
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

4-2014

Program Comprehension of Aspect-Oriented
Programs
Jeffrey Steenbock
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Steenbock, Jeffrey, "Program Comprehension of Aspect-Oriented Programs" (2014). Student Work. 2896.
https://digitalcommons.unomaha.edu/studentwork/2896

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232778796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2896?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2896&utm_medium=PDF&utm_campaign=PDFCoverPages

Program Comprehension of
Aspect-Oriented Programs

A Thesis
Presented to the

College of Information Science & Technology
and the

Faculty of the Graduate College
University of Nebraska

In Partial Fulfillment
of the Requirments for the Degree

Master of Science
University of Nebraska at Omaha

by
Jeffrey Steenbock, CSEP, GSSP-JAVA

April 2014

Supervisory Committee:
Harvey Siy, Ph. D.

Sanjukta Bhowmick, Ph. D.
Robin Gandhi, Ph. D.
Victor Winter, Ph. D.

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1554610

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1554610

Abstract

PROGRAM COMPREHENSION OF ASPECT-ORIENTED PROGRAMS

Jeffrey Steenbock, MS

University of Nebraska, 2014

Advisor: Harvey Siy, Ph. D.

The aim of aspect-oriented development has been to address the issue of

software reuse outside the domain of established object-oriented techniques

within the challenging realm of similar cross-cutting concerns. By decoupling

the concerns from the core functionality, aspect-oriented developed software

results in a smaller code base and reduced code duplication. This decou-

pling though presents new challenges to the software development process.

The process of separating concerns impacts the developers established engi-

neering inclinations as well as existing, established notations, such as UML,

that developers are familiar with utilizing for both designing and understand-

ing the implemented software systems. This thesis will study the impact of

aspect-oriented software development on programmers’ ability to comprehend

the core system in addition to their comprehension of the aspect implementa-

tion.

i

“Each problem that I solved became a rule, which served after-
wards to solve other problems.”

Rene Descartes

ii

Acknowledgments

I wish to express my heartfelt gratitude to everyone who supported me with

this thesis.

Thank you to my advisor, Dr. Harvey Siy. Your mentorship and guidance

not only shaped this thesis into something we can all be proud of but also

rekindled the thrill of discovery that life-long learning provides.

Thank you to the rest of my thesis committee, Dr. Sanjukta Bhowmick, Dr.

Robin Gandhi, and Dr. Victor Winter. Your shared insights, suggestions, and

challenging questions served to both support and motivate me throughout

this research.

To my sons, William and Aaron, thank you for your patience and under-

standing during a process you probably do not yet fully understand. Someday

the two of you will face similar challenges in your life and I hope that this

endeavor will provide you with the same inspiration you provided me.

Finally, and most significantly, I would like to thank my wife Nicole. With-

out your support I could not have accomplished a fraction of what we achieve

together. While only my name is on this thesis, in my heart your name is

right next to my name, not only for this thesis but also for all the challenges

we overcome together.

iii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 5

2. Background and Related Work 6
2.1. Background . 6

2.1.1. History . 6
2.1.2. Aspect-Oriented Programming 12
2.1.3. Program Comprehension 13

2.2. Related Work . 19
2.2.1. Aspect-oriented Development Effort 19

3. Definition and Validity Of Scope 25

4. Method 30
4.1. Applications . 30
4.2. Tasks . 32

4.2.1. First Task: Logging. 33
4.2.2. Second Task: Profiling. 35
4.2.3. Third Task: Null parameter checks. 37
4.2.4. Fourth Task: Field validation. 38

4.3. Participants . 40
4.4. Measurements . 41
4.5. Tools and Instrumentation . 42
4.6. Procedure . 43

5. Results 45
5.1. Subject Profile . 45
5.2. Experiment Results . 48

6. Discussion 52
6.1. Answer to Hypotheses . 52

6.1.1. Hypothesis 1 . 52
6.1.2. Hypothesis 2 . 53
6.1.3. Hypothesis 3 . 54
6.1.4. Hypothesis 4 . 54

6.2. Improving Aspect-Oriented Modeling 55

iv

6.3. Studying How People Organize Crosscutting Concerns 60
6.4. Threats To Validity . 64

6.4.1. Internal Threats . 64
6.4.2. External Threats . 66

7. Conclusions 67
7.1. Contribution to Research . 67
7.2. Implications to Practice . 68

8. Future Work 69
8.1. Aspect-Oriented Refactoring . 69
8.2. Aspect-Oriented Requirements Engineering 70
8.3. Aspect-Oriented and Verification 71
8.4. Aspect-Oriented Languages . 72

A. CITI Completion Report 75

B. Consent 76

C. Survey 77

D. Detailed Application Metrics 79

E. Tasks 82
E.1. Paint Application . 82
E.2. JHotDraw Application . 84

F. Results Database Description 86

G. Experiment Results 87

H. Links 90

Bibliography 92

v

List of Figures

1.1. The observer aspect modeled using the AOSD profile 2

2.1. The Building Blocks of Software Engineering 7
2.2. Software Change Process . 15
2.3. Norman’s Stages of Execution Process Flow[Bos14] 17

4.1. Example log-invocation in Java 33
4.2. Example log-invocation in AspectJ 34
4.3. Example method profiler in Java 35
4.4. Example method profiler in AspectJ 36
4.5. Example null parameter check in Java 37
4.6. Example null parameter check in AspectJ 38
4.7. Example field validation in Java 39
4.8. Example field validation in AspectJ 39

5.1. Application task efforts (in seconds) by methodology 51
5.2. Clean application task efforts (in seconds) by methodology . . . 51

6.1. Task effort with Hanenberg, et al Included(seconds) 58

A.1. CITI Completion Report . 75

B.1. Consent Form . 76

D.1. Paint Application Inheritance . 79
D.2. JHotDraw Application Inheritance 80
D.3. JHotDraw Application Package Dependencies 81
D.4. JHotDraw Application Package Type Member Structure 81

F.1. Results Database Schema Definition 86

vi

List of Tables

2.1. Principles of Software Engineering 8
2.2. Norman’s Stages of Execution . 16
2.3. Results from Hanenberg, et al . 20

4.1. Target application metrics . 31

5.1. Group Skill Assessment of object-oriented technologies 46
5.2. Group Skill Assessment non object-oriented technologies 47
5.3. Average task effort (in seconds) by methodology 48
5.4. Average participant effort (in seconds) by methodology 48
5.5. Average clean task effort (in seconds) by methodology 49
5.6. Paint task effort (in seconds) by methodology 50
5.7. JHotDraw task effort (in seconds) by methodology 50
5.8. Clean Paint task effort (in seconds) by methodology 50
5.9. Clean JHotDraw task effort (in seconds) by methodology 51

D.1. Detailed Target Application Metrics 80

G.1. Survey Responses . 87
G.2. Paint Application Object-Oriented Participant Results 88
G.3. Paint Application Aspect-Oriented Participant Results 88
G.4. JHotDraw Application Object-Oriented Participant Results . . 89
G.5. JHotDraw Application Aspect-Oriented Participant Results . . 89

1

1. Introduction

1.1. Motivation

The objective of this thesis is to advance the understanding of how aspect-

oriented programs are developed. Dissatisfaction with the current software

engineering methodologies for modeling aspects instigated the interest in this

research topic. Specifically, this dissatisfaction rises from a lack of intuitive-

ness with the nomenclatures currently utilized for modeling aspects as com-

pared to the standard nomenclatures utilized in the Unified Modeling Lan-

guage (UML) for modeling traditional object-oriented systems.

Fig.1.1 from a survey on Aspect-Oriented modeling conducted by Wimmer,

et al[WSK+11] depicts a typical implementation of modeling aspects. The ini-

tial deficiency encountered when modeling aspects utilizing this approach is

the reuse of existing nomenclatures from object-oriented modeling to model

2

aspects. Utilizing this approach, developers model aspects with the same

nomenclature used for specifying objects and classes, with only a profile in-

dicator to differentiate the aspect from traditional objects or classes.

Figure 1.1.: The observer aspect modeled using the AOSD profile

More troubling with the current approaches for modeling aspects is the de-

piction of the application of the aspect to the core functionality. Referring

again to Fig.1.1the application of the aspect to the core functionality is de-

picted reusing the relationship nomenclature of traditional object-oriented

modeling with a profile indicator indicating the relationship is a cross cutting

concern. What this approach fails to account for is 1) to scale applying an as-

pect to multiple, disparate core concerns, 2) having multiple disparate aspects

applied to the same core concern, and 3) combinations of the previous applica-

3

tions. Wimmer, et al’s survey noted that the surveyed methods typically only

modeled aspects related to minimal number of core concerns and questioned

the capability of the surveyed methods to model aspects relevant to multi-

ple disparate targets. Additionally, this approach while perfectly suitable for

depicting the hierarchical and owned relationships of object-oriented devel-

opment fails to represent the less constrained relationships of decoupling an

aspect from the core functionality accurately.

To arrive at a more suitable method for modeling aspect-oriented programs

it is necessary to take a step back and approach the problem from the software

developer’s perspective. What is required is information on the developer’s

mental model of an aspect in relation to the objects and classes. This mental

image of an aspect to object relationship may or may not align with the tradi-

tional object-oriented model nomenclatures. Thus, it is important to approach

this problem from a fresh perspective without biasing possible solutions with

preconceived notions of how software developers should model aspects based

on the currently available and accepted methods.

At this point the issue is determining the process on how software devel-

opers fabricate the mental model of their software design. This fabrication of

software design is constructed in a top-down approach. The developer forms a

mental model of the solution based on their knowledge of the problem do-

4

main and their experience with similar problems and successful solutions

they have applied in the past. This history of previously applied solutions

is a developer’s mental repository of design patterns. The method for building

this mental repository of design patterns was accomplished through a bottom-

up approach. At points in the developer’s past they encountered problems in

existing systems in which they had little to no domain knowledge or design

patterns to draw upon. At this point it was necessary for the developer to

traverse the relationships of the existing system to understand its structure

and behavior. This newly gained knowledge is added to the developer’s design

pattern repository. Thus, before a developer can perform a top-down approach

a developer must have performed a relevant bottom-up approach.

To advance the state of current modeling of aspect-oriented development

it is necessary to understand how developers perform bottom-up comprehen-

sion of aspect-oriented programs. Only after understanding how developers

traverse the relationships of aspect-oriented programs can it be determined

how the mental models of aspect-oriented programs are internalized in the

developer’s mental design pattern repository. With this understanding of the

developer’s mental model of aspect-oriented programs, it should be possible

to arrive at more suitable and intuitive nomenclatures for modeling aspect-

oriented programs.

5

1.2. Problem Statement

The research’s intent is to identity the impact aspect-oriented development

methodologies have on the developer’s ability to understand or comprehend

software systems. The research approach to identifying the impact of aspect-

oriented methodologies will be accomplished through measurement and anal-

ysis of effort that developers expend performing the evaluation stage as de-

fined by Norman. This research will seek evidence indicating the challenges

developers face in overcoming a “Gulf of Evaluation” of program comprehen-

sion of aspect-oriented systems. This evidence provides the support needed

for future research to identify nomenclatures that are more effective at mod-

eling aspect-oriented systems and more closely align with developer’s mental

models of separated concern capabilities.

6

2. Background and Related Work

2.1. Background

2.1.1. History

Referring to Fig.2.1Ross, et al[RGI75]identified the issues in effectively de-

veloping software programs through a software engineering process. The is-

sues software engineering processes address were categorized into four fun-

damental goals: modifiability, efficiency, reliability, and understandability.

Additionally, fromTab.2.1 Ross, et al identified seven principles that affect

the process of attaining the fundamental goals. These seven principles have

driven the evolution of software languages from the early era of low-level ma-

chine language to the current state of high-level object-oriented languages.

The first step in the evolution of the programming languages was address-

ing the goal of understandability. The earliest forms of programs were de-

7

Figure 2.1.: The Building Blocks of Software Engineering

veloped in machine language, a set of operation codes coupled to the target

systems instruction sets. While these operational codes accurately represent

what the programs execution it is virtually impossible for a human reader to

comprehend the intent of the code through examination. By the 1940’s assem-

bly language was introduced which introduced a mnemonic to represent the

machine language’s low level opcode. Assembly language applied the princi-

8

Principle Definition
Modularity Defines how to structure a software system

appropriately
Abstraction Identify essential properties common to superficially

different entities
Hiding Making inessential information inaccessible

Localization Bringing related things together into physical proximity
Uniformity Ensure consistency

Completeness Ensure that nothing is left out
Confirmability Ensure that information needed to verify correctness

has been explicitly stated
Table 2.1.: Principles of Software Engineering

ple of abstraction by identifying the essence or intent of the opcode and pre-

senting that information to the reader in comprehensible manner. Addition-

ally, assembly language began the application of the principle of uniformity,

through assembly language coupling the representation of the developed pro-

grams less tightly than machine language’s coupling to the target system’s

operation codes.

While assembly language facilitated the ability of the programmer to un-

derstand what the program was performing at a single instruction it still

failed in informing the programmer what the actual intent of the program

as a whole was. With the introduction of FORTRAN and COBOL in the 1950s

programmers were now able to comprehend the intent of the program. The

introduction of these modern programming languages added an additional

layer of abstraction which now isolated the programmer from the machine’s

9

low level processing by representing a set of operations as a single statement

representing the programmer’s intent. Now, instead of storing memory in a

machine’s memory address the programmer defined a variable; and instead

of instructing the machine to perform a processing operation on the memory

address, the programmer defines an action to perform on the variable or set

of variables.

Additionally, these languages applied additional principles to enhance the

programs understandability. First was a continuation of the application of the

principle of uniformity introduced with Assembly language. Representations

of the programs developed in these modern languages had stricter adherence

to a standard syntax which essentially severed any remaining coupling to the

underlying target systems operational processing codes. This standardization

of the syntax also applied the principle of modularity by providing a consistent

structure for the program to conform.

The next stage of the program language evolution was the introduction of

the C programming language in the early 1970s. The development of the C

language was a continuation of the imperative language development in the

ALGOL tradition, meant to address some of the perceived problems with the

FORTRAN language. One of C’s primary enhancements to program under-

standability was the application of the hiding principle through use of lexical

10

scoping of variables. C’s lexical scoping of variables limited the scope of a

variable to an individual block or function and made the existence of the vari-

able invisible to code outside the block. This information hiding allowed the

program to focus on only the relevant data for a specific function and reduced

the cognitive load for understanding the behavior of the system.

C also addressed the goal of program efficiency by introducing the concept

of pointers. Pointers provided the capability of dynamic memory allocation

and facilitated the processing of large memory structures through manipu-

lation of the pointer versus actual access to the underlying memory address.

This increased program efficiency though it came at a cost to the programs

understandability and reliability. The concept of accessing a variable through

a pointer reference is a difficult concept for inexperienced programmers to

grasp. Additionally, the careless use of pointers introduced program defects

through the inadvertent access of an unintended memory access and memory

leaks through improperly managing dynamically allocated memory.

By the 1980’s and continuing through to present day program size and com-

plexity became a primary factor in inhibiting understandability of the soft-

ware systems. One method for addressing these issues was the introduction

of object-oriented programming. Object-oriented programs applied another

layer of the abstraction principle. Program code was no longer represented as

11

functions and variables that the computer operated on, but were instead rep-

resented as objects that matched a programmers mental model of the problem

domain. Additionally, the principle of locality was applied by grouping and

encapsulating the related functions and state variables into the relevant ob-

ject specification. This encapsulation also extended to the hiding principle by

exposing the functions relevant to the external objects and hiding implemen-

tation details. To utilize the object, programmers need only understand what

the object’s intent is and do not need to know how the object accomplishes the

intent.

While object-oriented programming was available with the C++ language

in the early 1980’s, the benefits were not fully realized until the introduction

of Java in 1995. While C++ provided the benefits of object-oriented program-

ming it suffered from the same deficiencies that hindered its predecessor C.

C’s deficiencies in dynamic memory allocation through pointers were exacer-

bated with the capability of dynamic object allocation. Java would come to

be more fully embraced by addressing this issue. The problem of address-

ing dynamic object allocation can be seen as two-fold. First, the programmer

fails to properly manage the cleanup of dynamically allocated objects because

that code is not relevant to the core functionality that is being performed.

Secondly, while a program may manage the code is one area of the program,

12

the memory management must be addressed in all areas where dynamic ob-

ject allocation is performed. While object-oriented programs are capable of

reusing modules in related objects, the act of dynamic memory management

was difficult to apply because the capability cross-cut among all disparate,

unrelated objects. Java was able to address both problems through the appli-

cation of an automatic garbage collection capability. This garbage collection

happened without programmer implementation, thus decluttering the core

functionality and the program applying the garbage collection to all dynamic

object allocations, regardless of the object relationships or intents.

2.1.2. Aspect-Oriented Programming

The evolution of software languages has not only improved the understand-

ability of programs but has addressed the remaining three goals as well. One

of object-oriented programming’s largest contributions was the facilitation of

modularity. Object-oriented programming applies the principle of modularity

by introducing the capability of inheritance. Inheritance allows the program-

mer to write reusable functions or fields in one parent implementation and

expose the capability to child implementations that extend the parent imple-

mentation.

While object-oriented programming greatly facilitated the ability to min-

13

imize the occurrences of implementing the same logic in multiple modules

through inheritance, there remained a subset of capabilities that were diffi-

cult to implement in a modularized manner. Programming logic that defied

the reuse through the object-oriented inheritance hierarchy are considered

cross-cutting concerns due to the logic cutting across multiple abstractions.

Tarr, et al [TOHS99], attribute this inability of object-oriented programming

to modularize separation of concerns due to the object-oriented mechanism of

only being able to support a single, dominant dimension. An example of the

type of logic that spans across disparate objects of the dominant dimension

is the management of dynamically allocated objects which the Java program-

ming language was able to address through the garbage collection capability.

Aspect-oriented programming addresses the implementation of these cross-

cutting concerns by applying the principle of modularity to isolate and struc-

ture these concerns to a single implementation, termed an aspect[KLM+97].

2.1.3. Program Comprehension

From Biggerstaff, et al [BMW93], program comprehension or understanding

is exhibited by the developer’s ability to explain the program structure and

behavior in terms of its relationship to the application domain. Additionally,

this explanation must be expressed in terms that are qualitatively different

14

from the tokens and nomenclatures utilized in the source implementation.

Essentially, program comprehension is the developer’s action of reverse en-

gineering a software capability represented for machine understandability to

an internal mental representation within a human oriented context. This

internal mental representation is referred to as a mental model [Nor02], an

individual’s interpretation and understanding of the structures that exist in

the world.

To place program comprehension within the larger software development

context it is necessary to see how it relates to the overall software change

process. Fig.2.2 from Rajlich [Raj11] depicts the process software developers

perform to modify a software system. Within this software change process,

the Evaluation phase comprised of Concept Location and Impact Analysis en-

tails program comprehension activities. During Concept Location, developers

map the source implementation machine representation to their own mental

model, mapping the program language tokens and nomenclature to their own

interpretation of the application’s structure and intent. Subsequently, the de-

veloper utilizes this mental model to form a plan of actions to accomplish the

goals of the software change during Impact Analysis.

To assist in understanding how software developers conduct aspect-oriented

development during these phases it is beneficial to map or relate these activ-

15

Figure 2.2.: Software Change Process

ities to stages in Norman’s seven stages of action[Nor02], depicted in Tab.2.2

and Fig.2.3, and the difficulties Norman defines in performing the activities.

Aspect-oriented development during the analysis and design phases are con-

cerned with the developer’s ability to recognize and choose the correct no-

tation for developing the end system. In essence, this research should ad-

dress the effectiveness a software developer has in forming the intention to

16

create software. The difficulty developers encounter in understanding aspect-

oriented notation in the engineering process is defined as a “Gulf of Execution”

according to Norman. This “Gulf of Evaluation” arises when the developer’s

mental model of the system refined during the interpretation of perception

does not align with the actual system structure that exists in the world. Dur-

ing maintenance activities the concern is to identify the effectiveness the no-

tation exhibits in allowing the developer to assess the impact and emergent

behaviors of the applied aspects. This research path should be concerned with

the effectiveness in which developers are able to evaluate the developed sys-

tems end state. Maintenance activities are primarily concerned with aspect

traceability.

Stage Definition
Goals The state to be achieved

Action

Intention The action to
to act achieve the goal

Sequence The specific internal
of actions command steps

Execution of the Physical performance
action sequence upon the world

Evaluation

Perceiving the Sensing the current
state of the world state of the world

Interpreting Understanding the current
the perception state of the world
Evaluation of Comparing the inter-

interpretations pretation to the goal
Table 2.2.: Norman’s Stages of Execution

To properly assess the validity of the reviewed research on aspect-oriented

17

Figure 2.3.: Norman’s Stages of Execution Process Flow[Bos14]

program comprehension, this thesis will place the research within the con-

text of already established studies on program comprehension. Primarily,

the research will be reviewed in relation to how aspect-oriented program

comprehension aligns with the findings researched by von Mayrhauser and

Vans[vMV97].von Mayrhauser and Vans’ findings indicate that software de-

velopers approach understanding of large scale software utilizing either a top-

down approach, a bottom-up approach, or a combination of the two.

Top-down Program Comprehension

In the top-down approach, the developer creates a mental image of the pattern

of the program structure as a hypothesis for understanding the program. This

18

mental image pattern is based on the developer’s experience solving similar

problems and discovered by applying knowledge of patterns held in long term

memory in conjunction with domain knowledge of the system. The developer

then tests the hypothetical mental image of the pattern during maintenance

activities which either confirms and verifies the correctness of the hypothe-

sized pattern or refutes the hypothesis which leads the developer to seek an

alternate solution. Because the top-down approach relies on a solid under-

standing of multiple patterns and domain knowledge of the target software

system, experienced or “expert” software developers are the usual practition-

ers of the top-down approach.

Bottom-up Program Comprehension

In the bottom-up approach, developers identify the potential function or entry

point to where a maintenance defect exists. The developer then traces the flow

of execution through the related methods and objects until eventually forming

the entire chain of execution necessary to understanding the program struc-

ture relevant to solving the maintenance activity. The bottom-up approach is

usually practiced by inexperienced developers or developers without adequate

domain knowledge of the target software system. As new developers repeat

application of the bottom-up approach to a software system, the developer

19

begins to store in long-term memory a collection of recognizable patterns, in

addition to a stronger grasp of the target software system’s domain. Even-

tually, as the developer builds their collection of patterns and domain knowl-

edge, they move beyond the inexperienced developer stage to the experienced

developer stage and begin applying the top-down approach to program com-

prehension.

2.2. Related Work

2.2.1. Aspect-oriented Development Effort

Hanenberg, et al [HKJW09] conducted a study to assess the impact of uti-

lizing aspect-oriented programming versus object-oriented programming in

development of crosscutting code. The aim of their research was to identify

when, or even if, the utilization of aspect-oriented programming provided a

positive impact on the time to develop a specific module of software. Tab.2.3

provides the measurement results from Hanenberg, et als’ empirical experi-

ment. While the large standard deviation prohibited Hanenberg, et al, from

reaching a solid conclusion a number of interesting results were evident that

would require future experimentation and research. Significantly, one finding

was that tasks with less than thirty-six code targets demonstrated a signifi-

20

cant negative impact from utilizing aspect-oriented techniques. This finding

on the negative impact of utilizing aspect-oriented techniques as well as Ha-

nenberg, et als’ experiment design will serve as a starting point, as well as an

inspiration and template, for the design of this Thesis’s empirical experiment.

Table 2.3.: Results from Hanenberg, et al

Hanenberg, et als’ experiment utilized twenty subjects selected using a con-

venience sampling. The subjects were students drawn from the researchers’

university and had completed five semesters or more of study. The partici-

pants entered the study with minimal to no experience with aspect-oriented

programming development but received a 1.5 hour introduction to the AspectJ

constructs necessary to perform the experiment prior to the experiment. The

participants received no additional explicit training of object-oriented devel-

opment or Java programming since all had completed and successfully passed

Java programming courses. For the study the groups were divided into two

21

groups. Based on the results of a questionnaire, the development experience

of both groups were similar. For the questionnaire, participants provided their

own personal estimate of their development capabilities.

For Hanenberg, et als’ experiment, the two study groups were tasked to

write software modules to address crosscutting concerns in an existing appli-

cation. The target application was a small game comprised of nine classes

with 110 methods written in pure Java (version 1.6). The game architecture

was based on a model-view-controller architecture with a small graphical user

interface. The two groups were asked to complete nine tasks with one group

performing the tasks first utilizing an object-oriented technique and then sub-

sequently utilizing an aspect-oriented technique and the other group perform-

ing vice versa, first utilizing aspect-oriented techniques and then later using

the object-oriented techniques. As developers worked to perform the tasks,

the developers’ IDE automatically logged the actions that modified the code

base to a database. The research extracted snapshots at thirty-second inter-

vals and then measured the time required to accomplish a specific task.

Hanenberg, et als’ intent was to make a broad assessment on the develop-

ment effort of aspect-oriented programming versus object-oriented program-

ming. The measurement results from Hanenberg, et al, depict the total ef-

fort. In contrast, this thesis’s intent is to provide a finer fidelity of the de-

22

velopment effort by measuring the evaluation and execution phases inde-

pendently. Where Hanenberg, et als’ findings indicate a negative impact of

aspect-oriented programming on code targets less than thirty-six, this thesis

aims to identify the root cause of that negative through isolating and mea-

suring the impacts contributed by the evaluation and execution phases. As

such, while the thesis utilizes Hanenberg, et als’ experiment design as a tem-

plate for its experiment design, there are significant differences introduced to

facilitate the independent measurements of evaluation and execution phases.

Hanenberg, et als’ experiment had the subjects implementing new crosscut-

ting capabilities. In relation to program comprehension the implementation

of a new capability is more closely aligned to the activities performed during

top-down comprehension than bottom-up. Since top-down comprehension, as

well as new capability implementation, requires developers to have acquired

adequate domain knowledge on the existing application some form of bottom-

up program comprehension must be performed beforehand to acquire that

domain knowledge. In this sense, Hanenberg, et al, required their study sub-

jects to perform some rudimentary bottom-up program comprehension before

implementation of the new capability with the resulting measurements de-

picting the aggregate sum of both activities. In contrast, this thesis exper-

iment’s intent is to only measure program comprehension activities related

23

to crosscutting capabilities. To achieve this intent, the thesis experiment

design will have the subjects performing a maintenance change to existing

crosscutting capabilities. Utilizing this approach, the thesis experiment re-

sults will be able to measure the developers’ establishment of the program

mental-model more accurately and discriminate between the evaluation and

execution phases the developer performs.

Finally, Hanenberg, et al, repeated the experiment with the same subject

pool utilizing different methodologies but using the same application in both

phases. Utilizing this approach, Hanenberg, et al, were able to eliminate

the impact of different application complexity or size would have on their ex-

periment result. The tradeoff utilizing this approach is that Hanenberg et als’

approach is unable to account for the impact that acquisition of application do-

main knowledge has on the experiment’s measurements. While Hanenberg, et

al, were able to accept the variability introduced through application domain

knowledge acquisition for their research, this thesis’s intent to measure the

effort of evaluation in program comprehension precludes utilizing this same

approach. As a result, the design of this thesis experiment will require the

subject pool to perform the experiment in two phases as well, utilizing dif-

ferent methodologies in both phases, but using a different application in the

second phase. Utilizing this approach, this thesis experiment minimizes the

24

impact of acquisition of application domain knowledge to the measurement

of bottom-up program comprehension but unfortunately introduces the un-

known variability of how the different applications size and complexity may

influence the compared measurement results.

Endrikat and Hanenberg [EH11] continued this line of research with an

empirical experiment to measure the impact of development effort with aspect-

oriented programming on repeated maintenance tasks. The design and exe-

cution of this experiment was similar to the previous experiment with the

main difference being that subjects were tasked with performing multiple it-

erations of a maintenance task against a same separated concern capability.

Conclusions from the Endrikat and Hanenberg indicate that the negative im-

pacts encountered in their previous experiment due to aspect-oriented pro-

gramming may be out-weighed by the positive impact that aspect-oriented

programming contributes to repeated visits to an implemented aspect during

maintenance activities.

25

3. Definition and Validity Of Scope

To quantify the objectives, the thesis defines the following properties:

e = v + x

where e is the total effort of a task with v being the effort to evaluate and x

being the effort to execute. This thesis defines the properties within the spe-

cific applied development methodologies of object-oriented development and

aspect-oriented development as:

o = ov + ox

a = av + ax

26

where o is the total effort of an object-oriented task with ov being the effort

to evaluate the object-oriented task and ox being the effort to execute the

object-oriented task and a is the total effort of an aspect-oriented task with av

being the effort to evaluate the aspect-oriented task and ax being the effort to

execute the aspect-oriented task. Within each methodology, the task is further

categorized as being associated with either core functionality or cross-cutting

concern functionality. For object-oriented methodology, the efforts for core and

cross-cutting tasks are defined as:

oc = ovc + oxc

oa = ova + oxa

with oc being the effort for an object-oriented core functionality task and oa

being the effort for an object-oriented cross-cutting concern task. Utilizing an

aspect-oriented methodology, the efforts for core and cross-cutting tasks are

defined as:

ac = avc + axc

aa = ava + axc

27

The intent of this thesis is to address the following four hypotheses:

Hypothesis 1. The effort of understanding core functionality in an aspect-

oriented development software system is less than the effort

of understanding the same core functionality utilizing an

object-oriented methodology.

avc < ovc

Aspect-oriented programming facilitates the bottom-up comprehension of the

core functionality. Software developers will extend less effort in the evalua-

tion and formation of a mental-model of the core functionality of an aspect-

oriented development software system versus core functionality of a software

system developed with traditional object-oriented methodology.

Hypothesis 2. The effort of implementing core functionality in an aspect-

oriented program is equal to or less than the effort of im-

plementing the same core functionality utilizing an object-

oriented methodology.

axc ≤ oxc

28

Software developers will extend similar amount of effort in implementing the

core functionality of an aspect-oriented development software system com-

pared to implementing the core functionality of a software system developed

with traditional object-oriented methodology.

Hypothesis 3.
The effort of understanding concern related functionality in

an aspect-oriented development software system is greater

than the effort of understanding the same concern function-

ality utilizing an object-oriented methodology.

ava > ova

Aspect-oriented programming inhibits the bottom-up comprehension of iden-

tifying concern functionality separated from the core functionality. Software

developers will extend more effort in the evaluation and formation of a mental-

model of the separated concern functionality of an aspect-oriented develop-

ment versus the entangled concern functionality developed solely using object-

oriented methodology.

29

Hypothesis 4.
Aspect-oriented programming reduces the effort to imple-

ment software concerns compared to object-oriented devel-

opment methodologies.

axa ≤ oxa

Software developers will extend less effort in implementing separated concern

functionality of an aspect-oriented development versus duplicating entangled

concern functionality using object-oriented methodology.

30

4. Method

To test the hypothesis an empirical experiment was conducted. The intent of

the experiment was to determine a developers mental effort in forming the

execution plan for tasks related to software aspects, where the software as-

pect is specified in a traditional object-oriented methodology or utilizing an

aspect-oriented methodology. Therefore the experiment design requires par-

ticipants to perform the same programming tasks using an object-oriented

and an aspect-oriented language. The experiment utilizes Java as a repre-

sentative of object-oriented language and the Java extension AspectJ as a

representative of an aspect-oriented language.

4.1. Applications

For the experiment subjects were tasked to perform crosscutting maintenance

against two target applications. The first application was a paint application

31

previously utilized by Ko, et al [KMCA06] for their study on reachability. The

second application was the open-source project JHotDraw. The paint appli-

cation is a relatively small application consisting of ten classes within three

packages with sixty-one methods for a total of 434 lines of code. In contrast,

the JHotDraw application is much larger and more complex consisting of 350

classes within eighteen packages with 3,253 methods for a total of 21,119

lines of code. Tab.4.1 provides a summary of the target applications metrics1.

Metric Paint JHotDraw
Lines of Code 434 21,119
Packages 3 18
Classes 10 350
Methods 61 3,253
Function Complexity 1.2 1.6
Class Complexity 6.9 14.3
Total Complexity 69 4,997

Table 4.1.: Target application metrics

The experiment design implementation process placed each project under

configuration management control utilizing a Git repository and established

a baseline. After the projects were baselined, the design implementation

branched each project into two different implementations, one implementa-

tion as a pure object-oriented Java (version 1.7) implementation and a second

aspect-oriented implementation utilizing AspectJ (version 1.7). The experi-

ment design then modified both implementation to require crosscutting main-

1Metrics compiled using automated tool SonarQube

32

tenance tasks to be performed. The AspectJ version of both applications uti-

lized the preferred technique of annotations to define aspects and join points

versus the utilization of the AspectJ specific language nomenclatures.

4.2. Tasks

Using the two target applications, subjects need to perform four cross-cutting

maintenance tasks utilizing either pure Java or AspectJ. This thesis designed

the maintenance tasks to meet the following criteria:

• The maintenance tasks should be in the domain of crosscutting concerns

for which AspectJ facilitates modularization.

• To measure the effort more accurately expended on the evaluation of

crosscutting concerns, the task should minimize the effort required by

execution by limiting the number of lines of code required for implemen-

tation to five or less.

• To ensure subjects comprehend the structure and relationship of the

relevant targets of the task, the experiment design may need to obfus-

cate class and method names to prohibit the subject from completing the

maintenance task through simple IDE provided searching capabilities.

Appendix E provides the full text of the tasks provided to the subjects.

33

4.2.1. First Task: Logging.

The first task requires the subject to modify an existing logging capability

by changing the current logging level to a different level based on the logged

method’s scope. Fig.4.1 provides an example of the original logging statement

implemented in pure Java and Fig.4.2 provides an example of the original

logging aspect implemented in AspectJ.

class C {

private final static Logger LOGGER =

Logger.getLogger(C.class);

...
public void m(int i) {

LOGGER.trace(“Enter m()”);
...

}
private void n(int x) {

LOGGER.trace(“Enter n()”);
...

}

Figure 4.1.: Example log-invocation in Java

For the object-oriented methodology, the task requires the subjects to change

the logging invocation on the first line of all non-public methods, in the exam-

ple this is method n(), from trace to debug. For the aspect-oriented method-

ology, the task requires the subjects to change the logging invocation in the

logNonPublic() method of the aspect implementation from trace to debug. For

the paint application experiment, subjects can accomplish both the object-

34

@Aspect(“pertypewithin(*)”)
public class LoggingAspect {

private Logger logger;
@Before(“staticinitialization(*)”)
public void init(JoinPoint.StaticPart jps) {

logger = Logger.getLogger(

jps.getSignature().getDelaringType());

}
@Before(“execution(public * *.*(..))”)
public void logPublic(JoinPoint jp) {

logger.trace(“Enter “ +

jp.getSignature().getName() +
“()”);

}
@Before(“execution(!public * *.*(..))”)
public void logNonPublic(JoinPoint jp) {

logger.trace(“Enter “ +

jp.getSignature().getName() +
“()”);

}

}

Figure 4.2.: Example log-invocation in AspectJ

oriented and aspect-oriented maintenance tasks with a one line code modifi-

cation. For the JHotDraw application, subjects can accomplish the aspect-

oriented maintenance task with a four-line code modification whereas the

object-oriented subjects can accomplish the maintenance task with a one line

code modification.

35

4.2.2. Second Task: Profiling.

The second task requires the subjects to modify an existing profiling capa-

bility that logged the time to execute a method by adding the profiling capa-

bility to other methods based on either the methods scope or implementing

class.Fig.4.3 provides an example of the original profiling capability imple-

mented in pure Java and Fig.4.4 provides an example of the original profiling

aspect implemented in AspectJ.

class C {

private static final Profiler PROFILER =

Profiler.getProfiler(C.class);

public void m(int i) {

Calendar time = Calendar.getInstance();
...
PROFILER.profileEnd(“m”,time);

}

Figure 4.3.: Example method profiler in Java

For the object-oriented methodology the task requires the subjects to du-

plicate the profiling capability by adding the assignment of the method start

time to a Calendar object at the beginning of the target method and calling

the profileEnd() method before exiting the target method. For the aspect-

oriented methodology the task requires the subjects to modify the join point

defined in the @Around annotation in the profiling aspect to match the de-

36

@Aspect(“pertypewithin(*.C)”)
public class ProfileAspect {

private Profiler profiler;
@Before(“staticinitialization(*)”)
public void init(JoinPoint.StaticPart jps) {

profiler = Profiler.getProfiler(

jps.getSignature().getDeclaringType());

}
@Around(“* *.*(..)”)
public Object profileMethod(ProceedingJoinPoint jp)

throws Throwable {
Calendar time = Calendar.getInstance();
Object retVal = jp.proceed();
profiler.profileEnd(jp.getSignature().getName(),

time);

return retVal;

}

}

Figure 4.4.: Example method profiler in AspectJ

sired target methods’ signatures. For both the paint application experiment

and JHotDraw application experiments, subjects can accomplish the aspect-

oriented maintenance task with a single line code modification whereas the

object-oriented subjects can accomplish the maintenance task with a three-

line code modification.

37

4.2.3. Third Task: Null parameter checks.

The third task requires the subjects to modify an existing null parameter

check capability that throws an exception when parameters assigned a null

value are passed to a method by adding the null parameter check capability

to other methods based on either the methods’ name or passed in parame-

ter types. Fig.4.5 provides an example of the original null parameter check

capability implemented in pure Java and Fig.4.6 provides an example of the

original null parameter check aspect implemented in AspectJ.

class C {

public void m(Object v) {

if (v == null) {

throw new NullPointerException();

}

...
}

Figure 4.5.: Example null parameter check in Java

For the object-oriented methodology the task requires the subjects to du-

plicate the null parameter check by adding the check for null and exception

throwing block at the beginning of the target method. For the aspect-oriented

methodology the task requires the subjects to modify the join point defined

in the @Before annotation in the null parameter check aspect to match the

desired target methods’ signatures. For the paint application experiment

38

@Aspect
public class NullCheckAspect {

@Before(“execution(* *.*(*)) && args(v)”)
public void checkParm(Object v) {

if (v == null) {

throw new NullPointerException();

}

}

}

Figure 4.6.: Example null parameter check in AspectJ

subjects can accomplish the aspect-oriented maintenance task with a single

line code modification whereas the object-oriented subjects can accomplish the

maintenance task with a two line code modification. For the JHotDraw appli-

cation experiment subjects can accomplish the aspect-oriented maintenance

task with a four line code modification and the object-oriented maintenance

task with a two line code modification.

4.2.4. Fourth Task: Field validation.

The fourth task requires the subjects to modify a field validation capability

that checks that the value of a field assignment matches the fields legal values

and reassigns the value to a default value if the assignment is out of bounds.

Fig.4.7 provides an example of the original field validation implemented in

pure Java and Fig.4.8 provides an example of the original field validation

39

aspect implemented in AspectJ.

class C {

private int f;
public void m(int v) {

...
if (v < 0) {

v = 0;

}
f = v;
...

}

Figure 4.7.: Example field validation in Java

@Aspect
public class FieldValidateAspect {

@Around(“set(* int *) && args(v)”)
public void checkSet(int v, ProceedingJoinPoint jp)

throws Throwable {
if (v <0) {

v = 0;

}
jp.proceed(new Object[] {v});

}

}

Figure 4.8.: Example field validation in AspectJ

For the object-oriented methodology the task requires the subjects to dupli-

cate the field validation by adding the legal range check prior to field assign-

ment and overriding the assignment to the default value if the assignment is

out of range. For the aspect-oriented methodology the task requires the sub-

40

jects to modify the join point defined in the @Around annotation in the field

validation aspect to match the desired target field signature. For the paint

application experiment subjects can accomplish the aspect-oriented mainte-

nance task with a five line code modification whereas the object-oriented sub-

jects can accomplish the maintenance task with a two line code modification.

For the JHotDraw application experiment subjects can accomplish the aspect-

oriented maintenance task with a two line code modification and the object-

oriented maintenance task with a four line code modification.

4.3. Participants

Nine subjects participated in the experiment. Subjects were selected from a

pool of graduate students taking a course on advanced software-engineering

topics and professed to having a requisite basic capability in programming

with Java. The experiment was performed in two sessions due to scheduling

conflicts with finding a common date with one of the subjects. The exper-

iment divided the subjects into two groups with one group performing the

experiment tasks utilizing an object-oriented methodology and later utilizing

an aspect-oriented methodology and the other group vice versa.

To assure the protection of the human subjects participating in this re-

search, the experiment followed the protocols and procedures established by

41

University of Nebraska Medical Center Institutional Review Board.Appendix A

provides the report showing the completion of the primary investigator’s re-

quired training from the Human Research Curriculum provided by the Col-

laborative Institutional Training Initiative. A copy of the approved protocol

(reference ID # 642-13-EX) is available from the University of Nebraska Med-

ical Center Institutional Review Board.

4.4. Measurements

The intention of the experiment is to identify the impact aspect-oriented de-

velopment has on the effort developer’s expend on evaluation in program com-

prehension. The challenge of this experiment is identifying the point at which

the developer understands the program and moves on to the execution phase

of implementing the change. While the experiment design cannot accurately

identify the exact point at which developers make the transition from evalua-

tion to execution, the experiment design does minimize the effort developers

expend to perform the execution phase. Thus the experiment measures the

total effort time expended on each task and assumes that the execution effort

had minimal contribution to that total effort time. In order to perform the

total measurement, the subjects were responsible for recording the time they

started and completed each task from a provided digital clock.

42

The entire set of measurements taken for this thesis experiment are as

follows. The incidental measurements are the demographic data collected

from the subject survey used to identify the similarity and differences in the

grouped subjects skill profile. The independent variables are the two projects

with associated sizing and complexity, the utilized methodology, and the main-

tenance task type. The dependent variable is the subject-recorded time to

complete the task.

To facilitate the compiling and analysis of the measurements, the measure-

ments were loaded into a MySQL database.Appendix F provides the database

design description used for relating the measurements for compiling and an-

alyzing the results.

4.5. Tools and Instrumentation

The subjects performed the experiment on University of Nebraska-Omaha

provided personnel computers. The hardware is a basic desktop personnel

computer with a standard keyboard, mouse, and single monitor. The com-

puters performance and memory were sufficient for execution of this exper-

iment. Each machine was preloaded with the requisite software to perform

the experiment. The preloaded software required for program execution was

the Windows operating system, the Eclipse Integrated Development Envi-

43

ronment (Indigo release), Java Software Development Kit (version 1.7), the

AspectJ library (version 1.7).

4.6. Procedure

Subjects performed the experiment in computer labs provided by the Univer-

sity of Nebraska-Omaha. Prior to starting the experiment, participants read

and signed the consent form. Subjects then completed a short survey used

to assess their skill level in the object-oriented and aspect-oriented develop-

ment technologies relevant to the experiment. After the subjects completed

the survey, the subjects received a basic thirty minute training tutorial on

aspect-oriented programming. This training tutorial provides an overview of

the concepts of software modularity that aspect-oriented programming seeks

to address and the mechanisms, such as join points, that aspect-oriented pro-

gramming provides to facilitate software modularization. The tutorial con-

cludes with a short lab exercise in which participants are able to apply aspect-

oriented programming concepts to a small Java program utilizing the tools

and APIs utilized in the experiment.

For the experiment execution, the experiment divided the subjects into

groups. Assignment to a group was done by randomly selecting subjects based

on seating choice in the experiment lab. For the first phase of the experi-

44

ment both groups performed the previously defined maintenance tasks on the

paint application but utilizing either the object-oriented or aspect-oriented

methodology. For the second phase of the experiment, both groups performed

the previously defined maintenance tasks on the JHotDraw application and

switching methodology from the previous phase’s utilized methodology.

45

5. Results

5.1. Subject Profile

Tab.G.1 in Appendix G provides the raw numbers from the subject self-assessment

survey. Tab.5.1 and Tab.5.2 aggregate the results and provides a profile of the

group the subject belonged to. This group profile is more beneficial in analyz-

ing the impacts that subject similarity or differences may influence on the

outcome of the experiment.

For future reference, Group 1 performed aspect-oriented methodology first

on the Paint application and then object-oriented methodologies on the JHot-

Draw application. Conversely, Group 2 performed object-oriented methodolo-

gies on the Paint application and then aspect-oriented methodologies on the

JHotDraw application.

From Tab.5.1 both groups report a similar background and experience with

46

Function

1.
E

xp
er

ie
nc

e
w

it
h

O
O

de
ve

lo
pm

en
t

2.
E

xp
er

ie
nc

e
w

it
h

U
M

L

3.
E

xp
er

ie
nc

e
w

it
h

Ja
va

4
E

xp
er

ie
nc

e
w

it
h

ot
he

r
O

O
be

si
de

s
Ja

va

1 2 1 2 1 2 1 2

max 4 5 4 3 5 4 3 5

min 3 3 3 2 4 3 3 3

arith. mean 3.80 3.75 3.20 2.75 4.20 3.25 3.00 4.00

med 4.00 3.50 3.00 3.00 4.00 3.00 3.00 4.00

std. dev. 0.40 0.83 0.40 0.43 0.40 0.43 0.00 0.72

mean diff 0.05 0.45 0.95 -1.00

med diff 0.50 0.00 1.00 -1.00

Table 5.1.: Group Skill Assessment of object-oriented technologies

object-oriented development and object-oriented modeling. Based on the sub-

jects self-assessments, experience or lack of experience with object-oriented

methodologies should not influence the experiment outcome as the reported

median is above average and no subject reported having had no prior experi-

ence with object-oriented development. While Group 2 reports a lower skill

level than Group 1 with Java programming they report a higher skill level

with other object-oriented languages than Group 1 which should be an equal-

izing factor in the groups skill level. As with the object-oriented skill as-

sessment, no subject reported having had no prior experience with the Java

programming language.

From Tab.5.2 both groups report similar assessments on their background

47

Function

5.
E

xp
er

ie
nc

e
w

it
h

A
O

D

6.
E

xp
er

ie
nc

e
w

it
h

A
sp

ec
tJ

7.
E

xp
er

ie
nc

e
w

it
h

ot
he

r
A

O
be

si
de

s
A

sp
ec

tJ

8.
E

xp
er

ie
nc

e
w

it
h

E
cl

ip
se

ID
E

9.
E

xp
er

ie
nc

e
w

it
h

ot
he

r
ID

E
s

1 2 1 2 1 2 1 2 1 2

max 3 3 3 2 4 2 4 4 3 4

min 2 2 1 1 2 1 3 3 2 3

arith. mean 2.40 2.25 2.20 1.75 2.80 1.50 3.80 3.25 2.40 3.50

med 2.00 2.00 2.00 2.00 3.00 1.50 4.00 3.00 2.00 3.50

std. dev. 0.49 0.43 0.75 0.43 0.75 0.50 0.40 0.43 0.49 0.5

mean diff -0.15 0.45 1.30 0.55 -1.10

med diff 0.00 0.00 1.50 1.00 -1.50

Table 5.2.: Group Skill Assessment non object-oriented technologies

with Aspect Oriented technologies including AspectJ with the reported me-

dian indicating little familiarity with the aspect-oriented development and

related technologies. Group 1 reports a higher level of familiarity with the

Eclipse IDE where it appears Group 2 is more familiar with other IDEs with

no subject reporting having had no prior experience with working with the

Eclipse IDE1.

1Note: Since both groups reported low familiarity with AspectJ it is probable that neither
group has familiarity with the Eclipse AspectJ plugin.

48

5.2. Experiment Results

Tab.G.2 through Tab.G.5 in Appendix G provide the raw measurements on

the subjects task completion effort times. Tab.5.3 through Tab.5.5 provide

the initial aggregation of the raw measurements to begin detailed analysis.

All three compiled measurements indicate similar findings. First, that sub-

jects expended more effort on aspect-oriented maintenance tasks than object-

oriented tasks in the first experiment phase for the paint application. Con-

versely, subjects expended more effort on the object-oriented maintenance

tasks than the aspect-oriented tasks in the second experiment phase for the

JHotDraw application. Finally, the subjects expended less effort in the sec-

ond experiment phase for the JHotDraw application than the expended in the

first phase for the paint application, regardless of the utilized methodology.

Experiment/Application Aspect-Oriented Object-Oriented
1. Paint application 684 606
2. JHotDraw application 411 519
Table 5.3.: Average task effort (in seconds) by methodology

Experiment/Application Aspect-Oriented Object-Oriented
1. Paint application 696 631
2. JHotDraw application 483 525

Table 5.4.: Average participant effort (in seconds) by methodology

Tab.5.6 and Tab.5.7 continue the analysis of the measurements by pro-

viding descriptive statistics of the measurements categorized by application

49

Experiment/Application Aspect-Oriented Object-Oriented
1. Paint application 633 505

2. JHotDraw application 379 490

Table 5.5.: Average clean task effort (in seconds) by methodology

Results from participants 3, 8, and 9 are excluded due to discrepancies in
reported data

phase and maintenance task performed. An initial analysis from these mea-

surements indicate largely varying values among all tasks types and method-

ologies as depicted by the wide range between minimum and maximum val-

ues and large standard deviations. Even with the large variance in results

though, certain trends do emerge. First, for the paint application, the mean

and median differences for each task fall within a narrow range, which is most

evident after the initial logging task. Second, for the paint task the mean and

median trend in the same down-ward direction for both methodologies. Third,

the paint application’s aspect and oriented tasks and the JHotDraw’s aspect-

oriented task appear to converge down-ward for each subsequent task to a

common range, while the JHotDraw’s object-oriented task trends upward for

each subsequent task. Finally, for the initial logging task of each experiment

application phase, the aspect-oriented means and medians are greater than

the object-oriented means and medians. Fig.5.1 provides a visual illustration

depicting these trends.

Tab.5.8 and Tab.5.9, with the associatedFig.5.2, illustrates the same mea-

50

Function
Logging Profiling Null Check Field Validation

AO OO AO OO AO OO AO OO
max 2940 1765 900 840 552 630 1105 457
min 405 325 140 254 420 120 108 180

arith. mean 1233 1035 587 617 498 397 393 295
med 793 1026 720 687 510 420 180 248

std. dev. 1019 510 324 222 53 193 414 118
mean diff 197 -30 101 98
med diff -233 33 91 -68
Table 5.6.: Paint task effort (in seconds) by methodology

Function
Logging Profiling Null Check Field Validation

AO OO AO OO AO OO AO OO
max 865 381 710 1140 540 660 512 1020
min 172 175 120 180 120 392 420 546

arith. mean 507 252 328 502 308 577 471 803
med 495 255 153 389 265 634 480 824

std. dev. 324 72 271 331 174 103 38 177
mean diff 255 -174 -269 -333
med diff 240 -263 -369 -344

Table 5.7.: JHotDraw task effort (in seconds) by methodology

surements as the previous tables and figures but with results from subjects

who were unable to complete all tasks excluded. These results with excluded

subject measurements indicate the same trends as the results including all

subjects and support the same assertions made previously.

Task Aspect-Oriented Object-Oriented
1 1283 792
2 587 613
3 504 320
4 156 295

Table 5.8.: Clean Paint task effort (in seconds) by methodology

51

Figure 5.1.: Application task efforts (in seconds) by methodology

Task Aspect-Oriented Object-Oriented
1 411 270
2 328 396
3 308 562
4 471 731

Table 5.9.: Clean JHotDraw task effort (in seconds) by methodology

Figure 5.2.: Clean application task efforts (in seconds) by methodology

52

6. Discussion

6.1. Answer to Hypotheses

6.1.1. Hypothesis 1

The results of the experiment, specifically the measurements from the object-

oriented tasks against the JHotDraw application, implicitly verify Hypothesis

1, that the utilization of an aspect-oriented methodology facilitates the under-

standing of core functionality. The results from the object-oriented tasks from

the JHotDraw application indicate that as the complexity of object-oriented

programs and the tasks increase, the effort to comprehend the program and

tasks increases proportionality. Since an application of an aspect-oriented

methodology to an object-oriented solution removes the reference to an en-

tangled concern, the entangled concern’s complexity would be eliminated from

the core functionality. As a result, the remaining core functionality must be

53

less complex than the same functionality with the entangled concern. This

reduction in complexity leads to a reduction in effort in performing program

comprehension.

6.1.2. Hypothesis 2

The results of the experiment provided no evidence that either supported

or contradicted the assertion of Hypothesis 2, that utilization of an aspect-

oriented methodology facilitates the implementation of core functionality. While

the experiment provided no explicit evidence relating to Hypothesis 2, it is a

reasonable assumption that implementation of core functionality would not

be negatively impacted utilizing an aspect-oriented methodology. Comparing

the situation of implementing a core concern versus implementing a core con-

cern with an entangled concern, the implementation effort of the pure core

concern will be less than the implementation of the core concern with the en-

tangled core concern. Intuitively, removing the implementation of the entan-

gled core concern would result in the second case being equal in effort to the

first case. Thus, utilization of an aspect-oriented methodology does not nega-

tively impact the implementation of a core concern. Conversely, utilization of

an aspect-oriented methodology will have no impact or a positive impact on

the implementation of a core concern.

54

6.1.3. Hypothesis 3

The results of the experiment are inconclusive for Hypothesis 3, that the

utilization of an aspect-oriented methodology negatively impacts the under-

standing of concern related functionality. The results from the first phase of

the experiment utilizing the paint application initially verify the hypothesis

but the results from second phase of the experiment utilizing the JHotDraw

application contradict the assertion of the hypothesis. If analysis of the mea-

surements is restricted to only the first task from both application phases

the measurements would then verify the Hypothesis’s assertion that aspect-

oriented methodology impedes the developer’s ability to comprehend concern

related functionality. The fact that data from the subsequent tasks are incon-

clusive or contradict the hypothesis indicate an unanticipated phenomenon

occurred. sec.6.2 provides further discussion and analysis of the measure-

ments as they relate to Hypothesis 3 and potential solutions that address the

rationale for the contradictory results.

6.1.4. Hypothesis 4

The results of the experiment, specifically the measurements from the JHot-

Draw application, support the assertion of Hypothesis 4, that utilization of an

aspect-oriented methodology facilitates the implementation of concern related

55

functionality. The results from the JHotDraw phase of the experiment indi-

cated less effort was expended utilizing the aspect-oriented methodology than

utilizing a pure object-oriented methodology. Additionally, comparing the ef-

fort of implementing a single aspect versus the effort of implementing one

or more entangled core concerns provides additional support to Hypothesis

4. The effort extended for implementation against a single aspect is constant

in regard to the number of code targets, whereas the effort extended for im-

plementation of multiple entangled concerns is proportional to the number of

code targets. Thus, as the number of code targets increase for an entangled

concern, eventually the implementation effort for entangled concerns will ex-

ceed the constant effort of implementation of a single aspect.

6.2. Improving Aspect-Oriented Modeling

Results from the experiment support Hypothesis 3 with the evidence indi-

cating that developers will extend more effort in program comprehension of

aspect functionality in an Aspect-Oriented program that in comprehending

the same aspect functionality entangled in an Object-Oriented program. This

is most evident when the efforts are compared for only the initial task that

developers executed. For the Paint experiment, the Aspect-Oriented develop-

ers took an average 197 seconds longer to perform the first task than there

56

Object-Oriented counterparts and for the JHotDraw task the Aspect-Oriented

developers took an average of 255 seconds longer than the Object-Oriented

developers did.

Comparing the results of the first task from this experiment with results of

the first task from Hanenberg, et al[HKJW09] provides evidence supporting

Hypothesis 4. For both experiments, the first task was the implementation of

a logging capability. In Hanenberg, et al the Object-Oriented developers took

an average of 4864 seconds to complete the task, compared to 3865 seconds

for the Aspect-Oriented developers. In Hanenberg, et al the Object-Oriented

developers took an average of 999 seconds longer to perform the task than

the Object-Oriented developers. This difference in results can be attributed

to in Hanenberg, et al the Object-Oriented developers were required to imple-

ment the functionality in 110 code targets whereas this Thesis’s experiment

the Object-Oriented developers only need to implement the functionality in

one code target. While not entirely precise or accurate, there is some benefit

in taking Hanenberg, et als’ results and averaging the numbers by number

of code targets. With this approach, the Object-Oriented developers took an

average of 486 seconds to implement each code target compared to the Aspect-

Oriented developers’ average of 3865 seconds for implementing a single log-

ging aspect.

57

Results from tasks two through four did not support Hypothesis 3 but do

indicate an unexpected phenomenon occurred. Of the six tasks executed

after the initial logging task only two indicated additional effort in under-

standing concerns in an Aspect-Oriented program compared to an Object-

Oriented program. While the results from tasks two through four do not

support Hypothesis 3 they do indicate that a previously unanticipated phe-

nomenon by the experiment hypotheses has occurred. Fig.5.1 provides the

best indication of the phenomenon.Fig.5.1 and the supporting data from Tab.5.6

and Tab.5.7 indicate potential trends related to three factors: 1) the previ-

ously acquired domain knowledge gained by the developer, 2) the complexity

of the program, and 3) the methodology used. The trends indicated by this

data point to a previously unidentified hypotheses concerning the developers

effort in transitioning from bottom-up program comprehension to top-down

program comprehension.

The first trend indicated by the data is the sharp decline in effort from the

first task performed to all subsequent tasks. For the first task the Aspect-

Oriented developers took an average of 1232 seconds and the Object-Oriented

developers took an average of 1035 seconds. For all subsequent tasks the

range of means for both Aspect-Oriented and Object-Oriented fell between

252 seconds and 803 seconds. Fig.6.1 includes data from Hanenberg, et al

58

which further indicates that a significant event occurs either during or after

developers complete the initial experiment task. Data from both experiments

suggest that developers have acquired adequate domain knowledge of the ap-

plication utilized in the experiment to transition from performing bottom-up

program comprehension to top-down program comprehension.

Figure 6.1.: Task effort with Hanenberg, et al Included(seconds)

The data from the experiment also indicates that a relationship exists be-

tween the complexity of the application, the methodology chosen for imple-

mented concern capability, and the effort required to transition from bottom-

up program comprehension to top-down program comprehension. For the

Paint application the average effort time decreased for each subsequent task

for both aspect-oriented and object-oriented approaches even though each

subsequent task was designed to be more difficult that the previous task.

59

Additionally, the average task times for the Paint application decreased at

similar rates and the difference between task times remained within a min-

imal range. Conversely, for the JHotDraw application the aspect-oriented

development effort indicated an initial decline for the second task followed

by a leveling off for the subsequent tasks while the object-oriented develop-

ment showed an increase in effort for each subsequent task. A possible cause

of this discrepancy can be attributed to the complexity of the application ex-

periments. The Paint application contains a total of nine classes while the

JHotDraw application contains a total of three hundred fifty classes. Based

on the increased complexity of the JHotDraw application it can be reasoned

that the object-oriented developers continued to perform bottom-up program

comprehension for all tasks in the experiment, taking increased time for each

subsequent task as the complexity of the task increased. This application

complexity did not impact the aspect-oriented developers who transitioned

after the first task to top-down program comprehension and were able to com-

plete each subsequent task expending a relatively minimal constant amount

of effort. For the Paint application, the complexity of the object-oriented im-

plementation and the complexity of the aspect-oriented implementation were

relatively similar resulting in the task times for each approach showing min-

imal differences between the two methodologies.

60

Hypothesis 5.
The effort to transition from bottom-up program compre-

hension to top-down program comprehension of concern re-

lated functionality in an aspect-oriented development soft-

ware system is less than the effort to transition from bottom-

up program comprehension to top-down program compre-

hension of the same concern related functionality utilizing

an object-oriented methodology.

This hypothesis assumes that the aspect functionality is relatively less com-

plex and has fewer code operations than the systems core functionality.

6.3. Studying How People Organize Crosscutting

Concerns

Based on the post experiment formation of Hypothesis 5 future research should

prove to be beneficial in exploring the benefits aspect-oriented development

provide in facilitating the transition to top-down program comprehension.

Based on the results of this thesis experiment the path forward should be

to investigate better methods for modeling aspects than are currently avail-

able. Specifically, from the results it appears that comprehension of aspects

can better be understood when viewed in isolation from the system’s core func-

61

tionality. This approach conflicts with the current accepted practices of aspect

modeling which tightly couples the aspect representation to the impacted core

functionality.Future research in aspect modeling should focus on identifying

a modeling nomenclature of aspects that is independent and decoupled from

the object-oriented representation. While future research should base the

modeling approach on familiar nomenclatures, the modeling approach does

not necessarily need to re-utilize the current object-oriented nomenclatures

such as UML.

While the results of this thesis indicate that developers are able to form

mental models of aspect-oriented programs it did not discover what form that

mental model takes. Future research should attempt to identify the aspect

mental models developers and other system stakeholders form to understand

the system. This can potentially be accomplished by taking the approach this

thesis took and extending the experiment to include non-technical partici-

pants. One of the strengths of object-oriented analysis and design utilizing

UML is a reuse of the nomenclature during the both analysis and design pro-

cesses. By reusing the nomenclature, communication between the developers

and the non-technical stakeholders of the system is greatly facilitated. This

can only be accomplished if the nomenclature is capable of being understood

by the non-technical stakeholders. Future aspect modeling nomenclatures

62

should attempt to duplicate this capability and future empirical studies of

how subjects form mental models of aspects should include non-technical par-

ticipants.

To illustrate how future research in aspect modeling can leverage the ap-

proach utilized in this experiment, this thesis provides a framework for a

future aspect modeling experiment. For the potential aspect modeling ex-

periment, consider a knowledge domain such as a hypothetical library. This

library contains two rooms. In one room is a collection of books containing

all known knowledge about the animal kingdom. In the second room is a

collection of books containing all known knowledge about carpentry tools.

In the animal kingdom room, there is large number of shelves, with each

shelf dedicated to collecting the books of a specific phylum. On the shelves are

dividers which separate the books by the order classification. Each individual

book in the animal library is dedicated to containing all known knowledge

about an animal family. The chapters of these books are divided into a specif

genus, with each genus chapter containing the knowledge for the individual

species. In this manner, the library of animal knowledge is structured very

similar to how and object-oriented software system is organized. Corollaries

can be drawn, comparing the high level structure such as phylum to abstract

classes utilized as the basis for further refined classes with a hierarchy of

63

inheritance ending at the species which corresponds to final concrete class

implementations.

With the hypothetical domain defined, the experiment would require sub-

jects to answer questions relevant to the domain. For instance, the exper-

iment could task a subject to provide information on frogs. In this case the

subject should navigate to the Chordata shelf and examine all books contained

in the Anura divider. Or the experiment could ask the subject to provide in-

formation on scorpions with thick tails. Here the subject should navigate to

the Arthropoda shelf and in the divider section for Scorpions find the book for

Buthidae. Similarly, the subject could be asked to find information relevant

to a specific layer of the animal kingdom hierarchy such as find animals with

fur or hair, find animals with feathers, find animals with vertebrae, or find

information on snails. Because this requested information is a specific point

in the animal kingdom hierarchy, it is reasonable that the subject should be

able to identify the knowledge location.

Now for the hypothetical experiment, suppose the subject is tasked with

verifying the statement “Only animals with sharp teeth can eat meat”. The

experiment should observe how the subject reasons or forms the intent to

perform this task. Does the subject look for a specific phylum. Would the

subject be able to identify all instances of animals with sharp teeth, i.e. did

64

the subject identify dogs; cats; humans (but not chimpanzees); some, but not

all, snakes; sharks; piranhas; etc. Insight into how the subject reasons about

performing this task will provide the evidence for development of more ap-

propriate aspect modeling methodologies. In this sense, “Animals with sharp

teeth” is the scattered concern to our system.

6.4. Threats To Validity

This section identifies the threats to the validity of this experiment which

need to be explicitly communicated for software engineering empirical

studies[KAKB+06].

6.4.1. Internal Threats

Due to scheduling constraints of the experiment participants, the experiment

was performed in two different sessions. While the pre-experiment activities

provided the subjects the same training material and tutorial exercise, the

open discussion with different questions asked by the subjects in the different

sessions introduces one threat to the validity of the experiment.

The experiment provided the tasks to the subjects in what the experiment

designers considered simpler tasks first followed by subsequently more com-

plex tasks. This approach was followed to reduce the risk of a subject becom-

65

ing too frustrated with a task and being unable to continue. A randomized

approach to task ordering would have eliminated this threat but the small

subject pool size and risk of subjects being unable to complete the task pre-

vented the approach.

While the application and exact task implementation were different in both

phases of the experiment, the task types were repeated in each phase. Sub-

jects unfamiliar with the capability concept utilized during the first phase of

the experiment (i.e. had no prior experience with logging or profiling) would

have acquired that concept during the second phase introducing a reduction

in the evaluation effort in the second phase. While the concepts of the main-

tenance task were not relatively complex to the overall task, any effort in

understanding the concept for the first time would contribute to elevated de-

velopment effort times in only the first experiment phase.

One final internal threat to validity of the experiment is the subjects pre-

sumption of proper methodology to utilize for task completion. After com-

pletion of the first task in the first experiment phase subjects knew which

methodology to utilize for the completion of that experiment phase and which

methodology they would utilize for the second phase. As a result, after the

first task subjects knew whether the crosscutting concern was either entan-

gled within the core implementation or was separated utilizing AspectJ. This

66

experiment does not address the issue of what the evaluation effort of identi-

fying a crosscutting capability developers implement as an entangled object-

oriented capability or as a potentially separated capability utilizing an aspect-

oriented methodology.

6.4.2. External Threats

The external threats to the validity of the experiment arise from the subjects

characteristics. The first characteristic is that all subjects were graduate

students taking a course on advanced software engineering methodologies.

Beyond that commonality the background of the subjects ranged from full-

time to part-time graduate students with varying degrees of professional soft-

ware engineering experience. The experiment is unable to assess the impact

that the subjects’ prior experiences with crosscutting domain capabilities that

they potentially encountered through either academic or professional pursuits

influenced the measurement results. Secondly, the psychological profile of

the individual subject influences their capability to complete the experiment

tasks. This experiment provided no mechanism for identifying how the sub-

jects’ intelligence, learning aptitude, and personality preferences influenced

their ability to compete the experiment tasks.

67

7. Conclusions

7.1. Contribution to Research

This thesis contributes in identifying the impacts aspect-oriented methodolo-

gies have on developers’ capabilities to comprehend software systems. The

findings from this research imply that the aspect-oriented methodologies of

decoupling separate concerns from the core capability impedes the developer’s

ability to perform bottom-up program comprehension, the primary intent of

the empirical experiment conducted. A secondary finding not initially hy-

pothesized is the positive impact aspect-oriented methodologies have on the

developers’ effort in transitioning from bottom-up comprehension to top-down

comprehension.

68

7.2. Implications to Practice

Based on the findings from this research, software engineering practitioners

utilizing aspect-oriented methodologies would be advised to design the sepa-

rate concern capabilities independently and without undue bias or influence

from the core capability. While the design of aspects in this manner may

entail performing bottom-up comprehension with resulting negative impact

to effort, the resulting packaging and structure of the resultant system de-

sign should facilitate comprehension to future maintainers through reducing

the effort to transition to top-down comprehension. Note that this approach

conflicts with many of the current approaches to modeling aspects through

utilization of UML profiles that couples the aspect to the targeted core capa-

bilities. Practitioners that follow this proposed approach must be cognizant

of the fact that while they achieve benefit to understandability and modular-

ity of the system design there is a risk of introducing defects by ignoring the

principle of completeness.

69

8. Future Work

In addition to the future research path outlined in sec.6.2 the findings from

this research can also be leveraged against other facets of ongoing research

related to aspect-oriented development. This section identifies these tangen-

tial research topics on aspect-oriented development and describes how these

research topics can utilize the findings from this thesis.

8.1. Aspect-Oriented Refactoring

A potential challenge developers utilizing traditional object-oriented method-

ologies face in comprehension of separated concern functionality is recogniz-

ing that the entangled concern is in fact a candidate for encapsulation uti-

lizing aspect-oriented programming. In many cases this realization that an

entangled concern has been replicated throughout the system does not oc-

cur until late in the development life cycle after the functionality has been

70

implemented multiple times. Aspect-oriented refactoring is a technique for

improving modularity and reducing complexity of these existing systems not

utilizing aspect-oriented development through a methodological modification

of the system to an aspect-oriented system[YSY+11]. If developers can prac-

tice these aspect-oriented refactoring techniques early in the development

life-cycle as the cross-cutting entanglement begins to emerge, not only can

duplicate effort of future entangled concern implementation be avoided but

identification of these entangled concerns will facilitate developer comprehen-

sion of aspect components of their developing system. Potentially this early

identification of aspects will provide the mental model and design patterns

necessary for developers to approach system design with a background neces-

sary to encapsulating cross-cutting concern capabilities.

8.2. Aspect-Oriented Requirements Engineering

As previously discussed in sec.6.3, modeling of aspects during the analysis

and design phases should utilize the same nomenclature as much as possi-

ble to ensure understandability by both technical and non-technical stake-

holders. Chitchyan, et al [CGS+09], identify a challenge in aspect composi-

tion during requirements analysis that all stakeholders encounter that lead

to the extensibility and usefulness of the implemented aspect. The major-

71

ity of aspect-oriented developments, including the techniques utilized in this

research, compose the aspects utilizing syntactic references. These syntactic

compositions utilize references to the core module or wild-card mechanisms to

define the point-cut expressions which fail to express the actual meaning and

intent of the aspect and lead to the problem of point cut fragility. Chitchyan,

et al, propose a semantic composition technique based on natural language

analysis that facilitates the understanding of aspects through utilization of a

more expressive, human-oriented nomenclature than the prevailing syntactic

approaches. Potentially, Chitchyan, et als’, semantic composition aligns more

closely to stakeholders mental model of cross-cutting concerns than current

aspect-oriented modeling nomenclatures and lead to a reduction of effort in

the “Gulf of Evaluation”. Future research on extending this semantic compo-

sition through the aspect-oriented development life cycle and the impact this

approach has on program comprehension could prove to be beneficial.

8.3. Aspect-Oriented and Verification

Krishnamurthi and Fisler[KF07] outline the unique challenges that aspect-

oriented development has on the verification of the resulting systems. As

with representation of all systems, the more engineers utilize the principles

of abstraction in depicting the system the greater the degree of falsifiabil-

72

ity is introduced into the resulting representation [Pop72]. Essentially, these

challenges from aspect-oriented representations arise from the inherent de-

coupling of the aspect from the core capability and the complexity of recom-

bining the advice with the core capability to perform verification. This chal-

lenge is further exacerbated if the approach recommended in this thesis are

followed which advocate for developers to model and develop aspects indepen-

dently from the core capabilities. In addition, when the problem of aspect ver-

ification is researched in connection with the problems of point cut fragility

described by Chitchyan, et al, the potential emerges that future modifica-

tions to the core capabilities may result in unintended system behaviors. As

such, any benefits from research in early life-cycle aspect-oriented processes

must be analyzed for the impact that utilization of the techniques have on the

verification process. Ideally, research in aspect-oriented verification identifies

substantial benefits that supplant any impacts early life cycle aspect-oriented

research may impose on the verification effort.

8.4. Aspect-Oriented Languages

Additionally, future research can apply the recommendations from the previ-

ous sections in improving the languages that implement aspect-oriented pro-

grams. In one sense the AspectJ programming language can be compared

73

to the C++ programming language in that both languages are extensions to

an existing programming language. Just as developers were slow to accept

object-oriented development until the advent of a pure object-oriented pro-

gramming language in Java, developers may be unwilling to perform aspect-

oriented development because of the effort of integrating AspectJ with the on-

going Java development. The creation of a single, integrated aspect-oriented

programming language that combines the features of aspect-oriented and

object-oriented programming may facilitate the acceptance of aspect-oriented

programming. The creation of this pure aspect-oriented programming lan-

guage must be cognizant of the deficiencies identified by this research and the

cited research topics. Ideally, a pure aspect-oriented language would address

the issues of point cut fragility and program comprehension through utiliza-

tion of semantic compositions as proposed by Chityan, et al. At a minimum,

improvements to aspect-oriented languages can utilize the findings from this

research and treat aspects as separate, decoupled entities by providing a sepa-

rate, localized packaging structure unique to the aspect-implementation and

independent from the class definitions. This aspect only package structure

would force developers to design aspects independently from the core imple-

mentation and facilitate bottom-up program comprehension by providing the

anchor point from which maintainers can begin their concept search of sepa-

74

rate concern functionality.

75

A. CITI Completion Report

Figure A.1.: CITI Completion Report

76

B. Consent

Figure B.1.: Consent Form

77

C. Survey

The scale of 1 through 5

1. Having no experience

2. Have heard of the technology but have never actively used the technol-

ogy.

3. Occasionally used the technology.

4. Regularly uses the technology.

5. Expert level use of the technology. Would feel comfortable mentoring

others on the use of the technology.

The survey questions

1. Experience with Object-Oriented development

2. Experience with the Unified Modeling Language (UML).

78

3. Experience with the Java programming language

4. Experience with Object-Oriented programming languages besides Java.

(C++,C#,etc).

5. Experience with Aspect-Oriented development.

6. Experience with AspectJ

7. Experience with other Aspect-Oriented technologies besides AspectJ (JEE

Interceptors, Spring, etc).

8. Experience with using the Eclipse IDE.

9. Experience with other IDEs besides Eclipse.

79

D. Detailed Application Metrics

Tab.D.1 provides detailed metrics of the target applications computed using

Sextant [WRG13]. Fig.D.1 through Fig.D.4 provide Sextant visualizations of

the target applications’ complexity.

Figure D.1.: Paint Application Inheritance

80

Metrics Paint JHotDraw
Packages 7 18
Lines of Code 785 41,051
Compilation Units 14 290
Concrete Classes 11 280
Abstract Classes 2 22
Interfaces 1 48
Enums 0 0
Static Fields 1 163
Instance Fields 44 522
Static Methods 3 0
Instance Methods 65 2,651
Constructors 7 357
Static Initialization Blocks 0 4
Static Initialization Block LOC 0 22
Instance Initialization Blocks 0 1
Instance Initialization Block LOC 0 8
Method LOC Average 5 7
Method LOC Std. Deviation 5 9
Method Statement Average 2 3
Method Statement Std. Deviation 3 5

Table D.1.: Detailed Target Application Metrics

Figure D.2.: JHotDraw Application Inheritance

81

Figure D.3.: JHotDraw Application Package Dependencies

Figure D.4.: JHotDraw Application Package Type Member Structure

82

E. Tasks

E.1. Paint Application

1. The Application currently writes a log statement when entering every

method at the trace level. Modify the application to write the log state-

ment for non-public scoped methods at the debug level.

a) Aspect solution: GgngPct::lgNnPblcNtr() - 1 line mod

b) Object-oriented solution:

PaintObjectConstructor::makeHoveringPrototype() - 1 line mod

2. The Application currently profiles the methods in the PaintWindow class

(i.e. the time to execute the method is recorded). Using the same tech-

nique as applied to the PaintWindow class, profile the EraserPaint class.

a) Aspect solution: RflrSpct Aspect annotation. - 1 line mod

83

b) Object-oriented solution: EraserPaint - 3 new lines

3. The Application currently checks for null arguements being passed into

the setter methods and if the argument is null throws a NullPointerEx-

ception. Using the same technique used for the setter methods, add a

check for null arguements in methods with the name define and if the

argument is null throw a NullPointerException.

a) Aspect solution: SttrLdtr::hchPrm() - 1 line mod

b) Object-oriented solution: PencilPaint::define() - 2 new lines

4. The application currently checks if public int fields are being assigned

a value less than zero. If the value being assigned is less than zero the

field is instead assigned the value of zero. Using the same technique as

checking int fields, ensure that the assignment of public double fields is

also greater than or equal to zero.

a) Aspect solution: SttrLdtr new aspect similar to chckSet() - 5 new

lines.

b) Object-oriented solution: PaintWindow::PaintWindow() 1-2 mod or

new lines

84

E.2. JHotDraw Application

1. The Application currently writes a log statement when entering a pub-

lic method in the org.jhotdraw.samples.net package at the debug level.

Modify the application to write the log statement for protected scoped

methods in the org.jhotdraw.samples.net.package at the trace level.

a) Aspect solution: Add advise for protected methods in the GgngPct.

- 4 lines.

b) Object Oriented solution: NetApp::createTools() - 1 line.

2. The Application currently profiles the public methods in the

org.jhotdraw.contrib.zoom package that have a MouseEvent as a passed

in parameter (i.e. the time to execute the method is recorded). Using the

same technique as applied to the public methods in the package, pro-

file the protected and private methods in the org.jhotdraw.contrib.zoom

package that have a MouseEvent parameter passed in.

a) Aspect solution: Remove the public scope from join point in

PrflPct::profile() - 1 line modified.

b) Object oriented solution: ZoomDrawingView::createScaledEvent().

3. The Application currently checks for null arguements being passed into

setter methods of parameter type Font and if the argument is null throws

85

a IllegalArgumentException. Using the same technique used for the

Font setter methods, add a check for null arguements in setter methods

with parameter type of StorageFormat and if the argument is null throw

an IllegalArgumentException.

a) Aspect solution: Add advice similar to VldtrSpct::chchPrm() but us-

ing StorageFormat as parameter. - 4 new lines.

b) Object Oriented solution: Add check in

StorageFormatManager::setDefaultStorageFormat() - 2 new lines

4. Field validation. The application currently checks to ensure the int fields

fOriginX, fOriginY, fWidth, and fHeight in the TextFigure class are as-

signed positive values. If the value being assigned is negative the fields

are instead assigned a zero value. Using the same technique as the check

for TextFigure ensure that the assignment of fields fLastX and fLastY

are also only assigned values greater than or equal to zero

86

F. Results Database Description

Figure F.1.: Results Database Schema Definition

87

G. Experiment Results
Pa

rt
ic

ip
an

t
Id

en
ti

fie
r

1.
E

xp
er

ie
nc

e
w

it
h

O
O

de
ve

lo
pm

en
t

2.
E

xp
er

ie
nc

e
w

it
h

U
M

L

3.
E

xp
er

ie
nc

e
w

it
h

Ja
va

4.
E

xp
er

ie
nc

e
w

it
h

ot
he

r
O

O
la

ng
ua

ge
s

5.
E

xp
er

ie
nc

e
w

it
h

A
O

de
ve

lo
pm

en
t

6.
E

xp
er

ie
nc

e
w

it
h

A
sp

ec
tJ

7.
E

xp
er

ie
nc

e
w

it
h

ot
he

r
A

O
te

ch
no

lo
gi

es

8.
E

xp
er

ie
nc

e
w

it
h

E
cl

ip
se

9.
E

xp
er

ie
nc

e
w

it
h

ot
he

r
ID

E
s

1 4 3 4 3 3 3 4 4 2
2 3 3 3 4 3 2 2 3 4
3 4 4 5 3 3 3 3 4 3
4 4 3 4 4 2 2 2 4 3
5 4 3 4 3 2 1 2 4 2
6 5 3 3 5 2 1 1 3 4
7 4 3 4 3 2 2 3 4 3
8 3 2 3 3 2 2 1 3 3
9 3 3 4 3 2 2 2 3 2

Table G.1.: Survey Responses

88

Pa
rt

ic
ip

an
t

Id
en

ti
fie

r

1.
L

og
gi

ng

2.
P

ro
fil

in
g

3.
N

ul
lC

he
ck

4.
Va

lid
at

or

2 985 744 511 457
4 325 840 120 180
6 1066 254 328 248
8 1765 630 630 DNF

Table G.2.: Paint Application Object-Oriented Participant Results

Pa
rt

ic
ip

an
t

Id
en

ti
fie

r

1.
L

og
gi

ng

2.
P

ro
fil

in
g

3.
N

ul
lC

he
ck

4.
Va

lid
at

or

1 505 900 540 240
3 1080 DNF 480 1105
5 405 140 552 108
7 2940 720 420 120

Table G.3.: Paint Application Aspect-Oriented Participant Results

Note: Participant 3 did not perform the tasks in the assigned order. Partici-
pant 3 performed the tasks in order of task 4, task 3, then task 1, and did not
finish with task 2.
Note: Participant 9 participated in the Aspect-Oriented Paint application ex-
periment but did not record the task times.

89

Pa
rt

ic
ip

an
t

Id
en

ti
fie

r

1.
L

og
gi

ng

2.
P

ro
fil

in
g

3.
N

ul
lC

he
ck

4.
Va

lid
at

or

1 255 360 660 900
3 195 1140 540 DNF
5 175 440 634 546
7 381 389 392 747
9 255 180 660 1020

Table G.4.: JHotDraw Application Object-Oriented Participant Results

Pa
rt

ic
ip

an
t

Id
en

ti
fie

r

1.
L

og
gi

ng

2.
P

ro
fil

in
g

3.
N

ul
lC

he
ck

4.
Va

lid
at

or

2 865 710 540 420
4 195 120 120 480
6 172 153 265 512
8 795 DNF DNF DNF

Table G.5.: JHotDraw Application Aspect-Oriented Participant Results

90

H. Links

• University of Nebraska Medical Center Institutional Review Board -

http://www.unmc.edu/irb

• Collaborative Institutional Training Initiative - http://www.citiprogram.org

• Paint from Carnegie Mellon - http://www.cs.edu/~marmalade/studies.html

• JHotDraw - http://jhotdraw.org

• Git - http://www.git-scm.com

• SonarQube - http://www.sonarqube.org

• Eclipse IDE - http://eclipse.org

• AspectJ - http://www.eclipse.org/aspectj

• MySQL - http://www.mysql.com

91

• Sextant - http://faculty.ist.unomaha.edu/winter/ShiftLab/

Sextant_web/Sextant_index.html

92

Bibliography

[BMW93] T.J. Biggerstaff, B.G. Mitbander, and D. Webster. The concept

assignment problem in program understanding. In Software En-

gineering, 1993. Proceedings., 15th International Conference on,

pages 482–498, May 1993.

[Bos14] B. Bos. Design guide, April 2014. http://www.w3.org/

People/Bos/DesignGuide/simplicity.html.

[CGS+09] Ruzanna Chitchyan, Phil Greenwood, Americo Sampaio, Awais

Rashid, Alessandro Garcia, and Lyrene Fernandes da Silva.

Semantic vs. syntactic compositions in aspect-oriented require-

ments engineering: an empirical study. In Proceedings of the 8th

ACM international conference on Aspect-oriented software devel-

opment, pages 149–160. ACM, 2009.

http://www.w3.org/People/Bos/DesignGuide/simplicity.html
http://www.w3.org/People/Bos/DesignGuide/simplicity.html

93

[EH11] Stefan Endrikat and Stefan Hanenberg. Is aspect-oriented pro-

gramming a rewarding investment into future code changes?

a socio-technical study on development and maintenance time.

International Conference on Program Comprehension, 0:51–60,

2011.

[HKJW09] Stefan Hanenberg, Sebastian Kleinschmager, and Manuel

Josupeit-Walter. Does aspect-oriented programming increase the

development speed for crosscutting code? an empirical study. In

Proceedings of the 2009 3rd International Symposium on Empir-

ical Software Engineering and Measurement, ESEM ’09, pages

156–167, Washington, DC, USA, 2009. IEEE Computer Society.

[KAKB+06] Barbara Kitchenham, Hiyam Al-Khilidar, Muhammad Ali Babar,

Mike Berry, Karl Cox, Jacky Keung, Felicia Kurniawati, Mark

Staples, He Zhang, and Liming Zhu. Evaluating guidelines for

empirical software engineering studies. In Proceedings of the

2006 ACM/IEEE International Symposium on Empirical Soft-

ware Engineering, ISESE ’06, pages 38–47, New York, NY, USA,

2006. ACM.

[KF07] Shriram Krishnamurthi and Kathi Fisler. Foundations of incre-

94

mental aspect model-checking. ACM Transactions on Software

Engineering and Methodology (TOSEM), 16(2):7, 2007.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.

Aspect-oriented programming. In ECOOP’97 - Object-Oriented

Programming, volume 1241 of Lecture Notes in Computer Sci-

ence, pages 220–242. Springer Berlin Heidelberg, 1997.

[KMCA06] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet

Aung. An exploratory study of how developers seek, relate, and

collect relevant information during software maintenance tasks.

IEEE Trans. Softw. Eng., 32(12):971–987, December 2006.

[Nor02] Donald A. Norman. The Design of Everyday Things. Basic Books,

New York, reprint paperback edition, 2002.

[Pop72] Karl Raimund Popper. Objective knowledge: An evolutionary ap-

proach. Clarendon Press Oxford, 1972.

[Raj11] Václav Rajlich. Software Engineering: The Current Practice.

CRC Press, 2011.

[RGI75] D.T. Ross, J.B. Goodenough, and C. A. Irvine. Software engineer-

ing: Process, principles, and goals. Computer, 8(5):17–27, 1975.

95

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sut-

ton, Jr. N degrees of separation: Multi-dimensional separation of

concerns. In Proceedings of the 21st International Conference on

Software Engineering, ICSE ’99, pages 107–119, New York, NY,

USA, 1999. ACM.

[vMV97] Anneliese von Mayrhauser and A. Marie Vans. Program under-

standing behavior during debugging of large scale software. In

Papers presented at the seventh workshop on Empirical studies

of programmers, ESP ’97, pages 157–179, New York, NY, USA,

1997. ACM.

[WRG13] Victor Winter, Carl Reinke, and Jonathan Guerrero. Sextant:

A tool to specify and visualize software metrics for java source-

code. In Emerging Trends in Software Metrics (WETSoM), 2013

4th International Workshop on, pages 49–55. IEEE, 2013.

[WSK+11] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner

Retschitzegger, Wieland Schwinger, and Elizabeth Kapsammer.

A survey on uml-based aspect-oriented design modeling. ACM

Comput. Surv., 43(4):28:1–28:33, October 2011.

[YSY+11] Reishi Yokomori, Harvey Siy, Norihiro Yoshida, Masami Noro,

96

and Katsuro Inoue. Measuring the effects of aspect-oriented

refactoring on component relationships: two case studies. In Pro-

ceedings of the tenth international conference on Aspect-oriented

software development, pages 215–226. ACM, 2011.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	4-2014

	Program Comprehension of Aspect-Oriented Programs
	Jeffrey Steenbock
	Recommended Citation

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement

	2 Background and Related Work
	2.1 Background
	2.1.1 History
	2.1.2 Aspect-Oriented Programming
	2.1.3 Program Comprehension

	2.2 Related Work
	2.2.1 Aspect-oriented Development Effort

	3 Definition and Validity Of Scope
	4 Method
	4.1 Applications
	4.2 Tasks
	4.2.1 First Task: Logging.
	4.2.2 Second Task: Profiling.
	4.2.3 Third Task: Null parameter checks.
	4.2.4 Fourth Task: Field validation.

	4.3 Participants
	4.4 Measurements
	4.5 Tools and Instrumentation
	4.6 Procedure

	5 Results
	5.1 Subject Profile
	5.2 Experiment Results

	6 Discussion
	6.1 Answer to Hypotheses
	6.1.1 Hypothesis 1
	6.1.2 Hypothesis 2
	6.1.3 Hypothesis 3
	6.1.4 Hypothesis 4

	6.2 Improving Aspect-Oriented Modeling
	6.3 Studying How People Organize Crosscutting Concerns
	6.4 Threats To Validity
	6.4.1 Internal Threats
	6.4.2 External Threats

	7 Conclusions
	7.1 Contribution to Research
	7.2 Implications to Practice

	8 Future Work
	8.1 Aspect-Oriented Refactoring
	8.2 Aspect-Oriented Requirements Engineering
	8.3 Aspect-Oriented and Verification
	8.4 Aspect-Oriented Languages

	A CITI Completion Report
	B Consent
	C Survey
	D Detailed Application Metrics
	E Tasks
	E.1 Paint Application
	E.2 JHotDraw Application

	F Results Database Description
	G Experiment Results
	H Links
	Bibliography

