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In this thesis, we consider the problem of efficient navigation by robots in initially unknown

environments while performing tasks at certain locations. In initially unknown environments, the

path plans might change dynamically as the robot discovers obstacles alongits route. Because

robots have limited energy, adaptations to the task schedule of the robot in conjunction with updates

to its path plan are required so that the robot can perform its tasks while reducing time and energy

expended. However, most existing techniques consider robot path planning and task planning

as separate problems. This thesis plans to bridge this gap by developing a unified approach for

navigating multiple robots in uncertain environments. We first formalize this as a problem called

task ordering with path uncertainty (TOP-U) where robots are provided with a set of task locations to

visit in a bounded environment, but the length of the path between a pair of task locations is initially

known only coarsely by the robots. The robots must find the order of tasks that reduces the path

length to visit the task locations. We then propose an abstraction called a task reachability graph

(TRG) that integrates the robots task ordering and path planning. The TRGis updated dynamically

based on inter-task path costs calculated by the path planner. A Hidden Markov Model-based

technique calculates the belief in the current path costs based on the environment perceived by

the robot’s sensors. We then describe a Markov Decision Process-based algorithm used by each

robot in a distributed manner to reason about the path lengths between tasksand select the paths

that reduce the overall path length to visit the task locations. We have evaluated our algorithm in

simulated and hardware robots. Our results show that the TRG-based approach performs up to60%

better in planning and locomotion times with44% fewer replans, while traveling almost-similar

distances as compared to a greedy, nearest task-first selection algorithm.
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Chapter 1

Introduction

In this thesis,weinvestigatethescenariowherethereexistsaboundedenvironment,andin

thisenvironment,thereareagroupof spatially distributedtasksthatmustbecompletedby a

groupof robots.Dueto thelimitedresourcesthatrobotshave,especially theirpowersource,

it is very importantto minimizethetotal costexpendedby therobotsin accomplishing all

of thetasks.

This problem is encountered in many applications of multi-robot systems such

as automated surveillance [35], robotic demining [25], and automated inspection of

engineering structures [27].As a motivating example, for performing standoff detection

of explosivesor landminesusing autonomousrobots,multiple robotswith different types

of sensorsareprovidedwith a coarsemapcontaining locationsof objectsof interest.The

robotsarerequiredto autonomouslyplan their pathsto get in proximity of eachobject of

interestso that theycananalyze theobject with their detection sensors.Due to the likely

remoteareathat the robotsareoperating in, it is very important that the robot’sconserve

their resourcesandperform asmuchof thegiventasksaspossiblewith their resources.

In this scenario, there are two important problems that must be solved—task planning

and motion planning. The goal of task planning is to find an ordering over the set of

tasks that the robots must perform. The found ordering must minimize some cost metric,
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Initial Path robot 1
Initial Path robot 2

Robot 1

Robot 2

(a) Path planned by robots without
knowledge of obstacles using task locations
only

TRG edges (not selected)

TRG selected edges

Actual path robot 1
Actual path robot 2

Robot 2

Robot 1

(b) Paths planned by robots using TRG

Figure 1.1: Paths generated

such as the distance traveled or energy expended by robots tovisit the task locations, and

be feasible. A feasible task ordering is one that maintains any constraintsimposedon

the tasksor dependencies between tasks. For example, if there are twotasks, collecting

a soil sample, and delivering it to scientists for analysis,there is a dependency between

the two tasks, the soil sample must be collected before it canbe delivered for analysis.

Certain tasks may require visits from multiple robots, wherea single robot can only perform

a fraction of the task and a second robot is required to On the other hand, the goal of

motion planning is to find a path for the robot to follow through the environment while

avoiding collisions with obstacles in the environment and minimizing some cost metric.

Conventionally, these two problems have been solved separately, with the task planning

methods assuming that cost to reach a task is fixed and known toall robots as soon as the

robot becomes aware of the task [4]. However, this assumption does not hold in initially

unknown, or partially unknown, environments. As a robot follows along its initial path to

a task, it may discover the locations of new obstacles that force the path to be updated,

thus increasing the length of the path. An example of this is shown in Figure 1.1(a) where
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two robots are tasked with visiting 5 task locations, where each task location only requires

a visit from one robot. However, initially the robots have noknowledge of the wall-like

obstacles in the environment, or the paths that the other robot will take. As can be seen,

both robot’s paths and will intersect with obstacles, whichonce they are detected will cause

the path lengths to increase.Thegoalis to incorporatedatafrom thepathplannerinto the

taskplanner to adjust the taskplan as therearechangesto the robotsperception of the

environment

Computing a task plan is a computationally challenging problem, and quickly becomes

infeasible as the number of tasks and robots increase, and has been shown to be an NP-hard

problem [12]. In order to handle this problem, researches have proposed approximations

to task allocation to provide close to optimal solutions in polynomial time.

To address this problem, we propose an approach that dynamically recalculates the

task plan based on the length of the current best path betweentasks, and a belief in the

availability of the tasks for completion. To facilitate this, we propose an abstraction called

a task reachability graph (TRG) that represents the reachability between tasks. Each edge

in the TRG represents a path between two task locations or the robot and a single task

location, and has associated with it the cost of the path returned by a path planner. Each

edge also has a probability associated with it that represents the robot’s belief in the current

edge cost.The beliefs are calculated and updatedusing a Temporal BayesianNetwork

(TBN) thatencodestheinteractionsbetweenthestateof theworld andwhattherobotcan

observeaboutthe lengthof thepathsbetweenall of thetasks.Solving of theTBN is then

handled using a Hidden Markov Model (HMM). The beliefs are then used inside a Markov

Decision Process (MDP) model to calculate the best task for the robot to travel to, this

induces a schedule over the tasks for the robot to visit. Thiscauses only select edges from

the TRG to be selected for the robot to move along, which can be seen in Figure 1.1(b),

which shows all the edges of the TRG, and the edges that each robot selects to navigate

until all tasks have been visited by exactly one robot.
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To verify our approach, we tested it in both simulation and onphysical robots while

varying the environment layout, number of tasks, and how many robots are needed to

complete a task. Our results show that the TRG-based approachperforms up to60% better

in planning and locomotion times with44% fewer replans, while traveling almost-similar

distances as compared to a greedy, nearest task-first selection algorithm.

The rest of this document has the following structure. In Chapter 2 we discuss the

related works on this topic. Chapter 3 presents a model for Simultaneous Task and Motion

Planning, then in Chapter 4 we present our proposed approach in that model. Then in

Chapter 5 we discuss the experiments we performed to validatethis approach and the results

of the various experiments. And finally in Chapter 6 we summarize our work, discuss the

conclusions we can draw, and provide a discussion on the future work for this topic.
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Chapter 2

Related Work

2.1 Task Allocation

To properly discuss the problem of task allocation, it is important to provide a method for

defining the various parameters that are apparent in the various types of task allocation.

This was what Gerkey and Mataric did in [12]. They proposed a three axis based system.

The first axis describes how many tasks a robot can be executing simultaneous, a single

task (ST) system means that every robot in the environment can only execute a single

task at a time, where as a multiple task (MT) environment means that some of the roots

in the environment can execute multiple tasks at the exact same time. The second axis

describes how many robots are required to execute a task. A single robot (SR) environment

has every task in the environment require only a single robotto complete it, where as a

multiple robot (MR) environment has tasks that require more then one robot to complete

the task. The third, and final, axis describes how the robots learn about the environment

and allocate the tasks among the robots. An instantaneous allocation (IA) environment

has all of the information available at the start, thus meaning that the initial allocation

of tasks is the final one as there is no more new information gained to later update the

allocation of tasks. A time-extended allocation (TA) environment, on the other hand, has
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more information available over time to allow for updates tothe current task allocation.

Using the aforementioned taxonomy, the system we are proposing a solution to would

be described as a ST-MR-TA system. A robot can only execute, orattempt to execute a

single task at a time, multiple robots are required for each task to be completed, and more

information is available over time about the environment and tasks, requiring updates to

the initial allocation, or task plan.

In [11], Gerkey and Mataric proposed a task allocation method using auctions. The

auction runs in a distributed manner with each robot placingbids on how well they can

complete the task. An auctioneer – which could be the user, a pre-scheduled task coming

available or any other source – announces to the robots when anew task is available,

including the details of the task needed for the robot to makea decision about it. The

robots then evaluate how well they can accomplish that task based on the metrics for the

task given. The robots publish how well they can accomplish the task, and the one with the

best bid is assigned the task. The robot is also only allowed to work on the task for a certain

amount of time before it is revoked, unless there was sufficient progress on completing the

task during that time budget.

In [32], Wicke, Freelan, and Luke proposed a method in contrast to the allocation-

based methods, like mentioned above. Their proposed solution is modeled after the idea

of bail bondsmen and bounty hunters. The bondsmen issue a reward for completion of

a task by the robots, the reward offered increases over time as task goes without being

completed. The robots then select, based on the reward and a perception of how well the

task could be completed, a task to complete. Unlike auction methods, where only robot can

commit to a task, their approach allows multiple robots to commit to the same task, which

provides robustness in-case the initial robot assigned to the task is unable to complete it in

a reasonable time, because another robot will select it. This approach is similar to the one

we propose in that multiple robots can attempt to complete a single task at any given time.

However, our approach does not provide a reward for completing a task, instead, the task
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is selected based on the distance to the task and the likelihood of being able to complete

it. Also, in our approach, the cost (analogous to their reward) does not change over time,

instead it always represents the robot’s perception of the environment and cost to reach that

particular task from the previous replanning point.

There have also been several symbolic task allocation planner that have been proposed

in the past [26]. For example, in [33], Wolfe, Marthi, and Russell propose a symbolic AI

to integrate information about the tasks into the path planning of a robot while handling

uncertainty in the robot’s motion in the environment. The proposed method provides a

means to encode mobile manipulator problems as vertically integrated hierarchical task

networks (HTNs), where the low level motions handled using rapidly-exploring random

trees (RRT). The authors also provide an algorithm called State-Abstracted Hierarchical

Task Network (SAHTN) which provides a mechanism for speeding up the search by

determining what information for a particular subtask is irrelevant. This mechanism

allows for re-use of previous plans that have the same parameters by discarding irrelevant

information.

In [34], we proposed a solution to the Multi-Robot Task Allocation (MRTA) problem.

In this approach, robots only considered the straight line distance between their current

location and all other tasks that needed to still be done. Theonly time a robot was told

to switch what task they were going to was when the straight line distance to another task

became less then the straight line distance to the task it wascurrently going to. Our current

approach, however, adds information about the actual path that the robot will need to follow

between tasks, allowing it to much sooner determine that another task is better. Also our

current approach calculates a belief in the current path length that represents the certainty

that the robot has in each path being available for following.

Task and motion planning has also been studied in the contextof mobile manipulator

robots. For example, Sucan and Kavraki proposed a data structure called a Task Motion

Multigraph (TMM) to encode the task and motion dependenciesbetween the tasks in [29].
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This approach exploits a property of mobile manipulator robots. Namely that there are

multiple abstract motions that can accomplish the same task. For example, to pick up an

object, the robot can move its base, left arm, right arm, or any combination of them to

accomplish this task. To find the order of motions needed to accomplish the sequence of

tasks, the authors used Dijkstra’s algorithm to determine the least cost sequence of actions

to perform. The authors then extended this approach to use Markov Decision Processes

(MDPs) in [30]. These works provide a good system for the Mobile Manipulator problem,

however, our approach is an approach for mobile robots, where the only mechanism to

complete a task is to navigate to it. Due to this difference, adirect mapping between

the TMM and this problem domain does not provide the same optimizations as the TMM

takes advantage of. For a mobile robot, the ways to accomplish each task are to large to

enumerate in the TMM, and instead mapping the goal of reaching all tasks, causes the

graph to grow very large and become impractical. In our approach, we keep the same idea

of using a task graph to maintain the relationships between tasks, but instead of encoding

all the ways to accomplish a task, we instead find the optimal path between two tasks given

the current knowledge of the environment, and select the task to go to that minimizes our

expected cost overall.

2.2 Path planning

2.2.1 Single robot path planning

Single robot motion planning is an important component of task and motion planning, as

each robot requires a path to follow to reach their specific goal location. A simple path

planner is called the Bug Algorithm [23]. In this algorithm, the robot travels towards the

goal until it finds an obstacle, then similar to how a bug navigates, follows the boundary of

the obstacle until it can find a way towards the goal. However,this approach does not take

into account the location or geometry of obstacles until therobot encounters it. Another



9

method is potential fields [15] where two functions are defined that provide attraction

towards the goal and repulsion away from obstacles. However, concave obstacles can cause

a problem with local minima, where the robot gets stuck in a location that any motion from

that point causes the robot to move to a worse location beforeit can make progress towards

the goal.

In visibility graph roadmaps [21], the corners of the obstacles are connected by straight

lines if that line does not intersect with another obstacle,the robot then navigates on this

graph between the closest point to the robot, and leaves the roadmap at the closest point to

the goal. Another roadmap based path planner is Silhoutte roadmap [3], where the robot

plans paths using straight lines to the edges of the obstacles that the robot can see while

moving in the direction of the goal. In Voronoi roadmaps [1],the Generalized Voronoi

Diagram is created, which are the points that are equal distances from the closest two

obstacles.

Extending the idea of roadmaps, is Probabilistic Roadmap Planner (PRM) [14], where

random collision free configurations are sampled from the configuration space and a simple

path is planned between the samples, for example, by seeing if a collision free straight line

path between the samples is possible. Over time, this planner has been extended to handle

various special cases. For example, Missiuro and Roy in [24] proposed an extension to

PRM that accounts for uncertainty in the location of obstacles in the environment. This

was done by having the weight of each edge in the roadmap be a function of not only

euclidean distance, but also the probability of colliding with an obstacle in the environment.

The obstacles are defined by a sequence of vertices with associated Gaussian distributions

that represent the positions where the obstacle vertex really could be. In our work, we

have used this planner as the underlying path planner, because of it’s ability to account

for the noise inherent in the robot’s localization, obstacle detection, and representation of

obstacles in memory. This helps ensure that the robot does not collide with any obstacles

in the environment.
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In the same vein as PRM, are Rapidly-Exploring Random Trees (RRT)[13, 18, 17, 22,

9]. Like PRM, RRTs build a roadmap by sampling collision free configurations of the robot

from the configuration space, and connects samples with collision free straight line paths.

However, instead of building a graph that can be used for multiple path planning queries,

RRT builds a single tree that is useful only for finding a path from the start to goal location.

This helps speed up planning in cases where only one path is needed. However, in our

work, we need to be able to generate multiple paths, therefore, PRM was a better choice.

There have also been methods proposed that use Markov Decision Processes (MDP)

[26] to find paths in dynamic environments. One such planner was proposed by Loibl,

Meyer-Delius, and Pfaff in [20]. They proposed using an MDP where the states were a

tuple of the location in the environment, and the arrival time at that state. The actions are

moving to any adjacent state, with a probability of successfully moving between the states,

and a cost function based on the time needed to move between the states. We have modeled

our task planner on this idea. However, instead of planning in the configuration space, we

use the MDP to plan in the task space to help find an ordering over the tasks.

Another path planning method is D* [8, 19, 16], which focuseson decomposing the

environment into grid squares, where each grid square is a configuration of the robot, then

uses an informed search algorithm, with modifications to account for obstacles discovered

during runtime, to find a path from the start grid square to thegoal grid square.

2.2.2 Multi-robot path planning and collision avoidance

A common problem in multi-robot environments is handling potential collisions between

robots. Single robot path planners do not take into account the locations of other robots

in the environment or their paths through the environment. This leads to a high likelihood

of collisions between robots. To solve this problem, it is possible to plan in the joint

configuration space, accounting for every possible action of each robot in the environment.

However planning in the joint configuration space can becomeinfeasible as the number
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of robots increase. To handle this problem, Wagner and Chosetproposed a decoupled

planning system in [31], which allowed for planning in multi-robot systems, while avoiding

robot-robot collisions and without requiring a search of the entire joint configuration space.

They do this through use of an algorithm named M*, which is a modified A* search that

limits the number of states that are expanded at from each state of the search. They have

also proven that M* is both complete and optimal.

Another approach to handling multi-robot coordination wasproposed by Desaraju and

How in [6]. The proposed method is the Decentralized Multi-Agent Rapidly-exploring

Random Tree (DMA-RRT) technique. It is an approach to planningpaths for multiple

agents operating in the same environment, while still beingable to plan quickly. The

coordination strategy that they proposed was to have the robots plan their paths using the

paths of the other robots in the environment as obstacles to avoid. To resolve the problem of

what order the robots replan and update their paths, the robot that has the highest potential

gain from replanning is allowed to update its path.

Another approach to planning with multiple robots working in the environment was

proposed by Saha and Isto in [28]. They proposed a decoupled path planning method for

multi-robot environments. They propose an algorithm called MRP-IC which sequentially

creates a path for each robot in the environment. As the next robot’s path is generated,

the previous robot’s paths are treated as known mobile obstacles, which the planner then

avoids like stationary obstacles. The planner also adjuststhe speed of the previous robot’s

motion along their path to help find a collision free path.

Our approach to collision avoidance between robots differsfrom the previously

mentioned techniques, because instead of coordinating thethe interactions between the

robots at the time that the robot generates the path from its current location to the goal

location, we instead only perform the coordination when therobot’s are within a certain

distance of each other, where there is a high likelihood of collisions. At that point we use

the bully algorithm [10] to determine which robot is allowedto move out of the collision
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range first.

In [7], Dou, et. al, proposed a method for multi-robot path planning and collision

avoidance through an extension of artificial bee colony (ABC),which generates paths for

the robots through use of three phases for each robot. Scout robots which explore for better

food sources, worker robots which travel to the food sources, and onlooker robots waiting

for better sources of food to be found. Their algorithm, called improved artificial bee colony

(IABC), extends ABC to simplify the setting of parameters and improve its performance.

In our approach, the path planning between the robots does not have exploration phase that

ABC and IABC contain. Our approach also handles collisions dueto robots being near

each other by stopping one all but one robot from moving untilthe moving robot is free of

collisions.
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Chapter 3

Simultaneous Task and Motion Planning

Problem Formation

We consider a set of wheeled mobile robots,R, deployed withina bounded environment.

Robots are capable of localizing themselves within the environment and can also

communicate wirelessly with each other. The environment contains a set of tasks,T , which

correspond toa setof spatially distributed, distinct locations in the environment. Robots

have to visit the locations of tasks to perform operations required to complete the tasks.

Each task can require visits by one or more robots to get completed; the number of robots

required to complete a task is provideda priori to the robots. We consider the case where

task execution time is negligible, such that visiting the location of the task corresponds to

completing the task. We also consider tasks that are looselycoupled and all robots required

to complete a task do not necessarily need to visit the task’slocation at the same time.

Each robot is initially aware of the locations of the tasks, but does not know the exact

paths between the tasks1 nor the obstacles along those paths. The robots contain sensors

necessary to perceive the portion of the environment near tothe robot and determine where

obstacles are located.
1In the rest of this thesis, we have referred to task locationsas tasks for legibility.
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(a) Fully connected TRG (b) TRG where task 3 can only be done after
task 2

Figure 3.1: Example TRG

We first define theconceptof theavailability of a taskfor a robotto perform it. A task

is availablefor performing if it is a goodchoicefor therobot to perform that tasknext.A

taskcaneitherbeavailablefor performing, or not available.It is not possible for therobot

to directlyobservethelocation of otherrobots,thepathstheywill take,andwhattasksthey

planto accomplish,thismakesit difficult, if not impossiblefor therobotto directlyobserve

theavailability of a task;instead,we usea probability thatreflectsthecurrentbelief in the

taskbeing availablefor performing.Themaincauseof ataskbeing unavailableis thatother

robotshave,or will shortly,completethe taskbefore this robotcouldcompleteit. This is

relatedto thelengthof thepath,andtheuncertainty in thepathcostsdueto changesin the

pathsasstaticobstaclesaredetected,or mobile obstaclesmoveinto thepathof therobot.

We define an abstraction called a task reachability graph (TRG) to represent the tasks’

spatio-temporal distribution. The TRG is a graph where the vertices correspond to the

tasks that the robot needs to visit along with the robot’s current location. The TRG edges

correspond to the reachability between vertices such that there is an edge between two

vertices if it is possible to travel between their corresponding tasks. Each edge in the TRG

is weighted with a tuple of two values. The first value represents the the path cost or energy

expended by the robot to travel between tasks. Because the environment is unknown, the

edge weights in the TRG (path costs) are only approximate, andthey get updated as the
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robot discovers obstacles while traveling between tasks. To represent the uncertainty in

path costs and in the robots ability to choose the best task togo to, the second value is the

probability of the edge being available to complete. These values will also change as the

robot gathers more information about the environment. For example, Figure 3.1(a) shows a

TRG where all five tasks can be reached from one another. However, this does not strictly

need to be the case, as can be seen in Figure 3.1(b), where taskthree can only be completed

after task two has been completed, because that is the only edge that enters task three.

Dueto thedynamicnatureof theenvironment,it is importantto define theTRG to be

variableover time. Verticescanbe addedto the TRG dueto the discovery of othertasks

thatmustbecompletedby therobots.Likewise,verticescanalsoberemovedwhenthetask

no longerneedsto bedoneby thatrobot.As verticesareaddedor removed,edgeswill also

needto be addedor removedfrom the TRG. The initial estimatesof the pathlengthsare

likely to beinaccuratedueto the limited information that therobothasaboutthe location

andgeometry of obstaclesin theenvironment.As therobotmovesthroughtheenvironment

following the edgesin the TRG, it is likely to update its map of the environment and

becomemorecertain of the layout of the obstacles in the environment.Becauseof this,

thepathlengthbetweentaskscanchangeover time. Likewise,theavailability of anedge

canchangeastherobotgetsmoreinformation abouttheenvironment.

Formally, letTRG = (V,E,C, P, t) denote a fully connected graph whereV (t) =

{v
(t)
i ∪ vcurr} is the vertex set andvcurr is the robot’s current location,E(t) = {e

(t)
ij : e

(t)
ij =

(v
(t)
i , v

(t)
j )} is the edge set,C(t) = {c

(t)
ij } is the cost expended by a robot to traverse the

path underlying edgee(t)ij , P (t) = {p
(t)
ij } is the probability corresponding to the availability

of edgee(t)ij andt is a time parameter. Letω = (v1, v2, ...) denote a single possible path

through the TRG, and letΩ be the set of all possible pathsω through the TRG. We can then

define the scheduleS : V → Ω as a function that returns an ordering over the set of tasks

starting at a given node in the TRG. Each robot maintains its own copy of the TRG and

plans its path using its local TRG. The problem facing each robot is specified by the Task
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Ordering under Path Uncertainty (TOP-U) problem given below.

TOP-U Problem. Given TRG = (V,E,C, P, t) representing the set of tasks, task

reachabilities and inter-task costs at timet, determine a scheduleS∗(V )(t) that induces an

ordering(v1, v2, v3...) over the tasks, given by:

S∗(V )(t) = argmin
ω∈Ω

∑

(v
(t)
i ,v

(t)
i+1)∈ω

(1− p
(t)
i,i+1)c

(t)
i,i+1 (3.1)

S∗(V )(t) represents the path through the TRG with the best cost weighted with

availability. Because maximum availability of an edge is identical to its minimum

unavailability, we have considered the latter to solve forS∗(V )(t) as a minimization

problem. An instance of the TOP-U problem corresponds to thewell-known traveling

salesman problem (TSP) [5]. However, finding an optimal solution to conventional TSP a

known NP-hard problem [12]; also, an optimal solution to thecorresponding TSP may not

guarantee an optimal path for the robot as edge availabilities and costs (pij-s andcij-s) can

change dynamically while the robot is traversing an edge.

In this thesis, we only consider cases where the cost to navigate between tasks is

symmetric and does not depend on which direction between tasks the robot has to navigate.

This allows us to consider cases where the TRG is undirected. We also only consider a

connected environment where every task is reachable from all other tasks, and

there are no temporal dependencies between tasks, meaning that the TRG is fully

connected. However, due to the dynamic nature of the TRG, the robots require methods to

determine estimates of edge costs and availabilities as therobot gathers more information

about the reachability between tasks as it explores the environment. Then the robot requires

a method to utilise this information to determine the best task to navigate towards. To do

this, we first propose a method to update the edge costs and probabilities based on sensor

data from the robot. Then we use the most recent estimates forthe cost and availabilities

within an MDP-based framework to determine what the next task the robot should travel to
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will be. In the rest of this thesis, for legibility, we have omitted the time notation from the

TRG parameters, assuming it to be understood from context.
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Chapter 4

Techniques for Solving Simultaneous

Task and Motion Planning Problem

In the previouschapter, we proposedthe TaskReachability Graph(TRG) asa meansof

encoding thedataaboutthedistribution of tasksandtheir availability. In this chapter, we

proposea technique to usethe TRG in finding a task plan that minimizesthe expected

cost of the robot to travel betweenall tasks.Figure 4.1showsthe general schematicof

our proposedtechnique.Our techniqueis composedof two layers,the top layer is a task

planner,which generatesthe order in which the tasksshouldbe performedby the robot.

This layer communicateswith the bottom layer, which is a motion planner. The motion

planner generatespathsfor the robot to get betweenthe tasksand controls the robot’s

motion in theenvironment.

Task Planning

Motion 

Planning

Figure 4.1: Structure of proposed technique
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Each of the two layers sharesinformation that allows the robot to always make

movementstowardsthe taskthat bestminimizesthe expectedcost to completeall tasks.

Thetaskplannershareswith themotion plannerthetaskto movetowards,andthesetof all

tasks,which allows themotion planner to monitor thepathsbetweenthe tasks.In return,

themotion plannershareswith thetaskplannerupdatesto thepathlengthssothatthetask

plannercanalwaysevaluatethebesttaskto work towardscompleting.

4.1 Updating Edge Costs

The motion planning layer handles the updating of the path cost portion of the edge

weightsin the TRG. The motion planner uses a state-of-the-art probabilistic roadmap

planner (PRM) that can handle uncertainty in paths [24].Obstaclesareprovided to the

plannerin theform of asequenceof pointsthatcorrespondto anestimateof theobstacles’

bounding polygon’svertices.This sequenceof pointsdefineswhat theauthorsrefer to as

the“nominal” boundsof anobstacle.Eachvertex is thenassignedaprobability distribution

over which the obstacle’s vertex may actually lie in the environment.The planner builds

a roadmapby first generating a setof sampled pointsfrom the configuration space.Any

samplesthathavea50% or greaterprobability of colliding with anobstacle arediscarded;

this is equivalent to any point that lies within the “nominal” boundsof the obstacle. The

remaining samplesarekeptbasedontheprobability thattheyarelocatedinsideanobstacle,

with a higherprobability of collisionresulting in a lower chancethattheplannerwill keep

thatsample.Thenextstepis to build a roadmapbasedon theretainedsampledpoints.For

eachvertex in theroadmap,thenearestk samples,lessthansomedistanced areselected,

thentheplannerattemptsto connectthe two pointswith a straightline path.This pathis

rejectedif it is not possible to connectthe two pointswithout intersecting the “nominal”

boundsof anobstacle.

For eachedgeconnecting two points(ρ1 andρ2) in the roadmap,a probability pcollρ1,ρ2
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is assignedthat representsthe likelihood of colliding with an obstacle while navigating

thatedge.This probability is basedon thedistanceto obstacles,andthecertainty that the

obstacle location is known.Basedon this, thecostof a single edgein theroadmapcanbe

calculatedby:

costρ1, ρ2 = pcollρ1,ρ2
penalty + (1− pcollρ1,ρ2

)dist(ρ1, ρ2)

wherepenalty is anarbitrary largenumber,usedto discouragepathsthatarelikely to

collide with anobstacleanddist(ρ1, ρ2) is theEuclideandistancebetweenρ1 andρ2.

A path ρij in the roadmapbetween two points ρi and ρj is a sequenceof points

ρij = (ρ
(0)
i , ρ

(1)
a , ..., ρ

(n)
j ) wherethereis anedgein theroadmapbetweenanytwo adjacent

pointsin thesequence.We denotethesetof all possible pathsin theroadmapasΦ. Given

this,wecandefine thebestpathbetweenρi andρj as:

ρij = argmin
ρij∈Φ

∑

ρ(a)∈ρij

costρ(a),ρ(a+1) (4.1)

which determinesthe minimum costpath in the roadmapbetweenpointsρi andρj

[24].

To find thepathcorresponding to edgeeij in theTRG,weaddthepointscorresponding

to verticesvi andvj into theroadmapaspointsρi andρj respectively. Thepathreturnedby

Equation 4.1is savedfor futureuseandusedto calculate thecostof edgeeij. Thecostis

givenby:

cij =
∑

ρ(a)∈ρij

dist(ρa, ρa+1) (4.2)
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(a) Evidential model.
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(b) Temporal model

Figure 4.2: Bayesian Network used in the HMM for determining the suitability of path
length to a task.

4.2 Updating Edge Availabilities

Using theupdatededgecostsfrom themotion planning layer,thetaskplanning layercan

calculateandupdatetheprobability thatanedgein theTRG is available.It is not possible

to directly observetheavailability of anedge; however,it is possible to observethepath

lengthsof eachedgein theTRG andcompareit to otheredgeswhich sharea node.There

aremultiple thingswhichcaneffect thepathlength,whichare:

• Mobile obstacles(MO)

• Staticobstacles(SO)

• Tasknotavailable(TNA)

A mobile obstacle can either be along the path,or it can not be, however this fact

cannot be directly observed,this meansthat we canbestrepresenta mobile obstacle as

a Booleanrandom variable.Also a mobile obstacle canbe thereat one time andnot at

the next time step.A similar argument can be madefor both static obstacles and task

not available.For this reason,we havemodeledeachof theseastime dependentBoolean

random variables.Thesevariablesall effect the path length,which we havedecided to
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discretizeinto a Booleanrandom variable.A path is consideredtoo long if its length is

abovesomethreshold, andnot too long if it is below thesamethreshold.

To reflectthedependenciesbetweentheseevents,andtheirinfluenceonthepathlength,

we havedefined a Temporal BayesianNetwork (TBN) [26] for eachedgein the TRG,

shownin Figure 4.2.Let TBNij denote the Temporal BayesianNetwork corresponding

to edge eij ∈ E. A TBN is a network of random variables which effect each other,

an edge between two nodesrepresentsthat one node has an effect on the other. In

Figure 4.2(a),mobile obstacle, static obstacle, and task not available,all effect the path

lengthbecoming too long, howevertheeffect of thesestatesarenot deterministic, but are

insteadprobabilistic. In otherwords,thereis aprobability of thepathlengthbeing too long

giventhestateof theworld, e.g.p(PLL|MO,SO, TNA) denotestheprobability that the

path length is too long given that thereareno mobile obstacles,no staticobstacles,but

thetaskis unavailable.Giventheprobabilitiesassociatedwith eachedgein theTBN, it is

possible to calculate theprobability of TNA giventhesequenceof observationsseenthus

far.

To determine the effectson PLL given the stateof the world, we first assumedthat

the inhibition probabilities of eachstateaffecting PLL is independent. In other words,

what ever prevents a mobile obstacle from causing the path length to be too long is

independentof whateverpreventsthetasknotbeing availablefrom causing thepathlength

to becometoo long. With this assumption we canusethe Noisy-OR relationship [26] to

build the probability tablesshownin Figure 4.2(a).The threeprobabilities shownin red,

green,and blue in Figure 4.2(a)are the inhibition probabilities, which were determined

throughexperienceof navigating robotsthroughmobile andstaticobstacles in different

environments.Fromthesethreeprobabilitiesit is possible to calculatetherestof thetable.

Becausemobile obstacles,staticobstacles,and the availability of tasksevolveover

time,asecondsetof probabilitiesarerequired,thatcapturethischange.Theseprobabilities

areshownin Figure 4.2(b)andweredeterminedthroughexperiencewith roboticsystems.
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Eachvariable is only dependent on its previous state,but not on any stateprevious to

that. For a mobile obstacle, its position in the next time stepcan be anywherewithin

a circle whosecenter is at the mobile obstacle’s current location, with radius related to

the speedit travels at and the amountof time between time steps.The detection of a

staticobstacle canchangeover time asthe robot is able to get a better view of the area

that the obstacle may be locatedat. Also a taskthat wasunavailablefor completion may

become available for completion due to the changing perception of the environment.

For example, due to the independenceof the inhibition probabilities, we can write:

P (PLL|MO,SO, TNA) = P (PLL|MO,SO, TNA) + P (PLL|MO,SO, TNA) and

in asimilar manner,therestof thetablecanbecalculated.

To determinethevalueof theobservationPLLij, thepathlengthof thecurrentedgeeij

is comparedto a threshold PLLthr. Dueto thewide array of environmentsthat therobots

couldbedeployedin, PLLthr cannot besetto a single valuefor all environments.Also,

dueto the variability insidethe environment,a single threshold for the full environment

may not work well either.However,it canbe setin relation to the otherinformation that

therobothasavailable.To handle this, we define a separatethreshold, PLLthrij , for each

edgeeij. This threshold is definedastheminimumcostedgethatsharesthesamestarting

vertex.This is shownbelow in Equation 4.3below.

PLLthrij = min({cik : ∀k ∈ V }) (4.3)

To then determine the value of the observationPLLij, the following equation is used:

PLLij =















FALSE if cij ≤ ΓPLLthrij

TRUE otherwise

(4.4)

whereΓ is a user defined constant that describes how much largercij must be before

we consider it to be too large.
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In other words, the threshold used to determine the value ofPLLij is based on the

shortest path currently known leaving the vertex in question. The user-defined parameter

Γ is used to determine how much longer than the current shortest path we allow before

we decide that the path length is long enough that the task should no longer be considered

available for immediate completion.Γ helps to prevent the robot from always selecting the

closest task to go to, like a greedy approach would.

The node in the TBN that correspondsto the edge availability is TNA, which

representstheprobability that theedgeis not available.To determine this probability, the

robotgeneratesobservationsof eachedgeeij in theenvironment,denotedPLL
(1...t)
ij . These

observations are thenusedin the TBN to determine the probability of TNAij given the

current observations.Statedmathematically, pij = P (TNAij|PLL
(1...t)
ij ). The equation is

solvedusing theForward-Backwardalgorithm [26].

Directly solving a TBN can be a difficult task, to reducethis difficulty, we usean

evaluation methodcalled a Hidden Markov Model (HMM) [26]. The HMM improves

computation time by modeling theTBN asa first orderMarkov model,wherethestatesof

theMarkov modelarecombination of thestatevariables(MO, SO,TNA) of theTBN. As

timeprogresses,theworld transitionsbetweenthesesstatesbasedonatransitionprobability

matrix. When at eachstate,the world probabilistically emits an observation with is the

combination of theevidencevariables(PLL) of theTBN.

4.3 TOP-U Solution using Markov Decision Process

Theenvironmentthat therobot is working in changesstochastically, andtherobotshave

to makedecisionsinside this environment.Due to theseproperties, a Markov Decision

Process(MDP) [26] is a goodfit. In general, a MDP consistsof a sequenceof potential

statesthat thedecisionmaker(in our casea robot),canbe in. At eachstate,therobothas

a setof decisionsthat it canmake.Eachpotential decision will changethe statethat the
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robot is in, however,theexactchangethat is madeis not deterministic. This meansthat if

the robot is in a stateA andperformsanaction b, it is not guaranteedto alwaysarrive in

stateB, it mayinstead,sometimes,arrive in someotherstateC. Theexactmethodthatthe

stateschangeis describedby a setof probabilities thatgivesthelikely hoodof reaching a

specified stategiven that robot startsin onestateandperforms an action. Eachstatealso

hasanassociatedrewardthat is givento therobotfor reaching thatstate.Therobot’sgoal

is to maximizeits rewardby performing actionsthatmaximizetheexpectedreward.

More formally, anMDP is astocastically evolving processdefinedby four parameters

< S,A, T,R >. WhereS is the setof statesthat the agent(robot) making decisionscan

be in. A is the setof actions, or decisions,that the robot canmakeat eachstate.Based

on the action performed, the robot will transition from it’s current stateto a new state,

thetransition of therobot is controlled by thetransition function T : S × A× S → [0, 1],

whichgivestheprobability of transitioning from states to astates′ by performing action a.

Whentherobotreachesastate,it is providedarewardgivenbyR : S → R. Basedonthese

parameters,a policy π∗ : S → A, is found which prescribesthe bestaction to perform at

eachstatewhichmaximizestheexpectedcumulative rewardto therobot.

There are many similarities between the general MDP and the problem we are

investigating. As MDPscanbeusedfor pathplanning, we candraw theparallel between

planning a path in the configuration spaceandplanning a path in the taskspace.To do

this,we convert ourTRG into anMDP, wheretheMDP’s statearetheverticesof theTRG

graph.At eachvertex, therobothasto makea decisionto follow anyof theedgesleaving

thatvertex. Theprobability of transitioning betweenstatesis analogousto theprobability

thatanedgeis available,wheretherobotis lesslikely to successfully navigatebetweenthe

two verticesin theTRG if it is very unlikely that the taskis available.However,because

theedgeavailabilitiesarecoming from separateTBNs, the raw edgeavailabilitiesdo not

sumto one,but sincetherobotmusttransition from thestateto anotherstatein theTRG,

all probabilities haveto sumto one.To solvethis, the edgeavailabilities arenormalized
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using theequation, pij =
p(TNAij |PLL(1...t))

∑
k p(TNAik|PLL(1...t))

. In our TRG,we do not havetheconceptof

reward,but we do havea similar concept,in the edgecost.Becausemaximizing reward

andminimizing costaresimilar, wehavedecidedto solvetheMDP asacostminimization

problem.Whenwefind apolicy in theMDP, wearenowfinding thebesttaskto go to after

completing ourcurrenttaskthatwill minimizetheexpectedcostto therobot.

4.4 Robot Navigation and Task Selection

selectTask(TRG =< V,E, P, C >)1

Input : TRG: task reachability graph
Initialize MDP with current TRG information2

Determine paths in robots configuration space using PRM planner between all TRG3

edgeseij = (vi, vj) ∈ E

while truedo4

v′ ← π∗(vcurr)5

path← PRM path betweenvcurr andv′6

while v′ not reacheddo7

vcurr ← current position of robot8

Broadcastvcurr to other robots9

coordinatePath(v′) //avoid collisions with nearby robots, if any (Alg. 3)10

(v′, path)← updateTRG(TRG, v′)11

if v′ = null then12

return13

end14

Move along current segment ofpath15

end16

Removev′ from V //reachedv′17

end18

Algorithm 1 : Algorithm to select a task in the TRG using an MDP-based policy.

The technique used by a robot for selecting tasks to visit using our TRG and MDP-

based framework is shown in Algorithm 1. The MDP is initialized with the parameters

from the TRG and the navigation paths in the environment between every pair of TRG

vertices are calculated using the PRM planner (line2 − 3). While the robot is aware of

tasks that it needs to visit, it calculates the next task (TRG vertex),v′, to visit using the

MDP policy and gets the PRM path tov′ (line 5 − 6). Because each robot calculates its
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updateTRG(TRG =< V,E, P, C >, v′)1

Input : TRG: task reachability graph;v′: destination TRG vertex
Output : v: destination TRG vertex,path: path to destination TRG vertex
if any task got completed by other robots (received via communication) OR (new2

obstacle in collision with robot)then
updateV3

path← replan path fromvcurr to v′ using PRM-planner4

∀v ∈ V , updatecvcurr,v from path planner data5

∀v ∈ V , Updatepvcurr,v from HMM using sensor data6

Update MDP, TRG with new values ofV andpvcurr,v andcvcurr,v ∀v ∈ V7

vnew ← π∗(vcurr) //calculate policy given by updated MDP (task replan)8

if vnew = {∅} then9

return null; // No more tasks10

end11

if vnew 6= v′ then12

v′ ← vnew; // Switch tasks13

path← PRM path betweenvcurr andv′14

end15

end16

returnv′, path17

Algorithm 2 : Algorithm to update TRG and path when TRG vertices are removed (task
completer) or a new obstacle is detected that triggers a path re-calculation.

navigation plan independently in its own local configuration space, multiple robots might

calculate paths that intersect with each other and might lead to a collision, especially when

the robots are in close proximity. To address this problem, each robot broadcasts its current

location to other robots and coordinates its path to avoid collisions with nearby robots

using thecoordinatePathalgorithm (Algorithm 3) (lines9 − 10). The robot then checks

to see if the TRG needs to be updated using Algorithm 2 (line11). If the updated TRG

returns a null destination vertex indicating that there areno more tasks for the robot to

visit (all other tasks have been completed by other robots),the robot stops navigation (lines

12− 14). Otherwise, it moves towards its current destination TRG vertexv′ along the next

path segment of the PRM planner prescribed navigation path. When the robot reachesv′, it

removesv′ and its associated edges from the TRG (line17) and proceeds to select the next

TRG vertex to visit.

The algorithm used to update the TRG using the HMM updates and resulting MDP
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policy updates is shown in Algorithm 2. If a robot receives communication from another

robot informing that it has completed a task corresponding to a TRG vertex, the vertex is

removed from the robot’s TRG. When a robot’s TRG vertex set changes in this manner or

when the robot perceives a new obstacle on its sensor that is in collision with its navigation

path, it updates the TRG vertex set, and calculates a new navigation path to its destination

vertexv′ (lines2−4). The new navigation path from the PRM planner is used to update the

TRG edge costs, while the HMM updates the TRG edge availabilities (line5 − 6). These

updated values are incorporated into the MDP representing the TRG and the MDP’s policy

is recalculated to yield the new destination vertex (line7 − 8). If the recalculated policy

prescribes a new target vertex,vnew 6= v′, due to increased path costs of reachingv′, then

the robot performs a task switch and changes its destinationfrom v′ to vnew (line 12− 14).

Note that due to the unknown nature of the obstacles between tasks, a robot might receive

communication that another robot completed the task that itwas heading towards. In the

extreme case, all tasks in a robot’s TRG might be completed by other robots before its

reaches those tasks (lines9− 11) (as in Figure 1.1(b) for robot2); the updateTRG method

returns a null vertex for this case.

4.5 Coordinating paths between robots to avoid collisions

If robots determine their paths individually using the PRM-based planner, it could lead to

robot collisions when the planned paths of two or more robotsintersect with each other. To

avoid this scenario, we have used a collision avoidance algorithm shown in Algorithm 3.

Each robot uses the locations broadcast by other robots to check if there are other robots

within a radius ofrcoll, called the collision circle, of itself (lines2). When a set of robots

are within the collision circle of each other, all the robotsstop and the robots exchange

their identifiers, representing their priorities, with each other. A leader election algorithm

called the bully algorithm [10] is then used to select the robot with the highest priority as
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coordinatePath1

Input : v′: destination TRG vertex
while another robot withinrcoll do2

stop3

send priority to all other robots withinrcoll4

//priority is either robot id or∞5

calculate winner using bully algorithm [10]6

winner robot holds winner token7

if I am winnerthen8

path← replan path fromvcurr to v′ using PRM planner9

//other robots considered as static obstacles in PRM10

if path tov′ not found (another robot from collision circle stopped atv′) then11

set prio←∞12

else13

(v′, path)← updateTRG(TRG, v′) if v′ = null then14

return15

end16

Move along current segment ofpath until outside collision circle17

end18

release winner token19

end20

end21

else22

while winner token not releaseddo23

stop24

end25

end26

end27

Algorithm 3 : Algorithm to avoid collisions between robots in close proximity of each other.
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Figure 4.3: Example collision avoidance

the winner. The winner robot holds the winner token, which gives it the right to move (lines

3− 7). All other robots in the collision circle, which do not holdthe winner token, remain

stationary (line24 − 26). The winner robot uses the PRM planner in conjunction with

updating the TRG using Algorithm 2 to find a path to its destination vertexv′. The path

returned by the PRM planner is executed and the moving robot releases the winner token

once it is outside its collision circle (lines9, 14 − 22). If the PRM planner is not able to

find a path to the goal, e.g., if the goal is unreachable because there is another robot within

the collision circle that is stopped right at the goal location, the moving robot relinquishes

its right to move by setting its priority to a high value (∞) (lines11 − 12). Another robot

from within the set of stopped robots gets a chance to run the bully algorithm and attempts

to move. This protocol ensures that at least one robot exits the collision circle with each

execution of the bully algorithm, and finally there is only one robot left inside the collision

circle. This robot then reverts to using its PRM-based planner to plan its path as part of

Algorithm 1

To help further explain how the collision avoidanceworks,we will usean example,

shownin Figure 4.3.Considerthecaseshownin Figure 4.3(a),wherethegreensquaresare

robots,the numbersrepresentthe robot’s id number,andthe red circlesareeachrobot’s

collisioncircle of radiusrcoll. As canbeseen,we havethreerobotsthatareall within each

other’scollision circles,andassuchthe robot’s havestoppedandsharedtheir robot id’s

with eachother.Robot1 is the robot with the lowest robot id, and thus it is allowed to
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movefirst. It takesa reading of the environmentandreplansit’s pathsassuming that the

robotsinfront of it arestaticobstacles.However,it’s goal, asshownby the arrow andx

in Figure 4.3(b),is thesamelocation whererobot3 is located.This causesthepathlength

returnedfrom thepathplannerto bereturnedasinfinity, becausea pathdoesnot exist. As

such,robot1 notifiestheotherrobot’sthatit is unavailableto moveby setting it’s temporary

priority to inf, which handsoverthewinnerstokento theotherrobotsto determinewhich

is thewinner.Robot2 is therobotwith thenext lowestid, ascanbeseenin Figure 4.3(c),

it’s desiredpathleadsawayfrom therobotsin collision.Thusafter replaning, it is ableto

navigateawayfrom theotherrobotsandexit theotherrobot’scollisioncircles.Oncerobot

2 is outsideof the last robot’s collision circle, it leavesthe collision avoidancealgorithm

andresumesoperationslike normal.

Af ter robot2 hasleft robot1 androbot3’s collisioncircles,theyre-evaluatethebully

algorithm anddeterminethatrobot3 is therobotwith thelowestid; it’s desiredpathcanbe

seenin Figure 4.3(d).As it canplanaroundrobot1, it movesandleavesrobot1’s collision

circle,allowing all robotsto resumefollowing their original plans.

4.6 Example

To help further explain how our proposed solution works, we look at a simple example with

two robots, named R1 and R2, and five tasks; each task requires only one robot to visit it

to consider it completed. The starting locations of robots R1and R2, location of tasks, and

location of all obstacles in the environment is shown in Figure 4.4(a). As can be seen, there

is a wall separating the two robots with a small doorway in thecenter. When the robots

start, they are unaware of the location of other robots or obstacles in the environment,

but are aware of the boundary of the environment. At the beginning of execution, the

information that robot R1 knows about the environment is shown in Figure 4.4(b). At

this point the robots generate their TRGs. Robot R1’s TRG is shownin Figure 4.5(a).
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Table 4.1: Table of PLL observations for each edge of TRG

Once the TRG has been generated, a path is planned for each edgein the TRG. Since the

environment is empty, the planned path will closely follow the TRG edges. Once the paths

are planned, each edge of the TRG is updated with the length of the resulting paths. Once

the path lengths are found, it is possible to construct the observations for each of the edges

based on Equation 4.4. These observations are used in the HMMshown in Figure 4.2 to

generate a probability of availability for each TRG edge. Thepath lengths, observations,

and resulting probabilities for the TRG constructed by robotR1 is shown in Table 4.1. As

can be seen, the cases where the path length was more then three times that of the shortest

path connected to that node,PLL was observed to be FALSE. For example, the shortest

path leavingv1 is to v2 with a path length of2.342, thus that is the value thatPLLthr12

takes. The path betweenv1 andv4 is 7.073 which is greater then3 ∗ 2.342 = 7.026, so the

observation forPLL is set to TRUE. As can also be seen, the observation of TRUE causes

the probability returned from the HMM to drop from0.530 to 0.081 reflecting the change

in belief of those paths being the best and likely candidatesto be available for execution.

Once the TRG is completed, it is converted to an MDP, and a policy is found, from this



33

3
4

2

51

R2

R1

(a) Environment with tasks and robots
labeled

R1

3
4

2

51

(b) Initial environment as seen by the lower
robot

Figure 4.4: Example part 1, tasks are shown by red circles

the best task to go to is selected for each robot. Figure 4.5(b) shows the paths that the two

robots will take.

Figure 4.6(a) shows the resulting TRG once both robots have completed their first task.

As can be seen, the robots have communicated with each other,as the lower robot also

knows that the upper robot has completed its task. At this time, the paths for each edge in

the TRG is recomputed to account for any detected obstacles, there are none at this time

and the edge weights of the TRG are updated. Figure 4.6(b), shows the paths that the robots

will take to their second tasks. In this case, the robot R1 reaches it’s task before robot R2

does, this causes the task to be removed from robot R2’s TRG. Robot R2 then replans due

to the change in its TRG, it selects the same task because the removal of the task robot R1

completed did not affect robot R2’s task. Robot R1 then replans,to select it’s new task, at

this time it can see a portion of the wall that divides the two halves of the environment. So,

the path planner plans a path around the obstacle, and the MDPselects the path and TRG

edge shown in Figure 4.7(a).

As the robot R1 is following the path, the upper robot completes its task, causing the

lower robot to have it’s path execution interrupted. This triggers a replan in both robots,
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where they both select the remaining task to complete, as seen in Figure 4.7(b).

As both robots navigate to the final task, their paths take them close together to the

point where they enter each other’s collision circles, as shown in Figure 4.7(c). At this

time, the robots perform the collision avoidance algorithmwhich allows one of the two

robots to resume navigation towards the goal, once they are outside each other’s collision

circles, both resume navigation towards the task, until oneof the robots reaches it, at which

time both robots will terminate their executionof Algorithm 1.
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Chapter 5

Experimental Results

To verify our proposed approach, we performed two groups of experiments, the first was

a set of simulations to determine the scalability and performance of the algorithm under

different algorithm parameters, different numbers of robots, tasks and obstacles as well

as different environment settings. The second set was usinga set of hardware Coroware

Corobot robots to test how well the approach performs in a realworld setting. The

following two sections describe in detail how the experiments were constructed, performed,

and summarize the main experimental results.

5.1 Simulated Experiments

5.1.1 Setup

The simulated experiments were conducted using a simulatedCoroware Corobot robot

using the Webots robotics simulator. Webots is a commercialrobotics simulator that allows

for modeling robots, their sensors, and the environment they are in. It also provides a three

dimensional view of the system as the experiments run. The simulator was run on a Intel

Core 8-core i7 CPU running at 3.2 GHz machine running Ubuntu 12.04. The robot is

equipped with:
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• GPS

• Compass

• Laser distance sensor

• Wireless communications

The GPS and compass sensors together allows the robot to knowits current location and

orientation inside the environment. The laser distance sensor provides the robot with

distance information to obstacles located in it’s field of view,270◦ centered in front of the

robot. This information is used to plan around obstacles in the environment. And finally,

the wireless communications allows the robots to exchange information with other robots

in the environment.

The simulated robot can be seen in Figure 5.2(a). The environment was10×10 m2 with

obstacles placed at strategic locations in the environment. The obstacles were structured

in such a way that in the single robot case, the robot would have to switch tasks50% of

the time if it was using a greedy closest-task-first task allocation method. The environment

layouts used can be seen in Figures 5.1(a), 5.1(b), and 5.1(c). We setup the PRM planner

to perform one sample for every250cm2, with the penalty from Equation 4.1penalty =

1000. It was also setup to connect the nearest ten neighbors. We also setΓ = 1000 in

Equation 4.4.

The approach was compared to a greedy closest-task-first algorithm [34] modified to

use the same PRM based path planner and coordination technique. These modifications

were made to allow for a more direct comparison of the task allocation approaches without

influences from the coordination or underlying path planner. Each robot selects the task that

has the least cost on its TRG from its current location, without modeling uncertainties in

the inter-task paths or updating TRG edge availabilities. Ateach time step, the greedy

algorithm checks if its current location is still closest tothe task it has selected, if it

determines that the straight line distance between it’s current location and another task
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(a) Five task environment (b) Ten task environment (c) Fifteen task environment

Figure 5.1: Simulation setup

is smaller then the straight line distance from the robot’s current location to another task, it

will switch and go to the closer task.

To test how the approach responds to a variety of environments we tested with number

of robots|R| = {1, 3, 8}, number of tasks|T | = {5, 10, 15}, and number of visits that each

task requiresV is = {1, 2, 3}. We also tested the effects of the user defined parameter

Γ between 1.5 and 6 in steps of 0.5, and between 6 and 10 in steps of 1. To enable

comparisons between each environment, we define a parameterL, called the task load.

The task load is defined as:

L =
T ∗ V is

R

Intuitively, the task load is a parameter that represents how much work the average

robot needs to do. For example, if there are five tasks and five robots, and each task needs

to be visited only once, then on average, each robot will visit only one task, or we can say

that the setting of5 tasks,5 robots, and1 visit has a load,L = 1.

From the experiments, we collected the following data:

• Distance traveled

• Number of replans resulting in a switch of tasks

• Number of replans not resulting in a switch of tasks
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• Time taken to plan the paths

• Time taken to navigate selected paths

Each metric reveals a different aspect of the performance ofour proposed approach.

Distance traveled and navigation time are both common metrics that are used for

optimization. Distance traveled is a good analog for energyused because the most energy

intensive portion of robotics is normally moving the wheels. The time taken to navigate

also provides an indication of how much energy the approach requires, but, unlike distance

traveled, the time taken to navigate also gives us a measure of how much time was taken

stopped in the collision circles of higher priority robots (Algorithm 3). The number of

replans that result in a switching of tasks tells us how oftenthe robot was going to what

it considered to be the wrong task when one of the updateTRG conditions were triggered

(Algorithm 2 line 2), while similarly, the number of replansthat do not result in a switching

of tasks tells us how often the same conditions were met but the robot was still going to the

best task. This corresponds to cases where the robot found anobstacle along the path, but

the obstacle was not large enough or in the correct position to make going to the previous

task no longer the best task to go to. The time taken to plan paths provides information

about how much of the total time was taken to find the paths between tasks and to select

the best task to navigate towards.

5.1.2 Results

Figure 5.3(a) shows the number of replans made by each robot,resulting in task switches

for the two algorithms. We observe that, on average, the TRG-based approach results

in 61% less task switching than the greedy approach. Likewise, Figure 5.3(b) shows the

number of replans made by each robot that did not result in a task switch. We can see that

the TRG-based approach also results in40% less replanning then the greedy approach. The

reduced planning and task switching by the TRG-based algorithm can be attributed to its
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(a) Simulated Corobot robot in Webots (b) Physical corobot robot

Figure 5.2: Robots used

ability to reason more efficiently about task availabilities using its costs and beliefs about

paths in the MDP based approach, along with real-time sensordata incorporated into its

decisions using the HMM. In contrast, the greedy approach uses only Euclidean distances

to select tasks and consequently performs poorly.

In Figure 5.3(c), we show the average time taken to plan the paths for both approaches.

Figure 5.3(d) shows the time taken in locomotion, which includes time taken to handle

collisions using Algorithm 3. The TRG-based approach takes much less time for both

planning and navigation compared to the greedy approach. Inthis case, the TRG-based

approach requires60% less planning time, and,58% lower locomotion and coordination

times than the greedy approach. This is because the TRG-basedapproach accounts for both

the known obstacles between tasks and the likelihood that the task will become unavailable.

The greedy approach behaves myopically and selects the closest task to visit, which could

be on the other side of a large obstacle and require considerable planning and locomotion

times to reach. In contrast, the TRG-based approach uses the robots perception of the

environment to weight the path costs to tasks with the corresponding path belief to reduce

the overall path costs. Note that when the number of tasks is small, or the average task load

per robot is close to 1, both algorithms have comparable performance for all three metrics

as each robot has to visit only one task and there is no task ordering required.
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(e) Average distance traveled for each robot

Figure 5.3: Simulation resultΓ = 1000
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Figure 5.3(e) shows the average distances traveled by each robot for each of the

approaches. We observe that as the average task loadL of the robots increase (from left

to right on the x-axis), the distances traveled by the robotsincreases. The robots using the

TRG-based approach travel similar distances to those using the greedy approach. This is

because both approaches use the same path planner. However,the TRG-based approach

does travel a small amount more then the greedy approach (approximately 6% longer).

This is due to when the robot decides to abandon its current task for another task, the

greedy approach will switch as soon as the other task becomescloser, which in some cases

is the best decision, where as the TRG-based approach will continue to follow its previous

task even though another task is closer. In some cases this isthe best thing to do because

the closer task might be on the other side of a wall that the robot has yet to explore with

its laser and actually require more distance to explore enough of the wall to realize that

the task is no longer the closest. In some of the environmentswith a larger load value, the

TRG-based approach starts to perform better. Figure 5.5(d) shows one such case for the

ten task, three robot, two visit environment. The red line isthe path followed by a robot

executing the greedy nearest task first method, whereas the blue line is the path of the robot

in the same starting location using the TRG-based method. As can be seen in the figure, the

robot using the Greedy approach tends to change its direction much more often compared

to the TRG-based approach, this is due to the larger number of times that the robot switched

between tasks to execute.

Figures 5.4, 5.5, and 5.6 show the effect varyingΓ has on the various parameters

collected. In general, it can be seen thatΓ has a minor effect on the behaviour of the

approach. This can also be seen in Table 5.1 which shows the precise rate of change in the

tested parameters asΓ increases. For example, the largest change in distance is100.76m
Γ

for environment 10T 8R 3V. In this approach the robot traveled approximately4, 000m

which is only a change of2.5% for each change inΓ. One will also notice that in the

environments with a large load (L > 5), a larger value ofΓ causes the average distance to
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(a) Plan time trends asΓ changes

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10

P
l
a
n
 
t
i
m
e

Gamma value

10T 3R 1V
10T 3R 2V
15T 3R 3V

(b) Plan time asΓ changes forV is ≥ 1
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(c) Plan time asΓ changes
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(d) Navigation time trends asΓ changes
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Figure 5.6: Timing results asΓ changes
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Environment Distance N.S. replan S. replan P. Time N. Time
10T 3R 1V 11.21 0.01 -0.06 -5.92 -6.45
10T 3R 2V -30.66 -0.03 0.07 1.99 -27.75
10T 8R 1V 13.25 0.16 0.01 17.42 12.19
10T 8R 3V 100.76 -0.05 -0.17 -16.97 -31.66
5T 1R 1V 7.54 0.03 0.02 3.44 5.90

10T 1R 1V -20.23 0.06 0.11 14.88 -15.82
15T 1R 1V -32.51 -0.03 -0.09 -11.02 -23.20
15T 3R 3V -27.80 0.004 -0.23 -19.99 -26.97

Table 5.1: Change in Distance, Non-switching replans, Switching replans, Plan time, and
Navigation time asΓ increases

decrease, whereas a smaller load causes the average distance to increase. This is due to the

robot following the path to the wrong path a longer distance before it decides to switch to

the task the ends up being better. This is more prominent in environments with larger loads

because the robot has to cover a larger portion of the environment compared to the lower

load values.

The effect of increasingΓ on switching replans (Figures 5.4(b), 5.4(d), and 5.4(f))

depends on the number of visits that each task requires. In general, the environments

whereV is > 1, a largerΓ value resulted in fewer switching replans. This is because a

robot will only become more likely to switch tasks after the path length to its current task

becomes more theΓ times larger then the closest task by path length (Equations4.4 and

4.3). AsΓ becomes larger, it becomes more difficult for this conditionto be satisfied,

which causes fewer TRUE observations forPLLij, which in turn makes it less likely for

the replan to be a switching replan. On the other hand, the effect on non-switching replans

is distributed across all of the environments, meaning thatthere are likely other properties

of the environments that are effecting this parameter, suchas the density of obstacles, the

density of robots, or the amount of collisions between robots.

Navigation time, unlike the other parameters, has a larger value ofΓ resulting in less

navigation time. In all, except two, environments a larger value ofΓ caused the average

navigation time to decrease (see Figure 5.6(d)). This is dueto the robot not switching tasks



47

Figure 5.7: Overhead and side view of environment used for testing with physical robots,
white dots represent the task locations

too often. Each time the robot switches a task, it has to rotate to follow the newly selected

path. Because this rotation takes time, it can add up as the robot switches between tasks.

Planning time, like non-switching replans, are scattered across various visit levels and

ranges for load (Figure 5.6(a)). However, an interesting thing to note is that planning time

increases and decreases in the same environments where non-switching replans increased

and decreased. This is because more replans result in more planning time, and the effects of

the switching replans was not enough to cancel out the changefrom non-switching replans.

5.2 Physical Robots

5.2.1 Setup

For the physical robot experiments, we converted the environment shown in Figure 5.1(a) to

fit in the limited3×4 m2 available. This new environment is shown in Figure 5.7, where the

white dots represent the tasks that the robot must visit. Like the simulation environments,

this environment was designed such that a greedy closest-task-first algorithm would switch

tasks50% of the time. In this environment we tested with a fixed value ofΓ = 5.0. We

also tested with|R| = {1, 2} andV is = 1. Results were averaged over three runs.
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Table 5.2: Physical robot experiment results

5.2.2 Results

Table 5.2 shows the results of the physical robot experiments for the same metrics as the

simulation experiments. In both environmental, the robotswere able to navigate and visit

the tasks with the required number of visits. In comparing these results to those shown in

Figure 5.3, we can see that the hardware performed fairly similar. For example, Table 5.2

shows that the five tasks, one robot, one visit environment had four switching replans,

which is within the margin of error for the switching replansshown in Figure 5.3(a).

During experiments, one issue was noted, that of size of the passageways. In the limited

space afforded for the hardware tests, a single robot could block one of the rooms in the

environment and prevent the robot from entering. This also revealed an issue for future

investigation for the coordination strategy, namely that it was possible for both robots to

become stopped by the algorithm and become unable to move dueto their need to swap

locations. This usually meant that at least one of the robotswould need to move away

from the selected goal location to allow the other robot to befreed, which is not currently

possible under our coordination strategy. However, it performs well in all other tested

scenarios.
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Chapter 6

Conclusions and Future Work

In this thesis, we introduced the TOP-U problem where robotshave to determine the order

to visit a set of task locations when the path costs between each pair of tasks can vary

dynamically as the robot discovers obstacles while navigating between tasks. As a solution

to this problem, we proposed a data structure called a task reachability graph (TRG). The

TRG provides a mechanism to encode inter-task dependencies,the path length between

the task locations, and the belief in the task path length being correct. We then proposed

techniques to use the TRG to integrate task planning and motion planning using a sampling-

based path planner to find current estimates for path length and a HMM-based technique to

find the belief in those path costs based on the path length between tasks. Finally, an MDP-

based algorithm was proposed that uses information from theTRG to select a suitable task

order to reduce the cost in terms of time taken or distance traveled to visit the tasks.

6.1 Lessons Learned

We testedour proposedapproachin both simulatedandphysical robots.The simulation

wasdoneusing asimulator thatprovidesanaccuratesimulation of thereal-world dynamics

of robots.Whencomparedto a greedyclosest-task-first taskallocation method,our TRG-

basedapproachperformed60% fewer taskswitching replans,40% fewer replansoverall.
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This meansthat using the TRG-basedapproachreducedthe amountof times that the

robot has to replan a considerable amount,which reducesthe time taken and reduces

the amountof resourcesthe robot hasto use.It also took 60% lessplanning time and

58% lessnavigation time. In general,using theTRG-basedapproachreducestheplanning

andnavigation timesconsiderably. TheTRG-basedapproachalsotraveledalmostsimilar

distancesto the greedyapproach,only taking about6% longerof a path.In general, the

TRG-basedapproachtravels and usesa similar amountof energy in the locomotion of

the robotcomparedto thegreedyclosest-task-first approach.We alsotestedanalgorithm

parameterΓ, whichwasshownto haveminimaleffectontheperformanceof thealgorithm.

Thoughit wasshownthat for an environmentwith a larger load of tasksthat eachrobot

hasto complete,a largerΓ resultedin a decreasein distancetraveled.If the number of

visits per task was greaterthen one,a largerΓ also resulted in a decreasednumber of

switching replans.And in mostcases,a largerΓ resultedin a decreasein navigation time.

In general, theΓ parameter hada very minor effect on the performanceof the proposed

approach,howeverit canbeusedto dofine tuning of theperformance,thoughnot required

for theapproachto perform betterthenthegreedyclosest-task-first approachtestedagainst.

Theapproachwasalsotestedonphysical robotsusing threeenvironmental settings,which

producedresultssimilar to thosegeneratedin thesimulation.

6.2 Future Works

As futurework, wewould like to look into thefollowing topics to understandtheproblem

of simultaneoustaskandmotion planningmoreeffectively:

• Partial taskordering, wherecertain tasksmustbeperformedbefore othertaskscan

bedone.

• Robotscompleting portions of task at sametime: Multiple robots have to work

togethersimultaneouslyto completethetask.
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• Multi -robotcoordination techniques:Finding better techniquesthatdonotrequireall

robotsto stopmoving.

• Environment parameter investigation: Finding what parameters of environment

effectstheresultsof ourproposedtechnique.

• Improvedplanning time: Finding ways to not useas much time in updating path

plans

To handle partial taskordering, it will be important to accountfor thechangesin the

TRG dueto completion of tasks.The algorithms would needto account for the directed

edgenature of a TRG with dependenciesbetweentasks.This could be handled through

online manipulation of the TRG edgesas tasksarecompleted.For example, if task3 is

dependenton task2, thenuntil task2 is completed,theonly edgeinto task3 will befrom

task2, butoncetask2 is completed,all othertaskscangainanedgeinto task3 becausethe

dependencyhasbeencompleted.

Sometasksmayrequiremultiple robotsto bepresentat the tasklocation at thesame

time in order to perform the task.An example would be the movementof a largeobject

thatonerobotdoesnothavethepowerto move,butwith multiple robots,theycanprovide

collectively enoughpowerto moveit. To do this, the robotswould needto communicate

andtakeinto accountthetaskplansof otherrobots,becauseaccepting andnavigating to a

joint robot taskis only useful if anotherrobot canmeetthe robot at the tasklocation. To

accomplish this, an extra term canbe addedto the computation of a taskscost,which is

conditional on anotherrobotgoing to thetaskat thesametime.Therobotcouldannounce

to the otherrobotsits intent to visit a task,andif anotherrobot finds this taskto alsobe

reasonableto go to, canalsoselect it andreply. However,if no otherrobot responds,the

costof going to thetaskincreasesto discouragetherobotfrom going to auselesstaskif no

otherrobotwill join it there.
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In our currentapproach,robotsusea basic approachto perform multi-robotcollision

avoidanceandcoordination which requiresall robotsinvolved to stopmovementtowards

theircurrenttaskwhile thecollisionprevention is handled.In orderto preventthestopping

of robotsandbeableto provideguaranteesthattherobotswill successfully avoidcollisions

and continue to their tasks,planning will likely be required to be done in the joint

configuration space,wherethe possible motions of at leasta subsetof the robotscanbe

consideredtogether.To preventthehighcoststhatplanning in thejoint configuration space

usually requires,thejoint planningcanbelimited to theareathattherobotsarein collision

to provideshortpathsthatcanbefoundquickly amounttherobotsin dangerof collision.

In ourexperiments,wenoticedthatthechangesin themetricsasenvironmentschanged

could not be directly mappedto one of the parameters that we tested.In order to best

recommendthevaluesof Γ for anenvironmentor whichplanningmethodsarethebest,we

would like to defineparametersof thetypeof environmenttherobotis working in, andsee

what the relationship betweentheseparametersandthe performanceof the algorithm is.

Parametersthatcouldbeinvestigatedincludedistribution of obstacles,density of obstacles,

distributionsof robots,andothers.

Our current approachusesa path planner that accountsfor uncertainty in obstacle

locations, but takesa long time to generate all the paths.To help improve the planning

time, we would like to look into either using other path planners that are available, or

adapting the current one to reducethe number of computations or collision checksthat

mustbe performed.Example pathplannersthat could be investigatedareLazy PRM [2]

andInformedRRT [9].

In conclusion,weproposedatechniqueto solvesimultaneoustaskandmotion planning

by using a datastructure called the task reachability graph.Basedon this structure we

proposeda HMM andMDP basedalgorithm that performs better thena greedynearest-

task-first task allocation algorithm by at least 40% in most metrics tested,while only

traveling 6% moredistance.Our approachwasverified in accuratesimulationsandusing
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physical robots.
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