
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

5-2013

3D Object Tracking and Motion Profiling
Corey A. Spitzer
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Spitzer, Corey A., "3D Object Tracking and Motion Profiling" (2013). Student Work. 2889.
https://digitalcommons.unomaha.edu/studentwork/2889

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2889?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2889&utm_medium=PDF&utm_campaign=PDFCoverPages

3D Object Tracking and Motion Profiling

A Thesis

Presented to the
Department of Computer Science

and the
Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha
by

Corey A. Spitzer

May, 2013

Supervisory Committee:
Quiming Zhu

Zhengxin Chen
Hamid Sharif

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1538967
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 1538967

Abstract

3D Object Tracking and Motion Profiling

Corey A. Spitzer, MS

University of Nebraska, 2013

Advisor: Quiming Zhu

In order to advance the field of computer vision in the direction of “strong AI”, it’s

necessary to address the subproblems of creating a system that can “see” in a way

comparable to a human or animal. Due to very recent advances in depth-sensing

imaging technology, it is now possible to generate accurate and detailed depth maps that

can be used for image segmentation, mapping, and other higher-level processing

functions needed for these subproblems. Using this technology, I describe a method for

identifying a moving object in video and segmenting the image of the object based on its

motion. This creates a coarse vector field where each segment denotes a region of the

object that is moving in the same general direction, rounded to the nearest 45 degrees.

The approach described combines a conventional background subtraction algorithm,

depth sensor data, and a biologically-inspired artificial neural circuit. In most cases the

entire process can execute in near real time as the video is captured and is reasonably

accurate.

Table of Contents

I. Introduction ... 1

II. Overview .. 5

III. Principles and Concepts .. 8

IV. Techniques ... 10

V. Initial Approaches ... 16

VI. Final Algorithm ... 21

VII. Results and Analysis .. 32

VIII. Summary ... 40

IX. Directions for Future Research .. 41

References .. 43

Corey Spitzer
 i

List of Figures

 Figure V.1 A simple example of an object’s pixels as it moves across frames..16
 Figure V.2 A simple example of a generated vector field..17
 Figure V.3 A vector field generated with an image of an arm...18
 Figure V.4 A vector field generated from the change in center of mass in each cell...............................18
 Figure V.5 The calculated centers of mass...19
 Figure V.6 The output of the algorithm based on fast optical flow estimation..20
 Figure VI.1 The background subtraction algorithm..21
 Figure VI.2 The RGB image, depth map, and background subtracted image with tracking square.......22
 Figure VI.3 The algorithm for generating the tracking square..22
 Figure VI.4 The tracking mask..23
 Figure VI.5 The algorithm for generating the tracking mask..24
 Figure VI.6 A Reichardt Detector..26
 Figure VI.7 Color-coded directions of motion assigned to edges...26
 Figure VI.8 The algorithm for the Reichardt Detector..27
 Figure VI.9 Color-coded legend..27
 Figure VI.10 Non-edge pixels with assigned direction of motion of the nearest edge pixel..................28
 Figure VI.11 The algorithm for assigning vectors to non-edge pixels..28
 Figure VI.12 Non-edge pixels with assigned vectors of the nearest object boundary pixel...................29
 Figure VI.13 Segmentation after smoothing of “any edge” algorithm...29
 Figure VI.14 The smoothing algorithm for generating the final segments...30
 Figure VI.15 Segmentation after smoothing of “object boundary edge only” algorithm.......................31
 Figure VII.1 Segments generated with Sr = 2, 4, 6, 8, 10, 12...33
 Figure VII.2 Segments generated with Sp = 0.5, 0.65, 0.8, 0.95..34
 Figure VII.3 Segments generated for a fast-moving arm bending..35
 Figure VII.4 Segments generated for a cardboard tube lowering then raising.......................................36
 Figure VII.5 Segments generated for a stick swung like a bat...37
 Figure VII.6 Segments generated for a ball thrown near the camera...37
 Figure VII.7 Segments generated for a person jumping vertically...38
 Figure VII.8 Segments generated for a door swinging open toward the camera....................................38

Corey Spitzer
 ii

1

I. Introduction

One of the long-term goals of artificial intelligence research in the area of computer

vision is to create a system which can “see” in a way comparable to a human or animal.

With such a technology, we could develop systems that could automatically interact with

the world through specialized hardware in a meaningful and useful way.

Accomplishing this goal requires addressing all of the difficult subproblems, one of

which is how to identify, track, and model a moving object. This is something that even

three-month-old infants can do without any conscious effort [Hamer 1990].

Specifically, what I’ve attempted to do is identify a single moving object in a video and

segment said object according to the individual directions of movement of each portion

of the object. This is a fundamental prerequisite toward the animal capabilities of

predicting future locations and paths of objects in the physical world. This technology

can be used in applications where movement needs analyzed as in sports, defense,

robotics, and other industries.

In so doing, I have also attempted to incorporate knowledge and models of biological

circuits and systems as much as possible in an effort to advance the field of computer

vision and biomimicry.

The major challenges of this research lied first in the question, “What is an object?” For

2

example, if a man was filmed standing still except only his arm was moving, would the

moving object only be constrained to the arm, the entire person, or some other region?

Second, whatever is logically considered the moving object, a vector field would have to

be created to assign motion vectors to specific regions. Finally, how would such a vector

field be segmented into regions of (near-)homogenous movement? How many segments

should there be and what threshold(s) should be applied?

My hypothesis was that the depth information provided by the Kinect sensor would

provide an affordance that would greatly simplify the tracking problem and/or

substantially increase the accuracy of a tracking algorithm based on previous work.

3

II. Overview

II.1. History of the problem

The problem of tracking objects through a sequence of images has been studied in one

form or another for decades. Researchers have analyzed image sequences, looking at a

variety of aspects and using several different apparatus: 2D and 3D analysis, point and

line-based features, one or multiple cameras, etc., but only recently has the relevant

science and technology advanced far enough to properly address the complexities of the

real world.

One of the earliest publications addressing object tracking was [Smith and Buechler

1975]. In it, Smith and Buechler used the Kalman filter, a special kind of temporal

Bayesian network which can be used to estimate a state given noisy measurements of

past states. They presented an algorithm for mapping the trajectory of moving objects

against a stationary background.

In [Falconer 1977], the Hough transform, a technique most commonly associated with

edge detection in still images, was repurposed to track multiple targets moving in straight

lines. Falconer imposed limiting constraints on his approach; the movement of the

targets must be linear and the images with which he worked were amenable: simplistic, if

not binary, scenes where segmentation was assumed to be perfect.

In [Aggarwal and Wang 1987] a simple pre-defined set of four points and one line that

4

were assumed to lie on the same rigid moving object were used for tracking across

frames of video. Given the constraints and a priori knowledge, the motion of the camera

could be deduced.

[Zhengyou and Faugeras, 1992] expanded on this work by using stereo cameras to

correspond and track 3D line segments. Using a Kalman filter, they addressed the

problem of an autonomous vehicle navigating in an unknown environment where other

objects would also be moving.

II.2. State of the art

The state of the art of motion tracking and mapping has been led by the Microsoft

Research team which has recently addressed real-time dense mapping and tracking in

3D.

In [Newcombe et. al. 2011], streaming data from a Microsoft Kinect depth sensor is

fused in real time to create a 3D model of scenes with high accuracy. The approach is

based on extensions to a combination of the Parallel Tracking and Mapping (PTAM)

system as well as an iterative closest point (ICP) algorithm for estimating the relative

motion of the camera between consecutive poses (or frames).

The system first reads raw depth data from the sensor and constructs vertex and normal

vector maps of the scene (surface measurement). Then an ICP algorithm tracks the depth

data from consecutive frames to estimate the movement of the camera. The new surface

5

measurement is then integrated into the world model (a volumetric, truncated signed

distance function representation). A surface prediction is made by raycasting the signed

distance function into the estimated frame. Finally, a multi-scale ICP alignment between

the predicted surface and current sensor measurement improves the sensor pose

estimation.

Using this technology, the Microsoft Research team is able to fully map a scene and

create an accurate 3D model with a high level of detail in real time by moving the

camera around the space. In addition, experiments have been performed showing robust

tracking of moving objects in the modeled scene [Izadi et al. 2011].

6

III. Principles and Concepts

Humans have evolved the ability to effortlessly and unconsciously process a large

amount of information from visual input between one moment and the next. We can

recognize the distances and relationships between an object and its surroundings as well

as the direction and speed of movement while concurrently predicting its future path and

position. Our brains are hardwired from birth to eventually perform these essential tasks.

Given the equivalent information as the human visual system gathers -- a 2D projection

of colors and intensities -- and even with (in a sense) superior depth information, our task

is ultimately to create a technology to give the machine the same capability.

The human retina consists of multiple layers of cells including a layer of photoreceptors

which absorb light and turn it into electrochemical signals. These signals are

proportional to the intensity and wavelength of the light absorbed so that is the

information that is sent on to neural circuits. Likewise, the sensor used in this thesis

absorbs light and sends electrical signals to a computer. Just as the brain must take

inputs from two eyes and compute the depth information, the sensor uses an infrared grid

projected onto the scene which is detected by an infrared camera to create a depth map.

Both the brain and the computer receive “frames” from the scene being observed. The

brain can process two subsequent frames and recognize 1. that an object is moving, 2. the

boundaries of the moving object against the background and occluding objects, 3. which

7

regions of each frame image belong to the moving object, and 4. the direction and speed

of the motion. Since we don’t have a full understanding of how the brain does this, it is a

challenge to create a system that will allow a machine to perform the same tasks.

8

IV. Techniques

IV.1. Feature Selection Techniques

Researchers have segmented images for tracking based on regional features such as

color, texture, and optical flow. Color segmentation is relatively trivial, but for

identifying regions for a given texture, common techniques include using Gray-Level

Cooccurrence Matrices (a 2D histogram which shows the cooccurrences of intensities in

a specified direction and distance), Law’s texture measures (twenty-five 2D filters

generated from five 1D filters corresponding to level, edge, spot, wave, and ripple),

wavelets (orthogonal bank of filters), and steerable pyramids [Yilmaz et al. 2006].

Optical flow is described by [Yilmaz et al. 2006] as "a dense field of displacement

vectors which defines the translation of each pixel in a region. It is computed using the

brightness constraint, which assumes brightness constancy of corresponding pixels in

consecutive frames."

Additionally, edge detection methods are often used to track objects based on portions of

their boundaries, of which the Canny Edge Detector algorithm is one of the most popular.

IV.2. Background Subtraction

Background subtraction is a class of algorithms that classify a given pixel as being

members of either the foreground or background based on its evolution over time. This

generally consists of creating a background model over a sequence of frames and then

9

mark pixels that break the model i.e. exhibit properties beyond some threshold.

One of the most commonly used techniques to do create a background model is to

compare the median properties (e.g. intensity) of a pixel over a set of frames, the implicit

assumption being that any given pixel will display the background for more than half the

frames in the buffer [Cheung and Kamath].

To find foreground candidate pixels, the most commonly-used approach is to compare

the difference between actual intensity and background model intensity for a given pixel

and if this exceeds a (typically experimentally-derived) threshold, the pixel is a good

candidate [Cheung and Kamath].

IV.3. Interest Point Detection

An interest point is a small area or pixel which has some expressive texture in its locality

which can be used for tracking. Common techniques for classifying points as interesting

are Moravec’s detector, Harris detector, Scale Invariant Feature Transform, and Affine

Invariant Point Detector [Yilmaz et al. 2006].

IV.4. Point Tracking

In point tracking, objects detected in consecutive frames are represented by points, and

the association of the points is based on the previous object state which can include

object position and motion. [Yilmaz et al. 2006].

10

Point tracking techniques can be categorized into deterministic and probabilistic

methods. In deterministic point tracking, a set of points are detected in both of two

consecutive frames. Any point detected in the earlier frame can theoretically correspond

to any point detected in the latter frame and vice-versa, but only one correspondence

mapping for all the points is correct. To determine which mapping will be used, the

problem treated as an optimization problem with constraints such as a limit on how fast

points can travel between consecutive frames, preferences for small changes in position,

preferences for small changes in velocity (i.e. smooth motion among more than two

frames e.g. uniform acceleration), preferences for similar velocities for points close to

each other, etc. [Yilmaz et al. 2006].

In probablistic point tracking, sensor noise and random perturbations of the objects being

tracked are addressed by using a temporal Bayesian technique called filtering which is

used to predict a future state given the measured current and past states of a system. One

very popular model is the Kalman filter which assumes a linear system with a Gaussian

distribution of noise. If the noise does not follow a Gaussian distribution, a particle filter

is often used [Yilmaz et al. 2006].

Another probablistic point tracking method is the Multiple Hypothesis Tracking (MHT)

algorithm which, as the name suggests, maintains a list of possible correspondences for

each object being tracked. Each hypothesized correspondence has a probability of

correctness assigned which is refined as subsequent frames are processed [Yilmaz et al.

2006].

11

IV.5. Kernel Tracking

Kernel tracking is a region-based tracking approach and also comes in two flavors:

template based and multi-view based tracking.

In template based kernel tracking, when tracking a single object, the most common

approach is template matching, a brute force method of searching a given frame for a

region similar to the search object template defined in the previous frame [Yilmaz et al.

2006]. A template can be thought of as a window that slides across the image and

comparing itself to the portion of the image in which it covers to find a matching object.

The comparison is performed using a similarity measure which typically takes into

account intensity and color features.

In multi-view based tracking, multiple cameras are used to overcome the problem of

tracking an object which appears to having (potentially wildly) different shapes

depending on the angle at which it is viewed. For instance, a typical coffee mug appears

as a circle with a rectangular handle protruding from one side when viewed from above,

but then morphs into a cylinder with a semicircular handle as the mug is turned 90

degrees. Using Principal Component Analysis, a subspace representation of an object is

built and tracking is performed by estimating the affine parameters iteratively until the

difference between the input image and the projected image is minimized [Yilmaz et al.

2006].

IV.6. Silhouette Tracking

12

Silhouette tracking is also split into two categories: shape matching and contour tracking.

Shape matching is very similar to template matching in that it searches the current frame

for an object boundary that closely matches a pre-specified shape. Sillhouette detection

is usually performed via background subtraction. The problem with this approach is that

it can faulter when searching for nonrigid objects or, as in the coffee mug example

above, a shape morphs as an object or camera rotates [Yilmaz et al 2006].

Contour tracking attempts to solve the problem of tracking nonrigid objects whose

shapes change as they rotate by iteratively morphing (i.e. evolving) a silhouette from that

of an object in the current frame to that of the corresponding object in the next frame.

Contour tracking uses two main approaches: the first is to use state space models to

model the contour shape and motion, the second directly evolves the contour by

minimizing the a contour energy functional [Yilmaz et al 2006].

When contour tracking using state space models, the tracked object's state is defined in

terms of the shape and the motion parameters of the contour. The state is updated

iteratively to probabilistically match around a newly observed boundary [Yilmaz et al

2006].

The second approach to contour tracking uses an energy functional computed from

optical flow and/or other statistics observed in the image. This approach evolves the

13

contour by minimizing the energy functional which describes changes in observations

between frames such as intensity [Yilmaz et al 2006].

IV.7. Support Vector Machines

A support vector machine is a mechanism used to classify a feature space into two

different categories. Typically, input values from some training set are sent through

some mapping function (from input space) to a feature space where the values are

linearly separable and can therefore segregated into two classifications by some line or

(hyper)plane. Then actual input values are mapped to feature space and classified by

which side of the separating hyperplane they fall on. Support vector machines have been

used to classify an object to be tracked as opposed to an object in the background

[Yilmaz et al 2006].

14

V. Initial Approaches

During the course of this research and experimentation, a number of failed approaches

were attempted before the final algorithm described in Section VI was achieved.

V.1. First Attempt at Vector Field Generation

In the early stages of experimentation, it was reasoned that if a vector field could be

generated from affordances in local regions of the image, large regions which had similar

vectors could be smoothed and treated as single segments. For example, consider the

simple case of a 4x4 pixel image as seen in Figure V.1.

Figure V.1: A simple example of an object moving down and to the right over the course of two
frames.

For each pixel in the current frame (Frame 2 in the figure above), its color would be

compared to its (eight) neighboring pixels in the previous frame and the direction of

motion would be then be indicated. For instance, if a pixel at a given location in the

15

current frame matched the color (within some threshold) of the pixel to the left in the

previous frame, this would imply motion in the rightward direction. In the case of

multiple vectors indicated for the same pixel, all the vectors for said pixel would be

averaged. Iterating over all of the relevant pixels in this fashion would generate a vector

field where, in theory and in this example, there might be local inaccuracies, but in

global regions the outliers would be smoothed and average out.

Figure V.2: A vector field generated from comparing pixels in the current frame to neighboring
pixels in the previous frame.

Unfortunately, applying the method to real images didn’t produce good results. The

vector field was far too noisy. Whereas in the example above for the small region that

was computed there was a general consensus from 2/3 of the pixels, in real images there

was no clear consensus in the majority of regions in the field.

16

Figure V.3: A vector field generated with an image of an arm.

V.2. Second Attempt at Vector Field Generation

In another attempt at generating a vector field, the image was treated as a grid of cells

where in each cell the “center of mass” of the pixels that make up the moving object is

calculated. In theory, by measuring the change in position of the center of mass across

consecutive frames for a given cell, this would indicate the net direction for part of the

object that occupied that cell.

Figure V.4: A vector field generated from the change in center of mass for each cell across two

consecutive frames.

This too produced inadequate results. The major problem was because of curved and

irregularly-shaped borders of objects which may be moving in one direction, the vector

generated for a given cell was only weakly correlated; it was more correlated to the

number of pixels entering and exiting the cell as the object moved. Also, regions of the

moving object that were convex in shape would show the inherent weakness in using the

17

center of mass calculation.

Figure V.5: The calculated centers of mass (shown as green squares) in a real image.

V.3. Fast Optical Flow Estimation

As I was having little success in generating an accurate vector field, I approached the

problem from a different angle: what was needed was direction selectivity, the

characteristic of an algorithm which produces an output depending on the direction the

object is moving in. Thus instead of trying to assign a direction, it might be beneficial to

have an algorithm react to a specific direction. Based on the fast optical flow algorithm

presented in [Catalano 2009], I wrote an algorithm which behaves as follows. If a given

pixel at coordinate (x, y) belongs to the moving object in the current frame, but the pixel

at the same coordinate in the previous frame does not cover the moving object, then the

directions indicated by the neighboring pixels that belong to the moving object in the

current frame are averaged and the resulting vector is associated with that pixel. If the

converse is true i.e. the pixel at (x, y) belongs to the moving object in the previous frame,

but not in the current frame, the vector is calculated the exact same way, but flipped 180

degrees.

18

Figure V.6: The output of the algorithm based on fast optical flow estimation as an arm moves up
(top image) and down (bottom image).

The result was not direction selectivity per se, but it was promising in that the leading

edge of the object relative to its direction of motion was clearly identified no matter

which direction the object was moving in.

19

VI. Final Algorithm

Given a video sequence of a moving object, the tasks that needed to be completed for

each frame were as follows:

1. If an object is moving in the frame, identify all the pixels that make up the object.

2. Segment the moving object into regions where each region is moving in the same
direction.

A background subtraction algorithm is used: a comparison is made between each pixel

in the RGB output and the pixel at the same location in the previous frame. If the colors

do not match within some threshold then we know that the pixel being examined part of

the moving object in one of the two frames and it is considered “significant”.

function colorDifference(color1, color2)
{
 brightness1 = ((color1.red * 299) + (color1.green * 587) +
 (color1.blue * 114)) / 1000;
 brightness2 = ((color2.red * 299) + (color2.green * 587) +
 (color2.blue * 114)) / 1000;

 return Math.abs(brightness1 - brightness2);
}

function backgroundSubtraction()
{
 for each pixelPosition in currentFrameData
 {
 if(colorDifference(previousFrameData[pixelPosition],
 currentFrameData[pixelPosition]) > BGS_THRESHOLD)
 {
 currentFrameData[pixelPosition] = INSIGNIFICANT_PIXEL_COLOR;
 }
 }
}

Figure VI.1: The background subtraction algorithm.

The background subtracted image is scanned to find clusters of significant pixels of a

20

given minimum size (so as to disregard noise). As this is done, a tracking square is

created to denote the smallest area of the whole image where these clusters (and thus the

moving object) is contained.

Figure VI.2: From left to right, the RGB image, the depth map (lighter pixels are closer to the
sensor), and the background subtracted image with the tracking square.

for each pixelPosition in currentFrameData
{
 if(currentFrameData[pixelPosition] != INSIGNIFICANT_PIXEL_COLOR)
 {
 significantPixelCount = 0

 for each neighborPosition within radius R of pixelPosition
 {
 if(currentFrameData[neighborPosition] != INSIGNIFICANT_PIXEL_COLOR)
 {
 significantPixelCount++;
 }
 }

 if(significantPixelCount >= TS_THRESHOLD)
 {
 if(currentFrame.trackingSquare == null)
 {
 currentFrame.trackingSquare = new TrackingSquare(origin = pixelPosition,
 width = 1, height = 1)
 }
 else
 {
 currentFrame.trackingSquare.expandToInclude(pixelPosition);
 }
 }
 }
}

Figure VI.3: The algorithm for generating the tracking square.

Within this tracking square, the significant pixel that has the minimum reading from the

depth map (i.e. the pixel closest to the depth sensor) is then selected as a starting point

21

for a paint fill algorithm. The paint fill expands in all directions from this point to cover

the pixels which are part of the same object as the starting point. It does this by testing

adjacent pixels to see if there is a large change in depth; as long as the depth changes

within some threshold in any given direction, the adjacent pixel in the direction will be

considered as part of the same object. If there is a large depth increase or decrease (e.g.

as you would expect on the edge of a foreground object against a background), this is

treated as a border to the object. This creates the tracking mask, the set of pixels that

make up the moving object.

Figure VI.4: (right) The tracking mask.

22

// Determines if a given pixel that was not subtracted during the
// background subtraction algorithm 1. is not noise and
// 2. is part of a region of similar pixels that has a certain
// minimum area belonging to the same physical object.
function isInSignificantPixelCluster(pixelPosition)
{
 if(currentFrameData[pixelPosition] != INSIGNIFICANT_PIXEL_COLOR)
 {
 significantPixelCount = 0;
 referenceDepth = currentFrameDepthMap[pixelPosition];

 for each neighborPosition within radius R of pixelPosition
 {
 neighborDepth = currentFrameDepthMap[neighborPosition];

 if(currentFrameData[neighborPosition] != INSIGNIFICANT_PIXEL_COLOR &&
 Math.abs(referenceDepth - neighborDepth) <= SPCD_THRESHOLD)
 {
 significantPixelCount++;
 }

 return (significantPixelCount >= SIGNIFICANT_PIXEL_CLUSTER_MIN_COUNT);
 }
 }

 return false;
}

function chooseStartingPixelPosition()
{
 trackingSquare = currentFrame.trackingSquare;
 closestPixelPosition = trackingSquare.center
 closestPixelDepth = 99999999;

 for each pixelPosition in trackingSquare
 {
 if(currentFrameData[pixelPosition] != INSIGNIFICANT_PIXEL_COLOR &&
 depthMapData[pixelPosition] < closestPixelDepth &&
 isInSignificantPixelCluster(pixelPosition))
 {
 closestPixelPosition = pixelPosition;
 closestPixelDepth = depthMapData[pixelPosition];
 }
 }

 return closestPixelPosition;
}

23

function generateTrackingMask()
{
 startingPixelPosition = chooseStartingPixelPosition();

 trackingMaskPixels = new Array();
 trackingMaskPixels.add(startingPixelPosition);

 // Do a paint fill algorithm
 foreach currentPixelPosition in trackingMaskPixels
 {
 int currentPixelDepth = depthData[currentPixelPosition];

 // array of the directions of pixel index neighbor traversal
 // (i.e. left, right, up, down)
 directionIncrements = {-1, 1, -IMAGE_WIDTH, IMAGE_WIDTH};

 for each directionIncrement in directionIncrements
 {
 neighborPixelPosition = currentPixelPosition + directionIncrement;
 previousPixelDepth = currentPixelDepth;

 while(true)
 {
 if(neighborPixelPosition < 0 ||
 neighborPixelPosition >= IMAGE_WIDTH * IMAGE_HEIGHT)
 {
 break;
 }

 neighborPixelDepth = currentFrameDepthMap[neighborPixelPosition];

 if(!trackingMaskPixels.containsKey(neighborPixelPosition) &&
 Math.abs(previousPixelDepth - neighborPixelDepth)
 < SAME_SURFACE_DEPTH_THRESHOLD)
 {
 trackingMaskPixels.add(neighborPixelPosition);
 previousPixelDepth = neighborPixelDepth;
 neighborPixelPosition += directionIncrement;
 }
 else
 {
 break;
 }
 }
 }
 }

 return trackingMaskPixels;
}

Figure VI.5: The algorithm for generating the tracking mask.

Each pixel in this tracking mask is sent as input to a set of Reichardt detectors which

assign a direction of movement to edge pixels. A Reichardt detector is a simple circuit

24

found in the human retina that reads the signal from a photoreceptor (e.g. a pixel in our

case) and multiplies the result with the signal from a neighboring (spatially) signal. The

two signals are then subtracted which results in a circuit which responds to sensed

movement in a given direction (the direction of the subtraction) [Borst 2011].

Figure VI.6: A Reichardt detector (source: http://en.wikipedia.org/wiki/File:Reichardt_model.jpg)

Figure VI.7: (right) Edges are assigned color-coded directions of motion.

25

function reichardtDetection()
{
 for each pixelPosition in currentFrame.trackingMask
 {
 vectors = new Array();

 for each neighborPixelPosition within radius = 1 of pixelPosition
 {
 if(currentFrameData[pixelPosition] != INSIGNIFICANT_PIXEL_COLOR &&
 previousFrameData[neighborPixelPosition] != INSIGNIFICANT_PIXEL_COLOR &&
 colorDifference(currentFrameData[pixelPosition],
 previousFrameData[neighborPixelPosition]) < COLOR_DIFFERENCE_THRESHOLD))
 {
 vectors.add(getNeighborVector(pixelPosition, neighborPixelPosition));
 }
 }
 }

 currentFrame.setVectorColor(Math.roundToNearest45Degrees(average(vectors)));
}

Figure VI.8: The algorithm for the Reichardt Detector.

Figure VI.9: The colors associated with the directions of motion, rounded to the nearest 45 degrees.

With the boundary and texture edges assigned to angles of motion, each non-edge pixel

is traversed and assigned the vector of the nearest edge pixel within some radius

(regardless of whether the edge is part of the texture or part of the object boundary).

26

Figure VI.10: (right) The non-edge pixels adopt the the motion vector (and color) of the nearest edge
pixel within a given radius.

function assignInsignificantPixelsToClosestEdgePixel()
{
 coloredEdgePixels = currentFrame.coloredTrackingMaskPixels;

 for each pixelPosition in currentFrame.trackingMask
 {
 if(!coloredEdgePixels.contains(pixelPosition))
 {
 // span out in 8 directions to find the closest member of coloredEdgePixels

 boolean found = false;

 for(int radius = 1; !found && radius < 100; radius++)
 {
 for each direction
 {
 distantPixelPosition = pixelPosition + direction * radius;

 if(!found && coloredEdgePixels.contains(distantPixelPosition))
 {
 currentFrame.coloredTrackingMaskPixels[pixelPosition] =
 coloredEdgePixels[distantPixelPosition];

 found = true;
 }
 }
 }
 }
 }
}

Figure VI.11: The algorithm for assigning vectors to non-edge pixels.

When we are restricted to assigning vectors to pixels based only on the nearest edge

pixel that is on the boundary of the moving object within some radius, ignoring edge

pixels that are part of the texture, some pixels are not assigned any vector.

27

Figure VI.12: (right) The non-edge pixels adopt the the motion vector (and color) of the nearest edge
pixel which is on the object boundary within a given radius.

Finally, the motion vectors for the tracking mask pixels are smoothed so the object is

segmented into more homogeneous regions. This is done by traversing all the pixels in

the tracking mask and for each pixel, a survey of its neighbors is conducted and if at least

Sp = 75% of the neighbors within a radius of Sr = 4 pixels have the same associated

vector, the current pixel then adopts that same vector. This process repeats until there are

no pixels whose motion vectors change.

Figure VI.13: (right) The “any edge” algorithm (see Figure V.6) after smoothing.

28

function smoothSegments()
{
 changedPixels = new Array();
 trackingMaskPixels = currentFrame.trackingMaskPixels;
 newPixelColors = new Array();
 pixelColors = currentFrame.pixelColors;
 radius = 4; // this is Sr
 neighborPollThreshold = 0.75; // this is Sp

 while(true)
 {
 colorChange = false;

 // recolor all pixels that are at least 75% surrounded by
 // other pixels of a different color
 for each pixelPosition in currentFrame.pixelColors
 {
 // these are the pixels to change IF a color (i.e. vector)
 // change is necessary
 pixelsToChange = new Array();
 pixelsToChange.add(pixelPosition);

 if(!changedPixels.contains(pixelPosition))
 {
 colorCounts = new HashMap();

 for each neighborPixelPosition within radius distance from pixelPosition
 {
 if(pixelColors.contains(neighborPixelPosition))
 {
 colorCounts[pixelColors[neighborPixelPosition]]++;
 }
 else if(trackingMaskPixels.contains(neighborPixelPosition))
 {
 // add the neighbor pixel to pixels to change because it's in the
 // tracking mask, but it has no color (i.e. vector) yet
 pixelsToChange.add(neighborPixelPosition);
 }
 }

29

 // now tally up all the neighboring colors

 colorCountSum = 0;
 highestColorCount = 0;

 // default behavior: leave the color as is
 newColor = pixelColors[pixelPosition];

 // find the color that is most abundant around pixelPosition
 for each color in colorCounts
 {
 colorCount = colorCounts[color];

 if(colorCount > highestColorCount)
 {
 highestColorCount = colorCount;
 newColor = color;
 }

 colorCountSum += colorCount;
 }

 for each pixelToChange in pixelsToChange
 {
 // if we're over the threshold to actually change the color
 if(highestColorCount / colorCountSum > neighborPollThreshold)
 {
 newPixelColors[pixelToChange] = newColor;
 changedPixel.add(pixelToChange);
 colorChange = true;
 }
 }
 }
 }

 currentFrame.saveNewPixelColors(newPixelColors);

 if(!colorChange)
 {
 return;
 }
 }
}

Figure VI.14: The smoothing algorithm for generating the final segments.

Figure VI.15: (right) The “object boundary edge only” algorithm (see Figure V.7) after smoothing.

30

VII. Results and Analysis

Testing the program relied on the following constraints:

1. Only one moving object is in the scene at any given time.

2. The moving object is not occluded in any way, but it doesn’t have to be the object
closest to the sensor.

3. The moving object isn’t near enough to another object or surface in the scene that the
program mistakes the combination as a single object.

4. The object is moving relatively slowly.

Experiments were conducted with different movements of a human hand and arm and the

resulting motion segments were evaluated for accuracy against actual motion. The final

algorithm as described in Section VI provided the most accurate model that identifies the

motion of the object.

Having said that, the accuracy of any algorithm that attempts to segment the tracking

mask based on the 8 cardinal and ordinal directions of movement will be subjective; the

number, size, and shape of the segments are an inherently fuzzy proposition. In addition,

the rules that may be used for rounding and the influence of neighboring pixels in

reassigning motion vectors generate several “good” models for the moving object.

Because of these factors, the problem is ill-posed.

Changing the smoothing parameters (Sp = the percentage of neighboring vectors

required for a pixel to adopt said vector; and Sr = the radius of neighbor pixels to

consider) will give different results.

31

The number of segments is inversely proportional to Sr. This is because as Sr increases,

larger areas must become homogeneous for the halting condition of the smoothing

function to be reached. Also as Sr increases, more passes through the smoothing

function are needed before an equilibrium is reached and no pixels are reassigned

neighboring vectors and performance slows.

Figure VII.1: Segments generated where (from top left) Sr = 2, 4, 6, 8, 10, 12.

As Sp increases, the larger segments get larger and the smaller segments get smaller.

This is because a smaller segment will have proportionally fewer pixels where the

percentage of neighboring pixels that share the same motion vector is greater than Sp. If

we think of each pixel’s neighbors as casting a vote to elect the best motion vector, the

larger segments -- specifically the segments with the most border area that has a width

greater than Sr -- will have more pixels voting for their current associated motion vector

thus expanding the segment outward. Conversely, the smaller segments will adopt more

32

neighboring motion vectors and their borders will shrink.

Figure VII.2: Segments generated where (from top left) Sp = 0.5, 0.65, 0.8, 0.95.

Figure VII.3 shows nine consecutive frames of a fast-moving arm bending.

33

Figure VII.3: Segments generated for a fast-moving arm bending (Sr = 4, Sp = 0.75).

Figure VII.4 shows fifteen representative frames (some insignificant frames were omitted

for clarity) of a rigid cardboard tube lowering then raising along an arc. Note that the

segmentation becomes more nuanced as the speed slows just before and just after the

change in direction.

34

Figure VII.4: Segments generated for a cardboard tube lowering then raising (Sr = 4, Sp = 0.75).

This implies an effect that was also observed in other experiments: the simplicity of the

segmentation decreases when the object is moving slower than some lower bound. This

is most likely because during the Reichardt detection phase of the algorithm, when the

object is moving slowly, a significant number of the edge pixels do not move far enough

between two consecutive frames for the color difference threshold to be met which is

used to detect motion. Therefore in these cases edges are less well defined and

subsequently more pixels adopt their neighbors’ motion vectors. The overall

consequence is increased fuzziness.

35

Figure VII.5: Segments generated for a stick swung like a bat (Sr = 4, Sp = 0.75).

Figure VII.6: Segments generated for a ball thrown near the camera (Sr = 4, Sp = 0.75).

36

Figure VII.7: Segments generated for a person jumping vertically (Sr = 4, Sp = 0.75).

Figure VII.8: Segments generated for a door swinging open toward the camera (Sr = 4, Sp = 0.75).

Figures VII.5 - VII.8 show further examples. Again we see, most prominently in the

jump video, slow moving objects being “over-segmented.” With fast moving objects

37

such as the stick being swung and the falling ball, an effect can be observed where the

combined region the object occupies in the two frames involved in the background

subtraction are used. This is a limitation of the algorithm and appears to the be primarily

the result of a delay between capturing the RGB input and the depth sensor input, but

also there is blurring in the RGB image.

38

VIII. Summary

In this research, I addressed the problem of profiling the movement of an object from a

video. My approach combined a conventional background subtraction algorithm with

depth sensor input to perfectly isolate the moving object within the constraints of the

experiments. Then an artificial Reichardt detector, a neural circuit that in the human

visual system that selectively detects motion in a given direction, is used to assign

directions of motion to the object. With some further processing and smoothing, the

software produces a reasonably accurate segmented profile of motion for the object being

observed.

This research contributes to the science of computer vision by successfully

demonstrating a method that combines advances in consumer-grade vision hardware with

biologically-inspired techniques to generate a vector field for a moving object in a video.

39

IX. Directions for Future Research

This research can be further expanded in several ways. First, one could work towards

eliminating some of the constraints by handling occlusions, multiple simultaneous

moving objects, a moving camera, etc. The major difficulty with any of these tasks

would be finding the appropriate starting point(s) for the paint fill algorithm that creates

the tracking mask. In my approach, the pixel that is closest to the depth sensor is the

starting point, but a new scheme would have to be created in order to determine

potentially multiple points, any of which may not be the closest to the sensor in the

tracking square (e.g. in the case of an occlusion).

In keeping the constraints, the next logical step would be to address the correspondence

problem wherein a segment in one frame must be associated with a segment in the next

consecutive frame in order to track the path of that segment in time. In other words, a

given area of the physical object must be recognized as the same area of the same object

in the next frame. The major challenge in this is that some objects appear amorphous

and of differing sizes across time; the arm examples above clearly illustrate this. As a

consequence, segments are also change in size and shape across frames. Plus, in the

algorithm presented here, the number of segments can change so a segment could

completely disappear between one frame and the next. However, the correspondence

problem could be tackled considering only the object taken as a whole.

40

In any case, there is a lot of room for experimenting with the current algorithm. One

could attempt to generate a predefined constant number of segments for an object. This

could work well, especially if employed strictly for a single domain such as only tracking

humans or only cars.

41

References

J. K. Aggarwal and Y. F. Wang, "Analysis of a Sequence of Images Using Point and Line
Correspondences", Proceedings of IEEE International Conference on
Robotics and Automation, 1987, pp. 1275-1280

Dr. Alexander Borst, "In Search of the Holy Grail of Fly Motion Vision (2011)," http://
videocast.nih.gov/summary.asp?Live=10065 (as of March 5, 2012)

Giuseppe Catalano et al., "Optical Flow,” http://www.cvmt.dk/education/teaching/f09/
VGIS8/AIP/opticalFlow.pdf (as of May 1, 2013)

Sen-Ching S. Cheung and Chandrika Kamath, “Robust techniques for background
subtraction in urban traffic video,” http://www.vis.uky.edu/~cheung/doc/UCRL-
CONF-200706.pdf (as of May 29, 2011)

D.G. Falconer, "Target Tracking with the Hough Transform," Circuits, Systems and
Computers, 1977 Conference Record, 1977 pp. 249-252.

Russel D. Hamer, “What Can my Baby See?” Parents' Press Vol. XI, No. II, 1990.http://
www.ski.org/Vision/babyvision.html (as of July 3, 2011).

Jeff Hawkins and Dileep George, "Hierarchical Temporal Memory Concepts, Theory,
and Terminology" 2007. http://www.numenta.com/htm-overview/education/
Numenta_HTM_Concepts.pdf (as of February 12, 2012).

Izadi, Shahram et al., "KinectFusion: Real-time 3D Reconstruction and Interaction Using
a Moving Depth Camera," IEEE ISMAR, IEEE, October 2011

Kloihofer, W. and Kampel, M., "Interest Point Based Tracking," Pattern Recognition
(ICPR), 2010 20th International Conference on, vol., no., pp.3549-3552, 23-26 Aug.
2010

Newcombe, Richard A. et al., "KinectFusion: Real-Time Dense Surface Mapping and
Tracking," ACM Symposium on User Interface Software and Technology, October 2011

Massimo Piccardi, “Background subtraction techniques: a review,” http://
profs.sci.univr.it/~cristanm/teaching/sar_files/lezione4/Piccardi.pdf (as of May 29, 2011).

Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd ed.,
Prentice-Hall. 2010.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8153
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8153
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8153
http://videocast.nih.gov/summary.asp?Live=10065
http://videocast.nih.gov/summary.asp?Live=10065
http://videocast.nih.gov/summary.asp?Live=10065
http://www.cvmt.dk/education/teaching/f09/VGIS8/AIP/opticalFlow.pdf
http://www.cvmt.dk/education/teaching/f09/VGIS8/AIP/opticalFlow.pdf
http://www.vis.uky.edu/~cheung/doc/UCRL-CONF-200706.pdf
http://www.vis.uky.edu/~cheung/doc/UCRL-CONF-200706.pdf
http://www.vis.uky.edu/~cheung/doc/UCRL-CONF-200706.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5781
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5781
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5781
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5781
http://www.cs.bu.edu/fac/lnd/
http://www.ski.org/Vision/babyvision.html
http://www.ski.org/Vision/babyvision.html
http://www.numenta.com/htm-overview/education/Numenta_HTM_Concepts.pdf
http://www.numenta.com/htm-overview/education/Numenta_HTM_Concepts.pdf
http://www.numenta.com/htm-overview/education/Numenta_HTM_Concepts.pdf
http://profs.sci.univr.it/~cristanm/teaching/sar_files/lezione4/Piccardi.pdf
http://profs.sci.univr.it/~cristanm/teaching/sar_files/lezione4/Piccardi.pdf

42

P. Smith and G. Buechler, "A Branching Algorithm for Discriminating and Tracking
Multiple Objects", IEEE Transactions on Automatic Control. volume 20, issue 1, 1975,
pp. 101-104

William B. Thompson and Ting-Chuen Pong, “Detecting Moving Objects,” International
Journal of Computer Vision Issue 4, 1990, pp. 39-57.

A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing
Surveys, vol. 38, no. 4, pp. 1–45, 2006.

Zhengyou Zhang and Olivier D. Faugeras, "Three-dimensional motion computation
and
object segmentation in a long sequence of stereo frames," International Journal of

Computer Vision, vol. 7, issue 3, pp. 211-241, 1992.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9

	University of Nebraska at Omaha
	DigitalCommons@UNO
	5-2013

	3D Object Tracking and Motion Profiling
	Corey A. Spitzer
	Recommended Citation

	Untitled

