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Abstract 

A network is said to exhibit community structure if the nodes of the network can be 

easily grouped into groups of nodes, such that each group is densely connected internally 

but sparsely connected with other groups. Most real world networks exhibit community 

structure.  

A popular technique for detecting communities is based on computing the modularity of 

the network. Modularity reflects how well the vertices in a group are connected as 

opposed to being randomly connected. We propose a parallel algorithm for detecting 

modularity in large networks. 

 However, all modularity based algorithms for detecting community structure are affected 

by the order in which the vertices in the network are processed. Therefore, detecting 

communities in real world graphs becomes increasingly difficult. We introduce the 

concept of stable community, that is, a group of vertices that are always partitioned to the 

same community independent of the vertex perturbations to the input. We develop a 

preprocessing step that identifies stable communities and empirically show that the 

number of stable communities in a network affects the range of modularity values 

obtained. In particular, stable communities can also help determine strong communities 

in the network. 



  

Modularity is a widely accepted metric for measuring the quality of a partition identified 

by various community detection algorithms. However,a growing number of researchers 

have started  to explore the limitations of modularity maximization such as resolution 

limit,degeneracy of solutions and asymptotic growth of the modularity value for detecting 

communities. In order to address these issues we propose a novel vertex-level metric 

called permanence. We show that our metric permanence as compared to other standard 

metrics such as modularity, conductance and cut-ratio performs as a better community 

scoring function for evaluating the detected community structures from both synthetic 

networks and real-world networks. We demonstarte  that maximizing permanence results 

in communities that match the ground-truth structure of  networks more accurately than 

modularity based and other approaches. Finally,we demonstrate how maximizing 

permanence overcomes limitations associated with modularity maximization. 
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Chapter 1 

Introduction 

Networks consist of a set of vertices and a set of edges and have been proven to be useful 

for solving real world problems arising in systems of interacting objects. In a network 

model, vertices represent objects and edges represent interactions between them. In the 

study of networks such as social networks[24] and biological networks it has been found 

that networks have common characteristic[24] like community structure and heavy tailed 

degree distribution[24]. A network is said to have community structure if the nodes of the 

network can be easily grouped in to set of nodes such that each set of nodes is densely 

connected internally and sparsely connected externally[26]. 

A fundamental problem in network analysis is detecting communities correctly. Most 

community detection algorithms are based on optimizing a combinatorial metric, for 

example modularity [26] and conductance [27]. The goodness of community detection 

algorithm is often measured according to how well they achieve optimization. 

Optimization is generally NP- hard thus merely changing the ordering of the vertices 

influences the community structure detected by any community detection algorithm. In 

my thesis we study the effect of vertex perturbation on the community structure detected 

using Louvain et.al[3] and Clauset et.al[4].  

However there exist a group of vertices which are not affected by any vertex 

perturbation, we call those set of vertices as stable community. We study various 

characteristics of stable community and design an algorithm to identify such community. 

In the next part of my thesis we have implemented a parallel version of the popular 



2 
 

 

modularity maximization approach called the Louvain method, which iteratively 

optimizes local communities until overall modularity can no longer be improved. In this 

process we discovered the modularity and other metrics like conductance suffer from a 

resolution limit which makes it difficult to detect communities which is smaller in size. 

We propose a new metric termed as relative permanence which overcomes the effect of 

the resolution limit. In the final part of my thesis we develop a new algorithm to detect 

communities using relative permanence as a metric.  

1.1 Contribution 

Given below is a list of our significant contributions. 

 

 We have carried out comprehensive research on different community 

detection algorithms that use modularity maximization and studied the 

effects of vertex perturbations on them. 

 We have designed an efficient constant community detection algorithm for 

static networks that detects group of vertices which are not affected by vertex 

perturbations. 

 We designed and developed a new metric called relative permanence to 

detect community in static networks. 

1.2 Outline of Thesis    

 This thesis is organized as follows. In chapter 2 we discuss background of graph 

theory and community detection using modularity maximization. In chapter 3 we 

present the parallel version of the popular modularity maximization approach known 

as the Louvain method. In chapter 4 we discuss the effect of vertex perturbation on 
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the results of community detection algorithms and judge the goodness of a 

community detection algorithm. In chapter 5 we present our new constant 

community detection algorithm, which overcomes vertex perturbation. 

In chapter 6 we discuss demerits of modularity maximization and propose a new 

metric relative permanence to detect community in networks. In chapter 7 we 

present our concluding remarks and present potential ideas for future research. 
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Chapter 2 

Background 

Many problems of practical interest can be represented as graphs. In computer science, 

graphs are used to represent different networks such as biological networks and social 

networks[24]. Each of these networks consists of a set of vertices and a set of edges. For 

instance people in the social networks represent vertices in a graph and connections 

between people are represented by the edges in social networks. Here, we introduce some 

network or graph terminology. We classify the list of graph properties as (i) vertex based 

properties, and (ii) network based properties.    

2.1 Graph Terminology[25] 

 A graph is collection of vertices and edges. Formally, G=(V,E) consists of set of vertices 

V and a set of edges W, where  E is subset of  (V × V). In general graphs are classified as 

directed and undirected. A graph is directed if edges point in one direction from one 

vertex to another vertex, otherwise the graph is undirected.   
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Figure 2.1: Undirected Graph 

Graph Properties 

2.1.1 Vertex Based Properties 

 Degree 

    The degree of a vertex in a graph is the number of edges the vertex shares with 

the other vertices. The degree of vertex v is denoted by deg(v). In a directed 

graph, vertices have two different degrees, in-degree: number of incoming edges 

and out-degree:  the number of outgoing edges. In figure 2.1, degree of  vertices 

are deg(1)=2, deg(2) =3, deg(3)= 2, deg(4)=3 and deg(5)=2. 

 

 Clustering Coefficient 

 Clustering coefficient is a measure of the degree to which the nodes in a graph 

tend to cluster together.  Clustering coefficient is calculated as the ratio of the 

edges between the neighbors of a vertex to the total number of possible 

connections between them. In general, the higher the clustering coefficient the 
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more likely that vertex is part of a dense module.  Mathematically clustering 

coefficient of a vertex V is defined as, 

    
    

           
 

Where   denotes the number of connections connecting the   neighbors of 

vertex i to each other. 

 

2.1.2 Network Based Properties 

 Degree Distribution 

Degree distribution is the distribution of the different degrees (and their frequency) of the 

vertices over the network. Most scale free networks like social networks observe a power 

law distribution [5] that is there exist many vertices with low degree and the number of 

vertices exponentially go down as the degree increases.  

 

 Modularity 

                Modularity is a metric to determine how good a network is partitioned 

into communities. Newman and Girvan proposed this metric to judge the 

goodness of a community detection method. Modularity is based on the 

conception that random networks do not form strong communities. Given a 

partition of a network in to M groups, let Cij represent the fraction of total 

connections starting at a node in group I and ending at group j.  
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Let ai =∑jCijcorresponds to the fraction of connections connected to subgroup i. 

Probability of edges begin at i is ai, probability of edges that end at node j is aj. 

Internal connections or within-community links of group i is ai
2
. Total number of 

actual edges within each group i is Cii. Comparison of actual and expected 

values, summed over all partitions gives us modularity. Q=∑(Cii-ai
2
). In general 

high modularity gives us the better estimation of community structure in the 

network. Maximizing modularity is a popular method for finding communities in 

networks. However finding maximum modularity is an NP-hard problem [26]. 

There exist many heuristics for maximizing modularity. However our research 

focuses on two popular agglomerative modularity maximization algorithms.   

     2.2.1 Community Detection  

  A network is said to have clusters if vertices of the network can be grouped into a set of 

vertices such that each set of vertices are densely connected internally. Community 

detection is a fundamental problem in network analysis. Newman and Girvan [3] 

proposed a greedy algorithm based on maximizing the modularity metric for detecting 

community. Clauset, Newman and Moore [4] (popularly known as CNM) proposed fast 

implementation of a previous technique proposed by Newman et al[3]. The CNM method 

is a greedy algorithm. This algorithm initially considers each vertex in network as 

individual community. At each iteration pair of communities with high increase in 

modularity is merged. This process is repeated until there exist no combination of 

vertices that show increase in modularity. 
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Blondel et.al [3] proposed a faster and efficient method to detect communities. In this 

approach all vertices are initially assigned as an individual community like CNM method. 

However instead of a search over all edges, Louvain method searches over the edges of 

each vertex. Each vertex is combined with the neighbor that shows highest increase in 

modularity. In subsequent steps of the iteration neighbor itself can be detached from its 

original community and join new one. Allowing vertices to be removed from earlier 

communities, the Louvain method provides mechanism for rectifying bad choices. 

Process of reassigning communities is repeated over several iterations until modularity is 

increased. Once the first phase allocation of vertices is completed in second phase it 

aggregates vertices belonging to same community and network is formed whose nodes 

the communities. Two steps are repeated iteratively until modularity converges. 

 While comparing Louvain method and CNM method Louvain method is generally faster 

than two becomes it executes a combination for each vertex if possible. However CNM 

method finds maximum over all edges per iteration. Another advantage of Louvain 

method is to withdraw or backtrack from community if found necessary. 

2.2.2 Normalized mutual information (NMI) 

NMI is used to compare how good partitions produced by each approaches when 

compared against the ground truth. Let C be the confusion matrix, and Nij represent the 

element at row I and column j . Nij denote the number of nodes in the intersection of 

original community I and the generated community j. if CA denote number of 

communities in ground truth , CB number of communities generated by an approach, Ni 

sum of row I, Nj the sum of column j, and N sum of all elements in C, then NMI score 
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between the ground truth  partition A and the generated partition B can be computed as 

shown in following equation. 

         
  ∑ ∑       

    

    

  
   

  
   

∑      
  

 

  
    ∑      

  

 

  
   

 

NMI value ranges between 0 and 1.  0 refers there is no match between with ground truth 

and 1 refers to perfect match. 

2.2.3 LFR networks 

For our experiments we have used LFR benchmark model[18] to generate artificial 

networks with a community structure[3]. LFR  model allows us to control following 

properties: number of nodes n, desired average degree k, maximal degree kmax, exponent 

γ  for degree distribution , exponent β for the community size distribution, and mixing 

coefficient µ. The latter represents average proportion of links between a node and nodes 

located outside its community, called intercommunity links. Portion of intra community 

links is 1- µ. For our experiments we mostly vary nodes (n) and µ is varied from 0.1 to 

0.6 remaining parameterswe use default values mentioned in implementation of 

Lancichinetti and Fortunato[18]. 
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Chapter 3 

Parallelizing the Louvain Method for Modularity 

Maximization 

3.1 Introduction 

                                   A popular method for finding communities in a network is by 

maximizing modularity. Modularity measures how better the vertices in a community are 

connected as opposed to a random connection as discussed in chapter2. As network size 

increases, it is difficult to store them in memory so it is essential to develop parallel 

implementations for the modularity maximization algorithms.  

Parallel algorithms for graphs are a well-researched topic. There exist few parallel 

algorithms for modularity maximization[12,13,14]. Most agglomerative methods for 

obtaining high modularity require frequent synchronization, which reduces the scope of 

parallelization. In addition we have observed results of modularity maximization are 

affected by vertex perturbation. Therefore it is difficult to evaluate the accuracy of a 

parallel algorithm. 

In this chapter, we present a shared memory parallel algorithm for the Louvain method. 

We are the first to introduce a parallel implementation of the original Louvain method.  

In Section 3.2 we discuss some of the existing parallel algorithms for modularity 

maximization. In Section 3.3 we describe the Louvain method. In Section 3.4 we discuss 
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a simple shared memory algorithm for parallelizing the Louvain method. In Section 3.5 

we discuss scalability and correctness of our results.  

3.2 Background 

 Detecting communities using modularity maximization can be affected by the resolution 

limit, that is, the algorithms are unable to detect communities smaller than a certain size 

[5]. The Louvain method[2] addresses this problem by creating a hierarchy of 

communities with the smaller ones discovered in initial iterations followed by larger ones 

in subsequent iterations. This somewhat reduces the effect of the resolution limit 

problem, compared to the CNM algorithm. 

As networks increase in size, it is essential to use parallel algorithms to handle large data.  

In our research on parallelizing modularity maximization algorithms we discovered there 

are only two approaches. The first implementation is based on label propagation by 

Raghavan et.al [11].  In this algorithm, initially all vertices are assigned a unique label 

and with subsequent iterations the vertices adopt labels of their neighbors to denote the 

community to which they belong. Label propagation is based on local updates. A highly 

scalable implementation of this algorithm has been produced for GPGPUS by Soman 

et.al [12].  

The second implementation is based on the algorithm proposed by Clauset et.al [4].  In 

this method each vertex is initially assigned to a separate community.  In each subsequent 

iteration the pair of vertices with the highest edge weight are combined. Reidy et.al [13] 

implemented this algorithm (on CRAY XMT and Open MP).   
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3.3   Louvain Method 

Assume that we start with a weighted network of N nodes. First each node of the network 

is assigned to a different community. So, in this initial phase there are as many 

communities as there are nodes. Then for each node i we consider its neighbors j and we 

evaluate change in modularity that would take place by separating i from its community 

and placing it in the community of j. The node i is then placed the community for which 

change in modularity is maximum, but only if change is positive. If no positive gain is 

possible, i stays in its original community. This process is repeated for all nodes until no 

further improvement can be achieved. This simple algorithm improves the agglomerative 

process of modularity maximization due to two major contributions. 

First contribution is to increase the speed instead of considering all vertex pairs; the 

Louvain method considers only maximum increase in modularity amongst every vertex 

and its neighbors. 

Second contribution is to improve flexibility Louvain methods attempts to improve on 

modularity maximization by removing vertices from their assigned communities and 

evaluating if modularity can be improved by re- assigning the vertex to any of the other 

neighboring communities. This process is repeated over several iterations. These two 

features of Louvain method should be preserved by any parallel algorithm.  Algorithm 1 

provides the pseudo code for the Louvain method. 
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Algorithm 3.1: Louvain Method for Modularity Maximization  

Input: - A Graph G= (V, E).  Vector A to store fraction of edges of each community.  

Output: - A vector VID for mapping vertices to communities Q to store value of 

modularity. 

1. Procedure INITIALIZATION 

2. Int=0 

3. Degree =A                                                     // Store Values of A in degree 

4. Q= - ∑v=1
[V]

 A[v]
2
 

5. Old_Q=Q-1                                                  // Initialize Modularity Value 

6. for all v ∈ V do               // Assign individual communities to  each vertex 

7. set VID[v].node=v 

8. set VID[V].comm=v 

9. Set Total_comms to [V] 

10. Procedure  Louvain Method 

11. whileold_Q<Q do 

12. Old_Q=Q                                         // Beginning  Phase 2 

13. whileIt_int<Total_its  do                 // Beginning  Phase 1 

14. for all C<Total_comms do             // Going through  Each Community 

15. Set Cur_comm to c                         // Initialize current community of c 

16.                                                         //Remove C from Curr_Comm 

17. Set dQ to increase in modularity by adding C to Cur_Comm 

18. Q=Q-dQ 

19.                                                      //Find best community for C 

20. Find set of neighboring communities Nc of C 

21. Max_dQ=dQ =dQ 

22. for all n ∈Ncdo 

23.        Compute dQn, change in modularity by adding  c to n 

24. ifdQn>Max_dQ then 

25. Set New_comm to n 

26.                                                Move c to New_Comm 

27. A[cur_Comm]= A[cur_comm]-Degree[Cur_Comm] 

28. A[New_comm]= A[New_Comm]+ Degree[Cur_Comm] 

29. for all v ∈ V do 

30. if VID[V].comm=curr_Commthen 

31. VID[v].comm=New_Comm 

32. Update Q= Q+ Max_dQ                               // End pf Phase 1 

33. Combine communities to supervertices 

34. Total_Comms= max(VID.comm) 

35. Reduce size of A to only contain valid communities 
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3.4 Shared Memory Algorithm For Parallelizing The Louvain 

Method 

In this section we describe our parallel implementation of the Louvain method for 

modularity maximization. We choose the regions with loops such as for and while as they 

are the most natural part of code to exhibit parallelism. We have parallelized most of the 

initialization process such as   assignment of values to degree and assignment of vertices 

to communities. Now we consider areas of iteration. We first consider the while loop at 

line 13 and then two other regions within the while loop which can be parallelized. The 

first is at Line 20 where we find the set of neighboring communities Nc. In this operation 

at first we find the neighbors of the vertices within community c, and then the 

communities of the neighbors to Nc. We can implement this process in parallel for each 

vertex.   In the next section of code we can parallelize the module for finding the best 

community amongst the members of Nc. Change in modularity , dQn due  to adding c for 

each neighboring community n can be computed in parallel. If we store the dQn  of each 

community in a data structure like array or vector , then finding the maximum increase in 

modularity becomes a reduction operation. Finally after detecting the most suitable 

community to join we can update the assignment of communities to vertices in a critical 

section.  

Based on this analysis we discovered that in phase 1 (Lines 13- 33) the update of edges  

associated with each community,  A vector (line 17 and Line 28-29), the community 

assignment, VID vector( Line 30 – 32), and modularity Q ,( Line 19, Line 33) needs to be 

computed sequentially due to this the parallel potential of the code is reduced.  
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We can further improve our approach by reducing a few operations such as avoiding 

computation of Q in phase 1. We can compute Q in phase 2 using community assignment 

stored in VID and we can update the value of Q, where it will be a perfect parallel 

operation. The value of dQ with respect to current community is already being computed 

earlier, we can avoid that computation in (Lines 23- 27). Operations in (Line 28 -32) 

needs to be performed only if a vertex is moved from its earlier community, i.e if 

New_Comm is different from Cur_Comm. These updates are implemented as atomic 

operations on A. This ordering ensures that communities are combined only when 

modularity is increased. 

We discovered in the second phase there is less scope for parallelization, and this 

depends on the technique of operation. For example, to detect vertices belonging to the 

same community, we sort the vector based on increasing order of communities such that 

vertices within the same community are arranged consecutively. Sorting operation can be 

done in parallel using parallel merge sort algorithm. Algorithm 2 provides pseudo code 

for parallel implementation of Louvain algorithm. 

3.5 Empirical Results 

 In this section we present our experimental results that demonstrate that the algorithm is 

highly scalable. We observed that if a network has a well-defined community structure, 

then the algorithm is faster and deviation amongst the timings and the values are less than 

networks with more unstructured communities. We implemented our algorithm on an 

Opteron quad-core system with only 8 GB RAM. Our Experimental setup as follows; we 

create set of LFR bench-marks [7] of 10,000 vertices with mixing parameters µ being 
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0.1,0.3,0.5 and 0.7. By lowering mixing parameter it is guaranteed to have more 

distinctive community distribution. We kept average degree 15, maximum degree 50 . 

The power –law exponent for degree distribution was 2 and exponent for community 

distribution was 1. Community size ranges from 7 to 50. 

Algorithm 3.2 : Parallel Implementation Louvain Method. 

Input: - A Graph G= (V, E).  Vector A to store fraction of edges of each community.  

Output: - A vector VID for mapping vertices to communities Q to store value of modularity. 

1. Procedure INITIALIZATION 

2. Int=0 

3. Total_its=4   The Number of outer iterations 

4. Degree =A     Values assigned in parallel 

5. Q= - ∑v=1
[V] A[v]2Obtained by parallel reduction 

6. Old_Q=Q-1                                                  

7. for all v ∈ V do  in parallel 

8. set VID[v].node=v 

9. set VID[v].comm=v 

10. Set Total_commsto [V] 

11. Procedure  Louvain Method 

12. While old_Q<Q do 

13. Old_Q=Q                                         // Beginning  Phase 2 

14. WhileIt_int<Total_its  do                 // Beginning  Phase 1 

15. for all C<Total_comms do             // Going through  Each Community 

16. Set Cur_comm to c                         // Initialize current community of c 

                                                        //Remove c from Curr_Comm 

17. Set dQ to increase in modularity by adding c to Cur_Comm 

18. Find set of neighboring communities Nc of c in parallel 

19. Max_dQ= dQ 

20. Set New_Comm to Cur_Comm 

21. for all n  ∈Ncdo in parallel 

22.        Compute dQn, change in modularity by adding  c to n 

23. ifdQn>Max_dQthen use parallel reduction 

24. Max_dQ= dQn 

25. Set New_Comm to n 

26. ifCur_Comm ¡= New_Comm then use atomic operations to update A 

27. A[Cur_Comm]= A[Cur_Comm]- Degree[Cur_Comm] 

28. A[New_Comm]= A[New_Comm]+ Degree[Cur_Comm] 

29.  for all v ∈ V do 

30. if VID[V].comm=curr_Commthen 

31.   VID[v].comm=New_Comm // End of Phase 1 

32. Combine communities to superverticesparallelmergesort 

33. Compute Q in parallel 

34. Total_Comms= max(VID.comm) 

35. Reduce size of A to only contain valid communities 
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3.5.1 Scalability Results 

 A parallel algorithm is scalable if execution time decreases as the number of processing 

units is increased. We performed an experiment by changing the number of threads from 

2,4,8,16 and 32. In Figure 3.1 we show the execution time progressively decreases as the 

number of processing units are increased.   

 

Figure3.1: Scalability Results for Parallel Louvain Method: Results for networks with 10 

K vertices. Each point represents the total execution time of one network for a given 

mixing parameter and a processor. 

3.5.2 Evaluation of Correctness 

 The empirical method for evaluating the correctness of parallel programs is by 

comparing the communities obtained by its sequential counterpart. However as 

mentioned earlier, results of Louvain method, like all other combinatorial optimization 
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techniques is dependent on the order in which vertices are processed. In other words it is 

impossible to compare results. The effect is further aggravated in the parallel case, as the 

sequence in which processors execute the code can change for each execution cycle. We 

compared the communities using normalized mutual information (NMI). NMI values 

range between 1 to 0, the higher the number the better the similarity between two sets of 

communities. In our experiments we observe that for lower mixing parameters NMI 

value across processor was around 0.90. For mixing parameter 0.7 the difference was as 

much as 0.76. Ordering of vertices (which is affected by parallelization), plays important 

role in the community distribution. Louvain method is ultimately designed to increase 

modularity. More accurate evaluation of our algorithm is to compare standard deviation 

of modularity value across each processor. In figure 3.2 we demonstrate the values of 

modularity and standard deviation across networks among processors. In general standard 

deviation values are quite low though the modularity values are more consistent when 

µ=0.1. In general lowering mixing parameter produce higher modularity. 
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Figure 3.2: Variability in Modularity across Processors: Results for networks with 10 K 

vertices. 

3.6 Discussion 

 In this chapter we presented a shared –memory algorithm for the Louvain method for 

modularity maximization. Our results indicate our algorithm is scalable and produces 

modularity values  equivalent with those expected from sequential value. Performance of 

our algorithm and variability of the results depends on properties of networks and its size. 
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Chapter 4 

Stable Communities 

4.1 Introduction 

In previous chapters, we have mentioned community detection algorithms are based on 

optimizing certain parameters such as modularity. Changing the order of vertices can 

vary their mapping to a community. There has been less study on how vertex ordering 

influences the results of community detection algorithms. In this chapter, we discuss the 

properties of groups of vertices whose mappings to communities are not affected by 

vertex ordering. This chapter is arranged as follows. In section 4.2 we discuss the 

sensitivity of community structure to vertex perturbation. In section 4.3 we discuss how 

detecting and using stable communities as a preprocessing step improves the modularity 

value.  

4.2 Sensitivity of Community Structure to Vertex Perturbation 

 In this section we demonstrate that the modularity maximization method can 

significantly change the results. Based on our results we define metrics to estimate the 

tendency of a network to form communities. Finally we show that using stable 

communities as a preprocessing step can help improve the modularity of the community 

detection algorithm as a whole. We select two popular agglomerative modularity 

maximization techniques; CNM and the Louvain method which are discussed in chapter 



21 
 

 

2. In general the Louvain method produces a higher value of modularity than CNM, 

because it allows vertices to migrate across communities. 

In order to detect these communities, for each network in the test suite, we applied CNM 

and the Louvain method over different permutations of the vertices and we preserved 

common groups across the different orderings.  Common groups of vertices were marked 

as a stable community for each respective network. Ideally the total number of different 

orderings to be tested should be equal to the factorial of the number of vertices in the 

network. If you consider the smallest network in our set( Chesapeake with 39 vertices) 

this value is prodigious. We therefore restrict our permutations to maintain degree-

preserving order. The vertices are ordered such that the degree of vi is greater than the 

degree of vj, then vi is processed prior to vj. The degree ordering permutation also has 

another advantage if few vertices in network have high degree and more have low 

degrees. Therefore arranging vertices with high degree guarantees that most of the 

fluctuations will occur towards the later stage of agglomeration. 

We conducted experiments on real-world data as networks generated using LFR model as 

discussed in chapter2. We took real-world networks from the 10
th

 DIMACS challenge 

website. We considered the following undirected and unweighted networks: 

Network Size 

Jazz V=198, E=2742 

Polbooks V=105,E=441 

Chesapeake V=39,E=340 

Dolphin V=62,E=159 
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Football V=115,E=1226 

Celegans V=453,E=2025 

Power V=4941,E=6594 

Email V=1133,E=5451 

Table 4.1:Networks 

Networks generated using the LFR model are associated with a mixing parameter µ that 

indicates the ratio of external connections of a node to its total degree. We created LFR 

networks based on the following parameters:  number of nodes =500, average degree = 

20, maximum degree =50, minimum community size =10, maximum community size 

=50, degree exponent power law =2, community size exponent = 2 and community size 

exponent = 3. We altered the value of µ from 0.05 to 0.90. In general low values of µ 

correspond to well separated communities that can be detected easily andthese networks 

contain a larger percentageof stable communities. As the value of µ increases, 

community structure gets ambiguous or amorphous and community detection algorithms 

give different sets of results. 

We performed an experiment to study how the community structure of networks changes 

under vertex perturbations. We measure change in community structure based on the 

number of stable communities. We use sensitivity (ø change this symbol, it means 

‘empty set’) as the ratio of the number of stable communities to the total number of 

vertices. If ø is 1 each vertex itself will be a stable community (the trite case).The higher 

the sensitivity metric, the fewer the vertices in individual stable communities. This metric 

is helpful for detecting networks that have good community structure under modularity 

maximization. 
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We plot the sensitivity of each network in Figure 4.1. X-axis indicates the number of 

different permutations of the vertices and Y-axis plots the value of sensitivity. We 

observed for most of the networks the number of stable communities becomes does not 

increase within the first 100 permutations and sensitivity values are low. If sensitivity is 

low there exist strong groups in the network that have to be combined to obtain high 

modularity. For networks like Power grid and Email the number of stable communities 

keeps increasing until sensitivity reaches 1 or close. Community detection for those 

networks are extremely sensitive to vertex perturbations. This also indicates community 

structure in those networks is very amorphous. 

 

Figure 4.1: Sensitivity of each network across 5000 permutations 

We investigate the properties of stable communities. Relative size (ξ)  for a stable 

community is the ratio of the total number of  nodes in the stable community  to the total 

number of vertices in the network. Strength (Θ) is defined as ratio of the edges internal to 

the stable community to the edges external to the stable community. 
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In Figure 4.2 we plot the relative sizes of stable communities with respect to their 

strength. If the strength of a stable community in log scale is above 1 then the number of 

internal connections is larger than external connections. In general, the higher the value 

the more tightly connected the community. If the relative size of stable communities is 

low then the remaining vertices have freedom to migrate across other communities.  

 

Figure 4.2: Comparison between relative size and strength of stable communities. X- axis 

indicates relative size in percentage and Y –axis indicates strength in log scale. 

Relative size and strength together indicate the community structure of networks. When 

we divide X axis at 17 and Y-axis at 1 we get four quadrants. In the upper right quadrant  

communities have high size and high strength. In general if networks contain stable 

communities in this quadrant then they are less likely affected by perturbations. The third 

quadrant which is lower left contains communities of low relative size and low strength. 

Networks having communities from this quadrant will be significantly affected by vertex 

perturbations. In the upper left quadrant communities are strongly connected but have 

small relative size.  This indicates there is some portion of the network with strong 
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community structure. The fourth quadrant represents communities that have high relative 

size and low strength. 

In Figure 4.2 we noticed there are several communities whose strength is below one. It 

means there are more external connections than internal connections. In general, good 

community should have internal connections greater than external connections. Vertices 

within the community do not experience significant pull from any external communities. 

We mathematically define pull as follows: 

Let v be a vertex in stable community, let D(v) denote degree of v and EN(v) and IN(v) 

denote number of internal and external neighbors of v, i.e., D(v)= IN(v)+ EN(v). EN(v) is 

divided in to k external groups. ENG(v) denotes a set of k elements. For example in 

Figure 4.3 D(3)=6, IN(3)=2 & EN(3) =4.ENG(3)= {2,1,1} ( 2 external neighbors in 

community 2, one external neighbors in community 3 and community 4). Similarly we 

can calculate ENG(v) for all vertices in the graph and form a list DEGN(G)  by 

performing the union operation on ENG(V). The list is then ranked in ascending order. 

For a particular vertex if the inverse rank of each external group is equal to one it would 

point that all external neighbors are externally distributed. Therefore the pull experienced 

will be minimum. If the value is much lower than one it implies the vertex experiences 

strong pull from its external neighbors. Relative permanence can be expressed 

mathematically as: 

          ∑
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Where 

Ω(v)= Relative permanence of vertex v. 

Θ(v)= Strength of vertex v. 

Using an example we have demonstrated how to calculate relative permanence of a 

vertex. 
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Figure 4.3: Schematic diagram illustrating computation of relative permanence of the  

vertices. 

Using Figure 4.3 I calculate relative permanence for vertex 3 in stable community . 

Vertex 3:-  IN(v) = Internal Connections  ( with in Community ) 

EN(v) = External Connections ( Connections Outside the Community) 

I(3) = 2  [ 2 Connections with in community 1].     Equation (1) 

E(3)= 4 [ 4 external connections].               Equation (2) 

D(3)= Degree= I(3) + E(3) = 2 +4=6    Equation (3) 

Now I compute ENG(V) that is the number of connections to other communities for  

vertex v. 

ENG( V) is defined as Number of connections to external group. 

ENG(3)= {2,1,1 }   [ Vertex 3 has 2 connection   to community 2 ,  1 connection to 

community 3 , 1 connection to community 4).            Equation (4) 

Relative permanence of a vertex is defined as  

      

 

        

    
 

    

    
------------Formula(1) 

From equation (4) I get ENG(3) . I use value of ENG(3) and then calculate    

∑
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When k=1 

∑
 

         
        =1/2------------Equation(5) 

When k=2 

∑
 

         
      = 1/1=1     ------------ Equation(6) 

When k=3 

∑
 

         
      = 1/1=1    ------------        Equation(7) 

Now substituting values obtained from equation(5), equation (6) and equation (7)  on 

Formula(1) we get 

      

 

 
    

    
 

    

    
 

From equation(1), equation(2) and equation(3) I get  values for  I(3) , E(3) and D(3) 

respectively . 

                       
 

 
    

 
 

 

 
 

   

 
    =0.20833 

Therefore Relative Permanence (3) = 0.208 . 

Similarly relative permanence for all vertices is calculated using formula (1). 

In Figure 4.4 we plot the cumulative distribution of the relative permanence over the 

vertices in all networks. The X-axis indicates the value of relative permanence and the Y-

axis indicates the cumulative  fraction of vertices having the corresponding value. The 
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cumulative distribution of vertices is roughly same across all networks except Email and 

Power. The cumulative distribution of Email and Power  indicate these networks have 

lower relative permanence value and therefore experience more pull from external 

communities. A high fraction of vertices in  Jazz, Polbooks, Dolphin and Celegans have 

relative permanence close to one. Therefore vertices in these networks experience less 

relative pull from external  communities. 

Figure 4.4: Distribution of relative permanence values. X-axis indicate the values of 

relative permanence and Y-axis indicate cumulative fraction of vertices which exhibits 

relative permanence. 

4.3 Stable Community For Improving The Modularity  

In our experiments we discovered stable communities are formed only by a small 

percentage of vertices. Finding stable communities is not sufficient as it may just provide 

inadequate information about the relationship amongst the rest of the vertices. We 

permute the vertices 5000 times in degree descending order as discussed in the previous 

section. For each permutation we run the Louvain algorithm and obtain community 
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structure and a modularity value. From this community structure we detect stable 

communities using algorithm 4.1. 

Algorithm 4.1 : Modularity Maximization Using Stable Communities 

Input: - A Graph G= (V, E); Community Detection Algorithm A. 

Output: -  Set of stable Community  

1. Procedure Detect Stable Communities 

2. Sort vertices in V degree descending order. 

3. Apply degree preserving permutation P to vertices such that degree (vi) 

>degree (vi+1) in P. 

4. |P| is number of degree preserving permutations applied. 

5. Initialize array vertex [|V |][|P|] to -1 

6. Vertex [|V|][|P|]will store the community membership of vertices in each 

permutation. 

7. Set i=0 

8. for all Pi∈P do 

9. Apply algorithm A to find communities of the permuted network Gpi 

10. If vertex v is in community c then 

11. Vertex[v][i]=c 

12. Applying A to Pi 

13. i=i+1 

14. set j=0 

15. for all v ∈ V d  

16. information stored in  vertex 

17. if vertex v is not in stable community then 

18. create stable community CCj 

19. Insert v to CCj 

20. For a   u ∈ V\CCj do 

21. If vertex[v][i]=vertex[u][i] 
22. Insert u to CCj 

23. J=j+1 

 

Initially vertices are ordered according to their degrees (Line 2). The permutations of the 

vertex preserve this order, that is vertex vi is placed before vj in the list if degree(vi) > 

degree(vj). In the next phase we detect communities for each permutation i. Stable 

communities are those vertices which are assigned together (Line 13-20). 
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Table 4.2 shows the mean modularity and variance obtained by averaging the modularity 

values of all iterations. 

Networks Before 

processing  

(Mean) 

Before 

processing  

(Variance) 

After 

processing  

(Mean) 

After 

processing  

(Variance) 

Jazz 0.448 3.13e-6 0.452 0 

Chesapeake 0.301 1.17e-5 0.303 3.36e-33 

Polbooks 0.539 1.74e-5 0.557 1.24e-32 

Dolphin 0.543 1.76e-5 0.550 0 

Football 0.610 2.01e-5 0.623 0 

Celegans 0.438 2.89e-5 0.442 1.33e-26 

Email 0.542 6.89e-5 0.568 0.95e-12 

Power 0.936 1.09e-5 0.937 2.25e-10 

Table4.2:Modularity before and after preprocessing for real-world networks. 

As shown in Table4.2 combining stable communities as a preprocessing step both 

increases mean modularity. From our experiments on real –world networks we believe 

that preprocessing using stable communities is more effective if a network is not 

amorphous or has a strong community structure. To make our hypothesis stronger we 

created LFR graphs with mixing parameter from 0.05 to 0.90. In general low mixing 

parameter indicates good community structure. We repeat the same set of experiments as 

discussed on real world networks and obtain mean modularity and its variance. Table 4.3 

shows the mean modularity and variance. 
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µ Before 

processing  

(Mean) 

Before 

processing  

(Variance) 

After 

processing  

(Mean) 

After 

processing  

(Variance) 

0.05 0.834 1.98e-24 0.877 0 

0.10 0.802 2.28e-28 0.817 0 

0.20 0.690 5.74e-7 0.686 0 

0.50 0.385 2.05e-6 0.389 1.58e-28 

0.70 0.298 9.70e-10 0.219 1.04e-28 

0.90 0.225 4.25e-10 0.205 5.64e-28 

 

Table4.3: Modularity before and after preprocessing for LFR networks for different 

mixing parameter (µ). 

As LFR networks have ground truth i.e., correct distribution of communities. We used 

NMI to compare the communities obtained, with and without using the preprocessing 

step with the ground truth community structure of LFR graphs with different mixing 

parameters. In Figure 4.5 when community structure is strong, stable communities push 

the result towards ground truth. In contrast when the network is amorphous or community 

structure is not well defined, the use of stable communities does not push the result 

towards ground truth. 
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Figure 4.5: Variation of NMI for different values of mixing parameters. Broken line 

represents to the experiment without preprocessing step and solid line represents 

experiment with preprocessing step. 

A stable community is meaningful if it is large in size and has high relative permanence. 

We ordered stable communities according to decreasing order of size and decreasing 

order of relative permanence. We combine stable communities into supper-vertices one 

by one following the order obtained from (a) and (b) separately. After the combination 

we compute modularity obtained using the Louvain method without any preprocessing. 

Figure 4.6 distinguishes the modularity obtained by collapsing stable communities 

according to order obtain from (a) (dotted blue line) and (b) (dotted green lines). For all 

the networks there is a change when modularity values cross over the mean modularity 

(solid red line). After this change the modularity value is generally high or equal to mean 

modularity. 

The critical point indicates the smallest fraction of stable communities required to 

outperform the Louvain algorithm without preprocessing i.e., original algorithm. In 

Figure 4.6 the broken green lines show a great increase in modularity value than the 
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broken blue lines after critical point. Therefore from our experiments we conclude 

relative permanence is better indication of stable community. 

 

 

Figure 4.6 :Modularity after partially collapsing the stable communities. Blue (broken 

lines) are in decreasing order of size and green lines decreasing order of relative 

permanence. 

4.4 Discussion 

 In this chapter we discussed the effect of vertex perturbation, how vertex perturbation 

affects community structure and stable communities. We performed experiments to show 

there exist stable communities in networks and using stable communities as a 
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preprocessing step to the original Louvain algorithm gives improvement in modularity 

value if network has good community structure. 
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Chapter 5 

Detecting Stable Communities for Maximization of Modularity 

5.1 Introduction 

Modularity maximization is an NP- hard problem [3]. There exist many classes of 

heuristics to maximize modularity including agglomerative, diverse and spectral methods 

[3]. In general like other NP- hard combinatorial optimization problems, the value of 

modularity and the partition of vertices into communities are dependent on the order in 

which the vertices are processed. 

We assume that if the network is not modular enough to be classified into communities 

then these instabilities may occur. Some portions of the network have a tendency to form 

natural communities, while the remaining vertices are mapped to communities based on 

combinatorial parameters of the underlying algorithms and permutations to the input. We 

define a stable community to be a group of vertices which are always mapped to the same 

community independent of the perturbations to the input. The number of stable 

communities can give a rough estimate of modularity. In this chapter, we discuss an 

algorithm to detect stable communities. We also demonstrate that combining vertices in 

stable communities as a preprocessing step to agglomerative community detection can 

improve the value of modularity. 

The rest of the chapter is arranged as follows. In section 5.2 we discuss some related 

research in this area. In section 5.3, we present our algorithm to detect communities in 

networks. In section 5.4 we demonstrate using experimental results, on a test suite of 
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networks, how detected stable communities as preprocessing step can increase the 

modularity value. In section 5.5 we present the parallel template of our algorithm and 

applications to biological networks. In section 5.6 we conclude with discussions. 

5.2 Related Research 

                                 The effect of perturbations of the input to the community detection is 

still a major issue. Karrer et.al[5] conducted a study by comparing change in community 

structures after perturbing the connectivity of the network. In chapter 4 we have 

perfomed experiments and discussed effects of vertex ordering and its effect on 

community structure. 

5.3   Detecting Stable Communities in Complex Networks  

                             Given a network, our objective is to estimate whether the network 

possesses distinct communities. We have observed that permutations of the vertex order 

can change the partition into communities and if the network has amorphous community 

structure these partitions can significantly vary. We conducted an experiment for finding 

stable communities, that is, groups of vertices that are always grouped together over 

different permutations.  

A ideal method for detecting these stable communities might be to search for densely 

connected sets of vertices, preferably large cliques. However members of cliques may not 

always fall in the same community. For example let us consider an example shown in 

Figure 5.1 In the given example vertices {2,3,4,5} form a clique. If we consider the 

following partition of six vertices ({1},{2,3,4,5},{6}). This partition gives negative 
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modularity of -0.06. Even though the vertices in the clique are tightly coupled or 

connected we get negative modularity. This is because each subgroup (2,3) and (4,5) has 

a strong connection to an external community. For example (2,3) has two edges to 

external vertex(1) and also two edges to internal vertex(4). Thus (2,3)  has equal 

probability to combine with vertex(1), vertex (4) or with vertex(5). In general each 

subgroup within a stable community should have more internal connections than external 

connections.  It is expensive to detect groups of vertices that satisfy this condition. We 

therefore relax the definition and detect communities where the number of internal 

connections is considerably greater than the external connections.   Stable communities 

having external edges are fine as long as the pull from other communities is less. We 

assume stable communities are of at least size 2.  Stable communities are composed of a 

core vertex, its distance 1 neighbors and neighbors of neighbors, i.e. vertices at distance 2 

from the core vertex. 

 

Figure 5.1.  Partition of network into communities. 
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We detect stable communities by computing the fill-in [6] of the vertices as discussed in 

chapter 2. We consider only those vertices with low fill-in (generally 0 -2). We form a 

temporary community C composed of the vertex v and its neighbors. If the number of 

internal connections of each vertex in C is more than twice the number of external 

connections then C is designated as a stable community. Otherwise, we consider set N of 

the distance 2 neighbors of v, that are not elements of C. Edges in N can be classified as 

follows; (1) one endpoint connected to a vertex in community C (Case 1); (2) both 

endpoints connected to vertices in set N (Case 2) and (3) one endpoint connected to a 

vertex that is neither in C nor N (Case 3). A vertex in C is considered to be eligible for a 

stable cluster if that vertex has fewer edges of case 1 than case2 ;( Condition1) and fewer 

edges of case1 and case2 together than case3 ;( Condition2). Condition (1) guarantees 

that distance 2 neighbors do not have enough connections to vertices in a stable 

community. Condition 2 ensures that the set of  external vertices has a  larger pull from 

external communities other than C such that those sets don’t exert much pull on vertices 

within C. 

In general it is possible vertices can be assigned to multiple stable communities.  If we 

discover that a vertex has been assigned to multiple communities we remove it. 

Algorithm5.1 provides pseudocode for our proposed stable community algorithm. 

Algorithm 5.1  Detecting Stable Community in Networks 
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Input: - A Graph G= (V, E).   

Output: - Stable Communities C1,  C2,………Cn . 

1. procedure Detecting Stable Communities 

2. Set max-fill for Fill-In threshold 

3. for all v ∈ V d  

4. Compute  Fill-In of v 

5.  if Fill-In of v<max_fillthen 

6. Create cluster Cv of v and its neighbors 

7. In_Edge= Internal Edges of Cv 

8. Ex_Edge= External Edges of Cv 

9. if Ex_Edge<In_Edge /2 then  

10. Associate  cluster id v for each vertex in Cv 

11.  Mark Cv as stable community 

12. else 

13.  Create set N of n  // n is a distance 2 neighbor of core vertex v 

14. Edgecase1= Edges with both end points in N 

15. For all u ∈ Cv do 

16. Edgecase2 = Edges with one endpoint in N and other  in u 

17. Edgecase3= Edges with one endpoint in N and not other not in u 

18.  if Edgecase2 < Edgecase3 AND (Edgecase1 + Edgecase2)<Edgecase 3 

then 

19. if Vertex u does not have cluster id then 

20. Associate cluster id v with u 

21. Mark u as a vertex in stable community. 

 

The primary objective of our algorithm  is to detect whether a network has community 

structure. Our algorithm will not detect any stable community if there exists no 

community structure in the network. 
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5.4   Modularity Maximization Using Stable Communities 

Detecting stable communities can  be used as a preprocessing step to improve the results 

of modularity maximization. The vertices with the same stable community id are 

assigned to the same community and then modularity maximization algorithm is applied 

to the transformed network. In this section we present the results of using this 

preprocessing technique combined with CNM and Louvain methods discussed in chpater 

2. Our test network consists of unweighted and undirected networks obtained from 

DIMACS website[27]. Networks  and their description are discussed in Table 5.1. 

Network Network Size  Network Description 

Karate ( V=34, E=78) Network of members in 

karate club. 

Jazz (V=198, E=2742) Network of Jazz musicians 

PolBooks (V=105, E=441) Network about USA politics 

Celegans (V=453, E=2025) Metabolic network 

Dolphin (V=62, E=159) Social network 

Email (V=1133, E=5451) Network of e-mail 

interchanges 

Power (V=4941, E=6594) Topology of power grid 

PGP (V=10680, E=24316) Network of users of the  

Pretty-Good –privacy 

algorithm 

Table 5.1:Network Description 
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Empirical Results. We applied permutations to each of the networks in the test suite. For 

each permutation we applied CNM and the Louvain method as well as the methods after 

detecting and combining stable communities. Some statistics for modularity obtained by 

the four methods are given in Tables 5.2 and 5.3. 

Name Modularity using 

CNM 

Modularity using 

CNM+ stable 

community 

Stable Community 

% 

Karate 0.3938 (Avg) 

0.4156(Max) 

0.4022(Avg) 

0.4197(Max) 

29% 

Jazz 0.43877(Avg) 

0.4388(Max) 

0.4234(Avg) 

0.4442(Max) 

26% 

PolBooks 0.5019(Avg) 

0.5019(Max) 

 

0.5140(Avg) 

0.5260(Max) 

27% 

Celegans 0.4046(Avg) 

0.4149(Max) 

0.4231 (Avg) 

0.4327(Max) 

30% 

Dolphin 0.4802(Avg) 

0.5094(Max) 

0.4904 (Avg) 

0.5242(Max) 

22% 

Email 0.4715 (Avg) 

0.5201(Max) 

 

0.4908(Avg) 

0.5462(Max) 

27% 

Power 0.8997(Avg) 

0.9221(Max) 

0.9148(Avg) 

0.9200(Max) 

9% 

PGP 0.8628(Avg) 

0.8696(Max) 

0.8616(Avg) 

0.8716(Max) 

40% 

TABLE 5.2 :Comparision of Modularity values obtained by using CNM method and 

stable community preprocessing. Last column gives percentage of vertices in stable 

community. 

 

Name Modularity 

using Louvain 

Modularity using Louvain+ 

stable community 

Karate 0.4156(Avg) 

0.4198(Max) 

0.4170(Avg) 

0.4198(Max) 

Jazz 0.4427(Avg) 

0.445(Max) 

0.4435(Avg) 

0.445(Max) 

PolBooks 0.5258(Avg) 

0.5268(Max) 

0.5266(Avg) 

0.5268(Max) 

Celegans 0.4355(Avg) 

0.4421(Max) 

0.4320(Avg) 

0.4447(Max) 

Dolphin 0.5202(Avg) 0.5200(Avg) 
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0.5233(Max) 0.5241(Max) 

Email 0.5671(Avg) 

0.5555(Max) 

0.5664(Avg) 

0.5745(Max) 

Power 0.9360(Avg) 

0.9365(Max) 

0.9359(Avg) 

0.9370(Max) 

PGP 0.8776(Avg) 

0.8807(Max) 

0.8775(Avg) 

0.8796(Max) 

TABLE 5.3: Comparision of Modularity values obtained by using Louvain method and 

stable community preprocessing. 

In general we observe that detecting stable communities as a pre processing step 

increases the final modularity value. However we observed there are a few exceptions 

such as the average for Jazz and maximum for power in CNM and average for Email and 

Celegans and  max for PGP in Louvain. In general, improvement is higher for CNM than 

for the Louvain methods. In the CNM method once vertices are assigned to a community 

in a later step it doesn’t have any back tracking feature  to assign itself  to a better 

community  if discovered. However in the Louvain method if a vertex is assigned to a 

community and it is discovered at later stage of the algorithm that vertex may better fit in 

a different community, so the vertex is mapped to the most suitable community. This 

feature is called backtracking.  From our results and observations we discover  our 

preprocessing step woruld be more effective when the underlying algorithm doesn’t 

contain  a backtracking feature  like CNM. 

In Figure 5.2 and Figure 5.3 we plot the change in modularity over all the permutations of 

the Dolphin and the Power networks. In the dolphin network we can see using stable 

communities as a preprocessing step gives a significant boost to the CNM method. We 

also observe the  Louvain method in general always produces high modularity. There 

exist certain cases where the CNM method along with preprocessing step is equivalent to 

the Louvain method. Dolphin network possesses good community structure. The values 
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in the Power network are well separated.  Seperation of values by two algorithms indicate 

the power network does not have strong community structure. 

In Table 5.4 we present the average time (in seconds)  to compute  individual methods , 

individual methods with preprocessing and time for the preprocessing step. Codes were 

compiled with GNU-g++  and experiments were performed on dual-core processor with 

2.7 GHZ speed and 32 GB RAM. In some cases we observed the preprocessing step 

reduces the overall agglomeration time, however detecting stable communities is 

generally expensive. 

 

Figure 5.2: Modularity Values for the Dolphin Network 
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Figure 5.3: Modularity Values for the Power Network 

 

Name CNM CNM+Preprocessig LVN LVN+Preprocessing Preprocessing  

Jazz 1.50 1.51 0.57 0.68 0.45 

Polbooks 0.085 0.067 0.06 0.05 0.04 

Celegans 3.67 1.80 1.35 1.50 0.86 

Dolphins 0.01 0.018 0.003 0.005 8e-04 

Email 32.31 18.6 11.84 10.31 3.15 

Power 52.59 50.19 24.12 24.68 31.4 

PGP 760.78 757.25 579.88 577.87 25.79 

 

Table 5.4: Comparison of Execution Time (In Seconds) of both methods and time to 

detect stable community.  
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5.5   Shared Memory Algorithm for Parallelizing the Stable 

Community Detection method 

 In this section we present our parallel implementation of the stable community algorithm 

to detect stable communities. We consider regions with loops as they are the most natural 

part to exhibit parallelism. We have parallelised line 4 that is computing the fill-in for 

each vertex v.  We divide  the vertices across threads and each thread computes the fill-in 

for each vertex mapped to its thread id. Once all threads are executed we combine the 

fill-in values for each vertex and based on the threshold of fill-in, the cliques are formed. 

The remaning portion of the code is sequential as discussed in section 5.3. We tested 

scalability on larger networks obtained from creatine and untreated mice and breast 

cancer networks. In Table 5.5 we list the node and edge counts for the networks . We 

conducted experiments using an opteron multicore processor with 64 cores per node and 

256GB Ram per node. We used shared memory  OpenMp and tested the scalability of the 

algorithm  by execution over 1 to 64 threads.  Figure 5.4 demonstrates our algorithms 

shows good scalability. 

Network Node Edge 

Untreated  45020 655698 

Creatine 45023 714628 

Familal 48803 687783 

Non 48803 1109553 

Table5.5: Node and Edge counts for  networks. 
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Figure 5.4:  Strong Scalability for the parallel implementation of stable community 

algorithm. 

5.6   Discussion 

 In this chapter we have attempted to design and develop an algorithm to detect stable 

communities in a network. We detect stable communities as a preprocessing step and use 

those   stable communities in well known algorithms like CNM and Louvain to detect 

communities.The percentage of stable communities in the initial step can give a rough 

indication of  how modular a network is. In general we  conclude  if the percentage of 

vertices within stable communities is high, detecting communities in such networks will 

be of practical value else detecting communities will be only of academic interest. 
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Chapter 6 

Detecting Communities using Relative Permanence as a Metric 

6.1 Introduction 

Modularity isa widely accepted  metric for detecting and estimating thequality of 

community structure as discussed in chapter2.  However many researchers have begun to 

discover the demerits or limitation of the maximizing modularity approach for 

community detection.  Various limitations include the resolution limit, the degeneracy of 

solutions and asymptotic growth of modularity value. There still exist fundamental 

questions which  arenot answered – does a network possess community structure? Or 

would the partition be accurate. In this chapter we answer those questions by proposing a 

novel metric called permanence which is built on pull experienced by a vertex from 

neighbors that is mapped to adifferent community. We show that our new metric when 

compared to modularity and conductance is a better optimization parameter for detecting 

communities on synthetic networks and real-world networks. We also demonstrate 

permanence is more sensitive to different perturbations applied to community structures. 

The rest of the chapter is  arranged as follows. In section 6.2 we present network datasets 

and  ground truth communities. In section 6.3 we discuss permanence, community 

detection algorithms and evaluate the community scoring function. In section 6.4 we 

present our new community detection algorithm named Max_Permanence based on 

maximizing permanence, we study the performance of our proposed algorithm. In section 
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6.5 we discuss how permanence resolves issues related with modularity maximization 

and finally conclude with dicussion and results. 

6.2 Related Research, Network Datasets and Ground Truth 

Communities  

Fortunato and Barthelemy[15] presented a resolution limit problem of modularity, which 

states that optimizing modularity will fail to detect communities smaller than a threshold  

size or weight[16]. Good et al.[17] presented another issue  of modularity called 

degeneracy of solutions which states that for a single graph we can get adiffferent 

community structure for exponential number of high modularity . They also studied 

limiting thebehaviour of modularity foran infintely modular network and show that it 

strongly depends on both thesize of the network and thenumber of modules it contains. 

Lancichinetti and Fortunato[18] presented that the multi resolution version of modularity 

is not only inclined to merge small communities but also to split large well defined 

communities.  

We provide a description of the networks used for our experiments. We used theLFR 

benchmark model[19] to generate artifical networks with a well defined community 

structure.The LFR benchmark model has been discussed in chapter 4 and 5. In this 

chapter for our experiments we have usedthe following LFR benchmark parameters.  We 

set thenumber of nodes (n) as 1000 and µ is varied between 0.1 to 0.6.  We used three 

large real-world networks whose well defined community structure are available. 

Network properties are discussed in Table 6.1. 
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Networks N E <K> Kmax C nc
min 

nc
max 

Football 115 613 10.57 12 12 5 13 

Railway 301 1224 6.36 48 21 1 46 

Coauthorship 103677 352183 5.53 1230 24 34 14404 

Table 6.1: Real world network properties where N and e are number of nodes and 

number of edges , C is the number of communities, <K> and Kmax average and maximum 

degree, nc
min 

nc
max

 size of smallest and largest communities. 

Football network  as discussed in chapter 4  contains the network of American football 

games between Division  IA colleges during regular season Fall 2000. Indian  Railway 

proposed by Ghosh et.al[20] consists of nodes representing stations and two stations 

connected by an edge if there exist at least one train –route such that both stations are 

scheduled stop or hault on that route.  In case of the weighted version  the weight of an 

edge will be  thenumber of train –routes  on which both station are scheduled halts. We  

mark each station with region (state in India). States act as communities because the 

number of trains  within each state is higher than the number of trains between two 

stations. 

A coauthorship  network is developed by Chakraborty et al.[21] from the citation dataset. 

The dataset contains  information of all the papers of computer science published 

between 1960 to 2009  archived in DBLP. From this dataset we build an undirected 

coauthorship network where  each node represents an author and an edge is drawn if two 

authors collaborate at least once via publishing a paper. Each paper is categorised by its 

related field. We map this field as the research area of the authors writing that paper. 

Author may be mapped to more than one research area of interest. We resolve this issue 
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by mapping author to the major field of interest in which they have written most of their 

papers.We consider research area or  major field as the ground truth communities since 

author have tendency to cite papers belonging to same area. 

6.3  Permanence  

                           In this  section we develop the formula for permanence based on the 

following two assumptions : (1)a vertex should have more internal connections than the 

number of connections to any of the neighboring communties. (ii) The substructure of a 

community’s internal neighbors of vertex should be highly connected among each other. 

In general both assumptions guarantee the number of internal connections is larger than 

the number of connections to any one single external community. The permanence of a 

vertex v is given below              
    

    
 

 

        
               ] 

Where  I(v) is the number of internal neighbors of v, D(v) is the degree of v, Emax(v) 

number of connections of v to that external community (maximum) neighbors of v, and 

cin(v) is the clustering coefficient of v . We use few toy example Figure 6.1 to measure 

permanence of vertex v. 

According to  Figure 6.1 for vertex v I(v) =4, Emax(v)= 2 and cin (v)= 5/6. Using 

permanence formula we substitute the value of  I(v) , Emax(v) and cin (v)  we get perm(v)= 

0.12.  If vertices do not have any external connections permanence of vertex v is set to its 

internal clustering coefficient. Perm(v) is set to 0 if vertices in communities is less than 3 

entries. If the vertex is a part of clique then Perm(v) obtain its maximum value 1.  For 

every vertex v, -1<Perm(v) ≤1 . Overall permanence of a graph G(V,E) is given by 

Perm(G)= 1/v ∑v∈V(Perm(v)). 
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Figure 6.1. Toy example to measure permanence of vertex v. 

We perform an experiment to determine whether permanence is a good community 

scoring function by comparing it with other  scoring functions like modularity, 

conductance and cut ratio.We run several community detection algorithms on the graph 

and obtain a community set pertaining to each algorithm. We compute different 

community scoring functions and rank each algorithms based on the value of metric. We 

also compare the community set detected using a different validation measure such as 

NMI and purity as discussed in chapter 2. 

There exist various community detection algorithms, we have categorized the set of 

algorithms based  on the principle  they use to detect communities. 
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(i) Modularity based approaches:  Modularity based approaches are discussed 

in chapter 2 we use CNM and Louvain algorithm for our experiments. 

(ii) Node similarity approaches: In this category community is determined as 

group of nodes which are similar to each other and dissimilar from rest of the 

network. For our experiments in this category we select Walk Trap[27] 

algorithm. 

(iii) Compression-based approaches:  In this approach community structure is 

the set of nodes represented in the adjacency matrix which has maximizing 

compactness while information loss is minimum. Popular algorithms are 

InfoMod[27] and InfoMap[27]. 

(iv) Significance- based approaches: Community structure can be expected 

under certain circumstaces, however group of densely connected nodes can 

appear by chance.  

(v) Diffusion-based approaches: In this approach assumption is that information 

is more efficiently exchanged between nodes of the same community. In 

community Overlap Propagation Algorithm (COPRA)[27] information takes 

the form of a label, and the propagation mechanism relies on a vote between 

neighbors. Group of nodes with same label form communities.  
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6.3.1   Evaluating Community Scoring Functions and Ground-

Truth Comparison Metrics 

We run each algorithm discussed in section 6.3 on all datasets mentioned in section 6.2. 

We  computed modularity, permanence,conductance and cut-rato and ranked algorithms 

based on each of the  community scoring functions separately. In Figure 6.2 we present 

score and rank (in parenthesis) for the football network. We use three standard validation 

metrics:- Normalized Mutual Information (NMI)[27], Adjusted Rand Index (ARI)[27] 

and Purity (PU)[27] to measure the accuracy of detected communities with respect to 

ground-truth. These measures are not relevant in the context of network analysis. 

Modified versions of NMI, ARI and Purity are Weighted-NMI (W-NMI), Weighted-

ARI(W-ARI) and Weighted-Purity (W-PU) respectively. We performed experiments 

using all six measures to validate the results. We performed the same experiments on 

LFR and real-world datasets. We compare the ranks obtained from community score 

functions with ranks obtained from validation measures.We assume that the rank of the 

best community scoring function should match the rank produced by the validation 

measures. 
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Figure 6.2: We compute the values of four community scoring functions on output 

obtained from eight different algorithms and validation measures using ground –truth 

communities. 

In Table 6.2 we present correlations of these community scoring functions across all the 

validation measures for each of the networks. 

Networks Modularity Permanence Conductance Cut 

LFR(µ=0.1) 0.88 0.88 0.88 0.02 

LFR(µ=0.3) 0.61 0.74 0.72 0.28 

LFR(µ=0.6) 0.87 0.96 -0.18 -0.44 

Football 0.25 0.43 -0.29 -0.41 

Railway 0.43 0.46 0.08 -0.48 

Coauthorship 0.92 0.92 0.76 0.86 

 

Table 6.2: Performance of community scoring function averaged overall validation 

measures for each network. 

6.4.1 Community Detection Based On Permanence 

 We develop a community detection algorithm by maximizing permanence.  Our 

algorithm Max_Permanence  is motivated by the Louvain method[8] for modularity 

maximization. The pseudo code is presented in Algorithm 6.1. 

6.4.1.1 Algorithm Overview 

                   Each vertex in the network is initialized to a singelton community  and their 

permanence is set to 0. For each vertex we test whether combining the vertex to a 
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neighboring community will increase its permanence.  If permanence is found to be 

increased we join vertex and its appropriate vertex neighboring community. The process 

is repeated for each vertex and the entire location of all vertices is repeated over several 

iterations until the permanence value remains constant or converges. Our proposed 

algorithm always tries to maximize permanence. Our apporach is to move vertices to  a 

community that preserves community structure. If such a move is not possible then the 

vertex remains in a singleton community or moves to another community where it is 

tightly coupled to its neighbors. 

6.4.2 Performance Evaluation 

In table 6.3 we present the average improvement of our algorithm over others for each 

validation metric. In general we discovered on average communities obtained by 

maximizing permanence matches known ground truth communities quite well for allmost 

all networks except LFR (µ=0.6). 

As we discussed the permanence metric works good if the network  has modular 

structure. If the network isn’t modular enough the permanence value tends to degrade 

indicating that detecting communities in such networks is just of academic interest. 

For the railway network our algorithm detects  three singelton communities. Even the 

ground truth community structure for the railway network contains one of these singelton 

communities. Among all the algorithms discussed only our algorithm captures those 

singelton communities. We summarize  that if a network is really modular or has good 

community structure like (LFR  µ=0.1) ,maximizing permanence efficiently captures 

realistic modules. 
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Input : A graph G. 

Ouput :-   Permanence of G and community set. 

1.Procedure Max permanence (G(V,E)) 

2.Each vertex assigned to a singelton community. 

3.Set value of maximum iterations as maxIt 

4. Sum=0 

5.Old_sum= -1 

6. Itern=0 

7.While sum !=old_sum and Itern < maxIt do 

8. Itern = itern +1 

9. Old_sum=sum 

10. Sum=0 

11. for all v ∈ V  do 

12.(compute current permanence of v) 

13.Cur_perm=perm(v) 

14. if cur_perm==1 then continue 

15.N is set of neighboring communities of v 

16.for all n ∈ N do 

17. Move v to community n 

18.(Compute permanence of v in community n) 

19.n_perm=Perm(v) 

20.if cur_perm < n_perm then 

21. cur_perm=n_perm 

22. else 

23. retain v in its original community 

24.sum=sum+cur_perm  

Algorithm 1 Max_Permanence 
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We also observed if intercommunity edge density starts to increase our algorithm’s 

performs better to capture communities within a certain limit like( LFR µ=0.3) after 

which it starts deteriorating as the network  doesn’t have good community structure or is 

less modular. 

Validation 

Metrics 

LFR(µ=0.1) LFR(µ=0.3) LFR(µ=0.6) Football Railwa

y 

Coauth

orship 

NMI 0.04 0.15 -0.31 0.04 0.15 0.04 

ARI 0.06 0.21 -0.39 0.07 0.03 0.03 

PU 0.04 0.17 -0.38 0.01 0.13 0.03 

W-NMI 0.02 0.14 -0.41 0.09 0.26 0.05 

W-ARI 0.05 0.19 -0.35 0.05 0.02 0.04 

W-PU 0.03 0.17 -0.45 0.00 0.05 0.02 

Table 6.3: Average improvement of our algorithm over different algorithms for each 

network in terms of different validation measures.  

6.5  Permanence Resolving  Issues Related with Modularity  

Maximization 

We have seen and discussed in previous chapters that modularity suffers from  (a) 

resolution limit, (b) degeneracy of solutions (c)dependency on the size of the graph. In 

this section we present how each of these problems are resolved by maximizing 

permanence.  

We use a simple example of two communities A and B connected by one vertex v ( as 

shown in Figure 6.5). In this example the community mapping is primarily determined by 

v and its neighbors. We also assume apart from the edges through v, there is no 

connection between communities between A and B. Figure 6 shows four possible ways of 

assignment of v into communities. These are as follows: Case 1: v joins community A; 

Case 2: v joins community B; Case 3:  community A,B and vertex v merge together; 

Case 4: communities A,B and v remain as three separate communities. 
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Figure 6.3: Toy examples demonstrating four cases. 

6.5.1 Terminology 

 

We assume vertex v as shown in Figure 6 is connected to α(β) nodes in communityA(B),  

and these (α(β)) nodes from the set N α (Nβ). The total number of vertices in community A 

is x+ α , and the total number of vertices in community B is y+ β. Before v is added the 

average internal degree  for community A and community B  is I A and I B respectively. 

The average internal clustering coefficient of neighbouring nodes in communities A andB 

be CA and CB. If v is added to communities A(B) then average internal 

clusteringcoefficient of v becomes  CA
v
(CB

v
). The average clustering coefficient of nodes 

in N α(Nβ)becomes  Cα(Cβ). 

We also assume communities A and B are tightly connected internally such that both 

communities have greater CA and CB. Cα(Cβ) values dependent on connections of v to 

communities and connections of vertices in N α (Nβ).We assume neighbors of v are not 
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connected with each other, then the average clustering coefficient will decrease. If v does not 

add  any new edges  to group of neighbors then 

      
    

    
  and       

    

    
 

6.5.2 Discussion on Issues in Modularity Maximization 

In this section we show how permanence overcomes issues of modularity maximization. 

Degeneracy of solution :- In figure 6.5 if we consider α=β then the community scoring 

function  such as modularity will have multiple distinct high scoring solutions and will 

lack global maximum. We encounter a tie-breaking situation [23]. Modularity 

maximization will assign vertex v arbitrarily to A or B. In our algorithm or our metric 

permanence will assign v as a individual community as long as it maintains conditions as 

discussed below. 

Condition 1.  If α=β ,      
    

    
 communities A,B and v will remain separate rather 

than v joining A if   (
     

    
)       

   
 

  
 if α=β=1 then CA

v
=0 then communities 

will remain separate. As α increases the left hand side of the equation will remain larger 

than the right which guarantees they remain separatecommunities. We experimentedour 

metric with a  5×5  complete grid we observed permanence generates one solution by 

assigning eachvertex into a separate singeltoncommunity; whereas modularity  provides 

multiple solutions by combining two or more vertices. Vertex v will remain in the same 

community if vertex v is loosely connected to its neighboring community and has an 

equal number of connections to each community. However permanence doesn’t provide 

the complete solution to Degeneracy of solution.  In a few cases we get high permanence 

if vertex v is combined with community A or community B. 
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Resolution limit:- Communities of certain small size fail to be detected as they are 

merged  to larger communities. We have  witnessed  the classic examples where the 

modularity metric fails to detect communities of small size  in a cycle of m cliques since the 

maximum modularity is obtained by merging two neighboring cliques. If we use permanence 

as a metric we can determine four cases discussed above. We explore the condition to 

determine whether v will join community A rather then being separate (similarly we can do 

analysis if v joins community B). 

Condition 2.  Joining v to community A gives higher permanence rather than merging 

thecommunities A, B and v if ;   =  
    

    
, and 

 

       
 

  
          

 

      
 +

        

    
  where 

γ= α/β and also  if ;       
    

    
 , and  

 

      
+

  
          

 

      
 +

        

    
  . 

If we consider the clique example as a special case where v is connected by one edge to 

community B and is connected all nodes in community A. We observe β=1 and adding v 

decreases internal clustering coefficient of B. In general in a network if a node has lees than 

two neighbors we set permanence as zero. As A is a clique  so CA
v=1 and CB

v=0. After 

subsituting all the values in condition 2 we observe we get a higher permanence when we 

combine vertex v with community A and neighboring communities shouldn’t be merged. Our 

observation is independent of the size of cliques.  This phenomena highlights that if v is 

tightly connected to a community and very loosely connected to another community ; highest 

permanence is obtained by combining vertex v with community  to which v is more 

connected. 
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6.5.3 Discussion 

 In this section we proposed  a new metric called permanence which overcomes issues or 

shortcomings of modularity. We have demonstrated with analytical proofs with 

experiments on synthetic and real-world networks that permanence is effective 

community evaluation metric compared modularity. 
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Chapter 7 

Conclusion And Future Work 

In my thesis we have proposed a parallel template for the Louvain method  for 

modularity maximization. Our results show our proposed template is scalable, and 

produces modularity equivalent to those expected from the sequential case. In the future 

we plan to apply or further improve our template on dynamic networks. We have 

presented the effects of vertex perturbation on community structure and discussedthe 

existence of stable communities. We have also shown if a network has a good community 

structure then using stable communities as a preprocessing step to the Louvain or CNM 

algorithm wecan get an improvement in the modularity value. Our algorithm to detect 

stable communities has room for improvement. We consider only distance-1 neighbors as 

stable communities.  We have to include vertices at longer distances to create a stronger 

stable community. Our proposed  algorithm has a tendency to pick up some false 

positives if vertices have two nearby consensus communities that are tightly connected. 

In future we have to improve the conditions on stable communities to reduce false 

positives. In the final leg of my thesis we have discussed the limitation of modularity 

maximization and proposed a new metric called permanence which is able to reduce 

many of the shortcomings of modularity. We have also shown our proposed metric is 

effective when compared to other metrics on real –world and synthetic networks. Our 

proposed metric calls for more deeper levels of investigation. We have to test our metric 

on more diverse areas to prove the robustness. In my thesis we have restricted our 
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discussion on non overlapping communities. In the future we plan to further extend the 

permanence metric to evaluate overlapping community structure. 
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