
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

8-2013

Categorizing and predicting reopened bug reports
to improve software reliability
Rishikesh Gawade

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2881&utm_medium=PDF&utm_campaign=PDFCoverPages

Categorizing and predicting reopened bug reports to

improve software reliability

A Thesis

Presented to the

Department of Computer Science

And the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha

By

RishikeshGawade

August 2013

Supervisory Committee:

Dr. Harvey Siy

Dr. Robin Gandhi

Dr. ParvathiChundi

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1543911

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 1543911

ABSTRACT

CATEGORIZING AND PREDICTING REOPEN BUG RPORTS TO IMPROVE

SOFTWARE RELIABLITY

Rishikesh Gawade, MS

University of Nebraska, 2013

Advisor: Dr Harvey Siy

Software maintenance takes two thirds of the life cycle of the project. Bug fixes are an

important part of software maintenance. Bugs are tracked using online tools like Bugzilla.

It has been noted that around 10% of fixes are buggy fixes. Many bugs are documented

as fixed when they are not actually fixed, thus reducing the reliability of the software.

The overlooked bugs are critical as they take more resources to fix when discovered, and

since they are not documented, the reality is that defect are still present and reduce

reliability of software. There have been very few studies in understanding these bugs.

The best way to understand these bugs is to mine software repositories. To generalize

findings we need a large number of bug information and a wide category of software

projects. To solve the problem, a web crawler collected around a million bug reports from

online repositories, and extracted important attributes of the bug reports. We selected four

algorithms: Bayesian network, NaiveBayes, C4.5 decision tree, and Alternating decision

tree. We achieved a decent amount of accuracy in predicting reopened bugs across a wide

range of projects. Using AdaBoost, we analyzed the most important factors responsible

for the bugs and categorized them in three categories of reputation of committer, complex

units, and insufficient knowledge of defect.

i

ACKNOWLEDGEMENTS

I thank my advisor Dr. Harvey Siy for guiding me in understanding research problem,

selection of resources for research, using software tools and guiding me on every step in

field of data mining and empirical software engineering which was new and challenging

to me. I thank Dr. Chundi for clearing my knowledge about algorithms and Dr. Gandhi

for guiding me through resources of software defects. I thank my family for their

encouragement and support without which I should have not able to devote myself fully

to thesis.

ii

TABLE OF CONTENTS

1. INTRODUCTION...1

1.1 PROBLEM ... 1

1.2 OBJECTIVE .. 2

1.3 APPROACH ... 2

1.4 ORGANIZATION OF THIS THESIS ... 3

2. BACKGROUND..4

2.1 RELATED WORK ... 5

3. DATA DESIGN..11

3.1 DATA PREPROCESSING .. 11

3.2 DATA FACTORS .. 13

3.2.1 Bug Report Factors...13

3.2.2 Bug Activity Factors..15

3.2.3 Bug Comment Factors...16

4. OVERVIEW OF DATA..18

4.1 ECLIPSE PROJECTS .. 18

4.2 APACHE PROJECTS ... 19

4.3 GNU PROJECTS ... 20

4.4 MOZILLA PROJECTS .. 20

4.5 RED HAT PROJECTS ... 20

4.6 NET BEANS PROJECTS ... 21

4.7 OPEN OFFICE PROJECTS .. 21

iii

4.8 W3C... 21

4.9 PROJECTS OVERVIEW .. 22

5. METHODOLOGY, RESULTS, AND ANALYSIS..23

5.1 METHODS .. 23

5.1.1K-FOLD CROSS VALIDATION ... 23

5.1.2 CONFUSION MATRIX ... 24

5.1.3 C4.5 DECISION TREE ... 25

5.1.5 BAYESIAN NETWORK CLASSIFIER .. 31

5.1.6 ADABOOST CLASSIFIER .. 34

5.1.7 ALTERNATING DECISION TREE CLASSIFIER .. 37

5.2 RESULTS ... 41

5.2.1 ECLIPSE PROJECT RESULTS .. 41

5.2.2 OPEN OFFICE PROJECT RESULTS .. 43

5.2.3 APACHE PROJECT RESULTS ... 45

5.2.4 NET BEANS PROJECT RESULTS ... 48

5.2.5 RED HAT PROJECT RESULTS ... 51

5.2.6 MOZILLA PROJECT RESULTS .. 54

5.2.7 W3C PROJECT RESULTS ... 57

5.2.8 GCC PROJECT RESULTS .. 60

5.3 ANALYSIS ... 64

6. THREATS TO VALIDITY..68

6.1 THREATS TO CONSTRUCT VALIDITY .. 68

6.2 THREATS TO INTERNAL VALIDITY ... 68

6.3 THREATS TO EXTERNAL VALIDITY ... 69

7. CONCLUSIONS..70

iv

8. FUTURE WORK...72

REFERENCES...73

v

LIST OF TABLES

Table 1:Bug Report Factors .. 14

Table 2: Bug Activity Factors ... 16

Table 3: Bug Comment Factors .. 17

Table 4: Reopen percent by components .. 19

Table 5: Overview of Projects .. 22

Table 6: Confusion matrix example .. 24

Table 7: Learning Data for NaiveBayes Classifier ... 29

Table 8: Conditional Probability distribution for Node Product for Parents

Yes_no_reopened and Status .. 34

Table 9: Input description of Eclipse project data to Algorithms 41

Table 10: Efficiency of algorithms in predicting Reopened bugs for Eclipse 41

Table 11: Input description of Open Office project data to Algorithms 43

Table 12: Efficiency of algorithms in predicting Reopened bugs for Open Office 43

Table 13: Input description of apache project data to Algorithms 45

Table 14 : Efficiency of algorithms in predicting Reopened bugs for Apache 45

Table 15: Input description of Net beans project data to Algorithms 48

Table 16: Efficiency of algorithms in predicting Reopened bugs for Net beans. 48

Table 17: Input description of Red hat project data to Algorithms 51

Table 18: Efficiency of algorithms in predicting Reopened bugs for Red hat. 51

Table 19: Input description of Mozilla project data to Algorithms 54

Table 20: Efficiency of algorithms in predicting Reopened bugs for Mozilla. 54

Table 21: Input description of W3C project data to Algorithms 57

file:///C:\Users\rg\Desktop\rishi-thesis-update9.docx%23_Toc363826378
file:///C:\Users\rg\Desktop\rishi-thesis-update9.docx%23_Toc363826381
file:///C:\Users\rg\Desktop\rishi-thesis-update9.docx%23_Toc363826382
file:///C:\Users\rg\Desktop\rishi-thesis-update9.docx%23_Toc363826382

vi

Table 22:Efficiency of algorithms in predicting Reopened bugs for W3C. 57

Table 23: Input description of GCC project data to Algorithms 60

Table 24: Efficiency of algorithms in predicting Reopened bugs for GCC. 60

Table 25:Summary of best algorithms in predicting reopen of bug by F-measure and

recall .. 64

Table 26: Category of causes responsible for reopen of bug .. 65

Table 27: Frequency of Category for Projects .. 66

vii

LIST OF FIGURES

Figure 1: Bug Life cycle in Bugzilla... 4

Figure 2:3-fold cross validation (P. Refaeilzadeh, 2009) ... 23

Figure 3: Entropy distribution of Binary class (Mitchel, 1997).. 26

Figure 4: Best Attribute selection (Mitchel, 1997) ... 27

Figure 5 :C4.5 Decision tree for Reopen of eclipse Bugs... 28

Figure 6: Bayesian Network Generated by Chow-Liu algorithm (Friedman, Geiger, &

Goldszmidt, 1997)... 33

Figure 7 :AdaBoost algorithm .. 35

Figure 8 : Variable importance graph generated by AdaBoost algorithm using Rattle 36

Figure 9 : Alternating decision tree generated by 4 number of boosting Iteration. 40

Figure 10: Important variable responsible for reopen in Eclipse Projects 42

Figure 11: Important variable responsible for reopen in Open Office Projects 44

Figure 12: Important variable responsible for reopen in Apache Projects 47

Figure 13: Important variable responsible for reopen in Net Beans Projects 50

Figure 14: Important variable responsible for reopen in Red Hat Projects 53

Figure 15:Important variable responsible for reopen in Mozilla Projects 56

Figure 16: Important variable responsible for reopen in W3C Projects 59

Figure 17: Important variable responsible for reopen in GCC Projects 62

viii

1

1. INTRODUCTION

1.1 Problem

Software maintenance takes two thirds of the cost of life cycle of the projects that

make up the 70 billion dollar software industry in US (Boehm & Basili, 2001). Fixing

bugs is an important part of the maintenance process. However, around 10% of fixes are

buggy fixes (Gu, Barr, Hamilton, & Su, 2010). If a system has a high percentage of

overlooked fixes, then it could reduce reliability of software, and there has been very

little work in the area to broaden the understanding of these bugs (Guo, Zimmermann,

Nagappan, & Murphy, 2010). Reopened bugs are critical and wasteful as they consume

more resources than the average bug, and the average time fixing them is twice the

regular time of the average bug (Shihab E. , Ihara, Kamei, & Ibrahim, 2010). If we are

able to understand the root causes and factors responsible for the reopened bugs and

predict them in advance it will help in saving resources and set standards to increase the

reliability of the software. To understand the causes and factors of the reopened bugs, we

need information regarding reopened bugs from software repositories. One of the biggest

challenges in getting the data from software repositories is that there is limited access to

data, and the difficulty in extracting data is great due to its complex nature (Hassan,

2008). To generalize the root causes of the reopened bugs the data extracted should come

from a variety of projects. Also, the number of bug information extracted should be large.

Once the data is extracted from the reopened bugs, they should have common root causes

and factors that can be used to predict the chances of reopened bugs.

2

1.2 Objective

The objective of our research is to develop automated data mining techniques for

software repositories. Once bug data is collected and processed, the next task is to find

out root causes of reopened bugs and categorize them into common patterns. We will

apply prediction algorithms to predict the reopening of bugs and to test this method on

different categories of projects to achieve a decent amount of accuracy.

1.3 Approach

First step was to find a wide categorical variety of open source projects, and once

a category was selected, we had to find a bug tracking systems where data is accessible to

the public. We developed novel, automated data extraction methods to extract data from

bug repositories and websites by crawling through the systems. We divided bug data into

three categories: report data, activity data, and comment data. Once data was extracted

and cleaned, an overview of data was shown. The next part of the study was applying

machine learning algorithms to create predictions for reopened bugs. We studied and

selected two tools, Rattle (Williams, 2009) and Weka (Mark Hall, 2009), for the

implementation of algorithms. We tested all machine algorithms in Weka and rattle to

find out which ones work most efficiently in predicting reopened bugs from given

factors. From this, four algorithms were selected: Bayesian network (Friedman, Geiger,

& Goldszmidt, (1997)), NaiveBayes(Bayes, 1763), C 4.5 decision tree (Quinlan, 1986),

and Alternating decision tree (Freund & Mason, The alternating decision tree learning

algorithm, 1999). For all data sets, we found the most accurate algorithms by measuring

precision, recall, and F-measure, which were recorded for both the reopened bugs and

3

non-reopened. We also identified the most important factors that contribute to reopened

bugs using Rattle and the AdaBoost algorithm(Freund & Schapire, Experiments with a

new boosting algorithm., 1996).

1.4 Organization of this Thesis

The rest of this thesis is organized as follows: Chapter 2 is background

information of the bug fixing process, bug tracking tools, and related work to reopen the

bugs. Chapter 3 is to categorize the project selected, commence data extraction methods,

and divide the data into three factors: report, activity, and comments. Chapter 4 is an

overview of the projects and data. Chapter 5 is choosing techniques for selecting,

implementing, and predicting the outcome. Chapter 6 is a summary of total work,

limitations of research, and threats to validity of future work.

4

2. BACKGROUND

Bugs can be defined as a flaw that prevents computer programs from behaving as

intended. Bugs can be detected via human review, code analysis tools, component testing,

ad hoc testing, system testing, customer reports, and employee input (Guo, Zimmermann,

Nagappan, & Murphy, 2010). Whenever bugs are reported during the life cycle of fixing

of bug begins. There are numerous questions to be answered when bugs are reported. One

question is to whom the bug fixes should be assigned. Another is to whom the task of

verifying should be delegated to. Further, who should close the bug? These three steps

are an important in limiting bugs that need reopened, though any oversight in any of the

three steps may result in the need to reopen bugs. Most open source projects use a bug

tracking tool to report and fix bugs.

 There are numerous bug tracking tools. To name few: Mantis

(http://www.mantisbt.org/manual/), Jira (https://www.atlassian.com/software/jira),

Bugzilla, (http://www.Bugzilla.org/). We have extracted information of the bug reports,

Figure 1: Bug Life cycle in Bugzilla.

5

history, and comments from the web-based tool Bugzilla. Bugzilla is used by many open

source software systems. The diagram in Figure 1 represents states of a bug from

Bugzilla. What we are interested is the reopened state of a bug. The bug reopen state has

three incoming paths from resolved, verified, or closed. Reopened bug is reassigned to

different person or send it back to fixer. When bug is reopened the fixer has to start the

process again there is overhead of time and resources to handle the reopened bug.

There are several scenarios in which bug can be reopened. The bug can be

reopened from different forms of resolved state, common scenario is bug is successfully

resolved in this case bug state is changed resolved_FIXED, there can be other scenarios

in which bug can be invalid, duplicate, and worksforme in this case bug states are

resolved_INVALID, resolved_DUPLICATE and resolved_WORKSFORME bug can be

reopened from all these forms of resolved state. Once the bug is resolved it moves to

verified state asverified_FIXED. The bug can be reopened from verified_FIXED. Finally

verification can be successful and bug will be closed, but even when bug is closed still

bug can be reopened from closed state.

2.1 Related work

Software repositories consist of version control repositories, bug repositories,

archived communication, deployment logs, and code repositories (Hassan, 2008).

Software repositories hold invaluable information to understand software evolution.

Common patterns of defects, predicted fixes, resources, and required time to complete

software activity. Bug repositories can be used to find out bad bug fix patterns, causes,

and factors responsible for a reopen state. The study was lagging in mining software

6

repositories due to limited access to data and difficulty in extracting data due to its

complex nature (Hassan, 2008). One of the successful case studies of mining bug

repository for defect patterns was by Zimmermann in his study of predicting bugs from

history. Zimmermann worked on bug repositories of five Microsoft projects to find out

defect patterns. He defined defect density as a number of defects in module to the total

number of defects in project, which has complexity metrics as lines of codes, global

variables, cyclomatic complexity, read coupling, write coupling, address coupling, fan-in,

fan-out, weighted methods per class, depth of inheritance, class coupling, and number of

subclasses. He found out defects correlate with complexity metrics. Other parameters for

predicting defects were complexity of requirements, problem domain, set of imported

classes, number of changes in components, amount of code changed to time taken. He

successfully proved defects can be predicted through history of software. Also,

knowledge of one project can be applied to other projects.

This Eclipse case study (Shihab E. , Ihara, Kamei, & Ibrahim, 2010)was first to

address the factors responsible for reopening of bugs. In the eclipse case study bugs were

categorized in four dimensions: work habit, bug report, bug fix, and people. Work habit

consisted of time, day, and month at which bugs were fixed. The rationale behind the

analysis was that bugs are most likely not to be fixed when they are fixed during certain

period of time, and one such time being end of the week, Friday, which produced the

most bugs (Sliwerski, Zimmermann, & Zeller, 2005). Factors in bug report dimensions

were priority, severity, changes, description of report, and comments. Bug fix factors

were time taken to fix a bug, number of files changed, and last status of a bug. His

findings on the reopen bugs were: difficult to understand, take more time, increased

7

reopened bugs with more files changed, and indicated whether the bug would be

reopened or not. Shihab defines people dimension as the name of the bug reporter and his

experience, and the name of the fixer and his experience. He explains how bug reporting

experience helps to write clear concise reports that explain the exact problem. The chance

of reopening bugs depends on the number of reports filed, and the fixer's experience

results in a decreased chance of a reopen. In the eclipse case study, a researcher used four

algorithms to predict whether the bug shall reopen. The names of the algorithms were

following Zero-R, NaiveBayes, Logistic Regression, and C4.5. The efficiency and

accuracy of each algorithm was calculated by a confusion matrix (Kohavi & Provost,

1998). Due to the percent of reopens being fewer the reopened bugs faced the class

minority problem. To solve this problem a re-sampling of training data was done using

AdaBoost algorithm (Freund & Schapire, A Short Introduction to Boosting., 1999).

However, testing data had same percentage of minority class. The C4.5 was the most

efficient algorithm with 62.9% precision and 84.5% recall when predicting whether a bug

will be re-opened and 96.8% precision and 89.6% recall when predicting if a bug will not

be re-opened. To find out which factors were most responsible for reopens in a C4.5 tree

was used in which the most important factors were near root of trees using this analysis

of comment text, description text, and the time it took to resolve bug indicated whether

the bug will be reopened or not. Threat to validity of findings centered on data that was

very limited, and was limited to just one type of project.

The second study we focused on the windows operating system (Guo,

Zimmermann, Nagappan, & Murphy, 2010) the study was different from that of the

eclipse case study as its goal was not predict each individual bug but try to categorize

8

reopen bugs in common factors (Shihab E. , Ihara, Kamei, & Ibrahim, 2010). The study

used a survey of Microsoft employees to categorize bugs and added a few more factors to

that the previous study of Eclipse did not;one of them was a global distribution software

team, with a reputation of fixer and reporter. Manual examination of bug reports was

added to the survey to categorize reopen bugs. Based on a survey of employees and the

manual examination of bug report, initial factors were derived: state, the opener,

assignee, severity, component, type, source, and status of bug. Zimmerman derived the

following causes: bugs that were difficult to reproduce, developers misunderstood the

root cause, insufficient information, priority of bug increased, reputation of assignee, and

bug opener related to reopen. Zimmerman's prediction model describes four states for

bug probability. One, the bug will not be reopened. Two the bug will be reopened. Three,

the bug will be fixed after the reopen. Four, the bug will not be fixed after the reopen.

Final factors used for prediction of states were bug source of bug report, reputation of

bug opener, reputation of assignee, opened by temporary employee, opener assignee

same manger ,opener assignee were in same building, number of editors, number of

assignee, number of component, and path changes. Threats to validity to research were

restricted to Microsoft employees and the Windows operating system; therefore the

results cannot be generalized.

The third study is of reopened bugs in open source software (Shihab E. , et al.,

2012). The bug dimensions, factors, and algorithms were of the same as first eclipse

study (Shihab E. , Ihara, Kamei, & Ibrahim, 2010)but two more projects were added:

Apache and office. The number of bugs studied in eclipse study was less 1530 number of

bugs studied of apache and open office was 14359 and 40173 respectively. The results

9

were more generalized as it was extended to two more projects with a large number of

bugs. The precision for eclipse, apache, and open office was 52.1, 52.3, 78.6 and recall

was 70.5, 94.1, and 89.3 respectively. Most important factors responsible for reopen

varied according to projects comment text and was the most important factor for eclipse

and open office while the last status was the most important factor for apache, which was

responsible for reopening of the bug.

One more study on bad fixes for the eclipse project was based on bad committers

(Jongyindee, Ohira, Ihara, & Matsumoto, 2011). In this bug information was extracted

from Bugzilla and version control repositories. The bad fix pattern was defined in three

categories. First, a bug was reopened after resolved verified and closed. Second, a bad

pattern was bug marked as new and then changed to duplicate. Third, a bug was marked

as duplicate but was later changed to new and resolved. Committers were categorized in

four categories: developers with high number of commits, developers who support other

developers, developers who perform both, developers with low number of commits.

Based on this categories sixteen question were answered bad pattern rate, reopen

percentage, median value of each committers bug life cycle, number of activities shown

in bug tracking system, period of time in project, number of month as committers, time

interval between latest bug status to commit in commit log, median review time for

verify/close, average review time for verify close, number of bug resolves, number of bug

assigned, number of bug fixed ,number of bug reopened, number of bug verified closed,

number of time bug status was changed to new, mean bug resolving, average bug

resolving time. Findings were reopen bug have longer fixing time, more experience leads

to lesser bad commits, there was interrelation in bad pattern if committers performed

10

badly in one pattern they were more likely perform bad in all pattern the study also found

out not all reopens were bad as some reopen took place as they had no knowledge of fix

and hence it can be called as bad assigned.

11

3. DATA DESIGN

3.1 Data Preprocessing

To make our research generalized we needed bug information from projects of

different software categories. The number of bug reports required was large in order to

get an overall view of each project. We preferred open source systems to acquire data, for

availability of data is one of the big challenges (Hassan, 2008).Previous research was

limited to commercial projects of Microsoft systems (Guo, Zimmermann, Nagappan, &

Murphy, 2010) or from Eclipse where data was scarce. The first task was selecting bug

tracking tools. To acquire data, we selected Bugzilla because Bugzilla is an open source

web-based, bug-tacking tool, which hosts the bug information of many projects that are

open to the public. Its bug information is stored in bug repositories, or is available online

through its website. Once we identified the bug-tracking tool, our next goal was the

selection of projects that represent deferent categories of software systems. The selection

of the project was following Apache in the web server category, and GNU GCC in the

compiler category, Mozilla in the browser category, Net beans, and Eclipse in the

integrated development category, Open office in the productivity software suite, red hat

in the operating system category, and W3C in the standards organization category.

To extract data for our research, our first approach was to mine software bug

repositories. We had compressed files from the Eclipse project, and we extracted

important factors from thebug report, which were reporter name, fixer name, bug title,

version, and priority. Parsing files was done in the Perl programming language. Of the

information collected, limitations prevented us from obtaining the name of the person

12

who verified, closed, reopened, or changed the status from assigned to new. Also we

could not extract the information of the comments made on the bugs. The repositories

available were limited to a few specific projects and reports. The next approach was to

create a web crawler which traveled the link from one link to other by using bug id.

This Pseudo code of our Crawler

feed the URL of bug report

begin with Bug id 1

repeat

combine URL and Bug Report id

build HTML tree and Parse the page

get the important attributed of bug report

replace URL with bug history

combine bug history with big ID for new URL

get the important attributes of bug history

increase the Bug ID

until all bug reports are retrieved

Using this approach we got factors needed to categorizing and predicting

reopened bugs. Data we received was in tabular form, to clean process data was done in

R.Our crawler engine crawled around one million pages. The data was downloaded in an

html format. The tags were removed, and the files were converted into clean text. The

13

variables in the bug reports were organized in a tabular format, separated by commas, to

better analyze.

After the data was collected, the next step was to clean the data. We wrote a script

in R for cleaning the data. Irrelevant rows were removed. The time at which the bug was

reported, resolved, verified, and closed was in an integer format. It was converted into a

proper format with the day, hour, and month the task was completed. Machine learning

tool Weka was used to convert the csv format files into arfff format.

3.2 Data Factors

To predict and characterize defects, we need to have discrete factors to make

models simpler. We have divided the factors to predict the reopen bug in three categories,

bug reports, activity, and comment details. All three categories are distinctly separated in

Bugzilla, and give us indications of whether or not the bug will be reopened.

3.2.1 Bug Report Factors

The first part of the bug cycle is to report a bug. The bug report is an important

factor in understanding defects. Developers can use the bug report to reproduce the bug,

thus instant feedback avoids the reopening of a bug. Effectively written bug reports are

more likely to result in bugs that don't need reopened. Some reporters are experienced

14

and give clear, concise descriptions of bugs. Table 1 lists the factors, their abbreviations

used in tables, their type, their source, and their description.

ID Factor Abbreviation

Used in Table

Type Description

1 Bug Id Bug_Id Numeric Every bug had unique ID

2 Status Status Nominal Status is last state of bug in process.

3 Priority Priority Nominal This is priority assigned by reporter.

4 Product Product Nominal This is name of Product bug was

noticed.

5 Component Component Nominal This is name of component bug was

noticed.

6 Platform Platform Nominal This is name of Platform bug was

noticed.

7 Name

Reported

Name_reported Nominal This is name of Reporter of bug.

8 Name

Modified

Name_Modifie Nominal This is last person to modify the bug.

9 Time

reported

Time_reported Numeric This is time at which bug was

reported

10 Time

modified

Time_Modifie Numeric This is time at which bug was

modified.

11 Number of

CC

Num_of_cc Numeric This is number of cc bug was sent.

12 Month Month Numeric This is month at which bug was

resolved.

13 Report

Length

Report_len Numeric This is length of bug report.

14 Month Day Mday Numeric This is month day at which bug was

resolved.

15 Week Day Wday Numeric This is week day at which bug was

resolved.

16 Year Day Yday Numeric This is year day at which bug was

resolved.

Table 1: Bug Report Factors

15

3.2.2 Bug Activity Factors

When a bug is reported, the bug goes in to a series of activities. Mainly there are

two types of activities: updating the report, changing the status of the bug report. The

bug has the following states: new, resolved, verified, and closed. The activity of changing

the bug to each of the states is performed by a person. We have selected the name of the

person, and the time at which the change of the status was performed.

ID Factor Abbreviation Type Description

1 Name

New

Name_New Nominal This is name of person who has

changed the status of bug to new.

2 Time

New

Time_New Numeric This is time at which bug was new.

3 Name

Closed

Name_Closed Nominal This is name of person who has

closed the bug. Certain People when

bug is closed reopen rate are high.

4 Time

Closed

Time_Closed Numeric This is time at which bug was closed.

5 Name

Verified

Name_Verifie Nominal This is name of person who has

verified a bug as fixed.

6 Time

Verified

Name_Verifie Numeric This is time at which bug was

verified.

7 Name

Resolved

Name_Resolv Nominal This name of person who has

resolved bug.

8 Time

Resolved

Name_Resolv Numeric This is person who has verified a bug

as fixed.

9 Time

Taken to

resolve

Time_Taken_Re Numeric This is time gap between resolve and

reported.

10 Time

Taken to

Verifie

Time_Taken_Vr Numeric This is time gap between resolve and

verified.

16

Table 2: Bug Activity Factors

3.2.3 Bug Comment Factors

While considering the bug comment factors, we have selected comment factors only

before the bug was reopened. Since the bug can have any number of comments, we have

tried to consider the last three comments before the bug was closed or resolved.

I

D

Factor Abbreviation Type Description

1 Comment

Number 1

comm1_num Numeric It’s the number of comment in bug

fixing process.

2 Person of

Comment 1

comm1_name Nominal Name of the person who made the

comment

3 Time of

Comment1

comm1_time Numeric Time at which comment was made.

4 Length of

Comment 1

comm1_length Numeric Its length of comment in characters.

5 ResponseTi

me1

Diff_r_C1 Numeric It is time between reported bug and

first comment was made.

6 Comment

Number 2

Comm2_num Numeric It’s the number of comment in bug

fixing process.

7 Person of

Comment 2

Comm2_name Nominal Name of the person who made the

comment

8 Time of

Comment2

Comm2_time Numeric Time at which comment was made.

9 Length of

Comment 2

Comm2_length Numeric Its length of comment in characters.

1

0

Response

Time

comment1,c

omment2

respon_TC1C2 Numeric It is time between second comment

and first comment was made.

1

1

Comment

Number 3

comm1_num Numeric It’s the number of comment in bug

fixing process.

17

1

2

Person of

Comment 3

Comm3_name Nominal Name of the person who made the

comment

1

3

Time of

Comment3

Comm3_time Numeric Time at which comment was made.

1

4

Length of

Comment 3

Comm3_length Numeric Its length of comment in characters.

1

5

Response

Time

comment2,c

omment3

respon_TC3C2 Numeric It is time between second comment

and third comment was made.

Table 3: Bug Comment Factors

18

4. OVERVIEW OF DATA

In this section we have tried to understand background of projects .The number of

bugs retrieved, number of reopens, reopen percent by components, reopen percent by

products. The global distribution factor .The language the project is coded in .The size of

Organization.

4.1 Eclipse Projects

Eclipse is an open source Integrated Development Environment (IDE) for

programming languages like Java, Ruby, Perl, etc. It is written in Java programming

language .It is globally distributed where bug reporting can be any part of world. Eclipse

uses Bugzilla for bug reporting and information regarding bug fixing processes. The total

number of bugs we used for the study was 55,336, out of which 6,568 were reopened.

The percentage of reopen was around 12%.

19

The above is list of top 20 Eclipse components with highest number of bugs the highest

reopen percent is of Textcomponent which is 23% while lowest percent of reopen is

Hyades and VEwhich is 6%. We call difference in percentage as variation which is 17%.

4.2 Apache Projects

We have selected Apache as it comes under the server category of reopened bug

analysis. The Apache software foundation hosts open source projects. It's known for its

server related projects Tomcat and https. Apache products are written in C /C++ language

.Its products are globally available. We extracted bug details from Bugzilla's website. The

total number of bugs extracted was18, 910 out of which 2,104 were reopened. The

percent was around 11 percent. The variation in reopen percent is 17.The variation in

Table 26: Reopen percent by components Table 4: Reopen percent by components

20

reopen is 16%.

4.3 GNU Projects

The GNU compiler system falls into the compiler category of analysis. It was first

developed to handle C programming codes and later it was extended to handle C++

codes. It is written in C++ language and is available globally. The total number of bugs

we extracted was 3,663 out of which 76 were reopened and the percent being around

2%.The only product categorized under this GNU system was gcc. The variation in

reopen of component is 33%.

4.4 Mozilla Projects

We selected the Mozilla system as it comes under the category of browser. Their

products are written in C/C++, java, html and it is globally distributed. The total number

of bugs we extracted was41, 790 out of which 5,105 were reopened and the reopened

percent being around 12%.Variation shown in reopen % of products is 18%.

4.5 Red hat Projects

 Red hat is a Linux based operating system. Linux uses Bugzilla to report bugs. It is

written in python and it's available globally. Its bug information is available to the public.

Extracting data helped us to understand bugs of operating systems. The total numbers of

bugs extracted were 25,810 out of which 1,915 were reopened, and the percent being

around 8%.Variation shown product reopen % is 40.

21

4.6 Net beans Projects

Net Bean is an integrated development environment for java but also works for C,

C++and Perl. Its written java and is globally available. We extracted 81,053 bugs out of

which 8,543 were reopened and the percent wash around 11. Variation shown in ropen

percent is 16.Variation shown in reopen percent is 17%.

4.7 Open Office Projects

Open office is open source productivity suite used for writing documents. It is

written in C++ and Java and is globally available. We extracted 42,598 bugs out of which

4,698 were reopened, and percent of reopen being around 11%. Variation shown in

reopen % in product and component is around 5 %.

4.8 W3C

W3C is web standards organization. It is written in html, css, JavaScript and is

globally available. We extracted 7,954 bugs out of which 629 were reopened, and the

reopened percent being around 8%. The variation in reopen percent of product and

component was around 16 %.

22

4.9 Projects Overview

Project

Name

Date of first

bug used

for analysis

Date of last

bug used

for analysis

Total

Bugs

Reopen

Bugs

Reopen

%

Language Globally

Distributed

Eclipse 2001-10-10 2006-05-06 55,336 6,568 12% Java Yes

Apache 2001-01-10 2011-09-19 18,910 2,104 11% C/C++ Yes

GCC 1999-08-03 2002-07-03 3,663 76 2% C++ Yes

Mozilla 1998-04-07 2002-09-02 41,790 5,105 12% C/C++,

Java, HTML

Yes

Red hat 1998-11-08 2001-12-04 25,810 1,915 8% Python Yes

Net

beans

1998-06-29 2007-02-02 81,053 8,543 11% Java Yes

Open

Office

2003-06-24 2010-03-10 42,598 4,698 11% Java /C++ Yes

W3c 2002-07-15 2012-09-19 7,954 629 8% HTML,

CSS,

JavaScript

Yes

Table 5: Overview of Projects

One of the reopen patterns we found was not matter what project language was

written in, what organization it was the reopen % was around 10. The variation in reopen

percent of products and components was around 15 %.

23

5. METHODOLOGY, RESULTS, AND ANALYSIS

5.1 Methods

In this section we summarize methods algorithms used for analysis.

5.1.1K-fold Cross Validation

Since we have the data, the next step is to understand it. To understand the data,

we have to select two tools and implement the machine learning algorithms of Weka and

Rattle. Machine learning algorithms gain knowledge from training data and implemented

their knowledge on test data. There are several types of procedures where the procedure

for gaining knowledge from training data and applying rules on testing data .K-fold cross

validation is one such method. Below is diagram of 3 fold cross validation method.

Figure 2:3-fold cross validation (P. Refaeilzadeh, 2009)

24

The above diagram shows three phases. Each diagram shows three divisions of data, two

of which are used by the machine learning program to create a model. The last division of

data, depicted in lighter gray above, is set against the model to test the accuracy. The

repeated process should now allow the program to able to predict the reopen probability

of bugs. We have implemented a 10-fold, cross-validation procedure that is the same as

the one above, but instead the data is compartmentalized into ten divisions and the modal

and test is repeated ten times. Using the 10-fold cross validation, we have analyzed data

from 8 projects using 4 different algorithms.

5.1.2 Confusion Matrix

We have used Decision trees and Bayesian methods to predict whether defects will be

reopened or not. The Decision trees used for predictions are the C 4.5 decision tree

(Quinlan, 1986), Alternating decision tree (Freund & Mason, The alternating decision

tree learning algorithm, 1999), and Bayesian methods. The Bayesian methods used for

prediction are NaiveBayes(Bayes, 1763) and Bayesian Network. Predicted results are

given in the form of a confusion matrix (Kohavi & Provost, 1998). Its matrix has actual

and predicted results.

Actual / Predicted Not

Reopened

Reopened

Not-Reopened A B

Reopened C D

Table 6: Confusion matrix example

Total number of bugs present were A+B+C+D, and the actual reopened bugs were A+B,

and not reopened were C+D. The algorithm predicted A+C as not reopened, and the

25

prediction was correct for A bugs. Similarly, it predicted B + D as reopened. It was

correct for D bugs.

1) Accuracy of prediction = (A+D)/ (A+B+C+D)

2) Reopened precision = D/ (B+D)

3) Reopened recall = D/ (C+D)

4) Not Reopened precision = A/(D+C)

5) Not Reopened recall = A/ (B+A)

5.1.3 C4.5 Decision tree

Decision tress used for predictions are C4.5 and Alternating Decision tree. Every node

works as a decision and data is split into multiple classes, or if the node is a leaf node, the

decision has been made whether the bug will be reopened or not. In general, to build a

decision tree, four terms are required.

1. Attribute value description: Fixed collection of properties.

2. Predefined Target class: Class to be predicted.

3. Discrete Classes: Class with distinguishing features which can help with prediction.

4. Sufficient Data: Set of training examples.

Two common terms are related to selection of a top node: Entropy and information gain.

The entropy of each attribute can be defined as the measure of impurity with difference

between probabilities of positive to probability of negative (Mitchel, 1997). Formula to

26

calculate entropy is below. Consider sample data S with probability of positive class

ppand probability of negative class pn.

Entropy(S) = - pplog2(pp) – pnlog2(pn)

The information gain, Gain(S,A) of an attribute A,

𝐺𝑎𝑖𝑛 𝑆, 𝐴 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 −
 𝑆𝑣

 𝑆
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑛

𝑣=1

Attribute with best information gain is selected as root node.

Figure 3: Entropy distribution of Binary class (Mitchel, 1997)

27

Top-Down Induction of Decision Trees ID3C4.5

1. A  the “best” decision attribute for next node

2. Assign A as decision attribute for node

3. For each value of A create new descendant

4. Sort training examples to leaf node according to the attribute value of the branch

5. If all training examples are perfectly classified stop, else iterate over new leaf

nodes

Figure 5is an example of C4.5 decision tree. Based on the highest information gain the

variable Time_taken_re is selected as the root node.If the bugs are resolved within 258

days, they are easily understood, and most of them do not get ropened. So the calssifer

prdicts them as not reopen.It is correct 2,368 times, and incoreect 116 times.There is high

diffrence between postive class and negative class, so it is a root node of a C4.5 decision

Figure 4: Best Attribute selection (Mitchel, 1997)

28

tree that is the best attribute to clasify.The next best attribute is the component name

"compare." If report length is less than 300 lines, it will be reopened.

5.1.4 NaiveBayes Classifier

Bayesian theorem is popular way of predicting outcomes of events. The Bayesian

theorem calculates probabilities of given data and predicts outcomes of a given class with

classifier with the highest maximum probability. For instance, a given data "D" and

outcome of the class of C and their probabilities as p(D) and p(C).Bayesian theorem can

be stated as follows:

Class C can take the value "0" for not reopen and"1" for reopen.

Figure 5 :C4.5 Decision tree for Reopen of eclipse Bugs

29

The D data set has six attributes: Status, Product, Component, Platform, Version, and

Priority.

The probability of Class C given events Data D is given by Bayes rule.

Bayes'srule: P(C | D) = P(D | C) x P(C)/P(D)

Bayes classifier is which given data D selects the value of C such that maximizes the

value ofP(C | D)

C can be 0 and 1 whichever makes P(C | D) maximize

Bayes classifier can be stated as argmax P(C | D) = argmaxP(D | C) x P(C)/ P(D)

Data can be of several attributes a1 , a2 ,aN so Bayes classifier can be restated as:

argmax P (C | a1 , a2 ,aN) = argmax P (a1 , a2 ,aN | C) x P (C)/ P (a1 , a2 ,aN)

Computation of argmax P(a1 , a2 ,aN | C) is expensive so in Bayes theorem, class

conditional independence is observed.

So Bayes classifier can be restated as:

argmax P(a1 , a2 ,aN | C)= P(a1|C)*P(a2|C)......P(aN|C)xargmax P (C)

Denominator is common for every class so it is being ignored.

 Table 7: Learning Data for NaiveBayes Classifier

30

Consider Data=D= RESOLVEDFIXED, JDT, UI, AllWindows2000, P2

To find whether bug will be reopened or not, we have to calculate previous probabilities

of RESOLVEDFIXED, JDT, UI, AllWindows2000, and P2 for class 0 and 1 from

training set.

Probabilities are calculated independent whichever class has maximum probability

NaiveBayes will select that class

Let us consider class value 0

Total times class 0 appears is 6 times out of 10 cases so prior probability of class 0 is P

(C=0) =(6/10) .Out of 6 cases of class 0 RESOLVEDFIXED as status appears 3 times.

P (RESOLVEDFIXED | C=0) P (C=0) = (3|6) * (6|10)

Total times class 0 appears is 6 times out of 10 cases so prior probability of class 0 is P

(C=0) =(6/10) .Out of 6 cases of class 0 JDTas productappears 3 times.

P (JDT | C=0) P (C=0) = (3|6) * (6|10)

Total times class 0 appears is 6 times out of 10 cases so prior probability of class 0 is P

(C=0) =(6/10) .Out of 6 cases of class 0 UI as componentappears 4 times.

P (UI | C=0) P (C=0) = (4|6) * (6|10)

Total times class 0 appears is 6 times out of 10 cases so prior probability of class 0 is P

(C=0) =(6/10) .Out of 6 cases of class 0 AllWindows2000 as operating system appears 1

times.

P (AllWindows2000 | C=0) P (C=0) = (1|6) * (6|10)

Total times class 0 appears is 6 times out of 10 cases so prior probability of class 0 is P

(C=0) =(6/10) .Out of 6 cases of class 0 P2 as priorityappears 1 times.

31

P (P2 | C=0) P (C=0) = (1|6) * (6|10)

Multiplying all probabilities to get P (D | C=0)

= (3|6) * (6|10)*(3|6) * (6|10)*(4|6) * (6|10)*(1|6) * (6|10)*(1|6) * (6|10)

 = (3|10) * (3|10) * (4|10) * (1|10) * (1|10)

Similarly for P (D | C=1)

P (D | C=1) = (3|10) * (3|10) * (3|10) * (1|10) * (1|10)

So

P (D | C=0)> P (D | C=1)

argmax P (D | C=0)

It can be seen that when we input value of class=0 that bug will be not reopened. The

value of P (D | C=0) becomes maximum since we have binary target class. The only

other class we have is reopened class=1. Its probability is P (D | C=1) so NaiveBayes

will compute as not reopened.

5.1.5 Bayesian Network Classifier

The Bayesian Network is a directed acyclic graph defining a joint probability distribution

over a set of variables. Each node is a random variable, and a conditional probability

distribution is associated with each node defined as P (N| Parents (N)).

The Chow-Liu algorithm (Friedman, Geiger, & Goldszmidt, 1997) describes a

procedure for constructing a Bayesian network fromthe data. This procedure reduces the

32

problem to one of constructing a maximum likelihood tree to finding a maximal weighted

spanning tree in a graph. The algorithm is as follows:

 Compute probability distribution IPd(Xi, ; Xj) between each edge.Xi, Xj. IPd is the

mutual information function.

𝐼𝑃 𝑋, 𝑌 = 𝑃(𝑥, 𝑦) ∗ 𝑙𝑜𝑔
𝑃(𝑥, 𝑦)

𝑃 𝑥 ∗ 𝑃(𝑦)
𝑥,𝑦

 Build a complete undirected graph in which the vertices are the variables in X.

 Annotatethe weight of an edge connecting Xi,Xj by IPd

 Build a maximum weight spanning tree

 Transform the resulting undirected tree to a directed one by choosing a root

variable and set the direction of all edges to be outward from it

33

Consider Node Product it has two parent nodes Yes_no_reopened and Status

P (Product| Yes_no_reopened , Status). Network is minimum spanning tree generated by

Chow-Liu algorithm. The conditional probability distribution among the components is

shown in Table 8.

Figure 6: Bayesian Network Generated by Chow-Liu algorithm (Friedman, Geiger, &

Goldszmidt, 1997)

34

5.1.6 AdaBoost Classifier

AdaBoost prediction method is developed by (Freund & Schapire, Experiments

with a new boosting algorithm., 1996). This method identified important variables for

predicting reopened bugs. AdaBoost is based on an ensemble of weak classifiers into

strong classifier. Figure 7is the algorithm for AdaBoost(Freund & Schapire, Experiments

with a new boosting algorithm., 1996).

Table 8: Conditional Probability distribution for Node Product for Parents

Yes_no_reopened and Status

35

The data is split into training data for each row of training data xi∈ X we have for

each of xi we have predicted output yi∈ {1,-1}.AdaBoost maintains a probability

distribution xi which can be considered at a point which represent feature in space. If m is

the number of attributes, consider Dt (xi) as probability distribution where t represents

iteration. The probability Dt (1) =1/m, and with each iteration, probability distribution is

updated. Let the weak classifier be denoted by ht where t is iteration. The output given by

this classifier is predicted class, where the predicted class is denoted ht(xi). By comparing

predicted class ht(xi) to actual class yi we can calculate error rate ℮t. The trust in classifier

is given by αt. We calculate αt by formula αt =1/2 ln(1-℮t)/ ℮t. Final classifier H is

aggregation of classifier of each iteration. Weighting is set to amount of trust in classifier.

Figure 7 :AdaBoost algorithm

36

Figure 8 : Variable importance graph generated by AdaBoost algorithm using Rattle

37

Above is variable importance graph generated by AdaBoost algorithm using

Rattle. The Y axis shows the name of variable and higher the value of y is for the variable

more important it is .The X axis shows the reduction error rate when the variable is

introduced in algorithm. AdaBoost reweights its instances for incorrectly classified

instances so it biased towards in correctly classified examples.

5.1.7 Alternating Decision tree Classifier

ADtree(Drauschke, 2008)differs from C4.5 in how it assigns value -α and +α to

its decisions.C4.5 has uniform weight to instance while Weight W is associated with

each instance.

The ADtree algorithm (Drauschke, 2008) takes the following inputs:

n: Total number of positive and negative instances.

W: 1/n Initial weights at root node.

α(node) : root node, 𝛼 𝑛𝑜𝑑𝑒 =
1

2
 𝑙𝑛

𝑊+(𝑡𝑟𝑢𝑒)

𝑊−(𝑡𝑟𝑢𝑒)

W+(c): sum of all weights of positively classified instances satisfying condition c

W-(c): sum of all weights of negatively classified instances satisfying condition c

Data set: Variablesxj, j =1 to n

Target Class: yj {+1,-1}j =1 to n

SetofClassifiers:Cj decision stumps

38

hp: Previous condition of classifier.

W+(+hp): sum of all weights where correctly classified positive instance byhp

W–(–hp): sum of all weights where correctly classified negative instance byhp

W+(–hp): sum of all weights where incorrectly classified positive instance byhp

W–(+hp): sum of all weights where incorrectly classified negative instance byhp

W
*
(–hp): sum of all weights where precondition classifies class – 1.

Zpj: condition to select best classifier when precondition is root node.

𝑍𝑝𝑗 = 2 𝑊+ +ℎ𝑝 ∗ 𝑊− +ℎ𝑝 + 𝑊+ −ℎ𝑝 ∗ 𝑊− −ℎ𝑝 + 𝑊∗(−ℎ𝑝)

W+(hp^ +cj): is sum of all weights where correctly classified positive instance

bycjwhich satisfies previous condition hp

W-(hp^-cj): is sum of all weights where correctly classified negative instance

bycjwhich satisfies previous condition hp.

W+(hp^ -cj): is sum of all weights where incorrectly classified positive instance

bycjwhich satisfies previous conditionhp.

W-(hp^ +cj): is sum of all weights where incorrectly classified negative instance

bycjwhich satisfies previous condition hp.

Zpj :condition to select best classifiercjwhen preconditionhp.

𝑍𝑗𝑝 = 2 𝑊+ ℎ𝑝 ∧ +𝑐𝑗 ∗ 𝑊− ℎ𝑝 ∧ +𝑐𝑗

+ 𝑊+ ℎ𝑝 ∧ −𝑐𝑗 ∗ 𝑊− ℎ𝑝 ∧ −𝑐𝑗 + 𝑊∗(−ℎ𝑝)

39

Ɛ: is error rate associated is set to Ɛ=1.

αt
+
: Classifying power of classifiercjwhenW+(hp^ +cj)

𝛼𝑡
+ =

1

2
 𝑙𝑛

𝑊+ ℎ𝑝 ∧ 𝑐𝑗 + 𝜀

𝑊− ℎ𝑝 ∧ 𝑐𝑗 + 𝜀

αt
-
: Classifying power of classifiercjwhenW+(hp^ -cj)

𝛼𝑡
− =

1

2
 𝑙𝑛

𝑊+ ℎ𝑝 ∧ −𝑐𝑗 + 𝜀

𝑊− ℎ𝑝 ∧ +𝑐𝑗 + 𝜀

Wt+1(n): Update of weight

𝑊𝑡+1 𝑛 = 𝑊𝑡 𝑛 ∗ 𝑒
−𝑟𝑡(𝑥𝑛)𝑦𝑛

Where

rt(xn)= αt
+
 if hp(xn)=+1 andcj(xn) = +1

rt(xn)= αt
–
 if hp(xn)=+1 andcj(xn) = –1

rt(xn)= 0, ifhp(xn) = –1.

Algorithm

1. Input (xn,yn)

2. Set weights of Instances W=1/n

3. Calculate α (node)

4. Repeat for 1 to T

Select classifier Cj which minimizes Zpj

Update weights of instances Wt+1(n)

40

5. 𝑐𝑙𝑎𝑠𝑠 𝑥 = 𝑠𝑖𝑔𝑛 𝑟𝑡(𝑥)𝑇
𝑡=1

Above is example of ADtree generated by Weka. First value of root node is

calculated that is half the log of weight of positive instances to weight of negative

instances. Value of root node is -0.741. First Iteration decision stump classifier

C1=comm3_num <3.5 is chosen as minimizes ZnodeC1 its classifying power -αC1 and

+αC1 are calculated.Second Iteration decision stump classifier C2=Time_Resolve<

11855is chosen as minimizes ZnodeC2its classifying power -αC2 and +αC2 are

calculated.Third Iteration decision stump classifier C3=Status = RESOLVEDWONTFIX is

chosen with precondition C1=comm3_num < 3.5 as minimizes ZC1C3 its classifying

power -αC3 and +αC3 are calculated. Fourth Iteration decision stump classifier C4=Status

!= RESOLVEDWONTFIX is chosen with precondition C1=comm3_num > 3.5 as minimizes

ZC1C4 its classifying power -αC4 and +αC4 are calculated.

Figure 9 : Alternating decision tree generated by 4 number of boosting Iteration.

41

5.2 Results

5.2.1 Eclipse Project Results

Test Mode 10-fold Cross-validation
Instances 55336
Attributes 46

Table 9: Input description of Eclipse project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-Measure

BayesNet 0 48768 42429 0.963 0.870 0.914

BayesNet 1 6568 4960 0.439 0.755 0.555

NaiveBayes 0 48768 39641 0.955 0.813 0.878

NaiveBayes 1 6568 4703 0.340 0.716 0.461

ADtree 0 48768 47057 0.949 0.965 0.957

ADtree 1 6568 4061 0.708 0.618 0.658

C4.5 0 48768 47764 0.956 0.979 0.968

C4.5 1 6568 4255 0.809 0.661 0.728

Table 10: Efficiency of algorithms in predicting Reopened bugs for Eclipse

Above table shows efficiency of algorithms: BayesNet,NaiveBayes, ADtree, and

C4.5in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of not

reopened bugs was C4.5. It showed F-measure of 0.968 for not reopened bug while it

showed F-measure of 0.728 for reopened bugs. While most efficient in recall of reopen

was BayesNet. It was able to predict 75% of reopened bugs but showed less accuracy

with F-measure 0.555 for reopened bugs which was low compared to C4.5 algorithm.

Recall of reopened bugs can be increased in C4.5 algorithm by increasing cost sensitivity

of reopened class.

42

Figure 10: Important variable responsible for reopen in Eclipse Projects

43

Figure 10 is variable importance graph generated by AdaBoost algorithm using

Rattle.The Y axis shows the name of variable and higher the value of y is for the variable

more important it is.The X axis shows the reduction error rate when the variable is

introduced in algorithm. AdaBoost reweights its instances for incorrectly classified

instances so it biased towards in correctly classified examples. Name of the person

resolved, closed, verified, Component, comment name and number were important

factors responsible for reopen.

5.2.2 Open Office Project Results

Test Mode 10-fold Cross-validation
Instances 36880
Attributes 46

Table 11: Input description of Open Office project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-Measure

BayesNet 0 30798 27428 0.954 0.891 0.921

BayesNet 1 6082 4748 0.585 0.781 0.669

NaiveBayes 0 30798 25971 0.959 0.843 0.897

NaiveBayes 1 6082 4975 0.508 0.818 0.626

ADtree 0 30798 30573 0.949 0.965 0.957

ADtree 1 6082 3854 0.932 0.634 0.759

C4.5 0 30798 30235 0.946 0.982 0.964

C4.5 1 6082 4368 0.886 0.718 0.793

Table 12: Efficiency of algorithms in predicting Reopened bugs for Open Office

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, Ad tree, and

C4.5 in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of not

reopened bugs was C4.5 with F-measure of 0.964 while it showed F-measure of 0.793 for

44

reopened bugs. While most efficient in recall of reopen was NaiveBayes it was able to

predict 82% of reopened bugs but showed less accuracy with F-measure 0.626 for

reopened bugs which was low compared to C4.5 algorithm. Recall of reopened bugs can

be increased in C4.5 algorithm by increasing cost sensitivity of reopened class.

Figure 11: Important variable responsible for reopen in Open Office Projects

45

Time taken to resolve, name of the person closed, verified, Component name

and number were important factors responsible for reopen.Above is variable importance

graph generated by AdaBoost algorithm using Rattle .The Y axis shows the name of

variable and higher the value of y is for the variable more important it is .The X axis

shows the reduction error rate when the variable is introduced in algorithm. AdaBoost

reweights its instances for incorrectly classified instances so it biased towards in correctly

classified examples.

5.2.3 Apache Project Results

Test Mode 10-fold Cross-validation
Instances 18755
Attributes 46

Table 13: Input description of apache project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-Measure

BayesNet 0 16806 13416 0.961 0.798 0.872

BayesNet 1 1949 1405 0.293 0.721 0.471

NaiveBayes 0 16806 14379 0.955 0.813 0.461

NaiveBayes 1 1949 960 0.283 0.493 0.360

ADtree 0 16806 15791 0.960 0.940 0.950

ADtree 1 1949 1294 0.560 0.664 0.608

C4.5 0 16806 15689 0.953 0.934 0.943

C4.5 1 1949 1176 0.513 0.603 0.554

Table 14 : Efficiency of algorithms in predicting Reopened bugs for Apache

46

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, Ad tree, and

C4.5 in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of not

reopen bugs was ADtreewith F-measure of 0.954 while it showed F-measure of 0.608 for

reopened bugs. The most efficient in recall of reopen was BayesNet.It was able to predict

72% of reopened bugs but showed less accuracy with F-measure 0.471 for reopened bugs

which was low compared to ADtree algorithm. Recall of reopened bugs can be increased

in ADtree algorithm by increasing cost sensitivity of reopened class.

47

Figure 12: Important variable responsible for reopen in Apache Projects

48

Name of the person resolved, closed, verified, Component name and number

were important factors responsible for reopen. Above is variable importance graph

generated by AdaBoost algorithm using Rattle.The Y axis shows the name of variable

and higher the value of y is for the variable more important it is.The X axis shows the

reduction error rate when the variable is introduced in algorithm. AdaBoost reweights its

instances for incorrectly classified instances so it biased towards in correctly classified

examples.

5.2.4 Net beans Project Results

Test Mode 10-fold Cross-validation
Instances 37541
Attributes 46

Table 15: Input description of Net beans project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-

Measure

BayesNet 0 33059 28991 0.957 0.877 0.915

BayesNet 1 4392 3098 0.432 0.705 0.536

NaiveBayes 0 33059 16686 0.978 0.505 0.666

NaiveBayes 1 4392 4091 0.197 0.915 0.324

ADtree 0 33059 32570 0.943 0.985 0.964

ADtree 1 4392 2431 0.833 0.554 0.665

C4.5 0 33059 31219 0.957 0.944 0.951

C4.5 1 4392 2987 0.618 0.680 0.648

Table 16: Efficiency of algorithms in predicting Reopened bugs for Net beans.

49

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, ADtree, and

C4.5in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of

reopen bugs was ADtree. It showed F-measure of 0.964 for not reopened bug while it

showed F-measure of 0.665 for reopened bugs. Most efficient in recall of reopen was

BayesNet.It was able to predict 91.5% of reopened bugs but showed less accuracy withF-

measure 0.324 for reopened bugs, which was low compared to ADtree algorithm. Recall

of reopened bugs can be increased inADtree algorithm by increasing cost sensitivity of

reopened class.

50

Figure 13: Important variable responsible for reopen in Net Beans Projects

51

Time taken to resolve, name of the person closed, verified, Component name

,Product name ,comment name and number were important factors responsible for

reopen. Above is variable importance graph generated by AdaBoost algorithm using

Rattle .The Y axis shows the name of variable and higher the value of y is for the

variable more important it is .The X axis shows the reduction error rate when the

variable is introduced in algorithm. AdaBoost reweights its instances for incorrectly

classified instances so it biased towards in correctly classified examples.

5.2.5 Red hat Project Results

Test Mode 10-fold Cross-validation
Instances 25810
Attributes 46

Table 17: Input description of Red hat project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-Measure

BayesNet 0 23895 18042 0.969 0.755 0.849

BayesNet 1 1915 13332 0.185 0.696 0.329

NaiveBayes 0 23895 14417 0.975 0.603 0.761

NaiveBayes 1 1915 1544 0.140 0.806 0.239

ADtree 0 23895 22659 0.963 0.948 0.956

ADtree 1 1915 1044 0.458 0.545 0.498

C4.5 0 23895 23085 0.953 0.934 0.943

C4.5 1 1915 970 0.507 0.525 0.525

Table 18: Efficiency of algorithms in predicting Reopened bugs for Red hat.

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, Ad tree, and

C4.5 in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of

52

reopen bugs was C4.5.It showed F-measure of 0.943 for not reopened bug while it

showed F-measure of 0.525 for reopened bugs. Most efficient in recall of reopen was

NaiveBayes.It was able to predict 80.6% of reopened bugs but showed less accuracy with

F-measure 0.239 for reopened bugs, which was low compared to C4.5 algorithm. Recall

of reopened bugs can be increased in C4.5 algorithm by increasing cost sensitivity of

reopened class.

53

.

Figure 14: Important variable responsible for reopen in Red Hat Projects

54

Time taken to resolve, name of the person closed, verified, Component name

and number were important factors responsible for reopen. Above is variable importance

graph generated by AdaBoost algorithm using Rattle.The Y axis shows the name of

variable and higher the value of y is for the variable more important it is .The X axis

shows the reduction error rate when the variable is introduced in algorithm.AdaBoost

reweights its instances for incorrectly classified instances so it biased towards in correctly

classified examples.

5.2.6 Mozilla Project Results

Test Mode 10-fold Cross-validation
Instances 41736
Attributes 46

Table 19: Input description of Mozilla project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-Measure

BayesNet 0 36686 29286 0.952 0.798 0.868

BayesNet 1 5051 3560 0.325 0.705 0.445

NaiveBayes 0 36686 26929 0.943 0.734 0.825

NaiveBayes 1 5051 3349 0.256 0.663 0.369

ADtree 0 36686 32889 0.929 0.897 0.912

ADtree 1 5051 2535 0.400 0.502 0.445

C4.5 0 36686 33603 0.920 0.916 0.918

C4.5 1 5051 2146 0.410 0. 425 0.418

Table 20: Efficiency of algorithms in predicting Reopened bugs for Mozilla.

55

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, Ad tree, and

C4.5 in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of

reopen bugs was ADtree.It showed F-measure of 0.912 for not reopened bug while it

showed F-measure of 0.445 for reopened bugs. Most efficient in recall of reopen was

BayesNet.It was able to predict 70.5% of reopened bugsbut showedsimilarly low

accuracy with F-measure 0.445 for reopened bugs compared to ADtree algorithm.Recall

of reopened bugs can be increased inADtree algorithm by increasing cost sensitivity of

reopened class.

56

Figure 15:Important variable responsible for reopen in Mozilla Projects

57

Name reported, name of the person closed, name verified, Component name and

number were important factors responsible for reopen.Above is variable importance

graph generated by AdaBoost algorithm using Rattle.The Y axis shows the name of

variable and higher the value of y is for the variable more important it is.The X axis

shows the reduction error rate when the variable is introduced in algorithm. AdaBoost

reweights its instances for incorrectly classified instances so it biased towards in correctly

classified examples.

5.2.7 W3C Project Results

Test Mode 10-fold Cross-validation
Instances 7318
Attributes 46

Table 21: Input description of W3C project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-

Measure

BayesNet 0 6745 5646 0.974 0.837 0.900

BayesNet 1 537 421 0.277 0.735 0.402

NaiveBayes 0 6745 5975 0.955 0.813 0.461

NaiveBayes 1 537 313 0.289 0.546 0.378

ADtree 0 6745 3569 0.993 0.995 0.994

Ad tree 1 537 406 0.450 0.709 0.550

C4.5 0 6745 6404 0.972 0.949 0.961

C4.5 1 537 390 .534 0.681 0.598

Table 22:Efficiency of algorithms in predicting Reopened bugs for W3C.

58

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, ADtree, and

C4.5in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of

reopen bugs was C4.5.It showed F-measure of 0.961 for not reopened bug while it

showed F-measure of 0.598 for reopened bugs. Most efficient in recall of reopen was

BayesNet.It was able to predict 73.5 % of reopened bugsbut showed less accuracy with

F-measure 0.402 for reopened bugs which was low compared to C4.5 algorithm.Recall of

reopened bugs can be increased in C4.5 algorithm by increasing cost sensitivity of

reopened class.

59

Figure 16: Important variable responsible for reopen in W3C Projects

60

Name of person who resolved, name of the person closed, verified, Component

name and number were important factors responsible for reopen.Above is variable

importance graph generated by AdaBoost algorithm using Rattle.The Y axis shows the

name of variable and higher the value of y is for the variable more important it is.The X

axis shows the reduction error rate when the variable is introduced in algorithm.

AdaBoost reweights its instances for incorrectly classified instances so it biased towards

in correctly classified examples.

5.2.8 GCC Project Results

Test Mode 10-fold Cross-validation
Instances 3663
Attributes 46

Table 23: Input description of GCC project data to Algorithms

Algorithm Target

Class

Instances Correctly

classified

Precision Recall F-Measure

BayesNet 0 3587 3375 1.000 0.941 0.970

BayesNet 1 76 76 0.264 1.000 0.418

NaiveBayes 0 3587 3379 0.955 0.813 0.461

NaiveBayes 1 76 74 0.283 0.493 0.360

ADtree 0 3587 3569 0.993 0.995 0.994

ADtree 1 76 50 0.735 0.658 0.694

C4.5 0 3587 3574 0.989 0.996 0.993

C4.5 1 76 38 .754 0.500 0.598

Table 24: Efficiency of algorithms in predicting Reopened bugs for GCC.

.

61

Above table shows efficiency of algorithms: BayesNet, NaiveBayes, Ad tree, and

C4.5 in predicting reopen of eclipse bugs. Most efficient algorithm in F-measure of

reopen bugs was ADtree.It showed F-measure of 0.994 for not reopened bug while it

showed F-measure of 0.694 for reopened bugs. Most efficient in recall of reopen was

BayesNet.It was able to predict 100% of reopened bugs but showed less accuracy with F-

measure 0.418 for reopened bugs which was low compared to ADtreealgorithm. Recall of

reopened bugs can be increased in ADtreealgorithm by increasing cost sensitivity of

reopened class.

62

Figure 17: Important variable responsible for reopen in GCC Projects

63

Day of year, time taken to resolve, name of person who resolved, name of the

person closed, verified, component name and number were important factors responsible

for reopen.Above is variable importance graph generated by AdaBoost algorithm using

Rattle.The Y axis shows the name of variable, the higher the value of y is for the variable

more important it is. The X axis shows the reduction error rate when the variable is

introduced in algorithm. AdaBoost reweights its instances for incorrectly classified

instances so it is biased towards in correctly classified examples.

64

5.3 Analysis

Algorithm Project Instances Correctly

classified

Precision Recall F-Measure

ADtree Eclipse 6568 4255 0.809 0.661 0.728

BayesNet Eclipse 6568 4960 0.439 0.755 0.555

NaiveBayes Netbeans 4392 4091 0.197 0.915 0.324

C4.5 Netbeans 4392 2987 0.618 0.680 0.648

NaiveBayes Office 6082 4975 0.508 0.818 0.626

C4.5 Office 6082 4368 0.886 0.718 0.793

BayesNet Apache 1949 1405 0.293 0.721 0.471

ADtree Apache 1949 1294 0.560 0.664 0.608

NaiveBayes Redhat 1915 1544 0.140 0.806 0.239

ADtree Redhat 1915 970 0.507 0.525 0.525

BayesNet Mozilla 5051 3560 0.325 0.705 0.445

BayesNet W3C 537 421 0.277 0.735 0.402

C4.5 W3C 537 390 0.534 0.681 0.598

BayesNet Gccgnu 76 76 0.264 1.000 0.418

ADtree Gccgnu 76 50 0.735 0.658 0.694

Table 25:Summary of best algorithms in predicting reopen of bug by F-measure and

recall

In our analysis C4.5 decision tree and alternating decision tree gave good results

as prediction of reopen is not independent but depended on variables. NaiveBayes, which

considers probabilities of independent event, gave lowest accuracy in prediction.Using

top performing algorithm we achieved decent amount of Precision and Recall for

reopened bugs. Precision ranged from 0.507 to 0.886 and Recall ranged from 0.525 to

0.718.ADtree and C4.5 showed high accuracy in predicting reopen of bug; both of them

had highest F-measure.Reopened was most important class; its recall was most

important.In our prediction BayesNetand NaiveBayes showed highest recall of reopened

class. If we want to achieve high recall for reopened bug in C4.5 and ADtree, it can be

done by increasing cost sensitivity of reopened class.

65

Category Factors Reason

Work Habits Weekday,

Month day,

Year Day,

Hour

Reopened percentage increased when bug was

resolved, verified, or closed in last phase of week,

month, year, and day.

Software Parts Component,

Products

Some components and product are tending to

show larger rate of reopen. Variation in reopen

rate in most projects was around 15%.

Difficulty in

understanding

Bug

(Zimmermann

T, 2010).

Comment

name, Number

of Comments

If the root cause is not properly understood, and

the more comments that are made, while some

developers making comment helps in

understanding root cause thus reduces chances of

reopen.

Amount of time

taken. (Shihab

E. , Ihara,

Kamei, &

Ibrahim, 2010)

Time taken

resolve,Time

taken verify

C4.5 calculates info gain of time taken to resolve

at certain amount of time based on info gain it

spits the decision into more than and less than of

amount taken to resolve we have considered this

decision as criteria for less and more time which is

different for different projects. We have

considered time less than If time taken to verify,

fix, close is less the bug is easy to fix, and

properly understood lesser chances of reopen.

Report

description(Guo,

Zimmermann,

Nagappan, &

Murphy, 2010).

Report Length Less information in bug report was causes higher

rate of reopen.

Reputation of

committers

(Jongyindee,

Ohira, Ihara, &

Matsumoto,

2011)

Name of

person

resolved,

verified,

closed.

Some of the committers are less proficient in

performing task hence larger percentage reopen

when they resolve, close, or verify.

Table 26: Category of causes responsible for reopen of bug

 Based on previous research on bug reopen study and most important variable

graphs we have categorizedbug reopen causes in 6 categories. Table 26 shows the 6

categories which are responsible for bug reopen.

66

Reason Eclipse Office Apache Net

beans

Red

hat

Mozilla W3C GCC T

o

t

a

l

Committ

er

reputatio

n

yes yes yes yes yes yes yes yes 8

Amount

of time

taken

yes yes yes yes yes no no yes 6

Software

Parts

yes yes yes yes yes yes yes yes 8

Bug

under-

standing

yes yes yes yes yes yes yes yes 8

Bug des-

cription

no yes no yes no yes yes yes 5

Work

Habits

no no yes no no no no yes 2

Table 27: Frequency of Category for Projects

Using most important variable graph we determine whether the category was responsible

for bug reopen for each project.In our observation, reputation of committers, software

parts and not understanding of root cause categories had highest frequency across all

projects. For Eclipse project, reputation of committers (Jongyindee, Ohira, Ihara, &

Matsumoto, 2011)was important cause of bug reopen.Our observationswere consistent

with this.Comment text and resolve time were variable responsible for bug reopen of

Eclipse project (Shihab E. , Ihara, Kamei, & Ibrahim, 2010).Our observations were also

consistent with this. If bug is not properly understood, chances of bug being reopened are

67

high (Guo, Zimmermann, Nagappan, & Murphy, 2010).Not properly understanding the

bug was cause of reopen for all 8 projects,thus our observations were consistent with this

result.

68

6. THREATS TO VALIDITY

6.1 Threats to Construct Validity

Construct validity to refers to degree at which operationalization of the measures

in study actually refers the constructs in the real world (Shull, Singer, & Sjoberg, 2007).

We have used the name of products and component as factor for reopen but we did not

take in consideration the way the component are constructed, their problem domain, there

code metrics.We have used reputation of fixer, verifier, and closer as variable but we

have not measured their experience, background, expertise and tried to relate to reopen of

bugs. Similarly, with people who make helpful comments in reducing reopen rate we

have not measured there experience, background, expertise and tried it to relate to reopen

of bugs.

6.2 Threats to Internal Validity

Internal validity threats affect the confidence that the identified factors actually

caused the bug report to be reopened (Shull, Singer, & Sjoberg, 2007). Unknown factors

can influence the results thus putting limitation on internal validity. We did not add data

on version control repositories to find number of files changed. The quality of bug report

was not analyzed. We do not know the code metrics of project and experience of reporter

and fixer. We do not know size of and distribution of organization. Furthermore, there is

risk of overfitting due to the large number of factors used, which affects the prediction

capability of the models. Also, as the results were obtained at one point in time, they may

change as new bugs are reported and additional bugs are reopened in the future. On the

69

other hand, the consistency of the findings to previously reported results provides some

confidence in their validity.

6.3 Threats to External Validity

Threats to external validity concern the generality of the results (Shull, Singer, &

Sjoberg, 2007). The data we acquired was just restricted to bug information collected on

Bugzilla systems, thus may be affected by the way in which information is reported

which could be different if data were acquired from other bug tracking systems. The data

was limited to large, open source systems. Though we did not have data on commercial

projects, the variety of systems studied gives some promise that similar results may be

obtained in commercial systems.

70

7. CONCLUSIONS

In our research, we were able to automate data collecting techniques for mining

bug repositories. We collected data from 8 projects from different software categories.

Data was cleaned and designed in three different categories: report, activity, and

comment. Classification algorithms were studied and then applied to predict the

probability of reopened bugs. In all of the projects a decent amount of precision and

recall was achieved. The precision for reopen bugs was from 40% to 90% while range of

recall was from 40% to 100%. ADtree, C 4.5 achieved the best F-measure for prediction

of reopens while NaiveBayes and BayesNet achieved the best recall of reopened bugs.

We found the most important factors responsible for a reopen were component, name of

person who fixed name of the person who verified the name of the person who closed the

bug, the number, resolving time, verifying time, size, and name of person who made the

comment. We developed a data mining methods that was different from other software

repository miners, for we created a web crawler to get bug information from the web

instead of a more traditional way of mining software repository through files. We were

able extract information from around 1 million web pages. The advantage of this method

was that we got the latest updated information of projects and that we had access to all

the projects open to public. We introduced the name and time the person verified and

closed and dimension of the last 3 comments. We had a higher precision and recall then

the previous research, which was verified by application to different category of projects.

Using reopen analysis of bugs, developers can share data with bug reporters

which shows likelihood of reopening a bug report if bug is from a certain component.

71

Components with high reopen rate can be studied to find their coding metrics.

Committers which show high rate of reopen can be retrained to reduce their reopen rate.

Assigning of the higher priority bugs can be restricted to committers with higher

reputation. Guidance of developers whose comments help in reducing reopen rate can be

used for higher priority bugs. By predicting whether bug will be reopened beforehand,

more resources can be allocated before documenting it as fixed, thus percent of reopen

will go down, increasing reliability of software.

72

8. FUTURE WORK

The amount of resources we had access to had been limited to bug repository. But

the code metrics: lines of codes, global variables, cyclomatic complexity, read coupling,

write coupling, address coupling, fan-in, fan-out, weighted methods per class, depth of

inheritance, class coupling, and number of subclasses, all of which are important factors

in finding bugs, can be incorporatedto enhance research regarding reopen bugs. We plan

to understand the contents of reports and comments, weight them according to keywords

present that can predict reopen. We plan to create a developer profile with their fixing

experience with a type of modules and work habits. Adding the mentioned factors will

enhance our knowledge of factors responsible for reopen and make out precision recall

more accurate.

73

REFERENCES

Bayes. (1763). An essay towards solving a problem in the doctrine of chances.

Philosophical Transactions of the Royal Society, 370-418.

Boehm, B., & Basili, V. (2001). Software Defect Reduction Top 10 List. Computer

Volume 34 Issue 1, 135-137.

Drauschke, M. (2008). Feature Subset Selection with Adaboost and ADTboost. Bonn:

Department of Photogrammetry,University of Bonn.

Fayyad, U. (1996). From Data Mining to Knowledge Discovery in Databases. Scientific

and Statistical Database Management, 2 - 11.

Freund, Y., & Mason, L. (1999). The alternating decision tree learning algorithm.

International Conference on Machine Learning, (pp. 124-133).

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In

Machine Learning, 148-156.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line

learning. Journal of Computer and System Sciences., 119–139.

Freund, Y., & Schapire, R. E. (1999). A Short Introduction to Boosting. Journal of

Japanese Society for Artificial Intelligence., 771-780.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers.

Machine Learning, 131-163.

Gu, Z., Barr, E., Hamilton, D., & Su, Z. (2010). Has the bug really been fixed?

International Conference on Software Engineering, 55 - 64.

74

Guo, P., Zimmermann, T., Nagappan, N., & Murphy, B. (2010). Characterizing and

predicting which bugs get fixed: an empirical study of Microsoft Windows.

International conference on software engineering, 495–504.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The

WEKA Data Mining Software.

Hassan, A. (2008). The road ahead for Mining Software Repositories. Frontiers of

Software Maintenance, 2008. FoSM 2008., 48 - 57.

Jongyindee, A., Ohira, M., Ihara, A., & Matsumoto, K.-i. (2011). Good or Bad

Committers? A Case Study of Committers' Cautiousness and the Consequences

on the Bug Fixing Process in the Eclipse Project. Software Measurement, 2011

Joint Conference of the 21st Int'l Workshop on and 6th Int'l Conference on

Software Process and Product Measurement (IWSM-MENSURA), 116 - 125.

Kohavi, R., & Provost, F. (1998). Classifier performance evaluation. Machine Learning,

271-274.

Mitchel, T. (1997). Machine Learning. McGraw.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine. Learning. , 81-106.

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross Validation. Encyclopedia of

Database Systems (EDBS), 532-538.

Shihab, E., Ihara, A., Kamei, Y. I., Ohira, M., Adams, B., Hassan, A., et al. (2012).

Studying re-opened bugs in open source software. Empirical Software

Engineering October 2013, Volume 18, Issue 5, 1005-1042.

Shihab, E., Ihara, A., Kamei, Y., & Ibrahim, W. (2010). Predicting Re-opened Bugs: A

Case Study on the Eclipse. Reverse Engineering work shop, 249-258.

75

Shull, F., Singer, J., & Sjoberg, D. (2007). Guide to Advanced Empirical Software

Engineering. Springer.

Sliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? 1–5:

Proceedings of the 2005 international workshop on Mining software repositories, .

Vlasceanu, I. V., & Bac, C. (2008). A study concerning the bug tracking applications.

TELECOM & Management SudParis.

Williams, G. (2009). Rattle: A Data Mining GUI for R. The R Journal.

Zimmermann, T., Nagappan, N., & Zeller, A. (2008). Predicting Bugs from History –

Software Evolution. Springer, 69-88.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	8-2013

	Categorizing and predicting reopened bug reports to improve software reliability
	Rishikesh Gawade

	ABSTRACT

