
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

5-2014

The Quasigroup Block Cipher and its Analysis
Matthew J. Battey
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Battey, Matthew J., "The Quasigroup Block Cipher and its Analysis" (2014). Student Work. 2892.
https://digitalcommons.unomaha.edu/studentwork/2892

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232778805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2892?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2892&utm_medium=PDF&utm_campaign=PDFCoverPages

The Quasigroup Block Cipher and its Analysis

A Thesis

Presented to the

Department of Computer Sience

and the

Faculty of the Graduate College

University of Nebraska

In partial satisfaction of the requirements for the degree of

Masters of Science

by

Matthew J. Battey
May, 2014

Supervisory Committee:
Abhishek Parakh, Co-Chair
Haifeng Guo, Co-Chair

Kenneth Dick
Qiuming Zhu

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1554776

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1554776

Abstract

The Quasigroup Block Cipher and its Analysis

Matthew J. Battey, MS

University of Nebraska, 2014

Advisor: Abhishek Parakh

This thesis discusses the Quasigroup Block Cipher (QGBC) and its analysis. We

first present the basic form of the QGBC and then follow with improvements

in memory consumption and security. As a means of analyzing the system, we

utilize tools such as the NIST Statistical Test Suite, auto and crosscorrelation,

then linear and algebraic cryptanalysis. Finally, as we review the results of these

analyses, we propose improvements and suggest an algorithm suitable for low-cost

FPGA implementation.

i

Copyright c⃝ 2014 by

Matthew J. Battey

All rights reserved.

ii

Contents

Abstract .

List of Figures . iv

List of Tables . v

1 Introduction 1

1.1 Research Motivation and Goals 2

1.2 Background on Quasigroups . 3

1.2.1 Quasigroup Computation 4

1.2.2 Equivalent Classes of Latin Squares 4

1.3 Quasigroups in Cryptography . 5

1.3.1 Quasigroup Stream Cipher Encryption 6

1.3.2 Quasigroup Stream Cipher Decryption 8

1.4 On Theoretical Security of Quasigroup Ciphers 9

2 Quasigroup Block Cipher 11

2.1 Proposed Algorithm 1: Quasigroup Block Cipher 11

2.1.1 Test Implementation . 14

2.1.2 Statistical Analysis . 15

2.1.3 On memory and computational requirements: 17

2.2 Proposed Algorithm 2: Quasigroup Block Encryption with Cipher

Block Chaining . 18

2.2.1 Test Implementation . 18

2.2.2 Waveform Analysis . 20

3 Storage Optimization:Low-Overhead Quasigroup representation 22

3.1 Low-Overhead Quasigroup (LOQG) 22

3.2 Defense of the LO-QG . 23

iii

4 Quasigroup Pseudo Random Number Generator 26

4.1 Updated Quasigroup Block Cipher 27

4.2 Feedback Generator . 29

4.3 Processing Time . 30

4.4 Evaluation . 31

4.4.1 Evaluation Process . 32

4.4.2 Evaluation Results . 32

4.5 Autocorrelation . 33

4.6 Security of QGBC-PRNG . 35

5 Cryptanalysis of the QGBC 37

5.1 Linear Cryptanalysis . 37

5.2 Linear Cryptanalysis of QGBC 38

5.2.1 Exp. 1: QG order 2 . 39

5.2.2 Exp. 2: Addition Modulo 4, shift 2 40

5.2.3 Exp. 3: Randomized QG ‘A’, shift 2 40

5.2.4 Exp. 4: Randomized QG ‘B’, shift 2 41

5.2.5 Exp. 5: Addition modulo 4, shift ̸= 2 42

5.2.6 Exp. 6: QG ‘B’, shift ̸= 2 42

5.2.7 Exp 7. QG Addition modulo 16 43

5.3 Algebraic Cryptanalysis . 43

5.3.1 Algebraic Analysis QGBC N = 2 43

5.3.2 Algebraic Analysis QGBC N > 2 44

6 Improving the QGBC 46

6.1 Improvement of the QGBC . 46

6.1.1 Application of the Improved QGBC 47

6.1.2 Experimental Evaluation of QGBC-HP 50

7 Conclusion 52

iv

List of Figures

2.1 Flowchart for the quasigroup block cipher (proposed algorithm 1).

Here M is the entire message, M(j) is the jth block in the message,

K is the key, K(i) is the ith seed in the key string, |M | is the size

of message in bytes, |K| is the size of key string in bytes, i is the

iterator of key bytes and j is the iterator of message blocks. . . . 14

2.2 Plot of original input audio waveform 21

2.3 Plot of encrypted output audio waveform 21

4.1 Block Diagram: Multi-byte Key Quasigroup Block Cipher w/o ci-

pher block chaining . 28

4.2 Block Diagram: Feedback Generator for self sustaining PRNG . . 30

6.1 QGBC-HP Cipher Network . 49

v

List of Tables

1.1 Sample quasigroup order N = 4 4

1.2 A quasigroup of order 6. 7

1.3 Inverse for the quasigroup in Table 1.2 8

1.4 Number of reduced Latin squares of order 2 to 15. 10

1.5 Bounds for number of Latin squares for orders 16, 32, 64, 128 and

256. 10

2.1 Parameters for the NIST-STS test 16

2.2 The table shows average P-values (over 20 runs) for quasigroup en-

cryption as compared to AES256 encryption system when the same

encryption key is used for both cryptosystems without Cipher-

Block-Chaining (CBC). Each source data set consists of 288 bytes

of sample data. 17

2.3 Operations necessary to encrypt a 16 bite block with a 32 byte key,

note left shift can be greatly reduced using integers wider than 8

bits. 17

2.4 The table shows average P-values (over 20 runs) for quasigroup en-

cryption as compared to AES256 encryption system when the same

encryption key is used for both cryptosystems with Cipher-Block-

Chaining (CBC). Here data sets were of a short variety, constructed

from a sequence of 288 bytes. 19

2.5 Successes per 1000 encryption tests. 295 KB of 0x00, ‘E’, 0xFF,

and the text of Beowulf[1] were encrypted with 1000 different keys

via the Quasigroup Block Cipher and AES, both in CBC mode, to

demonstrate the ability to produce randomized data sets for long

input data sequences. 20

3.1 A un-shuffled quasigroup corresponding to vij ≡ xi + yj mod n . 24

vi

3.2 A shuffled quasigroup resulting from xi and yj having been shuffled.

Note that while the values within the Quasigroup still conform to

the vij ≡ xi + yj mod n, but have lost the regularity of the un-

shuffled reduced Quasigroup. 25

4.1 NIST-STS Test Success Rates for 1000 Samples 33

5.1 Substitution matrix with odd-bit bias 38

5.2 Quasigroup N = 2, similar to exclusive-or 39

5.3 Quasigroup order N = 4, defined by +(mod N) 40

5.4 Quasigroup with poor linear analysis performance 41

5.5 Quasigroup with improved linear analysis performance 42

6.1 QGBC-HP NIST-STS Results . 51

1

Chapter 1

Introduction

Continuous research into novel cryptosystems is necessary, as past systems be-

come vulnerable due to increased computational power and cryptanalysis that

have identified weakness in existing systems[2][3]. For this reason, we propose

and demonstrate a novel cryptosystem based on quasigroup polyalphabetic sub-

stitution.

In this thesis, we will first introduce the reader to quasigroups. Then in chap-

ter 2, we define our Quasigroup Block Cipher (QGBC), which was specifically

designed to overcome limitations from prior work[4]. Next in chapter 3, we dis-

cuss means for limiting the resources consumed by a quasigroup. From here, we

expand the QGBC and utilize it as a pseudo random number generator, in chap-

ter 4. Then in chapter 5 , we explore the cryptographic analysis of the QGBC.

Which finally leads us to chapter 6, where we identify improvements based on the

results of cryptanalysis, and further refine the memory requirements needed by

the system.

In this chapter we will formulate baseline knowledge of quasigroups, first gain-

ing background in § 1.2. Then we explore prior work where quasigroups are used

in cryptography in § 1.3 and finally in § 1.4 we discuss the theoretical security of

the quasigroup.

2

1.1 Research Motivation and Goals

Discovery, research, and enhancement of cryptographic systems has proven to not

only be a curiosity but a necessity. History has shown that for every cryptographic

measure a counter measure has been found to disable it. In some cases, human

error and social engineering are the downfall, but in other cases cryptanalysis has

shown weaknesses in systems.

Many cryptosystems were designed prior to the advent of low-cost, low-power

computing equipment which are spawning the ”Internet of Things.” These devices

not only need to be protected from each other, but from main-line computing

system with much more processing capability and resources. While these systems

often have more processing power than large computer system from just a decade

ago, they often run on battery power, so the need for highly effective cryptographic

measures that require little power to accomplish is a future need.

Starting in 1994, the National Institute for Standards and Technology (NIST)

first proposed Secure Hash Algorithm #1 (SHA-1) as a means of random number

generation [5]. In 2004, NIST released a brief on SHA-1, noting that a weakened

variant of the system had been broken, and suggested that software vendors move

to newer alorithms[2]. In another case, RC4 one of the most commonly used

ciphers for secure internet traffic has shown similar issues[3]. Further, the triple

DES cryptosystem has shown weaknesses to linear analysis[6].

For these reasons we set out with the following goals:

Develop a novel block cipher Block ciphers tend to be more reliable in dis-

tributed communication environments as well as provide additional security

Utilize standard key sizes Using standard keys allows us to re-use key ex-

change mechanisms and utilize current conventions.

Pass the NIST-STS suite NIST developed the Statistical Test Suite[7], which

combines a number of pre-defined statistical test to evaluate the entropy

generated by a crypto system.

3

Based on these goals, we chose to enhance the Quasigroup Stream Cipher[8]

and use it as the basis for a new block cipher.

1.2 Background on Quasigroups

A Quasigroup is an algebraic structure similar to a group. However, a quasigroup

does not necessarily possess the axioms of identity and associativity; rather one

only requires closure and inversion. Quasigroups have been part of popular cul-

ture, making their way into games like Sudoku, where they are represented as

Latin squares. This thesis focuses on the quasigroup for two reasons, which are

important to cryptography. First, one closure and inversion make handy tools for

making cipher/decipher pairs, and secondly, the lack of associativity is the begin-

nings of a one-way function. The following list will be used as a guide describing

expressions throughout this thesis.

N – A quasigroup’s order, or number of distinct elements

M – Plain text, information which is directly readable

Mi – A single word from the Plain text (sometimes called Message Text)

mi – A single bit form the Plain text

C – Cipher text, information which has been encrypted so that is is not plainly

readable

Cx – A single word from the Cipher text

ci – A single bit from the cipher text

K – Key text, a sequence of bits

Kx – A single word from the Key text

ki – A single bit from the key text

w – The size of a word in bits

|M |, |C|, |K| – The number of words in M , C, or K

Also for this thesis, we will denote · and ◦ as the primary quasigroup op-

eration and its inverse. Table 1.1 is an example of a quasigroup order N = 4

rendered as a Latin square. For a given row or column, each element appears

only once; which alternately allows the quasigroup to be represented as a set of

ordered triples; such as the following, which describes the first row in tbl. 1.1:

4

{(0, 0, 2), (0, 1, 0), (0, 2, 3), (0, 3, 1), ...}. Membership in a quasigroup can also be

defined by a known mathematical operation, such as addition modulo N or bit-

wise exclusive-or.

0 1 2 3

0 2 0 3 1

1 3 2 1 0

2 0 1 2 3

3 1 3 0 2

Table 1.1: Sample quasigroup order N = 4

1.2.1 Quasigroup Computation

Computation of the quasigroup operation may be performed by a look-up from

the ordered triples set or Latin square. Say we wish to compute 2 · 3 using the

Latin square approach; we first look in row 2 then column 3 and find our answer

is 2 · 3 = 3 (the first row and column are the 0’th). To perform 1 ◦ 1, we look in

row 1 and find the column containing 1. We see that 1 is found in column 2, thus

1 ◦ 1 = 2. To reduce computation, it is possible to produce an equivalent inverse

quasigroup, which lets one use the row and column indices as in the forward

quasigroup.

1.2.2 Equivalent Classes of Latin Squares

Latin square equivalence classes [9] are those squares that are related by some

simple transformation. One example is to add 1 modulo N to every element. The

equivalence class we are interested in is one where we rearrange the members of

the ordered triple found in the orthogonal array representation, to from an inverse

quasigroup. Here, we transpose (ri, cj, vij) with (ri, vij, cj) of our Quasigroup. This

is a valid transposition producing an equivalent Quasigroup. We know this to be

true by the very nature of the Quasigroup’s Latin square definition. Tables 1.2

and 1.3 are transpositions of each other.

Later in this thesis we make reference to the number of quasigroups, by count-

5

ing the number of Latin squares (see § 1.4). These counts are given based on the

number of Reduced Latin squares possible for a given N . Here a special equiva-

lence class is used required, where whole columns and rows are swapped; such that

the first row and column are sorted in ascending order. The remaining elements

can be present in any order as long as they conform to the properties of a Latin

square.

1.3 Quasigroups in Cryptography

The quasigroup operation allows us to make polyalphabetic substitutions, and

this property has been used in ciphers for more than four-hundred years. In

1585, Blaise de Vigenere constructed a Latin square of the same order as his

target language (i.e. N = 026 for English) [10]. He then proposed a key word

that would select the cipher text (or pad-text in today’s language). This cipher

was considered unbreakable until 1863, when it was discovered that for a large

enough plain text the cipher text demonstrated repetitions. Although this cipher

received Vigenere namesake, Giovan Battista Bellaso had actually published the

cipher 1553.

The matrix used for one-time pad (OTP) is also a quasigroup, and is also

known as a bitwise exclusive-or (XOR). Frank Miller first described this crypto-

graphic system in 1882 [11], then again by Gilbert Vernal in 1917 [12] [13], where

it was then patented. We know the OTP to have perfect security, as long as the

pad is of the same length as the plain text, random, uniform, and independent of

the input.

Within the last decade, further research has gone into the polyalphabetic sub-

stitution properties of quasigroups. Gligoroski and Markovski (G&M) report cryp-

tographic potentials of matrix quasigroups and suggest a stream cipher [4]. With

this system the quasigroup remains secret and is pre-shared between communica-

tion partners. A published seed word is combined with the first word in the plain

text. Then subsequent plain text words are combined with the previous cipher

6

text word. This stream cipher takes the form C0 = s ·M0, Ci = Ci−1 ·Mi, i ≥ 1,

which chains each output byte to the previous (we will see an expanded expla-

nation below, in § 1.3.1). The strength of security is based on the order of the

quasigroup selected; lending form the raw number of quasigroups to choose from.

Then with Kocarev, Gligoroski and Markovski explore the potentials of remov-

ing the bias from poor PRNG systems by utilizing a quasigroup stream cipher to

further randomize the data [14]. Here a weak random sequence generator such as

libC’s random() passed through G&M’s stream cipher, with the goal of improving

the data distribution of the driver. This method suffers in statistical evaluation

however [15].

Satti and Kak envision a quasigroup cryptosystem for both data and speech

in their paper [8]. Their research applies G&M’s stream cipher to a number

of practical inputs such as English text, constant values, and PCM audio data.

They demonstrate success through autocorrelation techniques as well as propose

systems for distribution of the quasigroup and implementation in communication

devices.

1.3.1 Quasigroup Stream Cipher Encryption

Consider the criticality of the equivalence of the base Quasigroup and its inverse.

The equations found in 1.1 construct the protocol for a Quasigroup based stream

cipher. Using the · operator, we can quickly and efficiently re-encode plain text

to cipher text. Using the equivalent inverse Quasigroup, we can reverse that pro-

cess. We have constructed a encryption cipher with its corresponding decryption

function!

7

· 1 2 3 4 5 6

1 1 3 2 6 4 5

2 2 6 4 5 1 3

3 3 2 6 4 5 1

4 4 5 1 3 2 6

5 5 1 3 2 6 4

6 6 4 5 1 3 2

Table 1.2: A quasigroup of order 6.

Example 1: Table 1.2 presents a quasigroup of order 6. The left most column

and the top most row are index numbers. An initial seed element is chosen, say s =

3, and let the input data stream be represented by {M1,M2,M3,M4,M5,M6,M7,M8}

= {1, 5, 4, 2, 6, 4, 5, 3}. Then the encryption process produces an encrypted output

stream {C1, C2, C3, C4, C5, C6, C7, C8} as defined by Alg. 1.

Data: QG[][] – A two dimensional array containing the quasigorup

Data: S – The Seed

input : M – The Plain Text

output: C – The Cipher Text

C0 = QG[S][M0];

for i = 1to|M | do
Ci = QG[Ci−1][Mi];

end
Algorithm 1: Quasigroup Stream Cipher

8

C1 = S ·M1 = 3 · 1 = 3

C2 = C1 ·M2 = 3 · 5 = 5

C3 = C2 ·M3 = 5 · 4 = 2

C4 = C3 ·M4 = 2 · 2 = 6

C5 = C4 ·M5 = 6 · 6 = 2

C6 = C5 ·M6 = 2 · 4 = 5

C7 = C6 ·M7 = 5 · 5 = 6

C8 = C7 ·M8 = 6 · 3 = 5

(1.1) Quasigroup Stream Cipher Example

Unrolling the algorithm, with the sample data, produces the operations show

in (1.1), when computed using tbl. 1.2.

1.3.2 Quasigroup Stream Cipher Decryption

For the decryption operation, an inverse quasigroup matrix is constructed (table

1.3). We construct the invQG[][] matrix, by doing the following: in the jth column

of the ith row in invQG[][] matrix write the column number of element j from the

ith row in QG[][]. Then to decrypt we perform the algorithm shown in Alg. 2.

◦ 1 2 3 4 5 6

1 1 3 2 5 6 4

2 5 1 6 3 4 2

3 6 2 1 4 5 3

4 3 5 4 1 2 6

5 2 4 3 6 1 5

6 4 6 5 2 3 1

Table 1.3: Inverse for the quasigroup in Table 1.2

9

Data: invQG[][] – A two dimensional array containing the inverse

quasigroup

Data: S – The Seed

input : M – The Plain Text

output: C – The Cipher Text

M0 = invQG[s][c0];

for i = 1to|C| do
Mi = invQG[Ci−1][Ci];

end
Algorithm 2: Quasigroup Stream Cipher Decryption

In general, the direct application of the above encryption algorithm is very

effective in randomizing the input data stream. However, given an input data

stream and its corresponding output data stream a known plain text attack can

be launched because QG[Ci−1][Mi] = Ci, which directly leads the attacker to

assess the quasigroup’s definition. Consequently, qausigroups as stream ciphers

may provide only limited security, if ever the attacker were to gain knowledge of

the quasigroup itself.

1.4 On Theoretical Security of Quasigroup Ci-

phers

The total number of Latin squares of order N , N > 2, is given by LN = N !(N −

1)!TN , where TN denotes the number of reduced Latin squares of order n. The

numbers TN and LN increase very quickly with N [8]. Table 1.4 gives the number

of reduced Latin squares.

From table 1.5 we see that the number of possibilities for the Latin squares is

astronomical. Therefore, if the quasigroup is kept secret along with the 256 bit

key (32 random seeds) the system provides very good security.

10

N TN

2 1

3 1

4 4

5 56

6 9048

7 16942080

8 535281401585

9 377597570964258

10 7580721483160132811489280

11 5.36× 1033

12 1.62× 1044

13 2.51× 1056

14 2.33× 1070

15 1.50× 1086

Table 1.4: Number of reduced Latin squares of order 2 to 15.

0.689× 10138 ≥ LS(16) ≥ 0.101× 10119

0.985× 10785 ≥ LS(32) ≥ 0.414× 10726

0.176× 104169 ≥ LS(64) ≥ 0.133× 104008

0.164× 1021091 ≥ LS(128) ≥ 0.337× 1020666

0.753× 10102805 ≥ LS(256) ≥ 0.304× 10101724

Table 1.5: Bounds for number of Latin squares for orders 16, 32, 64, 128 and 256.

11

Chapter 2

Quasigroup Block Cipher

In this chapter we will examine the Quasigroup Block Cipher (QGBC) that was

designed as part of this research effort. We will first cover the algorithm with out

Cipher Block Chaining (CBC) and the statistical analysis of the test implemen-

tation (see § 2.1). Then we will explore a modification that enables CBC and

outline the statistical analysis of the QGBC-CBC based test implementation (see

§ 2.2).

2.1 Proposed Algorithm 1: Quasigroup Block

Cipher

Our goal is to make a quasigroup cipher similar in functionality to the popular

AES system. To this end, we use 32 different seeds for each round of encryption.

Utilizing multiple rounds of encryption, with different seeds in different rounds,

finesses the known-plain-text attack and provides a higher level of security; just

as in the case of Triple DES and AES. We choose 32 seeds, because we assume

that each seed is one byte in size and 32 bytes is quivalent to 256 bits, which is

the commonly used key length for AES systems.

In order to introduce dependencies between bytes of input data, we divide the

plain text into 128 bit (16 byte) blocks and encrypt each block separately using

Algorithm 3, below.

12

input : Cipher Key – 256 bits

input : Plain Text – A stream of 128 bit blocks

Result: Plain Text encoded as Cipher Text

Construct a 256x256 size quasigroup;

Generate a random 256 bit encryption key and divide it into 8 bit (1 byte)

blocks which will be used as seed elements at every round of encryption.

This results in 32, 1 byte, seeds;

Divide the source data into 128 bit (16 byte) blocks;

for Each block of Plain Text do

for Each 8-bit word in the Cipher Key do
Using the current block as a stream of 16, 8-bit integers, apply the

current 8-bit key as the quasigroup cipher seed and encrypt the

block;

Left shift the currently encrypted block by 1, 3, 5 or 7 bits

depending on the index of the current 8-bit key block modulo 4;

end

end
Algorithm 3: Quasigroup Block Cipher

Note that although each block is 128 bits long, when applying quasigroup

encryption we further divide the block into 16, 1 byte sub-block. Then we apply

algorithm 1 to the block once for each word in the Cipher Key. After every round

of encryption (application of the stream cipher), all the bits are taken together

and then left-rotated. A pseudo code is given below:

13

define : BlockSize = 16

define : KeySize = 32

input : PlainText – The entire plain text buffer

input : Key – An Array length KeySize

output: CipherText – The enter cipher text buffer

Data: QGMS – An Array(256,256)

Data: ShiftDistance as [1,3,5,7]

for each Block in PlainText do

CipherText = Block;

for each K in Key do
CipherText = QuasiGroupCipher(QGMS, K,CipherText)

CipherText = LeftShift(CipherText, ShiftDistance[Key.IndexOf(K)

Modulo 4])

end

Output[IndexOf(Block,Source)] = CipherText

end
Algorithm 4: Pseudo code algorithm for the QGBC

The shift distances of 1, 3, 5, and 7 are each relatively prime to 2 and thus to

8 (size of a word in this system). Their sum is 16 (size of 2 bytes) and if each shift

is applied 8 times, their sum becomes 128, which is equal to the block size of 128

bits (16 bytes) into which the input data was divided. Therefore, one full rotation

of block occurs with shifts of 1, 3, 5 and 7 when all the 32 seeds are used. This

ensures that all the bytes in the encrypted block become interdependent. Later,

in § 5.1, we will see that the shift distance is critically important.

Figure 2.1, below demonstrates this algorithm graphically. Here again, we

see the process of selecting a block performing the Quasigroup transformation,

bit-shifting, and repeating.

14

Figure 2.1: Flowchart for the quasigroup block cipher (proposed algorithm 1).
Here M is the entire message, M(j) is the jth block in the message, K is the key,
K(i) is the ith seed in the key string, |M | is the size of message in bytes, |K| is
the size of key string in bytes, i is the iterator of key bytes and j is the iterator
of message blocks.

2.1.1 Test Implementation

A test implementation was developed in C#.net, because of the popular adoption

of C# and the pre-existing AES cipher suite. Also, Microsoft Visual Studio 2010

has built in unit-testing facilities, which combined with Test-Driven-Development,

produced well-tested code in reduced increments of time. The test implementation

has the ability to overwrite the plaintext buffer in place, limiting the memory

footprint required to encode a buffer. Keys were generated using the random-

number generator, System.Random, allocating 16 random bytes per request. Full

n× n Quasigroup matrices were constructed for both encryption and decryption

using the Knuth/ Fisher-Yates Shuffle [16]. Both the encryption and decryption

routines were constructed and tested.

15

2.1.2 Statistical Analysis

We used the National Institute of Technology - Statistical Test Suite (NIST-STS)

suite to evaluate the randomness introduced by the system in the cipher. The

NIST-STS package gives a P-value and Success/Fail status for various standard-

ized tests. Based on the null hypothesis that the tested sequence is random. Thus,

the P-value is the probability that a perfect random number generator would have

produced a less random sequence than the one being tested [17].

Based on the research by the NIST-STS team, each test was given a P-value

threshold. When a P-value result from a test crossed these thresholds, the test

was considered successful, otherwise it is flagged a failure. Control tests were

performed against the plain text source (it should be noted the control failed each

test). The NIST-STS test suite is available freely in C source code, and download-

able from http://csrc.nist.gov/groups/ST/toolkit/rng/index.html. The

tool can be configured to read a source file as a stream of bits, and evaluate the

randomness of that stream. We report the results for the following tests, where

the parameters used for the tests are given in table 2.1:

• Approximate Entropy (AE) - A test comparing all overlapping m-bit pat-
terns.

• Block Frequency (BF) - A test which evaluates the proportion of 1’s in m-bit
blocks.

• Cumulative Sums, Forward (CSF), Reverse (CSR) - Evaluates whether the
maximal cumulative sum of partial sequences is outside the range for ex-
pected behavior of a random sequence.

• Discrete Fourier Transform (FFT) - Implemented as a Fast Fourier Trans-
form, detects repeating or periodic features that are near to each other.

• Frequency (FREQ) - Evaluates the frequency of 1’s and 0’s in the entire
sequence.

• Longest Run - Comparison of longest contiguous run of 1’s in m-bit blocks
to expected frequency of same.

• Rank - The rank of disjoint sub-matrices within the entire sequence.

16

• Runs - Finds and evaluates the longest sequence of contiguous 1’s in the en-
tire sequence and compares the oscillation between 1’s and 0’s to a standard
frequency.

• Serial - Compares the frequency of all m-bit overlapping patterns in the full
sequence. Two variations are applied.

Block Frequency Test - block length(m) 128

Non-overlapping Template Test - block length(m) 9

Overlapping Template Test - block length(m) 9

Approximate Entropy Test - block length(m) 10

Serial Test - block length(m) 16

Linear Complexity Test - block length(m) 500

Table 2.1: Parameters for the NIST-STS test

Upon completion of each test, a P-value result is rendered. If a P-value for a

test is determined to be equal to 1 or 0 then an error condition has occured[17].

Otherwise, P-values greater 0.01 demonstrate the test was passed.

Initially 20 encrypted data sets each were produced, from input files containing

binary zero (0x00), binary ones (0xFF) and text from Aseop’s fable, “From the

Goose and the Golden Eggs” for a total of 60 files.

Table 2.2 shows the P-values for the various tests. In the table the first three

columns show the average P-values for all 60 files, ranking QGBC results against

AES results.. The first column lists the various tests done, second column is the

average P-values for encryption of all three inputs using quasigroups, third column

is the average P-value for all three inputs using AES and the fourth column is the

ratio of the P-value of encryption using quasigroups to that using AES multiplied

by 100. The last four columns are P-values for all zero (0x00) and 0xFF inputs

alone.

17

Test QGBC AES QG:AES 0x00-AES 0x00-QG 0xFF-AES 0xFF-QG

BF 0.57189 0.53593 106.71% 0.59109 0.57530 0.48253 0.64041

CS-F 0.47759 0.45340 105.33% 0.47739 0.42955 0.36766 0.50679

CS-R 0.47995 0.46111 104.08% 0.48052 0.43870 0.36949 0.49906

FFT 0.15798 0.15622 101.12% 0.03377 0.043198 0.05215 0.05501

FREQ 0.40314 0.40006 100.77% 0.38935 0.34988 0.29779 0.39156

LR 0.30803 0.29188 105.53% 0.24881 0.21313 0.17118 0.27998

Runs 0.40384 0.40136 100.62% 0.37347 0.37045 0.38143 0.35849

Table 2.2: The table shows average P-values (over 20 runs) for quasigroup encryp-
tion as compared to AES256 encryption system when the same encryption key is
used for both cryptosystems without Cipher-Block-Chaining (CBC). Each source
data set consists of 288 bytes of sample data.

2.1.3 On memory and computational requirements:

The n×n matrix consumes 64 KB ram. Also, test implementation was developed

in such away that the input data could be directly overwritten, no additional

buffers were required. As the solution is a block cipher, only one block must be

in memory at any given time.

Processing efficiency is as follows; for each byte in the block, lookup the QG

re-encoded value from the matrix, then left shift the block. Table 2.3 lists the

number of operations necessary when encrypting data. The number of operations

to decrypt is similar.

Encrypt: one 2D array lookup 1 op

Left shift: two 64-bit left shift 2 ops

Total Ops 16 byte block: 3× 16 48 ops

Total Ops 32 byte key: 48× 32 1536 ops

Table 2.3: Operations necessary to encrypt a 16 bite block with a 32 byte key,
note left shift can be greatly reduced using integers wider than 8 bits.

18

2.2 Proposed Algorithm 2: Quasigroup Block

Encryption with Cipher Block Chaining

When we compared the QGBC to the AES system, we were unable to collect data

for the Approximate Entropy and Serial tests. Thus to improve the performance

of QGBC in these tests, we extended algorithm 4 to include cipher block chaining

(CBC). Mathematically, CBC is written as:

C[0] := e(k,M [0]⊕ V)

C[i+ 1] := e(k,M [i+ 1]⊕ C[i])

Where, C[i]: an indexed cipher text block, M [i]: an indexed plain text block,

K: the cipher key (here seed), V : A random initialization vector, where |V | =

|C[i]| = |M [i]|, e(K,M): the encryption function, QGBC in this case.

2.2.1 Test Implementation

After implementing quasigroup block cipher with cipher block chaining, tests were

repeated 20 times using a 256 bit random key (32, 1 byte seeds) each time. The

resulting encrypted data was tested for randomness using the NIST-STS test suite,

using the same parameters as before.

Table 2.4 compares the average P-value results from the NIST-STS test suite.

The quasigroup block cipher with CBC produced larger P-values than AES256

with CBC in almost all cases.

19

Test QG AES QG:AES 0x00:AES 0x00:QG 0xFF:AES 0xFF:QG

BF 0.48822 0.51274 95.22 0.52155 0.47478 0.50250 0.48499

CS-F 0.51939 0.50588 102.67 0.50527 0.49851 0.48968 0.48843

CS-R 0.52502 0.48904 107.36 0.49205 0.51126 0.47860 0.49353

FFT 0.50188 0.48532 103.41 0.46172 0.48304 0.49187 0.49118

FREQ 0.50190 0.47353 105.99 0.48847 0.47584 0.46486 0.48745

LR 0.50468 0.47228 106.86 0.47476 0.46822 0.46320 0.53736

Runs 0.54392 0.51232 106.17 0.53926 0.55004 0.51784 0.54467

Serial 1 0.53571 0.53584 99.98 0.53300 0.51054 0.54146 0.56533

Serial 2 0.51635 0.49246 104.85 0.49903 0.52310 0.47274 0.51659

Table 2.4: The table shows average P-values (over 20 runs) for quasigroup encryp-
tion as compared to AES256 encryption system when the same encryption key is
used for both cryptosystems with Cipher-Block-Chaining (CBC). Here data sets
were of a short variety, constructed from a sequence of 288 bytes.

One should noted that the variance of P-values between different test results

can be misleading. For this reason, the NIST-STS package provides a Success/ Fail

determination. Thus, a second evaluation of the AES and QGBC cryptosystems

(both in CBC mode) was also run. Here, source data sets of 295KB are encrypted

and then assessed by the STS.

One thousand (1000) encrypted data sets were produced from files consisting of

all binary zeros, all binary 0xFF’s, all ASCII letter E’s, and the Project Gutenberg

imprint of Beowulf [1]. Each of the 1000 runs used a unique 256 bit key and

initialization vector (IV), for a total of 1000 keys and IVs. With each of the

key/IV pairs, the four files were encrypted with AES-CBC and QGBC-CBC, for

a total of 8000 files.

The NIST-STS documentation tells us that when we evaluate the results we

must look at the proportion successful tests. The authors is suggested that the

confidence interval for our test should be defined by:

p̂± 3

√
p̂(1− p̂)

m

where p̂ = 1 − α and m is the magnitude of the sample [7]. We generated m =

20

1000 tests, and with the recommended α = 0.01, our confidence interval is .99±

3

√
ˆ.99(.01)
1000

= .99 ± 0.0094392 or in other words the proportion should lie above

0.9805670.

Table 2.5 compares the success rates for these assessments. Success rates of

AES and QGBC are comparable, both scoring in the 98 percentile or better,

indicating successful evaluation of both systems.

Test AES QGBC

0x00 E 0xFF Beowulf 0x00 E 0xFF Beowulf

AE 988 989 986 985 986 995 988 992

BF 992 990 994 991 991 991 986 991

CSF 990 993 990 994 988 992 996 992

CSR 994 989 991 994 986 994 994 994

FFT 990 988 989 986 984 981 990 980

FREQ 992 992 989 994 991 992 996 992

LR 991 987 991 989 990 988 987 991

Rank 989 989 996 989 994 995 982 995

Runs 994 988 993 991 987 993 989 993

Ser1 990 992 995 995 991 990 989 994

Ser2 986 993 990 987 984 993 991 988

Table 2.5: Successes per 1000 encryption tests. 295 KB of 0x00, ‘E’, 0xFF, and
the text of Beowulf[1] were encrypted with 1000 different keys via the Quasigroup
Block Cipher and AES, both in CBC mode, to demonstrate the ability to produce
randomized data sets for long input data sequences.

2.2.2 Waveform Analysis

Another means of evaluation is to visually inspect the waveform of audio data.

Here one compares the initial audio wave form to that of an encrypted waveform.

The source [18] and the encrypted audio waveforms are plotted in Figures 2.2 and

2.3 respectively.

Both plots demonstrate the waveforms using the same bit-rate per unit on the

horizontal axis. As we can see the quasigroup encryption system is very good at

distributing the amplitude of the audio signal over the entire time domain.

21

Figure 2.2: Plot of original input audio waveform

Figure 2.3: Plot of encrypted output audio waveform

22

Chapter 3

Storage

Optimization:Low-Overhead

Quasigroup representation

Recalling that the number of quasigroups of a certain order is given by TN(N −

1)!N !, we must store the entire quasigroup in memory, either as a set of N2

ordered triples, or as a N ×N matrix. Neither of these is very attractive, from a

transmission standpoint, nor from a memory consumption standpoint if we were

to implement the algorithm in hardware. In this chapter we explore the Low-

Overhead Quasigroup substitution cipher and its savings.

3.1 Low-Overhead Quasigroup (LOQG)

First, let us consider some group G, containing N = |G| elements. To abstractly

identify members, we will assign each an ordinal from (0...N − 1). Next consider

the mathematical operation c ≡ a + b mod N . In this operation we see that

the following axioms are met: closure, associativity, identity and invertibility.

Interestingly, this group also defines exclusive-or, when n = 2. The number of

combinations in this group (a, b) is N2 producing N results, a polyalphabetic

substitution system.

Next, let’s consider the following quasigroup definition which makes use of H

an randomly ordered tuple, such that each Hi is distinct as in (3.1).

23

H = (H0, H1, ..., Hn−1)

∀ i, j ∈ G, ∀ Hi ∈ G,

i = Hi < (i+ 1) = Hi+1,

i ̸= j ⇔ Hi ̸= Hj :

c ≡ Hi +Hj mod N

(3.1) Low Overhead Quasigroup defined

Because H is randomly ordered, this quasigroup still remains closed and in-

vertible, but has lost identity and associativity. The total number of permutations

for this model is equal to the total possible permutations of H, |H|! = N !.

Now, let us expand this model further by considering I also as an ordered

tuple, identical to H in all characteristics save it is shuffled in another manner.

Thus

c ≡ Hi + Ij mod N

remains closed and invertible, but the total number of permutations has increased

by a factor of the permutations of I, |I|! = N !, giving the total number of permu-

tations as (N !)2.

3.2 Defense of the LO-QG

A quasigroup matrix of order N requires the storage of a matrix of size N ×N . If

we consider each element to be one byte in size (N=256) then the matrix required

is of size 256x256, resulting in a storage requirement of 64 KB or N2 elements.

In order to reduce the amount of storage, we take the advantage of the fact that

if we set vij = xi + yj mod N , then a matrix preserves the quasigroup structure;

where xi and yj are row and column indices, respectively, and vij is the value in

the cell denoted by row yi and column xj. Now, one could shuffle the columns and

rows using Fisher-Yates[16] shuffling algorithm to generate a random quasigroup.

In essence, if we were to use the initial identity vij = xi + yj mod N and only

24

store the shuffled states of the indices of rows and columns then we can reduce

the storage requirement to 2N from N2, which is a savings of O(N2).

This comes at the cost that total number of quasigroups that can be created

by shuffling of rows and columns is (N !)2 (which is less than N !(N − 1)!TN as

TN > N,∀ N > 4). However, for all practical purposes for our implementation

this gives (256!)2 possibilities for the quasigroup, which is very large and still

provides practical security.

Table 3.1 is the initial starting matrix given by the identity vij = xi + yj

mod n. Table 3.2 shows a randomly shuffled state of the quasigroup matrix in

table 3.1. The top row and the left most column are the row and column indices

of the matrix. Table 3.2 shows the shuffled state of the indices from table 3.1.

Our storage savings arise from the fact that we can store only the initial identity

equation and the 2n shuffled indices for the entire quasigroup.

· 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Table 3.1: A un-shuffled quasigroup corresponding to vij ≡ xi + yj mod n

25

· 2 0 5 4 3 1

4 0 4 3 2 1 5

1 3 1 0 5 4 2

3 5 3 2 1 0 4

5 1 5 4 3 2 0

0 2 0 5 4 3 1

2 4 2 1 0 5 3

Table 3.2: A shuffled quasigroup resulting from xi and yj having been shuffled.
Note that while the values within the Quasigroup still conform to the vij ≡ xi+yj
mod n, but have lost the regularity of the un-shuffled reduced Quasigroup.

26

Chapter 4

Quasigroup Pseudo Random

Number Generator

Pseudo random number generators (PRNGs) are essential to almost all digital

systems. Random numbers are useful in games of chance: shuffling cards, altering

the behavior of video game “enemies”, etc. as well as for secure communica-

tions. PRNGs are deployed for creating digital signatures [19] [20], eliminating

network congestion [21] [22], securing RFID communication [23] and facilitating

cryptographic measures for key generation and even implementing stream ciphers.

Unlike a true random number generator, PRNGs are defined by an algorithm.

The US Government, through the National Institute of Standards and Tech-

nology (NIST), is tasked with researching and recommending random number

generators for use in governmental operations. The most recent recommendation

is based on SHA-1, a hashing feedback algorithm [5]. However, the security of

SHA-1 has been broken (theoretically), and NIST has recommended the move to

another platform [2]. Although not implemented in major cryptographic suites,

for the purpose of random number generation, NIST has identified SHA-2 and

more recently SHA-3 successors to SHA-1 [5][24]. Similarly, ARC4 is used in

many mobile devices, and it to has proven to be insecure [3].

Modern operating systems and development platforms offer PRNG algorithms

as an included service. A survey reveals that Java and OpenSSL both implement

27

the SHA-1 PRNG [25] [26] [27]; Microsoft.NET used SHA-1 prior to Windows 6.0

(Vista), but switched to an AES variant afterwards [28]; and Apple’s MacOS and

iOS devices rely on ARC4Random [29]. Software vendors tend to default to US

government recommendations as a baseline for cryptographic tools.

In this chapter we review the use of the QGBC as a pseudo random number

generator (PRNG). Additional we demonstrate an updated version of the QGBC

(see § 4.1), which prevents attackers from playing the QGBC algorithm in reverse

if the quasigroup is known. This also moves the QGBC algorithm further from

keeping the quasigroup secred. Further, as we consider the QGBC as a PRNG,

we will focus on the Low Overheade QGBC (LO-QGBC).

4.1 Updated Quasigroup Block Cipher

Central to the proposed PRNG is the Quasigroup Block Cipher, which we have

redefined as follows:

C1 := Ki · (Ki ⊕M1)

∀ j ∈ {2, 3, ..., 16},

Cj := Cj−1 · (Mj−1 ⊕Mj)

(4.1) Improved QGBC

Let C represent 128 bits cipher text (Cn a single byte in C), M 128 bits of

plain text (Mn a single byte from M), Ki a key byte, · is the quasigroup operation

and ⊕ is a bit-wise exclusive-or (XOR). Notice that we have added the additional

XOR operation in an attempt to prevent an attacker from playing the algorithm

in reverse if the quasigroup is known.

This algorithm is an improvement of the G&M stream cipher[4], as it allows

us to publish the quasigroup. For instance, if the quasigroup were publicly know

for the G&M stream cipher, an attacker could take any Cj and Cj−1 and compute

Mj, effectively recovering the plain text by replaying the algorithm in reverse. In

the improved algorithm each Cj is dependent not just on Cj−1 and Mj but Mj−1

28

as well. This prevents reverse auto-decryption, requiring the knowledge of a fully

decrypted word to decrypt the following word. As we are using the LO-QGBC the

remainder of the algorithm is shown in algorithm 4 but uses the LO-QG cipher

substitution from algorithm 5.

Data: H,I – LO-QG randomly ordered tuples

input : s – a single word from the Key

input : M – A block of plain text

output: C – A block of cipher text

C0 = Hs + IM0 mod N ;

for i = 1to|M | − 1 do

Ci = HCi−1
+ IMi

mod N ;

end
Algorithm 5: The LO-QG cipher

Figure 4.1, a S-P block diagram, depicts the one step in multi-byte key appli-

cation of the block cipher. In this diagram, the S blocks represent the quasigroup

· operation and the P block represents the bit rotation. An additional block, the

⊕ block, represents the exclusive-or substitution block.

Figure 4.1: Block Diagram: Multi-byte Key Quasigroup Block Cipher w/o cipher
block chaining

Provided to demonstrate the QGBC graphically, fig 4.1 depicts how the 128

bit plain-text message block M is subdivided into 16 equal size 8-bit bytes.In the

diagram we see that each of message byte is combined with the previous message

byte (⊕ block), and then polyalphabetically substituted (S-block) with either the

29

previous cipher text Cj−1 or the key Ki. Then in the P-block, the entire Ci′

sequence is rotated to become Ci, finally becoming C after the all bytes in K.

The diagram does not depict the looping behavior post P-block. Instead, the

cipher text C would be passed into an identical S-P network, along with the next

Ki.

4.2 Feedback Generator

The quasigroup block cipher allows us to generate 128 random bits at a time.

To generate more, we must construct a mechanism which is self-sustaining and

statistically random. For this case, we deploy a feedback generator. The following

steps occur in such a mechanism:

Select a random initialization vector (V);

Select a random key K;

Select a plain text (M);

Calculate O1 = QGBC(V ⊕ M,K) and report as first 128 bits;

for ∀ i > 0, i ∈ Z do

Oxi = QG(Ox−1 ⊕ M,K);

Report as ith 128 bits;

end
Algorithm 6: QGBC PRNG Feedback Generator

Here QGBC(M,K) is the multi-byte quasigroup block cipher. This algorithm

is depicted in figure 4.2. This feedback generator takes a random seed and initial-

ization vector, and is self-sustaining from this point on.

30

Figure 4.2: Block Diagram: Feedback Generator for self sustaining PRNG

Figure 4.2 demonstrates the process of feeding back the previously generated

random sequence Ox−1, while cipher-block-chaining it to the input M . To limit

the amount of data required to seed our QGBC-PRNG system, we can choose

M = (K0, K1, ..., K15) and V = (K16, K17, ..., K31).

Nowadays, 256 bits of random data are simple to come by. We can use SHA-

256 [5] as a source method to combine information such as the current time in

seconds, and other data from the source system, like MAC addresses, memory

consumption, TCP/IP address, etc. For the best hash possible, one should acquire

at least 256 bits of source data.

4.3 Processing Time

First let us consider the cost in operations for the LO-QGBC, in this case modeling

a modern CPU with a random-access memory. We will define the following costs:

M – Cost of memory retrieval
O – Cost of single byte · and ⊕
R – Cost of 128-bit rotation (p(C, x))
O⊕ – Cost of 128-bit ⊕

Modern processors can calculate m = a + b mod 256 in a single step, for this

reason we consider · and ⊕ to have equivalent cost. Thus recurrence for the

31

quasigroup block cipher is given as:

T (q(K,M)) = 2|K||M |(M +O) +R

Substituting |K| = 32, |M | = 16 we see:

T (q(K,M)) = 210(M +O) +R

Now let us consider the feedback generator that incorporates cipher block

chaining, thus the recurrence for each output block C becomes:

T (q(K,M)) = 2|K||M |(M +O) +R +O⊕

= 210(M +O) +R +O⊕

As one may see, the time to produce each C is fixed, giving T (C = q(K,M)) =

O(c). Further the recurrence to produce m bits is:

T (C)m

8|C|
= O(

cm

27
) = O(c′m) = O(m)

4.4 Evaluation

Common practice has the researcher compare the output of one PRNG to other

well established PRNG systems. Again, we will use the NIST-STS this purpose.

Each of the STS tests focuses on a different aspect of randomness through out

the input sequence. Weighing any one test over the others could be a mistake,

instead, some balance between the evaluations should be sought. The STS team

points to the reason for this: First, they identify a Type I error (denoted as α,

also known as the level of significance for a given test. The team chose P-values of

0.01 as significant for cryptographic work. Second, are Type II errors which they

denote as β. β errors occur when a sequence is falsely identified as random, and

there is no fixed value for this. One approach to reducing β errors is to elevate

the significance of α, another is to increase the breadth of testing [30] [17].

32

4.4.1 Evaluation Process

Preparation for evaluation QGBC-PRNG involved selecting a set of well estab-

lished PRNG systems. For comparison, we chose arc4random from Free BSD/MacOS

X [29], Microsoft.Net’s RandomNumberGenerator [31], OpenSSL RAND [27], and

Java’s SecureRandom [26]. These PRNG systems were chosen because each is well

accepted by industry, including all major modern OS platforms (MacOS X, Linux,

Windows, and Java). Further, RAND and SecureRandom are both implemented

to conform with FIPS 180-4 [5], in which the NIST has specified the minimum

requirements, for secure random number generation in US government cryptosys-

tems. It should be noted that the system function, RandomNumberGenerator,

was called on a system running Windows 7, and therefore utilized an AES based

PRNG, instead of the SHA-1 system utilized in Microsoft systems prior to Mi-

crosoft Vista [28].

For each of the five PRNGs, we generated one-thousand (1000) sequences

of random data, each containing 512 kilobytes (222 bits). For each of these five-

thousand files, we generated unique random seeds, so that each run would produce

a unique sequence of data.

After generating the random outputs, each file was passed through the NIST-

STS system. Here again, we used the same settings that were used when testing

the QGBC as cipher (see tbl. 2.1).

4.4.2 Evaluation Results

We have captured the success rate of each of the five PRNG systems tested in

Table 4.1. QGBC-PRNG performs in the 99th percentile for all of the tests evalu-

ated. Just as the STS performs statistical tests, the results should be considered

statistically as well [17].

Any system testing in this range 980-1000 is considered “acceptably random”,

based on the confidence interval identified by the NIST team[17]. Review of

the test results showed that the commercially available PRNG systems pass the

NIST-STS test suite as well, which should be expected, as these systems have been

33

QGBC-PRNG ARC4 OSSL Java MS.Net

AE 990 986 987 990 991

BF 990 993 988 993 997

CSF 985 990 985 988 989

CSR 987 993 987 986 989

FFT 993 985 983 988 987

FREQ 986 989 985 990 990

LR 995 987 995 989 994

Rank 994 988 992 992 989

Runs 986 986 995 991 990

Ser1 990 984 988 988 989

Ser2 988 984 988 985 993

Table 4.1: NIST-STS Test Success Rates for 1000 Samples

vetted through rigorous use. Therefore, it should be noted that even though the

RC4 and SHA-1 based systems have been broken, they are still capable of passing

the statistical tests. Additional inspection is required to demonstrate strength

(see Security below). Also, cryptoanalysis of the QGBC/QGBC-PRNG should be

performed, and appears in chapter 5.

4.5 Autocorrelation

Autocorrelation proves to be another successful examination of the randomness

of a sequence. Like the Cumulative Sums test from the NIST-STS suite, auto-

correlation works best when we evaluate adjusted bits (i.e. 0 transforms to -1).

While performing the evaluation, we may observe any adjusted sequence S. Thus

34

autocorrelation may be defined by the following:

n = |S|

1 ≤ i ≤ n :ri =
i∑

j=1

Sj + Sn−j

n+ 1 ≤ i ≤ 2n :ri =
n−i∑
j=1

Sj + Sj+(i−n)

Autocorrelation procedure produces 2n data points. To examine randomness, we

should consider the ratio between the number of data points n = |S| and each

correlation ri. We examine the autocorrelation results for 213 bits from QGBC-

PRNG output (fig. 4.3a), PCM data from sample audio file (fig. 4.3b) [18], a

cross correlation between two QGBC-PRNG outputs (fig. 4.3d), and an OTP

encryption of the sample audio using the QGBC-PRNG output as the pad (fig.

4.3c).

Examination of an autocorrelation plot should show a single spike at n, where

the sequence is directly correlated with itself. Peaks other than the n-spike indi-

cate higher degrees of correlation showing repeating patterns, and is expected.

Our results show that the QGBC-PRNG output (fig. 4.3a) has a plot of a

random data set. Meanwhile, sample audio PCM data does not (fig. 4.3b), and

shows higher degrees of correlation based on locality. However, once we apply an

OTP encryption to the sample audio, with the QGBC-PRNG output, we see that

this sequence now matches the expected pattern for random data. This would

suggest that we have inserted entropy into the audio sequence, providing for an

acceptable encryption.

Finally, we should consider cross-correlation between outputs from the QGBC-

PRNG with different seeding. Whenever an OTP encryption is applied, it is es-

sential to use very different random sequences for each encryption application.

This is an issue particular to OTP cryptosystems, as comparisons between runs

with identical pads, will render both the pad and plain text. Figure 4.3d shows

35

(a) QGBC-PRNG Output (b) Sample Audio PCM Data

(c) Encrypted Audio (d) Cross-Correlation

Figure 4.3: Autocorrelation Plots

that the cross-correlation between two QGBC-PRNG output has very low corre-

lation, and shows no n-spike, which is also to be expected, given the two sets do

not correlate.

4.6 Security of QGBC-PRNG

Let us consider 8-bit words (n = 256), and a 32 word (256 bit) key (k = |K| = 32)

as input to a quasigroup block cipher. The probability of correctly selecting Mj

given Cj−1 and Cj is greater than or equal to 1 : 216. Also, the probability of

correctly selecting M1,M2, ...Mj is given C1, C2, ..., Cj is greater than or equal to

1 : 216(j−1). Further, using bit rotation (found in the QGBC cipher) and multiple

Ki applications, guarantees that the probability of correctly selecting any one byte

in the sequence to be 1 : 216(j−1). With a block size of 16 bytes, j = 16, thus the

probability is greater 1 : 2240 for correctly selecting the sequence.

When cipher block chaining is used (as in the case of the feedback generator),

36

the probability of correctly selecting a sequence of l blocks is greater than 1 :

216(j−1)l, thus an output sequence of 32 bytes has a probability of 1 : 2480, a

sequence of 64 bytes, 1 : 2960, and so forth. This leads us to conclude that an

attacer would rather attempt to attack the input seed which has 256 bits. We can

conclude that the QGBC-PRNG maximal strength is 2256, making it key efficient.

37

Chapter 5

Cryptanalysis of the QGBC

Vetting of a cryptosystem requires review through multiple forms of analysis.

In this chapter, we attack the QGBC through Linear Crypt Analysis § 5.1 and

then through Algebraic Analysis § 5.3. Through these means we identify several

problems with the QGBC system and then propose solutions to eliminate these.

5.1 Linear Cryptanalysis

Linear cryptanalysis examines relationships between plain text and cipher text,

with the goal of determining affine approximations of the cipher [32]. First iden-

tified as a method to assess the FEAL cipher by Matsui and Yamagishi [33] and

later applied to the DES cipher [6]; linear cryptanalysis uses the probability of

linear combinations of message and cipher text to attack individual rounds and

by extension the cipher as a whole.

When we apply a linear cryptanalysis, we compute the probability of every

combination of input M and output C bits, for every possible input M and key

K. For simplicity, let us consider n = |M | = |C| and |K| = k, which represent the

size in bits of M , C, and K. The number of linear combinations from M and C is

then 22n − 2n+1, while the number of inputs M and K is 2nk. Overall we see the

complexity of exhaustively performing a linear analysis would be O(2kn
2
). Based

on the exponential nature of the tabulation, the analyst must limit his/her scope

to some portion of the cipher and then develop a strategy to attack the cipher as

38

a whole.

As a straw man let us consider an order 4 substitution matrix such as the one

shown in :

0 1 2 3

0 2 3 0 1

1 0 1 2 3

2 1 2 0 3

3 0 1 3 2

Table 5.1: Substitution matrix with odd-bit bias

If we consider c0 ⊕ m0 = 0 (least order bits of C and M) we see it has p = 3
4
;

clearly demonstrating a bias on the odd bit. With this knowledge, the analyst

can pass along probability to subsequent passes, tracking the actions on the bit

and formulate an overall approximation[32].

5.2 Linear Cryptanalysis of QGBC

When we apply linear cryptanalysis to the QGBC cipher, we will use it to help

identify minima for the cipher’s order. To this end, we construct linear combina-

tions of plain text bits and cipher text bits. Although the past implementations

of QGBC used 128 bit blocks with 256 bit keys, and quasigroups of order 256,

the number of linear combinations is beyond the grasp of our available computa-

tional power, as this would require reviewing (2256− 2128) linear combinations for

each of the 2384 results, or (2640 − 2512) comparisons! For this reason we we will

review straw-man versions of the QGBC to review the effect of alterations to S()

and P (), by varying the quasigroup choice and rotational distance. We’ve used a

shorthand to describe the quasigroup being evaluated.

In the following sections we will explore seven experiments. The 1st experiment

(exp.) will be a quasigroup order 2, the 2nd a quasigroup defined by addition

modulo 4, the 3rd and 4th – quasigroups order 4 that have been randomized and

shifted by two bits, the 5th uses addition modulo 4 but rotations that are not

39

two bits in distance, the 6th uses the quasigroup from experiment 4 but shifts

by distances other than two bits and finally in the 7th experiment, we examine a

single round of a quasigroup order 16.

5.2.1 Exp. 1: QG order 2

We begin analysis with a divide and conquer approach [32]. Hence, first consider

a trivial QGBC cipher, with the following conditions:

• N = 2

• |M | = 4

• Single round of the substitution function S()

0 1

0 0 1

1 1 0

Table 5.2: Quasigroup N = 2, similar to exclusive-or

Since the quasigroup is order is N = 2, the size of each word is a single bit

(|M |
|log2N | =1). We are able to perform an exhaustive examination, capturing all K,

M and C. Next we count the the linear combinations of plaintext and ciphertext

bits which “sum” to zero. We see that certain combinations have probability

p = 1, while the remainder have probability p = 1
2
. The combinations with high

probability are shown in (5.1).

∀i, j ∈ (0, 1, 2, 3), i ̸= j;

ci ⊕ cj ⊕mi ⊕mj = 0; p = 1

c0 ⊕ c1 ⊕ c2 ⊕ c3 ⊕m0 ⊕m1 ⊕m2 ⊕m3 = 0; p = 1

(5.1) High probability linear combinations for N = 2 QGBC

The results show that if we consider a pair of any two input bits, with the

corresponding output bits, these form a balanced linear combination, in all cases.

40

From this we interpret this to be a trivially weak cryptosystem [32]. We will

investigate the cause of this later in the thesis, via algebraic analysis.

5.2.2 Exp. 2: Addition Modulo 4, shift 2

Next, we will examine a QGBC system of order 4. Here each word is now rep-

resented with two bits. Consequently +(mod4) (denotes addition mod 4) is not

identical to bitwise ⊕ as was the case with N = 2 QGBC.

• N = 4, |K| = 8, |M | = 8, w = 4

• P (C, 2) performs a left shift by a whole word (2 bits)

• 4 rounds of the S() and P () functions

• Quasigroup is defined by +(mod N) seen in table 5.3

Through an exhaustive comparison of all K, M and C for this system, tabula-

tions show that an “odd bit” problem appears. In every message word, there is an

independent, 1:1 correlation (p = 1) of low order bits in the corresponding cipher-

text word. The “odd bit” issue occurs because there is always an even number of

additions applied to each word, causing the low-order bit to never fluctuate.

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 5.3: Quasigroup order N = 4, defined by +(mod N)

5.2.3 Exp. 3: Randomized QG ‘A’, shift 2

For this sampling, we again perform an exhaustive combination of all K, M , and

C, but this time, the quasigroup is not defined by +(mod N) but by a randomized

Latin square, which does not reduce to +(mod N) [34][35], and is defined by the

Latin square specified in table 5.4.

41

• N = 4, |K| = 8, |M | = 8, w = 4

• P (C, 2) performs a left shift by a whole word (2 bits)

• 4 rounds of the S() and P () functions

0 1 2 3

0 1 2 0 3

1 2 1 3 0

2 0 3 1 2

3 3 0 2 1

Table 5.4: Quasigroup with poor linear analysis performance

We see that this configuration also fails linear analysis based on the high

probability linear combinations, for brevity, three of which shown in (5.2).

m0 ⊕m1 ⊕m3 ⊕m5 ⊕m7 ⊕ c2 = 0

m1 ⊕m2 ⊕m4 ⊕m6 ⊕ c2 ⊕ c3 = 0

m1 ⊕m5 ⊕m6 ⊕ c1 ⊕ c5 ⊕ c6 = 0

(5.2) p = 1 Combinations for N = 4, QG→ +(mod N)randomized

5.2.4 Exp. 4: Randomized QG ‘B’, shift 2

Like Example A, Example B uses a randomized quasigroup that does not reduce

to +(mod n), but is defined by table 5.5.

• N = 4, |K| = 8, |M | = 8, w = 4

• P (C, 2) performs a left shift by a whole word (2 bits)

• 4 rounds of the S() and P () functions

42

0 1 2 3

0 1 2 0 3

1 2 3 1 0

2 0 1 3 2

3 3 0 2 1

Table 5.5: Quasigroup with improved linear analysis performance

This configuration resulted in 24,954 linear combinations with p = 1
2
, a maxi-

mum p = 5
8
and a minimum p = 3

8
and average p = 0.5± 0.0058.

5.2.5 Exp. 5: Addition modulo 4, shift ̸= 2

In this configuration, we once again use a quasigroup based equivalent to +(mod N),

but to counter the “odd-bit” problem, we perform the sequence S(), P (C, 1), S(), P (C, 3), S(),

P (C, 3), S().

• N = 4, k = 8, |M | = 8, w = 4

• P (C, r), r = 1, 3, 3 performs a left shift by 1 then 3 then 3 again

• 4 rounds of the S() and P () functions

This solution completely eradicated the “odd-bit” problem as well as removing

all p = 1/p = 0 linear combinations. Instead we find that 55,511 of 216 linear

combinations have p = 1
2
. Of the remainder the average probability is p = 0.5 ±

0.0138 with a maximum of p = 0.0688 and 0.344.

5.2.6 Exp. 6: QG ‘B’, shift ̸= 2

For this experiment we revisited the Example B Latin square, but this time used

the 1-3-3 rotation pattern used in the previous example. The following are the

configuration data:

• N = 4, k = 8, |M | = 8, w = 4

• P (C, r), r = 1, 3, 3 performs a left shift by 1 then 3 then 3 again

43

• 4 rounds of the S() and P () functions

• Quasigroup defined in tbl. 5.5

In this case we discovered 50,798 linear combinations had p = 1
2
, the minimum

probability p = 3
8
and a maximum probability of p = 0.563 and an average

p = 0.5±0.0101. From these results we conclude, in conjunction with identification

of the “odd bit” problem, we can see that P () should not rotate on the word

boundary.

5.2.7 Exp 7. QG Addition modulo 16

In the final exhaustive linear analysis experiment, we evaluate an +(mod N), N =

16 quasigroup. Because of the limitation of processing capabilities, we use a block

of 8 bits, but now with only two words.

• N = 16, k = 8, |M | = 8, w = 2

• Single round of S()

We see that a single linear combination m0 ⊕m4 ⊕ c0 ⊕ c4 = 0 has p = 1, i.e.

suffers the “odd bit” problem. We can speculate that with P () steps that rotate

by less than a whole word will remove this issue. With this experiment concluding

the linear analysis, let us now look to algebraic analysis of the QGBC.

5.3 Algebraic Cryptanalysis

Algebraic cryptanalysis allows us to examine the QGBC algorithm directly, iden-

tifying possible defects introduced by the mathematical interaction. We will ex-

amine the N = 2 quasigroup and also larger order quasigroups which have four

words per block.

5.3.1 Algebraic Analysis QGBC N = 2

Algebraic analysis of the QGBC system can lead us to an understanding of the

high probability of a linear combination found using exhaustive linear analysis.

44

Let us first consider QGBC order 2. Here S becomes a bitwise XOR or Not XOR,

for simplicity we will consider:

v = w

S(C,M,K, i) :

c0 = ki ⊕ (m1 ⊕ kw−i−1)

∀1 ≤ j < w : cj = cj − 1⊕ (mj−1 ⊕mj)

Previously, there was an assumption that · was neither associative nor dis-

tributive over ⊕. However, we know that ⊕ is associative. Thus if we expanded

S() we see:

k′ = k0 ⊕ k1 ⊕ . . .⊕ kn−1

∀0 ≤ j < w : cj = k′ ⊕mj

This would indicate that we have introduced a single bit of randomness in the

system, hence the system is trivially weak.

5.3.2 Algebraic Analysis QGBC N > 2

As long as a QGBC system is of order greater than 2 and the quasigroup does

not reduce to a bitwise XOR group, we can assume that · is not distributive over

⊕ . Thus, let us consider a worst case scenario, where there are 4 words in the

key and 4 words in the block (this could represent four 64-bit words, for 256 bits

in the key and block, or our four 2-bit words for an 8 bit block form before). To

further review a worst-case, consider that each word in the plain text is the same

and represented by the term a. With these conditions, the cipher collapses to the

following:

Note: each additional apostrophe indicates an additional round of the cipher;

since there are four words in the key, four rounds are applied. From this, we can

infer some characteristics about our key. Specifically that the following hold true

(see (5.4)), else an input of a = 0 would result in a trivially simple cipher.

45

∀ 0 ≤ j < 4,mj = a :

cj = k0 · (k3 ⊕ a)

c′j = k1 · (k2 ⊕ P (k0 · (k3 ⊕ a)))

c′′j = k2 · (k1 ⊕ P (k1 · (k2 ⊕ P (k0 · (k3 ⊕ a))))

c′′′j = k3 · (k0 ⊕ P (k2 · (k1⊕

P (k1 · (k2 ⊕ P (k0 · (k3 ⊕ a)))))

(5.3) Expansion of the QGBC block cipher

k2 ̸= P (k0 · k3)

k1 ̸= P (k1 · (k2 ⊕ P (k0 · k3)))

k0 ̸= P (k2 · (k1 ⊕ P (k1 · (k2 ⊕ P (k0 · k3)))

(5.4) Inequalities to strengthen QGBC

Further observation shows an “identical word” problem that appears when the

words of M are identical to the words of C are also identical. This would be an

obvious attack on the cipher, and point to a plain text attack based on such a

construction. Thus the ability to attack the cipher would remain on the strength

of the problem described by c′′′j .

46

Chapter 6

Improving the QGBC

Now that we have identified issues such as the “identical word” problem, we should

suggest alternatives that solve this. In section § 6.1, below, we do just this. Also

we extend this improvement and suggest a high-performance variant of the QGBC

suitable for FPGA implementation in § 6.1.1.

6.1 Improvement of the QGBC

If we make a change to the QGBC cipher we see that we can counter the “iden-

tical word” problem. Consider a construction such as show in (6.1). With this

configuration we se a single pass improvement in shown in (6.2).

S(C,M,K, i) :

C0 = K(|K|−1) ⊕ (Ki ·M0)

∀ 1 ≤ j < |M | : Cj = K(|K|−1−j mod |K|) ⊕ (Cj−1 ·Mj)

(6.1) Improved QGBC Substitution Function

The first round (C ′
i) shown in (6.2) shows that we have eliminated the “iden-

tical word” problem, and additionally, we have introduced more of the key into

each pass of the cipher. Reviewing the expression for C ′
2, we see that we have

introduced 2k bits of the key (or their inverse) into the calculation, which in sub-

sequence rounds affects every bit in the block. In fact, by round 2 (C ′′
0) we have

47

C ′
0 = K3 ⊕ (K0 · A)

C ′
1 = K2 ⊕ ((K3 ⊕ (K0 · A)) · A)

C ′
2 = K1 ⊕ ((K2 ⊕ ((K3 ⊕ (K0 · A)) · A)) · A)

C ′
3 = K0 ⊕ ((K1 ⊕ ((K2⊕

((K3 ⊕ (K0 · A)) · A)) · A)) · A)

C ′′
0 = K3 ⊕ (K1 · C ′

1)

= K3 ⊕ (K1 · (K2 ⊕ ((K3 ⊕ (K0 · A)) · A)))

...

(6.2) Single pass of improved QGBC w/ full-word rotation distance

successfully integrated bits (or their inverse) from every word in the key into every

word of the cipher text.

6.1.1 Application of the Improved QGBC

Although the improved QGBC substitution function 6.1 may be applied in general,

a special case is particularly interesting, where the QGBC is implemented in Field

Programable Gate Array (FPGA) hardware. While some FPGAs possess memory

components [36], buffers large enough to hold 64 KB[37][15] typically require off-

chip memory to keep the unit price under $5.00US[38]. The low-overhead QGBC

(LO-QGBC) [39] provides an alternative, the number of clock cycles to implement

the algorithm, as-is, is not competitive with AES in terms of clock-cycles per

encrypted block [40][41].

Instead, consider the improved QGBC in a high-performance configuration

(QGBC-HP), with the following parameters:

48

Quasigroup Order N = 264

Quasigroup Definition Addition Modulo N

Key Size 256 bits

Block Size 256 bits

Words per Block 4

Number of Rounds 4

S(C,M,K, i) :

C0 = K(|K|−1) ⊕ (Ki +M0)

∀ 1 ≤ j < |M | : Cj = K(|K|−1−i mod |K|) ⊕ (Cj−1 +Mj)

(6.3) QGBC-HP Substitution function

With this we can express S() as in (6.3). The entire cipher is pictured via

block diagram in fig. 6.1, where P57 a 57 bit left rotation and P83 indicates an 83

bit left rotation. The first S block is expanded to show the internals, and each

subsequent S block is identical.

49

S

+ + + +

�

�

�

� K0

K1

K2

K3

M0 M1 M2 M3

K0

C0 C1 C2 C3

64 64 64 64

64

64

64

64

256

P57

256

S

P83

S

P83

S

256

256

256

256

256

K1

K2

K3

256

64

64

64

64

M

C

K 256

K
256

K
256

K
256

Figure 6.1: QGBC-HP Cipher Network

With this specification, an FPGA solution requires a total of 512 bits of mem-

ory divided into two register banks, K (Key, 256 Bits) and A (Accumulator, 256

bits, receives the initialization block(IV) as well as Message text), a 64-Bit Adder,

64-Bit XOR, M -Bit XOR (for use in loading the Accumulator, assuming the data

bus is M bits wide and less than 64 and is a divisor of 256), inversion and shift

logic. Each round may be accomplished in 4 clock cycles (executing the XOR

and Addition in a single clock) followed by a single clock to rotate bits. The core

50

processing for the QGBC-HP algorithm can be performed in 19 clocks, plus the

overhead of read-in/read-out. The algorithm for this process is show in Algorithm

7.

Data: A : Accumulator Register 256 bits
Data: K : Key Register 256 bits

/* Load the Key */

K ← data bus ; /* 256/M clocks */

/* Load the IV */

A← data bus ; /* 256/M clocks */

while Encrypting Data do
/* Perform the Cipher Block Chaining Step while loading the

message text */

A = A ⊕ ← data bus;
/* 256/M clocks */

/* Execute 4 rounds of the block cipher */

A0 = K3 ⊕ (K0 + A0) ; /* 1 clock */

A1 = K2 ⊕ (A0 + A1) ; /* 1 clock */

A2 = K1 ⊕ (A1 + A2) ; /* 1 clock */

A3 = K0 ⊕ (A2 + A3) ; /* 1 clock */

for i = 1 to 3 do
if i = 1 then

left rotate A by 57 ; /* 1 clock */

else
left rotate A by 83 ; /* 1 clock */

end

A0 = K3 ⊕ (Ki + A0) ; /* 1 clock */

A1 = K2 ⊕ (A0 + A1) ; /* 1 clock */

A2 = K1 ⊕ (A1 + A2) ; /* 1 clock */

A3 = K0 ⊕ (A2 + A3) ; /* 1 clock */

end

data bus ← A ; /* 256/M clocks */

end
Algorithm 7: QGBC-HP FPGA Algorithm

6.1.2 Experimental Evaluation of QGBC-HP

As with previous versions of the QGBC, the high performance variant has been

implemented in software and evaluated with the NIST-STS test suite[7]. As rec-

51

ommended we encrypted the first 50 KB of Beowulf[42]; creating 1000 samples,

each with a randomly generated key and IV. All of the samples were passed

through the analysis suite and PASS/FAIL results were tabulated (see tbl. 6.1).

Based on the suggested conifdence interval, we see that the QGBC-HP algorithm

passed all of the recommended statistical tests for randomness.

NIST-STS Test Success Rate Result

Approximate Entropy 980/1000 PASS

Block Frequency 991/1000 PASS

Cumulative Sums-Forward 994/1000 PASS

Cumulative Sums-Reverse 998/1000 PASS

FFT 991/1000 PASS

Frequency 994/1000 PASS

Longest Run 991/1000 PASS

Rank 991/1000 PASS

Runs 990/1000 PASS

Serial 1 992/1000 PASS

Serial 2 988/1000 PASS

Table 6.1: QGBC-HP NIST-STS Results

52

Chapter 7

Conclusion

Through this exploration of quasigroups in cryptography, we have identified a

novel use of quasigroups, where we use polyalphabetic substitution to formulate

a block cipher. To this end, we have demonstrated the QGBC as a means of

enciphering plain text, as well as generating random data for use in an OTP

stream cipher. We have evaluated our cryptosystem with industry standard tools,

and performed algebraic and linear cryptanalysis of the system. Each time we have

found improvements and implemented them to create a stronger cryptosystem.

While work on this cryptosystem may never be considered complete, we have

demonstrated an array of uses and validations. Further work in this area would

be worthwhile, exploring projects such as:

Hardware test implementations Establish a ratio of throughput to gate count

in actual hardware.

Software throughput evaluation Benchmark the software data throughput

Improved QGBC with other cyrptosystems such as 3DES, Blowfish, AES

and others.

Additional cryptanalysis Further attempts with Linear Cryptanalysis can be

explored as well as Differential Cryptanalysis, and other techniques.

The merit of further research in the QGBC cryptosystem will continue to

53

establish the quality of the system and prove the cryptosystem to be a viable

means of protecting data.

54

References

[1] F. B. Gummere, Beowulf. PROJECT GUTENBERG, 1997, vol. 981.

[2] NIST, “Nist brief comments on recent cryptanalytic attacks on secure hashing
functions and the continued security provided by sha-1,” 2004.

[3] S. Paul and B. Preneel, “A new weakness in the rc4 keystream generator and
an approach to improve the security of the cipher,” Fast Sfotware Encryption
2004 : Lecture notes in Computer Science, pp. 245–259, 2004.

[4] D. Gligoroski and S. Markovski, “Cryptographic potentials of quasigroup
transformations.”

[5] NIST, “Secure hash standard (fips 180-4),”
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, March 2012.
[Online]. Available: http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf

[6] M. Matsui, “Linear cryptoanalysis method for des cipher,” in EUROCRYPT,
1993, pp. 386–397.

[7] NIST, “A statistical test suite for the validation of random number
generators and pseudo random number generators for cryptographic
applications (fips 800-22),” April 2010. [Online]. Available: http:
//csrc.nist.gov/groups/ST/toolkit/rng/documentation software.html

[8] M. Satti and S. Kak, “Multilevel indexed quasigroup encryption for data and
speech,” IEEE Transactions on Broadcasting, pp. 270–281, 2009.

[9] J. Rosenhouse and L. Taalman, Taking Sudoku Seriously - The Math Behind
the World’s Most Popular Pencil Puzzle. Oxford University Press, USA,
2011.

[10] A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and
Error-Correction. John Wiley & Sons, 2011.

[11] F. Miller, Telegraphic code to insure privacy and secrecy in the transmission
of telegrams. C.M. Cornwell, 1882.

[12] G. S. Vernam, “Secret signaling system - u.s. patent 1,310,719,” US Patent,
Sept 1919.

[13] ——, “Cipher printing telegraph systems for secret wire and radio telegraphic
communications,” Journal of the IEEE, vol. 55, pp. 109–115, 1926.

[14] S. Markovski, D. Gligoroski, and L. Kocarev, “Unbiased random sequences
from quasigroup string transformations,” Fast Software Encryption: 12th In-
ternational Workshop, pp. 163–180, 2005.

55

[15] M. Battey and A. Parakh, “An efficient quasigroup block cipher,” Wireless
Personal Communications, vol. 73, no. 1, pp. 63–76, 2013.

[16] R. Fisher and F. Yates, Statistical tables for biological, agricultural and med-
ical research. Oliver and Boyd, 1953.

[17] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, D. Banks,
A. Heckert, J. Dray, S. Vo, A. Rukhin, J. Soto, M. Smid, S. Leigh, M. Vangel,
A. Heckert, J. Dray, and L. E. B. Iii, “A statistical test suite for random and
pseudorandom number generators for cryptographic applications,” 2001.

[18] unknown, “Waveform audio format - 11,025 hz 16 bit pcm audio file,”
http://www.nch.com.au/acm/11k16bitpcm.wav, 2014. [Online]. Available:
http://www.nch.com.au/acm/11k16bitpcm.wav

[19] J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov, “Provably
secure timed-release public key encryption,” ACM Trans. Inf. Syst.
Secur., vol. 11, no. 2, pp. 4:1–4:44, May 2008. [Online]. Available:
http://doi.acm.org.leo.lib.unomaha.edu/10.1145/1330332.1330336

[20] M. Naor and O. Reingold, “Number-theoretic constructions of efficient
pseudo-random functions,” J. ACM, vol. 51, no. 2, pp. 231–262, Mar.
2004. [Online]. Available: http://doi.acm.org.leo.lib.unomaha.edu/10.1145/
972639.972643

[21] J. Lee and I. Yeom, “Avoiding collision with hidden nodes in ieee 802.11
wireless networks,” Communications Letters, IEEE, vol. 13, no. 10, pp. 743
–745, october 2009.

[22] V. Bharghavan, “Macaw: A medium access protocol for wireless lan’s,” in
Proc. ACM SIGCOMM Conference (SIGCOMM ’94), august 1994, pp. 212–
225.

[23] Q. Tong, X. Zou, and H. Tong, “A rfid authentication protocol based on
infinite dimension pseudo random number generator,” in Computational Sci-
ences and Optimization, 2009. CSO 2009. International Joint Conference on,
vol. 1, april 2009, pp. 292 –294.

[24] NIST, “Nist selects winner of secure hash algorithm (sha-3) competition,”
http://www.nist.gov/itl/csd/sha-100212.cfm, October 2012. [Online]. Avail-
able: http://www.nist.gov/itl/csd/sha-100212.cfm

[25] S. I. Inc., “Cryptospec.html – sha1prng,”
http://docs.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html#AppA.
[Online]. Available: http://docs.oracle.com/javase/1.4.2/docs/guide/
security/CryptoSpec.html$\#$AppA

56

[26] Oracle/Sun, “Secure-random,”
http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html,
2014. [Online]. Available: http://docs.oracle.com/javase/6/docs/api/java/
security/SecureRandom.html

[27] OpenSSL.org, “rand(3),”
http://www.openssl.org/docs/crypto/rand.html, 2014. [Online]. Available:
http://www.openssl.org/docs/crypto/rand.html

[28] I. Microsoft, “Cryptgenrandom function,”
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379942%28v=vs.85%29.aspx,
2014. [Online]. Available: http://msdn.microsoft.com/en-us/library/
windows/desktop/aa379942\%28v=vs.85\%29.aspx

[29] BSD, “Library functions manual – arc4random(3),”
http://developer.apple.com/library/ios/#documentation/System/
Conceptual/ManPages iPhoneOS/man3/arc4random.3.html, 2014. [Online].
Available: http://developer.apple.com/library/ios/$\#$documentation/
System/Conceptual/ManPages\ iPhoneOS/man3/arc4random.3.html

[30] J. Soto, “Statistical testing of random number generators,” NIST, Tech. Rep.,
1999.

[31] Microsoft, “Random-number-generator,”
http://msdn.microsoft.com/en-us/library/
system.security.cryptography.randomnumbergenerator.aspx, 2014. [On-
line]. Available: http://msdn.microsoft.com/en-us/library/system.security.
cryptography.randomnumbergenerator.aspx

[32] H. M. Heys, “A tutorial on linear and differential cryptanalysis,”
Cryptologia, vol. 26, no. 3, pp. 189–221, 2002. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/0161-110291890885

[33] M. Matsui and A. Yamagishi, “A new method for known plaintext attack of
feal cipher,” in Lecture Notes in Computer Sciences, Advances in Cryptology,
proceedings of EUROCRYPT’92, 1992, pp. 81–91.

[34] J. H. van Lint and R. M. Wilson, A Course in Combinatorics. Cambridge
University Press, 1992.

[35] B. D. McKay and I. M. Wanless, “On the number of latin squares,” Annals
of Combinatorics, vol. 9, no. DOI 10.1007/s00026-005-0261-7, pp. 335–344,
2005.

[36] XILINX, “What is an fpga?” March 2014. [Online]. Available:
http://www.origin.xilinx.com/fpga/

57

[37] M. Battey and A. Parakh, “Efficient quasigroup block cipher for sensor net-
works,” in ICCCN, 2012, pp. 1–5.

[38] D.-K. Corporation, “Fpga catalog,” March 2014. [Online]. Avail-
able: http://www.digikey.com/product-search/en/integrated-circuits-ics/
embedded-fpgas-field-programmable-gate-array/2556262

[39] M. Battey and A. Parakh, “A quasigroup based random number generator
for resource constrained environments,” IACR Cryptology ePrint Archive,
vol. 2012, p. 471, 2012.

[40] M. Liberatori, F. Otero, J. C. Bonadero, and J. Castineira, “Aes-128 cipher.
high speed, low cost fpga implementation,” in Programmable Logic, 2007.
SPL ’07. 2007 3rd Southern Conference on, Feb 2007, pp. 195–198.

[41] H. Hsing, “Project: tiny aes,” October 2013. [Online]. Available:
http://opencores.org/project,tiny aes

[42] F. B. Gummere, “Beowulf,” July 2008. [Online]. Available: http:
//www.gutenberg.org/ebooks/981

	University of Nebraska at Omaha
	DigitalCommons@UNO
	5-2014

	The Quasigroup Block Cipher and its Analysis
	Matthew J. Battey
	Recommended Citation

	tmp.1561396684.pdf.Xqf3U

