as
the “nominal” bound: of ar okstecle. Eacl veltexis ther assigneca prokability distribution
ovel which the okstecle’s vertex may actually lie in the ervironment The plarnei builds
a roadmay by first gereraiing a se' of sanplec points from the corfiguration space Any
sanples that have a 50% or greate protability of colliding with ar okstecle are discarded;
this is equinalent to any poini thai lies within the “nominal” bound: of the okstecle. The
remairing sanples are keptbasei on the prokability thaithey are locatecinside ar okstecle,
with a highei prokability of collisior resuliing in a lower chanci thai the plarnei will keep
thal sanple. The nexi stey is to build a roadma| basei on the retainec sanplec points For
eacl vertex in the roadmay the neaes k sanples less thar some distance d are selected,
ther the plarner attempt: to cornec the two points with a straigh line path This patt is
rejectec if it is not possible to cornec the two points without inteisecing the “nominal”
bound: of ar okstecle.

For eacl edge cornecing two points (p; anc p,) in the roadmar. a prokability p;‘flfm

20

is assigne(thai regresent: the likelihooc of colliding with ar okstecle while nanigaing
thal edge This prokability is baser on the distance to okstecles anc the cettainty thai the
okstecle locetion is known Base(on this, the cos of a single edge in the roadma| car be

calculatec by:

coll

costpy, p2 = pi , penalty + (1-— pfg{lm)dist(pl, p2)

where penalty is ar atbitrary large nunber usecto discouiage path: thai are likely to

collide with ar okstecle anc dist(p1, p2) is the Euclidear distance betweer p; anc p,.

A patl p;; in the roadma| betweer two points p; anc p; is a sequenci of points
Pij = (,050), pél), o p§”)) where there is ar edge in the roadma| betweer any two acjacent
points in the sequence We denote the se of all possible path: in the roadma) as ®. Given

this, we car define the bes patl betweer p; anc p; as

pij = arg min E COSt y(a) pla+1) (4.2)
pij €D
Pl epi;

which determines the minimurr cos patf in the roadma| betweer points p; anc p;
[24].

To find the patt corresponing to edge e;; in the TRG, we adc the points correspondng
to vertices v; anc v; into the roadmaj as points p; anc p; respedively. The patt returnec by
Equation 4. is save« for future use anc usec to calculate the cos of edge ¢;;. The cos'is

giver by:

ciy =y dist(p®,p"") (4.2)

plDepi;

P(PLL|MO, SO, TNA) = 0.296

P(PLLIMO, SO, TNA)=0.788."
_"P(PLLIMO, SO, TNA) = 0.663

ObStaﬁsCo MO¢| P(MOt+1)
S.
F 0.001
MO [SO| TNA |P(PLL)| P(PLL)
Path Length 8 8 (1) é-gs?) 8337 SO ¢| P(SO t+1)
tong (PLL) /1070 T 02060704 T 0.8
0[1] 1 [0.196[0.804 F 0.2
10| 0o [0788]0212
1]0[1 |0522][0478
1 1] 0 [0.233][0.767 TNA{|P(TNA¢+1)
Conditional Prob. Table (CPT)
for variable PLL F 0.02

(a) Evidential model.

(b) Temporal model

21

Figure 4.2: Bayesian Network used in the HMM for determinihg suitability of path
length to a task.

4.2 Updating Edge Availabilities

Using the updatec edge costs from the mction plarning layer the task plarning layei can
calculate anc update the prokability that ar edge in the TRG is available It is not possible
to directly okserve the avaiability of ar edge however it is possible to okserve the path
length: of eacl edge in the TRG anc corrpare it to othel edge which sharta node There

are multiple things which car effeci the patt length which are
e Mobile obstecles (MO)
e Static okstecles (SO)
e Tasl notavaiable (TNA)

A mcbile okstecle car eithel be along¢ the path or it car not be howeve! this fact
carnol be directly okserved this mean that we car bes regresen a mcbile okstecle as
a Boolear rardomr variable Also a mcbile okstecle car be there at one time anc not at
the nexi time step A similar aigumen car be made for botl static okstecles anc task
not avaiable For this reeson we have mocelec eacl of thest as time deperden Boolean

rardorr variables Thest variable: all effect the patl length which we have decidec to

22

discretize into a Boolear rardorr variable A patl is corsiderec toc long if its lengtt is
above some threstold, anc not toc long if it is below the same¢threstold.

To reflecithe deperdercies betweer thescevents anc theirinfluence onthe patr length,
we have definec a Tenpcral Bayesial Network (TBN) [26] for eacl edge in the TRG,
showr in Figure 4.2 Let T BN;; denote the Terrpcral Bayesial Network correspondng
to edge e¢;; € E. A TBN is a nework of rardomr variables which effect eacl other,
ar edge betweer two node: refresent: thal one node has ar effect on the other In
Figure 4.2(a. mcbile okstecle, static okstecle, anc task not available all effect the path
lengtl becorring toc long, howevel the effeci of thest state: are not deterministic, but are
instea(prokabilistic. In otheiwords thereis a prokability of the patl lengtt being toc long
giver the state of the world, e.g p(PLL|MO, SO, TN A) denotes the prokability thai the
patl lengtl is toc long giver thar there are na mcbile okstecles nao static okstecles but
the task is unavailable Giver the prokabilities asscciatec with eact edge in the TBN, it is
possible to calculate the prokability of TNA giver the sequenct of oksevations seel thus
far.

To determine the effects on PLL giver the state of the world, we first assumer that
the inhibition prokabilities of eacl state¢ affeciing PLL is indeperdent In othel words,
whai evel prevents a mcbile okstecle from cauing the patt lengtl to be toc long is
indeperden of whai evel prevents the task not being avaiable from cauing the patt length
to become toa long. With this assumgtion we car use the Noisy-OR relationshig [26] to
build the prokability tables showr in Figure 4.2(a’ The three prokabilities showr in red,
green anc blue in Figure 4.2(g are the inhibition prokebilities which were determined
througt experience of navigaing robots througt mcbile anc static okstecles in different
ervironments.Fror these«three prokabilities it is possible to caculate the res of the table.

Becausi mcbile okstecles static okstecles anc the availability of tasks evolve over
time, a seonc se of prokabilities are required thai cafture this change These prokabilities

are showr in Figure 4.2(b anc were determinec througl experience with robotic systems.

23

Eacl variable is only deperden on its previous state bui not on any state previous to
that For a mcbile okstecle, its pcsition in the nexi time stef car be anywhere within
a circle whose certer is al the mcbile okstecle’s current locetion, with radius relatec to
the speet it travels al anc the amoun of time betweer time steps The detection of a
static okstecle car chang ovel time as the roboi is able to gel a beter view of the area
that the obstecle may be locatec at. Also a task thai was unavailable for corrpletion may
become available for comrpletion due to the chandng peiceftion of the ervirorment.

For exarrple, due to the indeperdence of the inhibition prokabilities we car write:

P(PLLIMO,SO,TNA) = P(PLLIMO,SO,TNA)+ P(PLLIMO,SO,TNA) and
in a similar marner the res of the table car be calculated

To deteimine the value of the oksewvation PLL;;, the patt lengtt of the currentedgee;;

ij
is comrparecto a threslold PLL,,,. Due to the wide array of ervironment: thai the robots
coulc be deployec in, PLL,;,, car noi be se to a single value for all ervironments Also,
due to the variability inside the ervironment a single threslold for the full ervironment
may not work well either However it car be se in relation to the othel informetion that
the robot has available To hardle this, we define a sefarate threslold, PLLy,,,;, for each

edge e;;. Thisthreslold is definec as the minimun cos edge thail share the same staring

veltex. This is showr below in Equation 4. below.

PLLy,; = min({cy, : Vk € V'}) (4.3)

To then determine the value of the observatiohL,;, the following equation is used:

FALSE if Cij S FPLLt}”-ij
PLL; = (4.4)

TRUE otherwise

wherel is a user defined constant that describes how much lajgerust be before

we consider it to be too large.

24

In other words, the threshold used to determine the valuBloL;; is based on the
shortest path currently known leaving the vertex in questibhe user-defined parameter
I' is used to determine how much longer than the current shiqrégs we allow before
we decide that the path length is long enough that the taskiéimo longer be considered
available for immediate completioii. helps to prevent the robot from always selecting the
closest task to go to, like a greedy approach would.

The node in the TBN thal coirespond to the edge availability is TN A, which
regresent: the prokability thai the edge is not avaiable To determine this prokability, the
robot geretate: oksevetions of eact edge e;; in the ervirorment denotec PLLE}"'”. These
oksewvations are ther usec in the TBN to determine the prokability of TN A;; giver the
current oksevations State« mattemaiically, p;; = P(T'N Aij]PLLS'“t)). The equdion is
solvec using the Forwarc-Backwarc algcrithm [26].

Directly solving a TBN car be a difficult task to reduce this difficulty, we use an
evauation methoc callec a Hidder Markov Model (HMM) [26]. The HMM improves
comrputation time by moceling the TBN as a first order Markov model where the state: of
the Markov mode are corrbingtion of the state variables (MO, SO TNA) of the TBN. As
time prcgresse: the world trarsitions betweer these: state baseron a trarsition prokability
metrix. Wher at eacl state the world prokabilistically emits ar oksewvation with is the

corrbingtion of the evidenct variable: (PLL) of the TBN.

4.3 TOP-U Solution using Markov Decision Process

The ervirormen thai the robot is working in change stochatically, anc the robots have
to make decisions inside this ervironment Due to thest progeities a Markov Decision
Prcces: (MDP) [26] is a gooc fit. In gereral @ MDP corsists of a sequenct of pctertial
state that the decisior make (in our cast a robot) car be in. At eact state the robot has

a se of decisions thai it car make Eacl pctertial decisior will chang: the state thal the

25

roboris in, however the exaci chang: that is made is not deteiministic. This mean that if
the robot is in a state A anc peiforms ar action b, it is not guaarteec to always airive in
state B, it may instead somdimes atrive in some¢ othel state C'. The exaci methocthaithe
state changtis describec by a se of prokabilities thaf gives the likely hooc of reacling a
speiified state¢ giver thal roboi start¢ in one state anc peiforms ar action. Eacl state also
has ar asscciatec rewarc thai is giver to the roboi for reacling that state The robot’s goal
is to maximize its rewarc by peiforming actions tha maximize the expecte«reward

More formally, ar MDP is a stccasically evolving precces: definec by four perameters
< S,A, T, R >. Where S is the se of state thal the agen (robot' making decisions can
be in. A is the se of actions or decisions thal the roboi car make al eact state Based
on the action peiformed the robot will trarsition from it's cuirent state to a new state,
the trarsition of the robort is cortrolled by the trarsition function 7" : S x A x S — [0, 1],
which gives the prokability of trarsitioning from state s to a state¢ s’ by peiforming action a.
Wher the roboireache a state it is prcvidec arewarc giver by R : S — R. Base(onthese
perameters a policy 7* : S — A, is founc which prescribe: the bes action to peiform at
eact state which maximizes the expecte« cumulative rewarc to the robot

There are many similarities betweer the gerera MDP anc the proklem we are
investigaing. As MDPs car be usec for patl plarning, we car draw the paiallel between
plarning a patt in the corfiguration spact anc plarning a patt in the task space To do
this, we corveri our TRG into ar MDP, where the MDP’s stat¢ are the vettices of the TRG
graph At eactl veltex, the robor has to make a decisior to follow any of the edge leaning
thai vertex. The prokability of trarsitioning betweer state is anaogous to the prokability
thalar edgeis available where the robotis less likely to succesfully navigate betweer the
two vettices in the TRG if it is very urlikely thai the task is available However because
the edge availabilities are corring from sefarate TBNs, the raw edge¢ availabilities do not
surr to one but since the robot mus trarsition from the state¢ to arothel state¢ in the TRG,

all prokabilities have to surr to one To solve this, the edge availabilities are noimalized

26

p(TNA;;|PLLO 1)
2, P(TNAj|[PLL(--1))

using the equiion, p;; = . In our TRG, we dc not have the corcep of

reward but we do have a similar corcept in the edge¢ cost Becaus: maximizing reward
anc minimizing cos are similar, we have decidec to solve the MDP as a cos minimizétion
proklem. Wher we find a policy in the MDP, we are now finding the bes task to go to after

conrpleting our cuirent task that will minimize the expecte(cos to the robot

4.4 Robot Navigation and Task Selection

1 selectTaskT'RG =< V, E, P,C >)
Input: T'RG: task reachability graph

2 Initialize MDP with current TRG information

3 Determine paths in robots configuration space using PRM plaogiween all TRG
edges;; = (v;,v;) € £

4 while truedo

5 V' = T (Veurr)

6 path < PRM path between,,,,., andv’

7 while v" not reacheddo

8 Vewrr $— CUrrent position of robot

9 Broadcast,,,, to other robots

10 coordinatePathy() //avoid collisions with nearby robots, if any (Alg. 3)
11 (v', path) < updateTRG[RG, V")

12 if v = null then

13 return

14 end

15 Move along current segment pdith

16 end

17 Removey’ from V' /lreached’

18 end

Algorithm 1 : Algorithm to select a task in the TRG using an MDP-based policy.

The technique used by a robot for selecting tasks to visitgusur TRG and MDP-
based framework is shown in Algorithm 1. The MDP is initialikwith the parameters
from the TRG and the navigation paths in the environment batwevery pair of TRG
vertices are calculated using the PRM planner (ine 3). While the robot is aware of
tasks that it needs to visit, it calculates the next task (TR@&ex), v, to visit using the

MDP policy and gets the PRM path t6 (line 5 — 6). Because each robot calculates its

27

1 updateTRG(TRG =< V, E, P,C >,v')
Input: T RG: task reachability graphy’: destination TRG vertex
Output: v: destination TRG vertexsath: path to destination TRG vertex

2 if any task got completed by other robots (received via comration) OR (new
obstacle in collision with robothhen

3 updatel

4 path < replan path from,.,,.. to v" using PRM-planner

5 Vv € V, updatec,,,,. , from path planner data

6 Vv € V, Updatep,.,..., from HMM using sensor data

7 Update MDP, TRG with new values &f andp,,.,.., andc,,,,, , Vv € V
8 Unew < T (veurr) //calculate policy given by updated MDP (task replan)
9 if Uew = {0} then

10 return null; // No more tasks

11 end

12 if v,00 # v then

13 V' 4= Upew: Il Switch tasks

14 path < PRM path between,,,,,, andv’

15 end

16 end

17 returnv’, path
Algorithm 2: Algorithm to update TRG and path when TRG vertices are removed (task
completer) or a new obstacle is detected that triggers a path re-calculation.

navigation plan independently in its own local configuratgpace, multiple robots might
calculate paths that intersect with each other and mighttiea collision, especially when
the robots are in close proximity. To address this probleaoh&obot broadcasts its current
location to other robots and coordinates its path to avoilisans with nearby robots
using thecoordinatePathalgorithm (Algorithm 3) (line) — 10). The robot then checks
to see if the TRG needs to be updated using Algorithm 2 (line If the updated TRG
returns a null destination vertex indicating that there ramemore tasks for the robot to
visit (all other tasks have been completed by other robtite)robot stops navigation (lines
12 — 14). Otherwise, it moves towards its current destination TRfexe)’ along the next
path segment of the PRM planner prescribed navigation patenwhe robot reaches, it
removesy’ and its associated edges from the TRG (lifiiand proceeds to select the next
TRG vertex to visit.

The algorithm used to update the TRG using the HMM updates esultng MDP

28

policy updates is shown in Algorithm 2. If a robot receivesnoounication from another
robot informing that it has completed a task corresponding TRG vertex, the vertex is
removed from the robot’s TRG. When a robot’s TRG vertex set chaingthis manner or
when the robot perceives a new obstacle on its sensor thretadlision with its navigation
path, it updates the TRG vertex set, and calculates a newatangpath to its destination
vertexv’ (lines2 —4). The new navigation path from the PRM planner is used to @pitiat
TRG edge costs, while the HMM updates the TRG edge avail&silitine5 — 6). These
updated values are incorporated into the MDP represertsm@RG and the MDP'’s policy
is recalculated to yield the new destination vertex (line 8). If the recalculated policy
prescribes a new target vertex,,, # v’, due to increased path costs of reachifhghen
the robot performs a task switch and changes its destinbomy’ to v,,.,, (line 12 — 14).
Note that due to the unknown nature of the obstacles betves#s,ta robot might receive
communication that another robot completed the task thaa# heading towards. In the
extreme case, all tasks in a robot's TRG might be completedtihgr aobots before its
reaches those tasks (lingés- 11) (as in Figure 1.1(b) for robd); the updateTRG method

returns a null vertex for this case.

4.5 Coordinating paths between robots to avoid collisions

If robots determine their paths individually using the PREs&d planner, it could lead to
robot collisions when the planned paths of two or more rolmié§ with each other. To
avoid this scenario, we have used a collision avoidancerigtigo shown in Algorithm 3.
Each robot uses the locations broadcast by other robotseitkahthere are other robots
within a radius ofr.,;, called the collision circle, of itself (line®). When a set of robots
are within the collision circle of each other, all the robetep and the robots exchange
their identifiers, representing their priorities, with baather. A leader election algorithm

called the bully algorithm [10] is then used to select theotolith the highest priority as

29

1 coordinatePath
Input: v': destination TRG vertex
2 while another robot within-,,; do

3 stop

4 send priority to all other robots within.,;;

5 /lpriority is either robot id oro

6 calculate winner using bully algorithm [10]

7 winner robot holds winner token

8 if I am winnerthen

9 path<« replan path from.,,,. to v" using PRM planner

10 /lother robots considered as static obstacles in PRM

11 if path tov’ not found (another robot from collision circle stoppedvgtthen
12 set prio«— oo

13 else

14 (v, path) < updateTRG['RG, V') if v = null then
15 return

16 end

17 Move along current segment pith until outside collision circle
18 end

19 release winner token

20 end

21 end

22 else

23 while winner token not releasedb

24 stop

25 end

26 end

27 end

Algorithm 3: Algorithm to avoid collisions between robots in close proximity of each other.

30

A

(@) Three robots in (b) Robot 1's (¢) Robot 2's (d) Robot 3's
danger of colliding desired path desired path desired path

Figure 4.3: Example collision avoidance

the winner. The winner robot holds the winner token, whickegiit the right to move (lines
3 — 7). All other robots in the collision circle, which do not halde winner token, remain
stationary (line24 — 26). The winner robot uses the PRM planner in conjunction with
updating the TRG using Algorithm 2 to find a path to its destoravertexv’. The path
returned by the PRM planner is executed and the moving robedses the winner token
once it is outside its collision circle (lines 14 — 22). If the PRM planner is not able to
find a path to the goal, e.g., if the goal is unreachable becdnese is another robot within
the collision circle that is stopped right at the goal logatithe moving robot relinquishes
its right to move by setting its priority to a high valusoj (lines11 — 12). Another robot
from within the set of stopped robots gets a chance to runuhyg &lgorithm and attempts
to move. This protocol ensures that at least one robot exé@gollision circle with each
execution of the bully algorithm, and finally there is onlyeabot left inside the collision
circle. This robot then reverts to using its PRM-based platm@lan its path as part of
Algorithm 1

To helg further explain how the collisior avoicance works we will use ar exanrple,
showr in Figure 4.3 Corsideithe castshowr in Figure 4.3(a wherethe greer square are
robots the nurrbers regresen the robot’s id nurrber anc the rec circles are eact robot’s
collisior circle of radius r..;. As car be seenwe have three robots that are all within each
other’s collisior circles anc as suct the robot’s have stopper anc share their robor id’s

with eact other Robo 1 is the robo! with the lowes robot id, anc thus it is allowec to

31

move first. It take: a readng of the ervironmen anc replans it's paths assuning thai the
robots infront of it are static obstecles However it's goal as showr by the arrow anc x
in Figure 4.3(b’ is the sam¢locetion where roboi 3 is located This cause the patt length
returnec from the patl plarnel to be returnec a< infinity, becaus: a patt does not exist. As
such roboi 1 nctifies the otheirobot’s thaiit is unavailable to move by seting it’s tenmpcrary
priority to inf, which hand: ovel the winners toker to the othel robots to determine which
is the winner Robo 2 is the robot with the next lowes id, as car be seel in Figure 4.3(c),
it's desirec patt lead: away from the robots in collision Thus after replaring, it is able to
navgate away from the othel robots anc exit the othel robot’s collisior circles Once robot
2 is ouiside of the last robot’s collisior circle, it leave: the collisior avoicance algcrithm
anc resume ogetations like nommal.

After robot 2 has left robot 1 anc robo1 3’s collisior circles they re-evauate the bully
algcrithm anc deteimine that robot 3 is the robot with the lowes id; it's desirec patt car be
seelin Figure 4.3(d} As it car plar arouncrobot 1, it movesanc leave: robot 1's collision

circle, allowing all robots to resume following their original plans

4.6 Example

To help further explain how our proposed solution works, @aklat a simple example with
two robots, named R1 and R2, and five tasks; each task requisesrm@robot to visit it
to consider it completed. The starting locations of robotsaRd R2, location of tasks, and
location of all obstacles in the environment is shown in Fégli4(a). As can be seen, there
is a wall separating the two robots with a small doorway indbeter. When the robots
start, they are unaware of the location of other robots otagles in the environment,
but are aware of the boundary of the environment. At the aggof execution, the
information that robot R1 knows about the environment is shawFigure 4.4(b). At

this point the robots generate their TRGs. Robot R1's TRG is shawkigure 4.5(a).

32

Vertex 1 [Vertex 2 |Path length |Observation |Probability |Normalized
R 1 2.999 FALSE 0.530 0.200
R 2 4.067 FALSE 0.530 0.200
R 3 5.548 FALSE 0.530 0.200
R 4 5.654 FALSE 0.530 0.200
R 5 4.142 FALSE 0.530 0.200
1 2 2.342 FALSE 0.530 0.434
1 3 5.414 FALSE 0.530 0.434
1 4 7.073 TRUE 0.081 0.066
1 5 7.108 TRUE 0.081 0.066
2 3 3.355 FALSE 0.530 0.317
2 4 5.776 FALSE 0.530 0.317
2 5 7.554 TRUE 0.081 0.048
3 4 3.260 FALSE 0.530 0.317
3 5 7.314 TRUE 0.081 0.048
4 5 5.287 FALSE 0.530 0.434

Table 4.1: Table of PLL observations for each edge of TRG

Once the TRG has been generated, a path is planned for eacinetigeTRG. Since the
environment is empty, the planned path will closely folldwe fTRG edges. Once the paths
are planned, each edge of the TRG is updated with the lengtireatsulting paths. Once
the path lengths are found, it is possible to construct tlseations for each of the edges
based on Equation 4.4. These observations are used in the stn in Figure 4.2 to
generate a probability of availability for each TRG edge. phth lengths, observations,
and resulting probabilities for the TRG constructed by rdRbtis shown in Table 4.1. As
can be seen, the cases where the path length was more thetirties that of the shortest
path connected to that node,L L was observed to be FALSE. For example, the shortest
path leavingy, is to v, with a path length of.342, thus that is the value thatLL,,,,,
takes. The path between anduv, is 7.073 which is greater thefi x 2.342 = 7.026, so the
observation fol’ LL is set to TRUE. As can also be seen, the observation of TRU&esau
the probability returned from the HMM to drop from530 to 0.081 reflecting the change
in belief of those paths being the best and likely candidtaé® available for execution.

Once the TRG is completed, it is converted to an MDP, and ayifound, from this

33

(@) Environment with tasks and robots(b) Initial environment as seen by the lower
labeled robot

Figure 4.4: Example part 1, tasks are shown by red circles

the best task to go to is selected for each robot. Figure Yisbitowvs the paths that the two
robots will take.

Figure 4.6(a) shows the resulting TRG once both robots havplated their first task.
As can be seen, the robots have communicated with each athéne lower robot also
knows that the upper robot has completed its task. At this,tifme paths for each edge in
the TRG is recomputed to account for any detected obstablee aire none at this time
and the edge weights of the TRG are updated. Figure 4.6(byssthe paths that the robots
will take to their second tasks. In this case, the robot R1hesd’s task before robot R2
does, this causes the task to be removed from robot R2’'s TRG tR&bihen replans due
to the change in its TRG, it selects the same task becausentioeaikof the task robot R1
completed did not affect robot R2’s task. Robot R1 then repkansglect it's new task, at
this time it can see a portion of the wall that divides the tatvas of the environment. So,
the path planner plans a path around the obstacle, and theddIeets the path and TRG
edge shown in Figure 4.7(a).

As the robot R1 is following the path, the upper robot complét® task, causing the

lower robot to have it's path execution interrupted. Thiggers a replan in both robots,

(a) Initial TRG (b) Initial paths selected by each robot

Figure 4.5: Example part 2, tasks are shown by red circles

(&) Lower robot TRG after each robot (b) Second path selected by each robot
completes their first task

Figure 4.6: Example part 3, tasks are shown by red circles

34

35

e

(@) Third path selected by (b) Task interrupted for lower (c) Collision detected
lower robot robot. Fourth paths selected
by each robot.

Figure 4.7: Example part 4, tasks are shown by red circles

where they both select the remaining task to complete, asisdggure 4.7(b).

As both robots navigate to the final task, their paths takentblse together to the
point where they enter each other’s collision circles, asamhin Figure 4.7(c). At this
time, the robots perform the collision avoidance algoritiimich allows one of the two
robots to resume navigation towards the goal, once theywside each other’s collision
circles, both resume navigation towards the task, untilajrise robots reaches it, at which

time both robots will terminate their executiof Algorithm 1.

36

Chapter 5

Experimental Results

To verify our proposed approach, we performed two groupsxpéements, the first was
a set of simulations to determine the scalability and peréorce of the algorithm under
different algorithm parameters, different numbers of tsbtasks and obstacles as well
as different environment settings. The second set was asgeg of hardware Coroware
Corobot robots to test how well the approach performs in a weald setting. The
following two sections describe in detail how the experitsemere constructed, performed,

and summarize the main experimental results.

5.1 Simulated Experiments

5.1.1 Setup

The simulated experiments were conducted using a simufagedware Corobot robot
using the Webots robotics simulator. Webots is a commaeraimdtics simulator that allows
for modeling robots, their sensors, and the environmentaine in. It also provides a three
dimensional view of the system as the experiments run. Trhalator was run on a Intel
Core 8-core i7 CPU running at 3.2 GHz machine running Ubunt@4L2The robot is

equipped with:

37

¢ GPS

Compass

Laser distance sensor

Wireless communications

The GPS and compass sensors together allows the robot toitsiourrent location and
orientation inside the environment. The laser distancesaeprovides the robot with
distance information to obstacles located in it's field &wj270° centered in front of the
robot. This information is used to plan around obstaclefienanvironment. And finally,
the wireless communications allows the robots to exchanfgemation with other robots
in the environment.

The simulated robot can be seen in Figure 5.2(a). The enwieohwasl0 x 10 m? with
obstacles placed at strategic locations in the environm&né¢ obstacles were structured
in such a way that in the single robot case, the robot woule hawswitch task$0% of
the time if it was using a greedy closest-task-first taskcalfion method. The environment
layouts used can be seen in Figures 5.1(a), 5.1(b), and)5.We setup the PRM planner
to perform one sample for eveRpOcn?, with the penalty from Equation 4 denalty =
1000. It was also setup to connect the nearest ten neighbors. $tlesatl’ = 1000 in
Equation 4.4.

The approach was compared to a greedy closest-task-figtthlyp [34] modified to
use the same PRM based path planner and coordination teehniduese modifications
were made to allow for a more direct comparison of the tasication approaches without
influences from the coordination or underlying path plan&exch robot selects the task that
has the least cost on its TRG from its current location, withmadeling uncertainties in
the inter-task paths or updating TRG edge availabilities.e&th time step, the greedy
algorithm checks if its current location is still closestttee task it has selected, if it

determines that the straight line distance between it'sectirocation and another task

38

(a) Five task environment (b) Ten task environment (c) Fifteen task environment

Figure 5.1: Simulation setup

is smaller then the straight line distance from the robatisent location to another task, it
will switch and go to the closer task.

To test how the approach responds to a variety of envirorsneatested with number
of robots|R| = {1, 3,8}, number of task§l'| = {5, 10, 15}, and number of visits that each
task required/is = {1,2,3}. We also tested the effects of the user defined parameter
I' between 1.5 and 6 in steps of 0.5, and between 6 and 10 in stejs ©o enable
comparisons between each environment, we define a parametailed the task load.

The task load is defined as:

_T*Vis

L
R

Intuitively, the task load is a parameter that representg much work the average
robot needs to do. For example, if there are five tasks anddivets, and each task needs
to be visited only once, then on average, each robot wilt wisly one task, or we can say
that the setting 0% tasks,5 robots, and visit has a load[. = 1.

From the experiments, we collected the following data:
e Distance traveled
e Number of replans resulting in a switch of tasks

e Number of replans not resulting in a switch of tasks

39
e Time taken to plan the paths
e Time taken to navigate selected paths

Each metric reveals a different aspect of the performanceuofproposed approach.
Distance traveled and navigation time are both common ogetihat are used for
optimization. Distance traveled is a good analog for enelpd because the most energy
intensive portion of robotics is normally moving the wheel$e time taken to navigate
also provides an indication of how much energy the approaghires, but, unlike distance
traveled, the time taken to navigate also gives us a meastm@iomuch time was taken
stopped in the collision circles of higher priority robo#&sidorithm 3). The number of
replans that result in a switching of tasks tells us how oftenrobot was going to what
it considered to be the wrong task when one of the update TR@itcams were triggered
(Algorithm 2 line 2), while similarly, the number of replatisat do not result in a switching
of tasks tells us how often the same conditions were met luiaihot was still going to the
best task. This corresponds to cases where the robot foualdstacle along the path, but
the obstacle was not large enough or in the correct positionake going to the previous
task no longer the best task to go to. The time taken to plamsgatovides information
about how much of the total time was taken to find the paths é@twasks and to select

the best task to navigate towards.

5.1.2 Results

Figure 5.3(a) shows the number of replans made by each n@suoiting in task switches
for the two algorithms. We observe that, on average, the TR&&d approach results
in 61% less task switching than the greedy approach. LikewiseyrEi§.3(b) shows the
number of replans made by each robot that did not result isladaitch. We can see that
the TRG-based approach also result$(ft less replanning then the greedy approach. The
reduced planning and task switching by the TRG-based allgoritan be attributed to its

40

(a) Simulated Corobot robot in Webots (b) Physical corobot robot

Figure 5.2: Robots used

ability to reason more efficiently about task availabiBtigsing its costs and beliefs about
paths in the MDP based approach, along with real-time sedestarincorporated into its
decisions using the HMM. In contrast, the greedy approael osly Euclidean distances
to select tasks and consequently performs poorly.

In Figure 5.3(c), we show the average time taken to plan thesgar both approaches.
Figure 5.3(d) shows the time taken in locomotion, which udels time taken to handle
collisions using Algorithm 3. The TRG-based approach takeshrless time for both
planning and navigation compared to the greedy approachhigrcase, the TRG-based
approach requires0% less planning time, and8% lower locomotion and coordination
times than the greedy approach. This is because the TRG-appsabch accounts for both
the known obstacles between tasks and the likelihood tedaa#k will become unavailable.
The greedy approach behaves myopically and selects thestl@ask to visit, which could
be on the other side of a large obstacle and require conbiggoianning and locomotion
times to reach. In contrast, the TRG-based approach useslloésrperception of the
environment to weight the path costs to tasks with the cpareding path belief to reduce
the overall path costs. Note that when the number of tasksadl sor the average task load
per robot is close to 1, both algorithms have comparablepadnce for all three metrics

as each robot has to visit only one task and there is no tagkingdrequired.

35

30 |

(switching)

Replans

25 |

20

'TRG F
Greedy M.

41

'TRG E
50 | Greedy s

40

(non-switching)

Replans

(a) Average number of replans by each robofb) Average number of replans by each robot

which results in a task switch
7000

6000

(s)

Planning time

1000

5000

4000 |

3000 |

2000

'TRG
Greedy =

which did not result in a task switch

20000 . .
TRG
Greedy

w

~ 15000 |

[}

£

b=

o

§ 10000 r

-

s

©

o

T 5000 f

M

=
0 O S S T ES

A S AR NN

A S e e
xx@@ﬂﬁ&ﬁ&&
& F e F & g D & s

& & T e N

~ ROSEESIES ~

(c) Average time taken to plan paths (d) Average time taken to navigate planned

9000

8000
7000 |

(m)

Distance

2000 |
1000 |

paths

6000
5000 |
4000
3000 |

'TRG F
Greedy N

(e) Average distance traveled for each robot

Figure 5.3: Simulation result = 1000

42

25 T T T 25 T T T
—s— 10T 3R 1 —s— 10T 3R 1
—e— 10T 3R 2V —6— 10T 3R 2
—%— 10T 8R 1 —%— 10T 8R 1
—e— 10T 8R 3 —e— 10T B8R 3]
20 —%— 5T 1R 1V —%— 5T 1R 1
—8— 10T 1R 1 20 —8— 10T 1R 1V
“ —— 15T 1R 1 —o— 15T 1R 1V
c M+15T3R3 —+— 15T 3R 3
= D —— o
a c
2 ©
815 o
[N
o o 15 -
2 &
% 5
© 1
) e
",:‘ 10 q o B_E_g,_—a—a———a—a——’E—E'—‘
z
o =z
i :;’_’;N:;\‘_é,_,eh@q:: =0t 1
o
z

%M

0 2 4 6 8 10 0 2 4 6 8 10

Gamma value Gamma value

(&) Non-switching replan trend lines 45 (b) Switching replans trend lines ab

25 T T T 20
10T 3R 1 10T 3R 1
10T 3R 2 10T 3R 2V
15T 3R 3 15T 3R 3
20 |
15
"
2
5 0
= 2
Q:‘ ©
S1st a
§
o M
G| o 10 L
E=] =]
3] 5
5 2
210 ¢ H
& 5
I =
& &
4 I r—
2 = o . r . . b .y e
sl
sl
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Gamma value Gamma value

(c) Non-switching replans trend line and(d) Switching replans trend line and scatter
scatter plot a§' changes foVis > 1 plot asI" changes foVis > 1

25 T T T 18

—<= 10T 3R LV ! j j —<= 10T 3R L
—&— 10T 3R 2 —6— 10T 3R 2V
15T 3R 39 15T 3R 3
16 1
20
B 14
kil o
o 2
& =
15+
" 52|
o ~
Z
g o
2 g
5 5
9 =10t
2101 S
.r, =t
I 3
£ &
2 s b
5
6 b
0 4
0 2 4 6 8 10 0 2 4 6 8 10
Gamma Gamma

(e) Non-switching replans average valuegf) Switching replans average values with
with error bars a§' changes error bars a$' changes

Figure 5.4: Replans results Exhanges

Distance

(m)

Distance

16000

14000

12000 ¢

10000

8000

6000

4000

2000

12000

10000

8000

6000

4000

2000

—%— 10T 3R 1V|
—e— 10T 3R 2
—%— 10T B8R 1V| |
—e— 10T B8R 3V]
—>— 5T IR 1
—8— 10T 1R 1
—6— 15T 1R 1V|q
—&— 15T 3R 3V

0 2 4 6 8 10

Gamma value

(a) Distance trends d5changes

—— 10T 3R 1}|
—6— 10T 3R 2
15T 3R 3

Gamma

(c) Distance a$' changes

12000

10000 ¢

8000

Distance
o
)
S
=)

4000 -

2000

' ' ' —— 10T 3R 1
' 10T 3R 2
. .. 15T 3R 3V

Gamma value

(b) Distance a$' changes fois > 1

1000

800

E 600
c
S
pr
A

2 400
&

200

0

0

Greedy]
TR

400 600 800 1000

Position (mm)

43

(d) TRG and Greedy robot paths for a
single robot in environment 10T 3R 2V, task
locations are shown by black circles

Figure 5.5: Distance results Axchanges

44

Figure 5.3(e) shows the average distances traveled by edudt for each of the
approaches. We observe that as the average tasklladdhe robots increase (from left
to right on the x-axis), the distances traveled by the rolmamieases. The robots using the
TRG-based approach travel similar distances to those usengreedy approach. This is
because both approaches use the same path planner. HothevE@RG-based approach
does travel a small amount more then the greedy approachofapyately 6% longer).
This is due to when the robot decides to abandon its currektfta another task, the
greedy approach will switch as soon as the other task becolossr, which in some cases
is the best decision, where as the TRG-based approach wilhcerto follow its previous
task even though another task is closer. In some cases this st thing to do because
the closer task might be on the other side of a wall that thetrbhs yet to explore with
its laser and actually require more distance to explore ginai the wall to realize that
the task is no longer the closest. In some of the environmeititsa larger load value, the
TRG-based approach starts to perform better. Figure 5.5@ysone such case for the
ten task, three robot, two visit environment. The red linthes path followed by a robot
executing the greedy nearest task first method, whereasudére is the path of the robot
in the same starting location using the TRG-based methodaAbe seen in the figure, the
robot using the Greedy approach tends to change its diresticch more often compared
to the TRG-based approach, this is due to the larger numbienes that the robot switched
between tasks to execute.

Figures 5.4, 5.5, and 5.6 show the effect varyindias on the various parameters
collected. In general, it can be seen tlhahas a minor effect on the behaviour of the
approach. This can also be seen in Table 5.1 which shows ¢aesprrate of change in the
tested parameters &sincreases. For example, the largest change in distarilm.i%@
for environment 10T 8R 3V. In this approach the robot traded@proximatelyd, 000m
which is only a change of.5% for each change ii". One will also notice that in the

environments with a large load. (> 5), a larger value of' causes the average distance to

3500
—<— 10T 3R 1
—e— 10T 3R 2
—%— 10T 8R 1
—e— 10T 8R 3
3000 - —»— 5T 1R 1V
—8— 10T 1R 1
—o— 15T 1R 1
—&— 15T 3R 3V
2500 | q
N g:::::2:::::2:::::Q:::::2:::::2:::::2::::2:::2:::ﬁ
£
5
= L 4
. 2000
s
=
o
1500 | §:Z:::é;::::%¥:::—{k-=::i}::::j3:::::Ei::::it::::it::::ﬁ
1000 */4‘44*‘4<4<*<4<4<*_44_4»k»4»4’*,4,4,*/4~4~*~4~4<*~4<4<;
500

0 2 4 6 8 10

Gamma value

(a) Plan time trends dschanges

3500
—— 10T 3R 1
—e— 10T 3R 2
15T 3R 3
3000
2500
3
.
5 2000
5
.
i
§
.
1500
1000
500 L
0 2 4 6 8 10
Gamma
(c) Plan time ag" changes
8000
10T 3R 1
10T 3R 2
. 15T 3R 3
7000 . ° — . q
L - : ' i
~ 6000
2
g
o 5000
:
5
5
g 4000
o
g
5
Z 3000
Co ; ;
e ; |
2000 F HEE TR v i 1
1000 L
0 2 4 6 8 10

Gamma value

(e) Navigation time a§' changes for
Vis>1

Plan time

Navigation time

s)

(

Navigation time

3500

— 10T 3R 1
10T 3R 2V
15T 3R 3
3000
2500
2000 |
i
1500 . ! :
H H .
P iy :
T N -IllI
HEELEL P T T B T
1000 TR IS R .
500 L
0 2 4 6 8 10

Gamma value

(b) Plan time ad" changes fo/is > 1

—v— 10T 3R 1
12000 - —e— 10T 3R 2V|]
—*%— 10T 8R 1
—e— 10T 8R 3
—%— 5T 1R 1
—8— 10T 1R 1
1 L]
0000 —o— 15T 1R 1
—4&— 15T 3R 3
8000
s
6000 & —
4000
oe—o—o—o o o o o . |
2000 B
Pa—
0
0 2 4 6 8 10

Gamma value

(d) Navigation time trends dschanges

8000
—>— 10T 3R 1
—6— 10T 3R 2V|
15T 3R 3
7000 4
6000 [
5000
4000 |
3000 q
%’%”'%f%—%f%f%—%%f—%f7%——77%—7—%———/
2000 3
1000 -
0 2 4 6 8 10
Gamma

() Navigation time ag" changes

Figure 5.6: Timing results ds changes

45

46

Environment | Distance | N.S. replan | S. replan | P. Time | N. Time
10T 3R 1V 11.21 0.01 -0.06 -5.92 -6.45
10T3R2V| -30.66 -0.03 0.07 1.99| -27.75
10T 8R 1V 13.25 0.16 0.01, 17.42 12.19
10T 8R3V| 100.76 -0.05 -0.17| -16.97| -31.66

5T 1R 1V 7.54 0.03 0.02 3.44 5.90
10T1R1V| -20.23 0.06 0.11| 14.88| -15.82
15T1R1V| -32.51 -0.03 -0.09| -11.02| -23.20
15T3R3V| -27.80 0.004 -0.23| -19.99, -26.97

Table 5.1: Change in Distance, Non-switching replans, 3witcreplans, Plan time, and
Navigation time ag’ increases

decrease, whereas a smaller load causes the average @istamerease. This is due to the
robot following the path to the wrong path a longer distanem®ite it decides to switch to

the task the ends up being better. This is more prominentim@mments with larger loads

because the robot has to cover a larger portion of the enmieah compared to the lower
load values.

The effect of increasing’ on switching replans (Figures 5.4(b), 5.4(d), and 5.4(f))
depends on the number of visits that each task requires. riergk the environments
whereVis > 1, a largerl’ value resulted in fewer switching replans. This is because a
robot will only become more likely to switch tasks after thaiplength to its current task
becomes more thE times larger then the closest task by path length (Equadchsnd
4.3). AsI' becomes larger, it becomes more difficult for this conditiorbe satisfied,
which causes fewer TRUE observations fof L;;, which in turn makes it less likely for
the replan to be a switching replan. On the other hand, tleetedh non-switching replans
is distributed across all of the environments, meaningttiere are likely other properties
of the environments that are effecting this parameter, sisdie density of obstacles, the
density of robots, or the amount of collisions between rebot

Navigation time, unlike the other parameters, has a largkrevofI" resulting in less
navigation time. In all, except two, environments a largalue of " caused the average

navigation time to decrease (see Figure 5.6(d)). This igaltiee robot not switching tasks

47

Figure 5.7: Overhead and side view of environment used &inig with physical robots,
white dots represent the task locations

too often. Each time the robot switches a task, it has toedtatollow the newly selected
path. Because this rotation takes time, it can add up as tlue sgbtches between tasks.
Planning time, like non-switching replans, are scatteress various visit levels and
ranges for load (Figure 5.6(a)). However, an interestimggtho note is that planning time
increases and decreases in the same environments whessvitohing replans increased
and decreased. This is because more replans result in naon&pd time, and the effects of

the switching replans was not enough to cancel out the chiamigenon-switching replans.

5.2 Physical Robots

5.2.1 Setup

For the physical robot experiments, we converted the enment shown in Figure 5.1(a) to
fitin the limited3 x 4 m? available. This new environment is shown in Figure 5.7, elike
white dots represent the tasks that the robot must visite thle simulation environments,
this environment was designed such that a greedy closssfitat algorithm would switch
tasks50% of the time. In this environment we tested with a fixed valué'of 5.0. We

also tested withR?| = {1,2} andVis = 1. Results were averaged over three runs.

48

Robots |Visits [Distance Traveled (cm) |# Switches [# Non-switches |Plan Time (s) Navigation Time (s)
1 1|2102.88 + (349.94) 4+ (0) 0.67 + (1.15) 613.97 + (144.54) (1415.96 + (238.87)
2 1|1130.45 + (86.92) 2.83 + (0.58) |2.5+(1.32) 835.6 + (269.11) [746.86 + (48.66)
2 2|6118.95 + (2689.47) 4.5 + (1.5) 3.17 + (2.52) 760.86 + (372.83) |3921.43 + (1704.98)

Table 5.2: Physical robot experiment results

5.2.2 Results

Table 5.2 shows the results of the physical robot experignfamtthe same metrics as the
simulation experiments. In both environmental, the rolatse able to navigate and visit
the tasks with the required number of visits. In comparireséresults to those shown in
Figure 5.3, we can see that the hardware performed fairljlasint-or example, Table 5.2
shows that the five tasks, one robot, one visit environmedtfbar switching replans,
which is within the margin of error for the switching replastsown in Figure 5.3(a).
During experiments, one issue was noted, that of size ofdhsggeways. In the limited
space afforded for the hardware tests, a single robot cdattklone of the rooms in the
environment and prevent the robot from entering. This aésealed an issue for future
investigation for the coordination strategy, namely thatas possible for both robots to
become stopped by the algorithm and become unable to moveodbeir need to swap
locations. This usually meant that at least one of the robamisid need to move away
from the selected goal location to allow the other robot tdrbed, which is not currently
possible under our coordination strategy. However, itqgrens well in all other tested

scenarios.

49

Chapter 6

Conclusions and Future Work

In this thesis, we introduced the TOP-U problem where robat® to determine the order
to visit a set of task locations when the path costs betweeh pair of tasks can vary

dynamically as the robot discovers obstacles while nawigdtetween tasks. As a solution
to this problem, we proposed a data structure called a tasthability graph (TRG). The

TRG provides a mechanism to encode inter-task dependeticeepath length between
the task locations, and the belief in the task path lengthgeorrect. We then proposed
techniques to use the TRG to integrate task planning and mpl@mning using a sampling-
based path planner to find current estimates for path lemgtla&lMM-based technique to
find the belief in those path costs based on the path lengiveleettasks. Finally, an MDP-
based algorithm was proposed that uses information froni @ to select a suitable task

order to reduce the cost in terms of time taken or distaneeled to visit the tasks.

6.1 Lessons Learned

We teste(our prcposer agproact in bott simulatec anc physical robots The simulation
was done using a simulator thai prcvides ar accurate simulation of the rea-world dynanics
of robots Wher comrparecto a greed: closes-tasl-first task allocetion method our TRG-

base(agproact peiformec 60% fewel task switcting replans 40% fewel replans oveiall.

50

This mean thal using the TRG-base: agproact reducec the amoun of times that the
robot has to replar a corsicetable amount which reduce: the time taker anc reduces
the amoun of resource the robot has to use It alsc took 60% less plarning time and
58% less nanigetion time. In gereral using the TRG-baser agproact reduce: the plarning
anc navigetion times corsidetably. The TRG-basei agpproact alsc travelec almos similar
distance to the greed\ agproach only taking abou 6% longe of a path In gereral the
TRG-baser afproact travels anc use: a similar amoun of erergy in the loccmction of
the roboi corparec to the greed: closes-tasl-first agproach We alsc testec ar algcrithm
perameter I', which was showr to have minimal effect on the peiformanct of the algcrithm.
Thougt it was showr thai for ar ervironmen' with a largel loac of task: thai eacl robot
has to conrplete a largel I" resultec in a decreas in distance traveled If the nurber of
visits pel task was greate ther one a largel I' alsc resultec in a decrease nunbei of
switcting replans And in mos cases a large! I resultec in a decreas in navigetion time.
In gereral the I' perameter hac a very minor effect on the peiformanct of the prcposed
arproach howevel it car be usecto dafine tuning of the peiformance thougt not required
for the agproact to peiform beter ther the greed: closes-tast-first agproact testecagainst.
The agproact was alsc teste« on physical robots using three ervironmertal setings which

preducec results similar to those gerelatec in the simulation.

6.2 Future Works

As future work, we would like to look into the following torics to undeistanc the proklem

of simultaneous task anc mction plarning more effectively:

o Patial task ordeiing, where ceitain task: mus be peiformec before othel tasks can

be done

e Robot¢ conpleling pottions of task al same¢ time: Multiple robots have to work

togethe simultaneously to conplete the task.

51

¢ Multi-robot ccordinétion teckniques Finding beter tecknique: thai da not require all

robots to stog moving.

e Ervironrmen perarmreter investigetion: Finding wha' perameters of ervironment

effects the results of our prcposectectnique.

e Improvec plarning time: Finding ways to not use as muct time in updaing path

plans

To hardle pattial task ordeiing, it will be imporitani to accoun for the change in the
TRG due to corrpletion of tasks The algcrithms would neec to accoun for the directed
edge¢ neture of a TRG with deperdercies betweer tasks This coulc be hardlec through
orline menipulation of the TRG edge as task: are corrpleted For exanple, if task 3 is
deperden on task 2, ther urtil task 2 is conrpleted the only edge into task 3 will be from
task 2, butoncetask 2 is corrpleted all othei task: car gair ar edgeinto task 3 becaus the
deperdency has beer corrpleted

Some tasks may require multiple robots to be preser ai the task locetion ai the same
time in ordel to peiform the task An exarnrple would be the movemen of a large okject
thai one roboi doe« not have the powel to move but with multiple robots they car prcvide
collectively enougl powe! to move it. To da this, the robots would neec to communicate
anc take into accoun the task plans of othel robots becausr acceping anc navigaing to a
joint robot task is only useful if arothel robot car mee the robot at the task locetion. To
acconrplish this, ar extra terr car be adde(to the comrputation of a tasks cost which is
corditional on arothel robot gcing to the task al the sam« time. The roboi coulc arnounce
to the othel robots its inteni to visit a task anc if arothel roboi finds this task to alsc be
reesorable to ga to, car alsc select it anc reply. However if no othel robot responds the
cos of gcing to the task increase to discoulage the roboi from gaing to a useless task if no

othelrobotwill join it there

52

In our current agproach robots use a besic agproact to peiform multi-robor collision
avoicance anc ccordinetion which requires all robots involvec to stor movemen' towards
their cuireni task while the collisior prevertionis hardled In ordel to preveni the stogping
of robots anc be able to prcvide guaartee: thai the robots will succesfully avoic collisions
anc cortinue to their tasks plarning will likely be requirec to be done in the joint
corfiguration space where the possible mctions of al leas a sutse of the robots car be
corsiderec together To prevent the high coststhat plarning in the joint corfiguration space
ustally requires the joint plarning car be limited to the are: thai the robots are in collision
to previde shor pathe thai car be founc quickly amoun the robots in dargei of collision

In our expeliments we ncaticec thaithe change in the merics as ervironrment: changed
coulc not be directly mapper to one of the peramreters thar we testecd In ordel to best
recommenc the values of I" for ar ervironmen or which plarning metrods are the best we
would like to define perarreters of the type of ervironmen the robotis working in, anc see
whai the relationshig betweer thest perarreters anc the peiformance of the algerithm is.
Perareters thai coulc be investigatecinclude distribution of okstecles dersity of okstecles,
distributions of robots anc others

Our cuirent agproact use: a patl plarner thal account: for unceitainty in okstecle
locetions but take: a long time to gererate all the paths To helg improve the plarning
time, we would like to look into eithel using othel patl plarners that are available or
adaping the cuirent one to reduce the nunbel of corrputations or collisior check: that
mus be peiformed Exarnrple patt plarners that coulc be investigatec are Lazy PRM [2]
anc Informec RRT [9].

In corclusion we prcposetatectnique to solve simultaneous task anc mction plarning
by using a date structure callec the task reaclability graph Base(on this strucure we
prcposec a HMM anc MDP base: algcrithm that peiforms beter ther a greed) neaes-
tasl-first task allocetion algcrithm by at leas 40% in mos merics tested while only

traveling 6% more distance Our agproact was velified in accurate simulations anc using

physical robots

53

54

Bibliography

[1]

[2]

[3]

[4]

[5]

F. Aurenhammer. Voronoi diagrams — a survey of a fundaadegeometric data
structure ACM Comput. Sury23(3):345-405, September 1991.

R. Bohlin and L.E. Kavraki. Path planning using lazy prm. Robotics and
Automation, 2000. Proceedings. ICRA ’'00. IEEE Internatio@onference on
volume 1, pages 521-528 vol.1, April 2000.

J. Canny. The Complexity of Robot Motion PlanninIT Press, Cambridge, MA,
USA, 1988.

H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. Kavr&kiLynch, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Impéntation MIT Press,
June 2005.

T. Cormen, C. Leiserson, R. Rivest, and C. Stdimroduction to Algorithms MIT
Press, June 2009.

[6] V. Desaraju and J. How. Decentralized path planning faidtiragent teams with

[7]

[8]

complex constraintsAutonomous Robqt82(4):385-403, 2012.

L. Dou, M. Li, Y. Li, Q. Zhao, J. Li, and Z. Wang. A novel afitial bee colony
optimization algorithm for global path planning of multbot systems. IfRobotics
and Biomimetics (ROBIO), 2014 IEEE International Confersiory pages 1186—
1191, Dec 2014.

D. Ferguson and A. Stentz. Field d*: An interpolatiorsbd path planner and
replanner. InProceedings of the International Symposium on Roboticedtels
(ISRR pages 1926-1931, 2005.

[9] J. Gammell, S. Srinivasa, and T. Barfoot. Informed rrtptitnal sampling-based path

[10]

[11]

planning focused via direct sampling of an admissible sdligdal heuristic. 12014
IEEE/RSJ International Conference on Intelligent Robotd 8gstems, Chicago, IL,
USA, September 14-18, 2Qhages 2997-3004, 2014.

H. Garcia-Molina. Elections in a distributed computisystem. IEEE Trans.
Computers31(1):48-59, 1982.

B. Gerkey and M. Mataric. Sold!: Auction methods for nmabot coordination.
Robotics and Automation, IEEE Transactions pages 758-768, Oct 2002.

55

[12] B. Gerkey and M. Mataric. A formal analysis and taxononfiytask allocation in
multi-robot systemsT he International Journal of Robotics Resegr2B(9):939-954,
2004.

[13] S. Karaman and E. Frazzoli. Sampling-based algorittamsptimal motion planning.
Int. J. Rob. Res30(7):846—894, June 2011.

[14] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. bBbdistic roadmaps for
path planning in high-dimensional configuration spacedEEE INTERNATIONAL
CONFERENCE ON ROBOTICS AND AUTOMATI(Qidges 566—-580, 1996.

[15] D. Koditschek and E. Rimon. Robot navigation functions manifolds with
boundary.Advances in Applied Mathematjcsl(4):412 — 442, 1990.

[16] S. Koenig and M. Likhachev. D*lite. IEighteenth National Conference on Artificial
Intelligence pages 476-483, Menlo Park, CA, USA, 2002. American Associdibr
Artificial Intelligence.

[17] J. Kuffner and S. Lavalle. Rrt-connect: An efficient apgch to single-query path
planning. InProc. IEEE Intl Conf. on Robotics and Automatigrages 995-1001,
2000.

[18] S. Lavalle. Rapidly-exploring random trees: A new tami path planning. Technical
report, 1998.

[19] M. Likhachev, D. Ferguson , G. Gordon, A. Stentz, and &rufi. Anytime
dynamic a*: An anytime, replanning algorithm. Rroceedings of the International
Conference on Automated Planning and Scheduling (ICARS)e 2005.

[20] S. Loibl, D. Meyer-Delius, and P. Pfaff. Probabilisticme-dependent models for
mobile robot path planning in changing environments.20i3 IEEE International
Conference on Robotics and Automation, Karlsruhe, Germargy 510, 2013
pages 5545-5550, 2013.

[21] T. Lozano-Rrez and M. Wesley. An algorithm for planning collisiondreaths
among polyhedral obstacleSommun. ACM22(10):560-570, October 1979.

[22] B. Luders, S. Karaman, and J. How. Robust sampling-basgtmplanning with
asymptotic optimality guarantees. WIAA Guidance, Navigation, and Control
Conference (GNCBoston, MA, August 2013.

[23] V. Lumelsky and A. Stepanov. Path-planning stratefpes point mobile automaton
moving amidst unknown obstacles of arbitrary shapeGORITHMICA 1987.

[24] P. Missiuro and N. Roy. Adapting probabilistic roadmapsiandle uncertain maps.
In Robotics and Automation, 2006. ICRA 2006. Proceedings 2bBE& International
Conference oypages 1261-1267, 2006.

56

[25] A. Mufioz-MeEndez, P. Dasgupta, and W. Lenagh. A stochastic queueinglrfurd
multi-robot task allocation. IWCINCO (1), pages 256-261, 2012.

[26] S. Russell and P. NorvidArtificial Intelligence: A Modern ApproachPrentice Hall,
June 2009.

[27] S. Rutishauser, N. Correll, and A. Martinoli. Collabovaticoverage using a swarm
of networked miniature robotsRobotics and Autonomous Syste&ig(5):517-525,
20009.

[28] M. Saha and P. Isto. Multi-robot motion planning by iacrental coordination. In
Intelligent Robots and Systems, 2006 IEEE/RSJ InternatiGonference onpages
5960-5963, Oct 2006.

[29] I. Sucan and L. Kavraki. Mobile manipulation: Encodinmtion planning options
using task motion multigraphs. IRobotics and Automation (ICRA), 2011 IEEE
International Conference qipages 5492-5498, 2011.

[30] I. Sucan and L. Kavraki. Accounting for uncertainty inmsiltaneous task and
motion planning using task motion multigraphs. IEEE International Conference
on Robotics and Automatippages 4822—-4828, St. Paul, May 2012.

[31] G. Wagner and H. Choset. Subdimensional expansion fdiinotaot path planning.
Artif. Intell., 219:1-24, 2015.

[32] D. Wicke, D. Freelan, and S. Luke. Bounty hunters and iagéint task allocation.
In Proceedings of the 2015 International Conference on Aut@usmAgents and
Multiagent System#®\AMAS '15, pages 387-394, 2015.

[33] J. Wolfe, B. Marthi, and S. Russell. Combined task and nmopilanning for mobile
manipulation. Ininternational Conference on Automated Planning and Sclieglul
Toronto, Canada, 2010.

[34] B. Woosley and P. Dasgupta. Multirobot task allocatiathweal-time path planning.
In FLAIRS Conferencepages 574-579, 2013.

[35] R. Zlot and A. Stentz. Market-based multirobot coordimafor complex tasksl. J.
Robotic Res.25(1):73-101, 2006.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	7-2015

	Efficient Simultaneous Task and Motion Planning for Multiple Mobile Robots Using Task Reachability Graphs
	Brad Woosley
	Recommended Citation

	thesis.dvi

