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Abstract -- As large software systems are highly complex, they can be difficult for a 

developer to understand. If a core subset of a software system could be extracted which 

contains the most important classes and connections of the larger system, studying this 

core would be useful for efficiently understanding the overall system. In this research we 

examine research into core/periphery structures in networks, primarily focusing on the 

use of k-core decomposition. The extracted dependencies of three open source Java 

software systems provide the inputs, with forty different versions of these systems 

analyzed in total. We derive inter-class dependencies from these releases and represent 

them as undirected graphs. We extract the k-core values by recursively pruning the least 

connected nodes within the networks, leaving an inner core.  The resulting coreness 

values are analyzed against centrality metrics and high-level communities detected by the 

Louvain method. Both system level and component level evolution of coreness values for 

these systems are studied. The validity of this approach for identifying software system 

cores is discussed and analyzed.  
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I.    Motivations

Real world software systems are composed of thousands of interconnected 

components. Depending on the programming language, these components could be 

classes, functions, aspects, packages or modules. However, not all of these components in 

a system are of equal importance. We collectively refer to the most important and vital 

components of the software system as the core of the system. If there existed an 

automated method of identifying the core of a complex software system, the knowledge 

of this core could be useful for several aspects of software engineering. These include the 

understandability, maintainability, and re-usability of the systems. 

There are currently no industry accepted tools or techniques for discovering this 

essential software system core.  In this research we examine existing concepts and 

techniques from the literature to discover a simple and easily automated approach to this 

identification.

I.1     Cognition and Visualization

A software developer can be thought to possess two distinct types of knowledge; 

general and software-specific [Mayrhauser and Vans, 1995]. General knowledge is 

independent of the system they are attempting to understand, while software-specific 

knowledge applies to the individual software application. Part of this software-specific 

knowledge encompasses the mental model of a software system that one may hold.

As a new developer on an existing large software system, one can be faced with 

“information overload” when confronted with the task of studying the system as a whole. 
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There is just too much complexity to digest without a way to pare it down for 

consumption. One can work on a software project for a significant length of time without 

developing an accurate mental model of the subsystems and components that make up the 

system as a whole. 

Adequate documentation of a software system can help alleviate this prohibitive 

learning curve, but this documentation often is lacking or non-existent.  Many legacy 

software applications have little beyond the source code, with no experts remaining on 

the project to facilitate knowledge transfer. 

It is in these situations where cognitive aids would be most useful for efficiently 

acquiring software-specific knowledge.  A list of core components that is much smaller 

than the total system, yet contains the most important classes and connections of the 

system, could be one such cognitive aid. Building an accurate mental model of the more 

limited core is much easier, and the non-essential components are filtered out from 

consideration. Information overload is reduced or eliminated. 

I.2     Maintenance and Reusability

If one has a solid grasp over what classes compose the core of a software system, 

this knowledge could also aid in efforts to maintain the system. If they are aware of the 

relative importance of a component in relation to the system as a whole, a developer can 

quickly assess the potential impact of a potential change. A change to a critical core 

component would have a larger impact than updating a component which is only 

peripherally related to the system. 
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System reusability can be improved with an accurately identified core subsystem 

as well. For instance, if the system needed to be ported to a new programming language, 

it may be worthwhile to port the essential core of the system first. This decision would 

allow the core functionality of the system to be brought online sooner in the migration 

effort. The developers could also take extra caution when porting these core components, 

as a mistake here would be more costly than to a non-essential component. 

Unit testing of the system would be impacted, as developers may want to focus on 

developing automated unit tests around the core components versus applying them in an 

arbitrary fashion. Writing test cases can be a time consuming process, and getting the 

most beneficial coverage for the least amount of work would be appealing for project 

management. 
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II.   Related Research

The concept of core/periphery organizational structures did not originate in the 

field of software engineering. It is an intuitive concept that has been used for a wide 

range of research fields; including product engineering, geography, biology, social 

sciences, and studies of corporate organizational structure. There also exist previous 

academic attempts to identify the important modules of software systems. 

In preparing for this research, we discovered research related to ours in one of two 

possible directions; (1) Identifying the “most important”, “critical”, or “key” components 

of software applications and (2) Attempts to identify the core of a given network, not 

specific to software systems. Our work combines these two subjects, and so was 

influenced by papers from both. 

These related works are presented here in chronological order. In addition, we 

devoted multiple weeks of study towards one particular related research effort which 

directly deals with identifying cores of software systems, the MacCormack et al. 2010 

paper. We cover that research in further detail in section VI. 

II.1    [1979] Snyder and Kick 

One of the earliest references to core/periphery structures found in the literature is 

in the field of sociology, specifically in geopolitics. In the work done by Snyder and 

Kick, the team attempts to examine interactions between the nations of the world in order 

to group them into core, periphery, or semi-peripheral classifications. They do this based 

on modeling trade flows, military interventions, diplomatic relations and treaty 
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memberships as networks. They then used a blockmodel process on these networks 

(represented by matrices) to generate their classifications. Blockmodeling is a method of 

re-ordering the rows and columns in a matrix based on their structural equivalence. 

 

Here we see the world trade matrix, with the alphabetical ordering on left, and the 

ordering after blockmodeling is applied on the right. Here the core nations would be 

towards the lower right quadrant, with the peripheral nations towards the upper left. This 

research appears to have been influential in its field, though has also faced significant 

criticism [Nolan, 1983].

II.2    [1998] Tushman 

There are also several papers referencing the concept of core/periphery structures 

in the product engineering field . These were co-authored by Michael Tushman, in his 

research into dominant designs. In this context, it is observed that changes to core 

subsystems have a greater impact on the overall design of a product than other 

components [Tushman, 1998]. In this research, a core subsystem is defined as being one 

Figure 1: World Trade Matrices, Before and After
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that is “tightly coupled to other subsystems”.  In contrast, a peripheral subsystem is one 

that is only loosely coupled to other subsystems. Examples of core subsystems in this 

context would possibly include the engine of a car, or the CPU of a computer. In contrast, 

examples of peripheral subsystems would then be less critical systems like the headlights 

of a car, or the CD/DVD drive on a computer. 

Identification of core subsystems in engineering realms that deal with physical 

structures seems to be done entirely by intuition or post-hoc analytical processes. 

Examples are given of core subsystems with no formal identification criterion 

accompanying them. 

II.3    [1999] Borgatti and Everett 

In 1999, an influential paper was written by Stephen Borgatti and Martin Everett 

that first attempted to define core/periphery structures in a formal way. The authors also 

give two different conceptual models of the concept from which to develop core 

identification algorithms from.  

The graph theoretical approaches presented by this reasearch are very general, and 

can be used to identify core/periphery structures in any network. Examples of networks 

examined in the paper are diverse, including references between academic journals and 

the interactions between monkeys within a colony. 

The two models of core/periphery structures presented by this paper are the 

discrete and continuous models.  In the discrete model, the core is considered to be a sub-

graph that is central to the graph. The goal of an algorithm then is to classify a node as 
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either belonging to the core or periphery sets of nodes. There is no middle ground. In the 

continuous model, the coreness of a node is instead a score along a range of possible 

values. A node can be “more core” than another.

The research admits a very close relationship between their concept of core and 

the more heavily researched graph theory concept of centrality. The key distinction made 

between the two is that the nodes found with algorithms that measure centrality do not 

necessarily result in a set of nodes that are at all connected. The goal then is to find the 

core of the graph as a well connected sub-graph, and not just a loose set of nodes. This 

research gives us a foundation of core identification that is distinct from simply finding 

the most central components. 

II.4    [2005] Petter Holme 

The research done by Petter Holme for the University of Michigan was our first 

exposure to the usage of k-core decomposition in analyzing the organization of graphs 

and networks. The details of this algorithm are explained in depth in a later section, as 

this approach ended up being the primary direction of our research.

In this paper the formal definition of core/periphery structures is referenced, and 

the K-Core algorithm from graph theory was applied as a simple means of satisfying this 

definition. The algorithm produces a core that is both well connected and central to the 

examined networks. Interestingly, the values produced by this algorithm can be 

considered as fulfilling both the discrete and continuous models of coreness. Each 
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component in the network is given an integer score which can be measured on a 

continuous scale, and the maximal k-core can be segregated from the rest of the graph 

and considered the discrete core of the system. 

Holme extends the basic k-core decomposition algorithm by adding a step where 

each derived shell has its average closeness centrality calculated, and the shell with the 

highest average centrality considered the core. Our research identified this step as 

redundant for our examined software networks, as in each case the highest average 

centrality was the most innermost k-core.

In this research, networks from many different contexts are examined. These 

include geoFigureal networks (highways, pipelines, streets, airports), acquaintance 

networks, electronic networks, academic reference networks, food webs, neural networks, 

five different biochemical networks, and even one software dependency network. In the 

software dependency network based on the Linux operating system, the package was 

chosen as the component granularity.

From this point the focus of Holme's research is comparing these network types 

based on metrics computed from the derived coreness values. Here the networks with 

clear real world hubs such as airports and internet routing were found to have the highest 

core-periphery coefficient and assortative mixing coefficient. The Linux package 

dependency network had fairly low values for each, compared to the networks with a 

more well defined and obvious core. 

II.5    [2008] Haohua et al 
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We discovered during the late stages of our research that we were not the first 

team to apply k-core decomposition to software systems for analysis. In 2008, a team 

from Shen'Yang China also used the k-cores of software systems for their research for 

studying software hierarchies. The research here looked at ten different software systems, 

each open source C/C++ systems. The K-Core values were computed, and some 

observations made about the output of the algorithm on these systems.  

Our research goes deeper in a few different directions, such as the relationship 

between centrality and coreness in the examined systems. We also examine the evolution 

of k-core values within software systems, and the relationship between K-Core 

decomposition and community detection. This alternative direction serves to maintain the 

novelty of our research, and lends support the conclusions reached by Haohua et al.   

II.6    [2008] Zimmermann and Nagappan 
In this research, a diverse array of social network analysis measures were captured 

on the Windows Server 2003 software system. The team then used these metrics as a way 

to predict defects in the system at the binary file level. This component level is similar in 

concept to the Java class used in our research. Their results for each measure were 

statistically correlated with the defect tracking system in use by the developers, using 

Pearson and Spearman correlation coefficients. 

The network analysis measures included both global and ego metrics. Here global 

refers to metrics that measured the node's relation to the entire software system, and ego 

metrics measure the relationship between a component and its immediate neighbors. 
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What they found was that some network analysis measures did offer some 

measure of predictive ability, though the ego network metrics proved more useful than 

the global network metrics. These predictive capabilities were more effective than similar 

efforts for predicting defects based on popular complexity metrics. 

Most interesting to our research is that there exists a developer maintained list of 

critical binaries for Windows Server 2003. The team was able to predict these critical 

binaries with network analysis measures with a success rate of 60%, which is much better 

than the reported 30% reported for traditional complexity metrics. 

This research showed that extensive work on conventional centrality measures 

had already been done on software dependency networks, which allowed us to focus on 

coreness measures instead. Later work by Nguyen et al. in 2010 reproduced this work on 

the Eclipse, an open source IDE (Integrated Development Environment) written in Java. 

They found that some results reached by Zimmermann were not applicable to their 

research context, while others did still provide some benefit for defect prediction.

II.7    [2010] MacCormack et al

In a recent paper, a comprehensive analysis was done by a collaboration between 

MIT and Harvard Business School to determine whether software system design is 

dominated by core-periphery structures. Their research claimed that for the majority of 

software systems analyzed, core subsystems were present and detectable based on their 

invented algorithm. 

The team used the call-graphs parsed from a large variety of software systems, 
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including commercial and open source projects. Their analysis looked at the components 

at the class level, and a Design Structure Matrix (DSM) was used to represent the 

dependencies between these classes. 

The MacCormick research gives four different possible classifications for a 

component, based on the transitive fan-in value (FIV) and fan-out value (FOV) of each 

class. The combined variables create a two dimensional spectrum, from which the 

components can be classified into four “canonical types”.

Their analysis then classified each component based on the results of matrix 

multiplication operations applied to the matrix, designed to determine the FIV and FOV 

values.

 They then determine the maximum possible values for the combined FIV/FOV, 

and consider a component core if the combined values exceed 50% of the possible value. 

The cutoff of 50% seems to be entirely arbitrary, but the team still uses this classification 

Core Components:

High FIV, High FOV

Files with high visibility on both measures are “Core” files. They 
are “seen by” many files and “see” many files. They are often 
linked directly or indirectly to all other core files.

Shared Components:
High FIV, Low FOV

Files with high FIV are “Shared” files. They provide shared 
functionality to many different parts of the system. These files are 
“seen by” many files, but do not “see” many files.

Peripheral Components:
Low FIV, Low FOV

Files with low visibility on both measures are “Peripheral” files. 
They are neither “seen by” many files nor “see” many files. They 
typically execute independently of other files.

Control Components:
Low FIV, High FOV

Files with high VFO are “Control” files. They direct the flow of 
program control to different parts of the system. These files “see” 
many other files, but are not “seen by” many files.

Table 1:  Canonical types from MacCormack, 2010
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to make many observations about the domination of core-periphery structures in software 

systems.  

This classification into core or not-core buckets is binary in nature, which 

resembles the discrete model of Borgatti and Everett. Two classes could be almost 

identical, but if one of them has just one single dependency more than the other, it could 

be enough tip the classification from one bucket to the other.  

This arbitrary cutoff seems to be a limitation of the analysis, but was crucial for 

their central question of determining whether core components exists in a particular 

system. Their research reports that a significant number of software systems have no core 

components at all, which is in contrast with our intuitive understanding. 

Our first experimental direction was in reproducing this research on our 

representative systems. The results of which are discussed in detail in a later section
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III.  Methodology

In this section, we will give a high level overview of the path our research took. 

The details of these steps are given in later sections, along with our experimental results. 

Figureal representations of the research work-flows are presented in this section, to aid 

with attempts to duplicate this work.

III.1   Overview of Research Steps

1) Select Software Systems

The first step in our research is to select which software systems we want to examine for 

the purpose of core identification. We chose three open source software systems that have 

had active development for a length of time suited for evolutionary study. 

2) Extract the Software Dependencies 

Next we use a dependency extraction tool to discover both the use and inheritance 

relationships from the examined systems. We compared the outputs and features of 

several tools for this purpose, and made detail the critical decisions made when it came to 

representing object oriented software dependencies in a data structure.

3) Reproduce the MacCormack Algorithm

As the MacCormack research appeared to closely represent our research goals, we first 

examine their approach as a possible core identification method. We analyze the results of 

their algorithm, and reject their work as not suitable for our purposes. The rationale for 
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this decision is presented.

4) Decompose Dependency Graphs using K-Core Algorithm

We then look to K-Core decomposition as our core identification method. Finding the 

results to be promising for our purposes and having a strong theoretical basis, we then 

focus our efforts on this approach. The algorithm finds cores that are manageable size 

that are well connected and central to the software systems. 

5) Create Visualizations of the Systems for K-Core Structure

There exists a very well done visualization method based on K-Core decomposition for 

representing the network structure in two dimensions. We employ this algorithm on our 

selected software systems, and make observations from them. In addition the inner core is 

extracted to its own visualization Figure with the peripheral components removed, which 

is then examined.

6) Compare with Detected Communities

Previous research done by members of our team focus on community detection in 

software networks. We investigate the high level communities (detected with the Louvain 

method) discovered in our software systems, and then compare them to the classes which 

compose our inner cores. 

7)  Examine System Level Core Evolution
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Each software system has a 10+ year history of release versions to draw from. We select 

around thirteen versions of each system, and then examine the evolution of the inner core 

between these release versions. 

8) Examine Component Level Coreness Evolution

We also use the history of k-core values for each component in the system to attempt to 

discover insights into those classes. We find that many classes have correlated k-core 

evolution, and we examine the correlations to determine if they can be used to predict 

whether the correlated classes have the same community or package.

9) Validate Cores with Seniority Metric

We then use these same k-core histories to discover a new metric, the “component 

seniority”, and we compare these values to the k-core shells. This metric is simply how 

long a given class has existed in the software system. This metric is completely 

independent of network structure, and so serves to independently validate the importance 

of the classes within the innermost core. 

10) Discuss Implications of Research 

Finally, we discuss the above results and their implications to our initial research goals. 

We find that the results appear promising, but that more work to validate the usefulness 

of the core in a real world development environment would be beneficial.  Possible future 

directions this research can take are then detailed.
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III.2   Workflow Diagrams

In Figure 2, the high level flow of information is displayed. This would be the 

same flow for each software system version, with the initial JAR file input differing.

Figure 2: Workflow for Component Level Analysis
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 1. First, the DependencyFinder tool is used to output a text based representation of 

the software dependencies.

 2. This text file is then inputted into my own program, which serves a number of 

functions, detailed below.

 3. The first of these is to take these dependencies and represent them in a Graph 

object from the JUNG framework.

 a) Each node is labeled from the fully qualified class name of the class.

 b) Each dependency is an edge and is given a numeric identifier.

 4. The software assigns each named class in the system a k-core value based on the 

k-core decomposition algorithm. This file is then used for analyzing the k-core 

evolution, both system and component level.

 5. Each class is given a numeric label. A file is generated which represents each 

dependency as a single line, with the two numeric labels separated by a space. 

This file is then gzipped.

 6. This file acts as the input to the Lanet-VI system. A portable network Figures 

(PNG) file is generated by the Lanet-VI system, visually representing the k-core 

structure of the system. The algorithm can be used through their website, or the 
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C++ source code can be downloaded and executed manually.

 7. JUNG is used to calculate several centrality metrics, including Eigenvector 

Centrality, Closeness Centrality, and Degree.  Jung provides implementations of 

these algorithms within the framework.

 8. The FRLayout within JUNG is used to output the inner core of the system, with 

customization for nicer looking diagrams. Attraction and repulsion factors 

tweaked, and custom Transformer instances to render the nodes and edges 

appropriately for the scale of these software networks.

 9. A text file is generated with a .DAT extension. This file is imported into Matlab, 

which is set up with the functions from the Matlab Boost Graph Library included. 

 10. These Matlab BGL functions are used to calculate the same centrality metrics 

listed under the JUNG steps, for validation of results. The Betweenness Centrality 

was also calculated with Matlab BGL, as the implementation of this algorithm is 

more efficient in this tool. 

 11. The dependencies in the network are written out in a simple text file, suitable for 

input into the publicly available C++ implementation of the Louvain method of 

community detection. This is just numbered nodes separated with spaces to 
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represent an edge.

 12. The C++ algorithm for Louvain method of community detection is executed 

against this text input file. This algorithm was developed by Vincent Blondel, 

Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. The algorithm 

outputs to a file that displays the hierarchical communities in a tree structure.
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 13. The results from step 4, the k-core outputs for each class, are inputted again to 

my software for the analysis of evolution over time. Each version of the examined 

system has its own input file of k-core values.

Figure 3: Workflow of Aggregate Analysis Steps
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 14.  The system level evolution is captured by examining the maximum k-core for 

each inputted version and plotting over time.

 15.  The k-core value history is generated for each class. These histories are used for 

examining the component level evolution within the system. 

 16.  The k-core histories for each component are used to generate the new “seniority” 

metric for each class in the system. Each shell in the final version has an average 

seniority score computed, based on the mean value for each class that ended up in 

that shell.

 17.  The Apache Commons Math library is used to compute the normalized Pearson 

correlation coefficients for the k-core histories of each class in the system. The 

top correlations are then checked for community or package prediction.
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III.3   Tools Used

DependencyFinder
http://depfind.sourceforge.net/ 

JUNG (Java Universal Network and Graph Library)
http://jung.sourceforge.net/ 

Lanet-VI
http://lanet-vi.soic.indiana.edu/ 

MATLAB
http://www.mathworks.com/products/matlab/ 

MATLAB BGL (Boost Graph Library)
http://www.mathworks.com/matlabcentral/fileexchange/10922 

Apache Commons Math
http://commons.apache.org/math/ 

C++ Implementation of Louvain Method
https://sites.google.com/site/findcommunities/ 

http://depfind.sourceforge.net/
https://sites.google.com/site/findcommunities/
http://commons.apache.org/math/
http://www.mathworks.com/matlabcentral/fileexchange/10922
http://www.mathworks.com/products/matlab/
http://lanet-vi.soic.indiana.edu/
http://jung.sourceforge.net/
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IV.   Examined Software Systems

We decided that we would limit our initial research to three representative 

software systems. The number was kept manageably low in order to fully explore the 

evolution of these systems. All three systems are open source Java applications. Java is 

one of the premier commercial development language, and is within the expertise of our 

team. We selected systems that we have a familiarity to, to aid in us the interpretation of 

our results. Hibernate-ORM and Apache-Ant are projects used extensively by Phil Meyer, 

and JHotDraw had been studied in previous research by Dr. Siy and Dr. Bhowmick 

[Paymal, 2010]. 

IV.1    Hibernate-ORM

The Hibernate framework is the premier object-relational mapping (ORM) 

solution in Java development.  It was created by Gavin King, was eventually brought into 

the JBoss suite of application tools, and is now maintained by RedHat. 

Most commercial Java systems have a relational database persistence data store 

and a middle tier of object oriented entity classes. In the past the developer would need to 

take the classes and manually write the code to generate the appropriate SQL to insert, 

update, delete, and queries based on these entities. This was an arduous and error-prone 

process.

The entity bean portion of the Enterprise Java Bean (EJB) specification was 

meant to facilitate this object/database interaction, but in practice the technology had 

many faults. The Hibernate framework was developed as an alternative to EJB 
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persistence, using a more light-weight solution that avoided many of the entity bean 

pitfalls. Over time the Hibernate framework was split into a few different independent 

projects, and it is the original object-relational mapping system that we study, now 

deemed “Hibernate-ORM”.  

Of the three systems we examined for this research, this is the software system 

that grew the largest. The initial examined version (0.9.4) had a mere 136 named classes, 

while the final version (4.0.1.Final) had nearly 2500. We examine 13 different versions of 

the framework ranging from 2002 to 2012.  

IV.2    Apache-Ant

The Apache Ant library is a tool for developers to build Java projects from the 

source code to the executables. Here “Ant” is an acronym for “Another Neat Tool”. The 

application was developed by the Apache Software Foundation, a non-profit corporation 

made up of a decentralized community of software developers. The foundation maintains 

dozens of open source software projects, and Ant is one of its most popular tools. 

Apache Ant bases the Java build process around tasks and targets, typically 

defined in an XML file. This product was designed as an alternative and improvement 

over C++ Make files. 

Example tasks would include ones that compile your code (javac) or bundle it up 

in a jar file for distribution. A typical build script will clean the existing build artifacts, 

compile the Java code, package the binaries into one or more java archive files, and then 

copy these out to a deploy directory. Ant is designed in a way that this is easily automated 
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and can be fired off automatically. Individual tasks within the build file can be run 

individually, or in sequence.  Each task within the ant build file has its dependent tasks 

defined, running them in sequence where needed. 

While still in heavy use by the Java community, more modern build tools like 

Apache-Maven have gained a strong following and are starting to become the preferred 

tools for this purpose. We examined 13 versions of the Apache-Ant project released over 

ten years, from 2000 to 2010.

IV.3    JHotDraw

The JHotDraw framework is another open source Java framework. This project 

intends to provide a well-designed and extensible framework that one can use for creating 

structured drawing editors. Appropriate contexts for using JHotDraw would include 

building an applicationfor creating Pert diagrams or network layout graphs.

The framework provides a basic GUI editor with support for the most necessary 

features of a drawing editor, including undo, save, load and print functions. The users 

then extend this functionality for creating an editor specific for their needs.

JHotDraw is interesting from a design perspective in that it was consciously used 

for exploring design patterns, and was influential in the development of this object 

oriented design discipline. The framework was originally written in Smalltalk (and called 

HotDraw) by the University of Illinois in Urbana-Champaign. It has since become an 

open source project hosted by SourceForge.

We first examine version 5.2 after it was ported to Java in 2001. The JHotDraw 
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project underwent a major rewrite with the release of JHotDraw 7. In our research we 

examine 14 versions in total, with the most recent released in 2011.
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V.    Dependency Extraction

A critical element to this research was the gathering of inter-class dependencies 

from the examined software systems. The output of any algorithm is only as good as its 

inputs, and core identification algorithms are no different. Despite the importance on 

good inputs, other related research on examining the network structure of a software 

system appears to take for granted the accuracy of the output of their dependency 

extraction tool.

In our research one crucial determination was in defining what constitutes a 

“component” in a Java application. The individual classes of the system was a likely 

choice, but one could also choose to look for core packages, as was done in other 

research [Holme 2005]. We chose to consider named Java classes as the discrete 

components to examine. 

Several tools were considered for the purpose of dependency extraction for our 

research, including Soot, Doxygen, JDepend, DependencyFinder , and SPARS-J. The 

outputs and features were compared and analyzed for validity. In general, the extracted 

dependencies matched closely across tools. However, some small portion of the extracted 

relationships differed, representing the corner cases of Object Oriented design. In the end 

we chose the DepdencyFinder tool, in part based on the choices made in these cases. 

   Notes on DependencyFinder:

• Developed by Jean Tessier, a former software engineer for Google and 

LinkedIn. 

• Parses the compiler generated .class files, which it can also read from JAR 



28

or ZIP files. 

◦ This allows the tool to generate the dependency output from the 

released binaries and does not require the full source code.

• Outputs in XML and plain text format. 

• Executes from command line, or from an included Swing based GUI for 

ease of use.

Here we detail the most common gray areas of dependency identification, and 

detail the choices that were made by the DependencyFinder tool:

V.1  Does a class have a direct dependency on the visible members of a superclass?

Here we have one class that extends a parent class, and inherits the members of 

that superclass. 

In this example, Chair inherits access to the style class instance variable, 

which it may or may not use.  It is clear that Furniture directly depends on the Style 

Figure 4: Inherited Members
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class, but does Chair? 

In DependencyFinder, the determination is made based off whether the subclass 

actually uses the visible member of the superclass. In the above example, if anywhere in 

the Chair class a method style.getColor() is called, for example, then the 

dependency is captured. If the superclass member is ignored completely, the Chair class 

is not considered dependent. Some dependency extraction tools examined (SPARS-J) 

include this as a dependency whether it uses the inherited members or not.

As inheritance relationships are heavily used in object oriented software systems, 

this decision can have wide ranging consequences. After careful consideration this choice 

was deemed to be preferred over the possible alternatives. As DependencyFinder works 

by parsing the .class files generated from compiling the Java code, its likely that a 

dependency on a superclass member only exists in the .class files if it is referenced 

somewhere within the .java file.

V.2   Does an inner class depend on the members of the outer class.
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This question is related to the previous one, but it does not necessarily have the 

same answer. Technically, an inner class has access to the class members of the outer 

class, even though it does not inherit from the outer class. In this example, does 

Furniture$SurfaceType have a dependency on Style?

Again, DependencyFinder looks at whether the inner class actually uses the 

member that it has access to. In the above example, the dependency is found only if the 

style member is referenced directly within the inner class. We similarly find this decision 

to be the preferred resolution.

V.3 Does a class directly depend on each of its ancestors in the class tree?

Figure 5: Visible Outer-Class Members
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Here the question is whether a class depends directly on the parent of its parent, 

and so on. Similarly, does a class depend on the interfaces of its parent class? In the 

above example, the question is whether Recliner has a direct dependency on 

Furniture.

The DependencyFinder tool does not consider this to be a direct relationship, 

though at least one other tool (SPARS-J) does. This holds true for inherited interface 

declarations as well.

V.4  Do dependencies on anonymously passed method parameters get captured?

This example involves a class passing a returned object directly into a method of 

another class, without this object being referenced anywhere as a variable. This is 

scenario may is not easily visualized without code to reference, so a simple constructed 

Figure 6: Indirect Ancestors
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example is provided below. This example contains four classes, named A, B, C and D. 

In the above code segment, class A never directly references class D, but it does 

depend on it, as it is returned from b.get(), and passed into c.use(). To see the 

dependency exists, consider that the code in doTest could be re-factored as below, with 

no change in code behavior:

public class A {

public void doTest() {
B b = new B();
C c = new C();
c.use(b.get());

}
}

public class B {
public D get() {

return new D();
}

}

public class C {
public void use(D d) {

System.out.println(d);
}

}

public class D {}

Text 1: Anonymously passed method parameters
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DependencyFinder does capture this dependency faithfully, though at least one 

other examined tool did not (Soot). 

V.5  Are inner classes considered their own component or are they part of the outer  

class?

Java allows inner classes defined within an outer class, and also lets you define a 

class anonymously in your code, so these also needed to be considered. 

In the above example, there is an inner class which implements Runnable that is 

public class OuterClass {

public void doSomething(){

Runnable runnable = new Runnable(){
public void run() {

System.out.println("Running!");
}

};

runnable.run();
}

}

Text 3: Annonymous Inner Class Example

public void doTest() {

B b = new B();
C c = new C();
D d = b.get();
c.use(d);

}

Text 2: Alternative without anonymity
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defined within the same method in which the code is executed. The class was constructed 

in a way such that it has no name, and so cannot be referred to by another class within the 

software system. One could construct an example where this anonymous class could be 

passed into a method of an unrelated class to OuterClass and executed. However, to do 

so it would have to be a polymorphic reference to the Runnable interface, and the 

executing code would not know the name of the class it depends on at compile time. 

In contrast, here is a named inner class that represents the same behavior as the 

anonymous inner class. However, as the above class is defined formally with a name, any 

unrelated class in the software system that has the appropriate permissions could access 

this class. Here then the dependency is known at compile time. 

DependencyFinder outputs named inner classes like with the outer class, a dollar 

sign, then the inner class (OuterClass$InnerClass). Anonymous inner classes are 

given a number, corresponding to the order they are defined in the outer class 

public class OuterClass {

public void doSomething(){
Runnable runnable = new NamedInnerClass();
runnable.run();

}

class NamedInnerClass implements Runnable{

public void run() {
System.out.println("Running!");

}

}

}

Text 4: Named Inner Class Example
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(OuterClass$1).

We decided to treat named inner classes as their own individual components from 

the outer class. However, the dependencies of an anonymous inner class were rolled into 

that of the class which defines them. 

The reasons for this were because of (1) the impossibility of having a compile 

time dependency, and also because of (2) the nature of how these classes are typically 

used. When you use an anonymous inner class, you expect to execute the code of the 

class immediately. They are transitory in nature.
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VI.   Reproducing MacCormack

Our first approach for finding the core of a software system was to reproduce the 

MacCormack algorithm. We applied this algorithm to selected versions of Hibernate-

ORM and Apache-Ant, and JHotDraw, and then examined the results

Here we extract the dependencies from the source code, representing them in 

adjacency matrices. These are not to scale, as the system sizes vary greatly:

Figure 7: Hibernate-ORM 4.0.0.CR4 Figure 8: Apache-Ant 1.8.0

Figure 9: JHotDraw 7.6
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In the above Figures, the X and Y axis are the classes within the systems, with the 

blue squares representing a dependency between classes. Here the diagonals relate to 

each class being dependent on itself. 

We then apply matrix multiplications to determine the transitive dependencies, 

with each successive multiplication representing one step of indirection. Each of these 

matrices is then summed together to form a final matrix that represents the transitive 

dependencies. The following graphs show the results of this process.

Figure 10: Hibernate-ORM 
Transitive

Figure 11: Apache-Ant Transitive

Figure 12: JHotDraw Transitive
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What we see with these transitive graphs are some stark differences in the final 

summed matrices.  Hibernate-ORM has primarily horizontal lines, indicating that most 

classes transitively “depend on almost everything”. This is explained later on in this 

section with the logging implementation in this system. Apache-Ant has a fair number of 

classes for whom “almost everyone depends on” transitively, such as the Project and 

Task classes, leading to visible vertical lines. Finally JHotDraw is a more sparse, 

indicating that many dependencies remain local even when expanded out, and don't end 

up leading to dependence on the whole system.

We then grouped each class into the four classification buckets (Core, Peripheral, 

Shared, Control) based on the calculate values.  The results of this classification are 

shown in the tables below: 
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The results were not encouraging for this being a practical and useful method of 

identifying a core set of components. Of the three examined systems, only one had a core 

at all, and this was too large to be of any practical use.

We further examined the identified core of the Hibernate system to determine 

what set these classes apart from the classes put in the shared bucket. What we found cast 

further doubt on this method being worthwhile for identifying core components. In this 

system exists a logging class called 

Hibernate-ORM

Classification Number of Classes Percent of System

Core 1121 62.0%

Peripheral 10 0.6%

Shared 657 37.0%

Control 4 0.20%

Apache-Ant

Classification Number of Classes Percent of System

Core 0 0.0%

Peripheral 893 79.60%

Shared 230 20.4%

Control 0 0.00%

JHotDraw

Classification Number of Classes Percent of System

Core 0 0.0%

Peripheral 203 77.0%

Shared 33 13.0%

Control 28 11.0%

Table 2: MacCormack Results on Examined Systems
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org.hibernate.internal.CoreMessageLogger.  The class has a dependency on 

many other classes within the system, as it performs logging specific to the types of 

objects passed into the methods. 

This logger is used throughout the Hibernate- system, so whichever classes used 

this logger also gained all the outbound transitive dependencies of the logger, which is 

the majority of the software system. In this way nearly every class is dependent on every 

other class transitively. This explains the mostly solid blue transitive dependency Figure. 

Whether a class ends up in the core of the Hibernate system is largely dependent on 

whether it uses this CoreMessageLogger. This is hardly a useful determiner of whether 

a class is important or not.

So this algorithm is also too brittle to small design decisions to be of any practical 

value. It appears that the MacCormack team spent too much time drawing conclusions 

from their aggregated results and not enough time examining the output of any single 

software system for validity. 
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VII.  K-Core Decomposition

Based on the influence of the Petter Holme research, the next approach we looked 

at for identifying the core of a software system was k-core decomposition [Seidman, 

1983]. In this approach, an algorithm breaks a network down into a series of shells based 

on the inter-connectivity of the vertices. Applied to our research context, the innermost 

shell is then considered the core of the software system.

Formal definitions and implementation details of this algorithm can be found in 

[Batagelj and Zaversnik, 2002] and [Hamelin et al, 2006] . The intuitive definition of the 

k-core algorithm is fairly simple: Given undirected graph, recursively remove vertices 

with degree less than k. The resulting graph has all vertices with degree of at least k. The 

maximal k-core is the highest k-core that is not empty. The (k+1)-core would be empty.

   

Above we see some simple networks, and how they relate to a k-core score. In the 

tree example, each node is only connected to one other node, while a ring has each node 

connected to to two others. A clique, defined as a sub-graph where each node is 

Figure 13: Simple Graph Cores
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connected to each other node, corresponds to a k-core of N minus 1. Here below a 4-

clique is in fact a 3-core:

The example below shows the decomposition of a simple network, with the 

algorithm finding a series of k-cores like the layers of an onion. In the first pass, the 0-

core is determined by removing any node not connected to any others. Then in the next 

pass any node connected to only one other node is removed, becoming the 1-core. 

Here we see that while there existed nodes in the 1-core with degree of two that 

got included in the 1-core. This is because after the algorithm removes a node, it 

considers the network again, and if your neighbor was removed it doesn't count toward 

Figure 14: Example K-Core Decomposition
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your degree. In this way a series of nodes that are only connected to low degree nodes 

can be removed in series. It isn't enough to be connected to two other nodes, the nodes 

you connect to must themselves be connected to two other nodes as well.  

This concept is used elsewhere in the graph theory literature as degeneracy or 

coloring-numbers. A classic example of the latter is when coloring a map, and choosing a 

number of colors such that no two connected countries will get the same color. This can 

be determined by calculating the k-cores of a graph that represents the map, and then the 

number of colors needed is simply one more than the maximal k value.  In the above k-

core example, only five unique colors would be needed for a map with nations 

representing the nodes in the graph.

One advantage of this decomposition algorithm over others is that it is very fast, 

with O(n) linear execution time. This is much faster than many other network metrics, 

such as betweenness-centrality. 

There is the potential for the inner core of a network to be in fact two or more 

separate and unconnected cores. However, in examining the results of our software 

systems, each maximal core was one interconnected sub-graph.

     Advantages of K-Core Decomposition:
• Fast (Linear run-time)
• Intuitive algorithm
• Concrete graph theory foundations
• Meets formal definition of coreness
• Cores are of manageable size in respect to system size
• All systems will have a core
• Proven useful in other research fields



44

Due to favorable initial experimental results, the focus of our research shifted 

from finding a suitable algorithm to instead investigating the k-core approach for finding 

cores, and its implications for software systems.

VII.1   K-Cores in Other Research Contexts

A s mentioned above, a primary reason for giving the k-core decomposition an 

extended look for our purposes is that this network analysis tool has proven useful in 

other research contexts. 

The most prominent example of this is the usage of the algorithm for the analysis 

of protein interaction networks. This research was done initially done by Amy Hin Yan 

Tong et al 2002, by the University of Toronto.

In this Figure, the protein interaction network is modeled on the left A. The colors 

of the nodes represent the k-core levels (6-core, black; 5-core, cyan; 4-core, blue; 3-core, 

red; 2-core, green; 1-core, yellow). The interactions among the maximal 6-core are drawn 

in red. This 6-core is then segregated out and represented on the right hand side as B.

Figure 15: Protein Interaction Network K-Cores
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This research was expanded upon in [Bader and Houge, 2003] and other later 

works. The results are clearly favorable for the suitability of k-core decomposition in 

identifying cores in this research context.

The other research in which k-core decomposition has received a lot of attention 

is in analyzing the connectivity of the internet. Examples of this can be found in [Gaertler 

and Patrignani, 2003] as well as [Carmi et al, 2007] and other works. In this context it is 

the various routers which handle requests that are modeled, and then examined by using 

the k-core algorithm to break the network into a hierarchy of shells.  
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VIII. Visualization of K-Cores

Another advantage of k-core decomposition is that there exists a very nice 

visualization algorithm that uses this technique to render a network Figureally.  This 

visualization algorithm is called Lanet-VI (Large Network-Visualization). It was 

developed jointly by the Université of Paris-Sud, Indiana University, and CNRS. The 

algorithm represents a few different aspects of network structure within the generated 

image:

In addition to using the Lanet-VI tool to represent the system as a whole, we also 

drill down and create a visual representation of the core classes alone, with all peripheral 

Degree:  The size of the nodes in the image correlate to the degree of the node, 
based on a logarithmic scale.

K-Core value:  The color of the node, as well as the position of that node in the 
network, correlate to that node's k-core value.  The nodes closer to the center of 
the graph are the nodes with the highest k-core value in that graph.   The k-core 
values are also visually identifiable based on their position on the color 
spectrum between blue and red.  The more red colored nodes have higher k-
core values.

Clustering:  The algorithm attempts to position nodes close together which are 
connected to each-other and exist within the same shell.

Connectivity:  Some portion of the edges within the network are also rendered. 
By default, an optimal percentage of edges is determined, and then which edges 
are displayed is randomly determined.  This helps visualize the dense 
connections of the inner shells, while not overwhelming the viewer with a mess 
of thousands of visible edges.  This factor can also be set manually, specifying 
what percentage of edges to select, between 0% and 100%.  
Also, nodes within a shell that have more connections to the nodes of the inner 
shells are rendered slightly more inward than nodes only connected to outer 
nodes.  
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nodes and edges pruned. The nodes are arranged with the Fruchterman-Reingold force-

directed algorithm for node layout using the JUNG framework. 

To start with, we examine one of the smallest software systems we studied, the 

initial release of Hibernate-ORM, 0.9.4.Beta. In the Lanet-VI visualization above, we see 

that the largest nodes have a degree of about 50. The maximal k-core is the 7-core in this 

instance, shown in red at the center of the Figure. With only 136 named classes in total, 

this system is fairly simple to study. Unlike later systems with more classes, the orbital 

shells are less clearly delineated, and most connections are faithfully rendered.

Then we break out this inner out and represent it with the Fruchterman-Reingold 

layout. This algorithm arranges nodes based on an attraction multiplier, a repulsion 

multiplier, and the number of iterations with which to run before stopping. In Figure 17 

Figure 16: Hibernate 0.9.4 Lanet-VI
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we see an easy to read graph, with the most central classes (Type, 

HibernateException, etc) representing the most connected core classes.

Next we will examine the largest software network we studied, the final version of 

the Hibernate-ORM framework, 4.1.6. Here we have nearly 2500 named classes to 

represent. The number of nodes represented in the same space gives a Figure with clearly 

arranged shell structure. The inner 16-core is the densely packed inner red cluster.

Figure 17: Hibernate-ORM 0.9.4 Inner 7-Core
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We break out this inner core to examine in Figure 19 below. As this core has 131 

nodes, it is densely displayed by the FR-Layout we are using. When showing this sub-

graph on a full page with ability to zoom, the information is more clearly captured. 

Figure 19: Hibernate-ORM 4.1.0 Inner 16-Core

Figure 18: Hibernate-ORM 4.1.6 Lanet-VI
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We see that the most central classes are often also the central classes of the 

0.9.4.Beta release. We examine this evolution further in section XI.

In the next visualization diagram, we see that the Apache-Ant system has fewer 

classes, and appears to have less dense organizational structure than the later version of 

Hibernate-ORM. The maximal core is an 11-core, and the largest nodes have a degree 

similar to that of the Hibernate-ORM visualization.

The maximal 11-core shown below is composed of only 64 nodes. This allows us 

to clearly see that the most central nodes within the core are the Project and 

BuildException classes. Like HibernateException, the BuildException is 

used extensively throughout the system and so has a huge number of connections. Seeing 

the core segregated out into its own network of classes, we can easily see just how tightly 

connected these software cores are.

Figure 20: Apache-Ant 1.8.2 Lanet-VI
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Finally here is the latest version of JHotDraw. Like the Apache-Ant system, this 

system has a maximal k-core of 11. However, the inner core of this system has more 

nodes, and the visualization seems to indicate a denser core structure. The largest nodes 

have a degree of only 245, as fitting the smaller system.

Figure 21: Apache-Ant Inner 11-Core

Figure 22: JHotDraw 7.6 Lanet-VI
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When we extract out this inner core in Figure 23, a tightly connected set of classes 

is clearly shown. The most central and connected nodes in this case appear to be the 

Figure and DrawingView interfaces. These two components were found to be 

important to the software system by previous related work [Paymal, 2010].  

Figure 23: JHotDraw Inner 11-Core
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Each software system appears to be similar in general structure by the Lanet-VI 

algorithm, as one might expect from their similar object oriented hierarchical structure. 

One can view non-software network visualizations on the Lanet-VI website to see just 

how different other network types can look. 

Figure 24: Scientific Collaboration

Figure 25: Internet Routers



54

Here we see visualizations of scientific collaboration, internet routing, links on 

web pages, and a random graph generated with the Erdös-Rényi model. One interesting 

thing to note here is that while the World Wide Web network has millions of nodes, it still 

has a maximal coreness lower than the 16-core of Hibernate-ORM. We also see that some 

networks have multiple cores, while our software networks only have one core. The 

similarity between Java software system networks is itself a noteworthy feature.

Figure 27: Random Graph

Figure 26: Web Page Links



55

IX.  K-Core and Centrality

In the very early stages of our research, our initial concept of coreness was 

indistinguishable from the concept of centrality. The Borgatti and Everett paper first 

explained the relationship between the two measures. A coreness metric is a measure of 

centrality, but a centrality metric is not necessarily a measure of coreness. The core of a 

system cannot merely be composed of central nodes, but nodes which are also themselves 

tightly connected to each-other. In this section we explore the relationship between k-core 

degeneracy and three different centrality metrics: degree, closeness centrality, and 

betweenness centrality.

This analysis was primarily done with data outputted by algorithms contained 

within the Java Universal Network/Graph Framework (JUNG), based on the extracted 

class dependencies. JUNG is an open source Java framework developed to provide an 

easy to use API for graph and network programming. Also used was the Matlab Boost 

Graph Library (BoostGL) package, which provides a number of functions for graph and 

network algorithms.  

IX.1    Degree vs K-Core

Simply put, degree of a node is the number of other nodes that a node connects to. 

In the context of our research, this is the total number of classes which depend on the 

examined class, or which the class itself depends on. We plotted the degree and k-core 

levels for the latest versions of each of the software systems.
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The above scatter plot demonstrates the relationship between degree and k-core 

degeneracy. The y-axis is logarithmic scaled, and you can clearly see that every node 

with degree of at least 150 is in the maximal k-core shell. This also shows the obvious 

lower-bound such that a 16-core contains classes with a degree of at least 16, as each 

class needs to be connected to at least 16 others.

Classes with a relatively high degree and only mid level k-core, like the outliers in 

the 9, 11 and 12 cores, would represent classes that have a lot of connections, but that 

these connections are to classes which are not themselves well connected. These would 

be classes with more local importance than global importance to the software system.

Figure 28: Degree and K-Core Hibernate-ORM



57

The plots for the latest version of Apache-Ant and JHotDraw look very similar, 

and are shown below. The trend seems to be that the maximal k-core contains the nodes 

with very high degree, while a handful of nodes with only moderately high degree are 

outliers.

Figure 29: Apache-Ant Degree

Figure 30: JHotDraw Degree
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IX.2    Closeness Centrality vs K-Core

The next centrality measure that we examined was closeness centrality. Closeness 

Centrality is defined as the total distance between a particular node in the system and all 

other nodes in that system. This involves, as a first step, calculating the shortest paths in 

the system. 

In this formal definition, v and t are two vertices in the set of vertices V. Here then 

dG(v,t) is the distance between the two nodes, as determined by the shortest path. It is a 

simple and intuitive measure of network centrality. 

We plot the Closeness Centrality and the k-core shells in the Figure above.  This 

Figure 31: Hibernate-ORM Closeness Centrality
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We plot the Closeness Centrality and the k-core shells in the Figure above.  This 

plot shows a similar relationship as we discovered for the degree. This makes intuitive 

sense, as classes with a high degree will tend to be more central than those with a lower 

degree. The relationship here again seems to be a clear lower bound on the centrality of 

the maximal k-core, along with each class with an exceptionally high centrality score 

belonging to the 16-core. 

Figure 32: Apache-Ant Closeness Centrality

Figure 33: JHotDraw Closeness Centrality
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The above plots again show that for the latest versions of the other two software 

products, the general pattern matches very closely. Apache-Ant is has fewer obvious 

outliers, and JHotDraw appears to have a more obvious concentration of high centrality 

in the maximal k-core. 

IX.3    Betweenness Centrality vs K-Core

The final centrality measure we examined in relation to k-core degeneracy was 

betweenness centrality. Like closeness centrality, the first step in this algorithm is to 

determine the shortest paths in the network. Unlike closeness centrality, this measure only 

cores about the shortest paths in the network that pass through the measured vertice.

So a vertice can have a high centrality by other measures, having a high degree 

and many connections, but still have a low betweenness centrality if there is another 

vertice (perhaps a neighbor) that is even better connected to important nodes in the 

system. The measure can be thought of as measuring the extent to which a vertice serves 

as a bridge in the network. If two parts of a software system are largely segregated, a 

class that served as the link between the sub-graphs would have a very high betweenness 

centrality.

The formal definition for betweenness centrality is expressed as:
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Here v is the examined node, while s and t are different nodes from v and from 

each-other. Ost is the total number of shortest paths from s to t, and Ost(v) is the number 

of shortest paths that pass through v. The sum of this ration for each node in the network 

derives the final score.

In figure 34, the betweenness centrality axis is logarithmically scaled. The 

relationship presented in this graph is a little more interesting, in that there is a large 

range of centralities in the lower k-core shells. As you get closer to the maximal k-core, 

very similar observations can be made as with degree and closeness centrality.  

Figure 34: Hibernate-ORM Betweenness Centrality
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The classes with very high betweenness centrality are in the maximal k-core, and 

each class in the maximal k-core has a betweenness score of at least 120. As shown 

above, the final versions of our other two systems reveal similar plots. 

From examining these three centrality metrics, we conclude that there is a clear 

relationship between the centrality of a class and its k-core score. This validates that this 

maximal k-core is not an arbitrary selection of classes. These are classes that have 

importance to the network structure, based on having a large number of connections to 

Figure 36: JHotDraw Betweenness Centrality

Figure 35: Apache-Ant Betweenness Centrality
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other classes, and being central in the dependency network structure. However coreness 

is more than just a reflection of centrality, and is worthy of its own independent 

examination.

IX.4    Other Centrality Measures

Our research also calculated the eigenvector centrality values for our software 

systems using the JUNG framework. The eigenvector centrality relies on reasonably 

advanced linear algebra mathematics. At a high level, it gives connections to important 

nodes more weight than connections to unimportant nodes. It is similar to Google's 

famous Page Rank algorithm.

When examined for our software systems, it was found that the eigenvector 

centrality results calculated by JUNG had a near perfect correlation with degree. Based 

on this similarity, we felt that the analysis of degree was sufficient for covering this 

measure.

The final centrality measure we considered was katz centrality. In this measure, 

the centrality is determined by the number of neighbors a node has, as well as the nodes 

connected indirectly by those neighbors. At each step away from the measured node, 

there is an attenuation factor which does not give as much weight to distant connections.

It proved difficult to find a freely available implementation of this algorithm that 

was suitable for our purposes. We considered implementing our own version of the 

algorithm, but it did not seem an appropriate use of time, as the concept is not very 

different from closeness centrality or eigenvector centrality, and would likely have given 
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quite similar results. If in the future a suitable algorithm is made available, it could be 

interesting to analyze this metric as well.
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X.    K-Core and Community Detection

In complex network analysis, one important avenue of study is in community 

detection. Here a diverse set of algorithms exist that take a network and identify closely 

connected groups of nodes to identify as existing as part of the same community.

We used the Louvain Method of community detection for our research. This is a 

widely used algorithm based on a greedy optimization routine. In the first pass of this 

method, low level communities are detected. Subsequent passes group these communities 

into higher level communities, if such a grouping would increase the overall modularity 

of the overall community output. This aggregation leaves a set of high level communities, 

which we then compare with the output of our k-core decomposition algorithm.

Hibernate-ORM 4.0.1

Label Total 
Classes

Classes
In Core

% of 
System

% of 
Core

A 320 22 13.2% 16.8%

B 377 22 15.6% 16.8%

C 305 18 12.6% 13.7%

D 209 16 8.6% 12.2%

E 172 9 7.1% 6.9%

F 124 8 5.1% 6.1%

G 222 8 9.2% 6.1%

H 200 7 8.3% 5.3%

I 270 6 11.1% 4.6%

J 80 5 3.3% 3.8%

K 60 5 2.5% 3.8%

L 13 2 0.5% 1.5%

M 24 2 1.0% 1.5%

N 47 1 1.9% 0.80%

Table 3: Hibernate-ORM Communities
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One might expect the maximal k-core to be such an identified community, as this 

set of nodes is closely connected. However, our results indicate that instead, the maximal 

k-core is composed of classes from many different communities. While its true that the 

inner core is tightly connected, for most nodes in the k-core, there are other nodes in the 

network that are more truly “neighbors”, at least by this Louvain method. 

In fact, in analyzing the inner k-cores of our examined networks, it was the case 

that nearly all of the high level communities detected had representation in the the core. 

Communities without representation have very low member counts. One could 

hypothesize that in fact the most important members of each community will tend to 

make up the inner core. This would be a happy discovery for our purpose of identifying a 

Apache-Ant 1.8.2 JHotDraw 7.6.0

Label Total 
Classes

Classes
In 

Core

% of 
System

% of 
Core Label Total 

Classes

Classes
In 

Core

% of 
System

% of 
Core

A 171 15 17.2% 24.2% A 101 23 16.6% 21.9%

B 100 8 10.1% 12.9% B 126 20 20.7% 19.0%

C 159 7 16.0% 11.3% C 92 19 15.1% 18.1%

D 117 7 11.8% 11.3% D 89 15 14.6% 14.3%

E 80 5 8.1% 8.1% E 74 10 12.2% 9.5%

F 82 5 8.3% 8.1% F 48 4 7.9% 3.8%

G 50 4 5.0% 6.5% G 29 4 4.8% 3.8%

H 18 3 1.8% 4.8% H 17 3 2.8% 2.9%

I 68 3 6.9% 4.8% I 12 2 2.0% 1.9%

J 60 2 6.0% 3.2% J 12 2 2.0% 1.9%

K 22 2 2.2% 3.2% K 1 1 0.2% 1.0%

L 18 1 1.8% 1.6% L 2 1 0.3% 1.0%

M 3 0 0.3% 0.0% M 2 1 0.3% 1.0%

N 25 0 2.5% 0.0% N 2 0 0.3% 0.0%

O 19 0 1.9% 0.0% O 2 0 0.3% 0.00%

Table 4: Apache-Ant and JHotDraw Communities
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core subset of classes, as one would prefer not to miss out on an entire community of 

classes that aren't represented in the core.

The Louvain method found a remarkably similar number of communities for each 

of the three systems (13,14 and 14), despite their highly varied number of vertices. We 

see in these tables that for the most part, the representation of a community in the core is 

proportional with the total size of that community in the system. There are a few 

noteworthy outliers such as community I from the Hibernate-ORM system, which has 

less representation than expected. This variance can likely be explained by statistical 

noise. 
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XI.   K-Core Evolution

The reason we examined so many versions of the three selected software systems 

is because we were intent on studying the evolution of the k-core values between release 

versions of the products. Before tracing evolution at the class level, first we examine the 

evolution of the k-core shells at a system level.

XI.1    System Level Evolution

For analyzing system level evolution, we recorded the size and k value of the 

maximal k-core for each version and compared this with the total number of vertices 

(classes) in the total system.

Hibernate-ORM
Version Release Date Total 

Vertices
Vertices In Max K-

Core 
Max K-Core  

Level 

4.0.1.Final 1/11/2012 2429 131 16

4.0.0.CR4 9/30/2011 2403 130 16

3.6.9.Final 12/15/2011 2425 106 16

3.6.1.Final 2/3/2011 2404 106 16

3.5.0.CR2 2/25/2010 2196 98 16

3.2.7.GA 6/3/2009 1265 118 15

3.2.6.GA 2/7/2008 1245 117 15

3.2.2.GA 1/24/2007 1209 115 15

3.1.2 1/28/2006 1048 72 15

2.1.8 1/30/2005 549 61 12

2.1.2 2/4/2004 515 59 12

2.0.beta1 1/29/2003 427 38 11

0.9.4 1/29/2002 136 31 7

Figure 37: Hibernate-ORM System Level Evolution
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Here we see that Hibernate started as a very modest software system, having only 

136 named classes in the first release that we analyzed. The system has enjoyed a very 

active development life, growing to nearly 2,500 named classes, by far the largest of the 

three systems we examined. As the class count grew, so too did the max k-core level. 

However, as the class count grew, the k-core count grew at a much more modest rate. The 

maximal k-core value seems to have a pretty clear logarithmic growth rate. This makes 

intuitive sense, as we can think of the maximal k-core as being at the top of a pyramid 

structure, with lesser cores making up the lower levels. Each new level of the pyramid 

would need many more nodes to further elevate the peak.

The number of classes within the maximal k-core grows along with the vertex 

count, but this relationship too is not linear. While the first version has a core composing 

approximately 23% of the total system, our final version has a core of only about 5% of 

the total. It is important that our derived core be of manageable size even with very large 

software systems, and so this would appear to be a beneficial property of the k-core 

decomposition. 

It appears that when the system gains a new k-core level, the number of nodes in 

the maximal k-core drops down some. This is reminiscent of the electron shells of an 

atom, where the number of electrons in the outermost valence shell drops as the number 

of shells increases.
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The Apache-Ant software system also started out very small, with only 83 named 

classes. It too has grown over the years, but has only grown to a about 1000 classes. The 

growth of the maximal k-core value has not been as reliably growing as the Hibernate 

system, with one noticeable drop from 10 to 9 before climbing back up to 10.  

Apache-Ant

Version Release Date Total 
Vertices

Vertices In Max K-
Core 

Max K-Core  
Level 

1.8.2 12/27/2010 997 64 11

1.8.1 5/7/2010 792 33 11

1.8.0 2/8/2010 787 33 11

1.7.1 6/27/2008 709 79 10

1.7.0 12/19/2006 698 79 10

1.6.5 6/2/2005 558 61 9

1.6.2 7/14/2004 533 55 9

1.6.0 12/18/2003 507 59 10

1.5 7/10/2002 387 60 9

1.4.1 10/11/2001 248 31 9

1.3 3/3/2001 154 31 8

1.2 10/24/2000 154 31 8

1.1 7/19/2000 83 16 6

Figure 38: Apache-Ant System Level Evolution
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Finally, the JHotDraw system appears to have a more erratic growth more similar 

to the Apache-Ant system than Hibernate-ORM. The total named class count starts off 

higher than the initial versions of the other two systems, but the final version ends up to 

be the smallest of the three examined systems. 

JHotDraw

Version Release Date Total 
Vertices

Vertices In Max K-
Core 

Max K-Core 
Level 

7.6 1/9/2011 679 123 11

7.5.1 8/1/2010 677 72 12

7.4.1 1/17/2010 641 59 12

7.3 10/18/2009 631 68 12

7.2 5/23/2009 613 68 12

7.1 3/25/2008 409 42 11

7.0.9 6/23/2007 477 61 11

7.0.8 1/10/2007 308 44 10

7.0.7 11/12/2006 278 58 9

7.0.6 8/27/2006 278 58 9

5.4b1 2/1/2004 343 68 10

6.0b1 2/1/2004 339 59 10

5.3 2/9/2002 238 78 9

5.2 2/19/2001 170 47 9

Figure 39: JHotDraw System Level Evolution
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This chart demonstrates the relationship between the number of vertices (classes) 

in the system and the K value of the maximal k-core. A clear logarithmic growth can be 

seen in the Hibernate-ORM project. The Apache-Ant and JHotDraw systems also seem to 

follow a similar curve, but don't grow quite as fast or high in system size, so are less 

obvious.

Figure 40: Plot K-Core and Vertice Count All Systems
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XI.2    Component Level Evolution

We gathered the k-core history of each class in each of the three software systems, 

and analyzed these histories for insights.  

The primary implementation challenge in doing so was in preserving the history 

of a class when it was moved from one package to another, a fairly common occurrence. 

The simplest example of this renaming is the changing of the packages names, as a 

project redefines itself over the years. For instance, 

cirrus.hibernate.type.YesNoType was renamed to 

net.sf.hibernate.type.YesNoType before finally ending named 

org.hibernate.type.YesNoType. 

Non-trivial cases to solve included instances where a class is moved to a different 

package in the same version where another class is created with the same name in a 

different package. Here we needed to determine which class to assign the previously 

recorded history to. These gray areas could usually be solved by examining the 

connections of the two like named classes. In a few cases manual determination was 

made by examining the source code.
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In making observations about the k-core history, it is first useful to normalize the 

values. Each project underwent dramatic growth over the course of their development 

history. Consequently, the maximal k-core for the first version could be the 6-core, while 

in the latest version it would be the 16-core.  We normalize the values by dividing them 

by the maximum k-core value for that version. A history of 1.0 throughout each version 

would indicate that the class was in the maximal k-core in each version.

The first analysis attempted from these k-core histories was to determine if 

dramatic differences in k-core level between versions could be traced to design changes 

within the software system. In this first sampling of Hibernate-ORM history, we see that 

despite being in an upper k-core shell for most of the history of the product, the 

AbstractComponentType class underwent a dramatic decrease in its k-core value 

between versions 9 and 10 (3.5.0.CR2 → 3.6.1.Final). When examining the source code 

Figure 41: K-Core Class History, Selected Hibernate Classes
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for these two versions, we see that AbstractComponentType was deprecated in 

version 10. All of the functionality from this class was moved to CompositeType. 

The near inverse of this change can be seen in the DateType class. For most of 

the product's life it was in a mid-level k-core, but then between versions 9 and 10 there 

was a sharp increase towards a higher k-core shell. When the code is investigated for this 

class, we see that there was an introduction of multiple “Dialect” classes into the 

Hibernate system, which the framework uses to tailor generated SQL to the particular 

database types. The majority of these new dialects depends on this DateType class, 

increasing its relative importance to the system. 

When the histories for the k-core evolution were plotted, we discovered that some 

classes appeared to have undergone a correlated evolution. Two examples of this 

correlated evolution phenomenon are plotted below. The first set of these classes we 

found were the “Type” classes in the Hibernate-ORM system. These classes, like the 

DateType mentioned above, are used by the system to map object data to the 

corresponding database column type. The second case of correlated evolution clearly 

visible was in the “Parser” classes. These classes are used by the system for translating 

the Hibernate Query Language (HQL) into the corresponding SQL instructions.
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The plots for these two types of classes are shown on the following page in Figure 

42 and 43 respectively.

 

In observing this apparent co-evolution, we wanted to analyze these relationships, 

Figure 42: Correlated  Hibernate "Type" Evolution

Figure 43: Correlated Hibernate "Parser" Evolution
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The figure below is a heat-map generated from these Pearson coefficients. In this 

visualization, the lighter colors correspond to high correlations, those closer to 1.0. The 

darker colors are lower correlation scores, ones that indicate a low degree of co-

evolution. 

As only a very small percentage of classes in the systems have existed 

since the very first version of the software, we then weighted these correlations by how 

many combined versions they've existed in. Correlations that have only existed for the 

last few versions were treated as less interesting as correlations that exist throughout 

Figure 44: Hibernate-ORM Correlated Evolution Heat-map
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many version changes. We then took the highest correlations and examined them to 

determine if classes with a similar k-core history might also belong to the same 

communities. Various cutoffs were examined, between 75% correlation (coefficient of 

0.75 or higher) and 97% (coefficient of 0.97 or higher). The results are shown in the table 

below.

What we found was that these correlations did not appear to have any useful 

prediction capabilities for whether these classes where in the same Louvain assigned 

community. However, it did appear that classes that had correlated k-core evolution were 

typically in the same packages. In Java, a package is a grouping of classes, typically 

Hibernate-ORM

 75% 85% 90% 95% 97%

Number of Correlations 14929 2109 567 85 43

% In Same Package 6.5% 12.1% 23.8% 62.4% 90.6%

% In Same Community 10.2% 10.5% 11.3% 8.2% 4.7%

Apache-Ant

 75% 85% 90% 95% 97%

Number of Correlations 3073 790 337 92 65

% In Same Package 28.0% 43.4% 41.5% 44.6% 52.3%

% In Same Community 9.7% 9.5% 9.2% 10.9% 10.8%

JHotDraw

 75% 85% 90% 95% 97%

Number of Correlations 346 20 8 5 1

% In Same Package 7.5% 35.0% 25.0% 40.0% 100.0%

% In Same Community 15.3% 15.0% 12.5% 20.0% 0.0%

Table 5: Community and Package Prediction based on Correlated Evolution
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organized by serving a similar function. There are hundreds of packages in the Hibernate 

system, so to have over 60% of correlated k-core histories belong to the same package is 

statistically significant. 
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XII.  K-Cores and Seniority

From the investigations into the k-Core histories emerged the idea of examining 

the seniority of the classes in the software system, and how it might relate to the cores 

extracted from decomposition algorithm. Here we are defining seniority as a measure of 

how long an individual class has existed in the software system. 

Classes introduced in the very first examined release version would receive the 

maximum possible score equal to the number of these versions. A class introduced in the 

very last version would receive a score of one.

The central conjecture here is that in most organizational structures, the most 

important members will tend to be those that have been around the longest. We reason 

that the same is true of software systems, with the most critical classes tending to be 

those that were developed during the early life of the project, and which have persisted 

through design changes and refactoring efforts since then.

The most important thing about this metric is that it is completely independent of 

network structure. This means that if a correlation is found, it cannot merely be dismissed 

as being a metric that measures a similar quality, which could be argued for the centrality 

metrics. 

To examine this metric in relation to k-core decomposition, took the latest 

versions of the three systems, and calculated the average seniority of each class contained 

within the k-core shells of that system. This average seniority is shown in the table and 

graphs below:
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What we found is that there is a clear direct correlation between our seniority 

metric and the k-core shells of our software systems. The correlation is not perfect, as the 

Hibernate-ORM project has a slightly higher average seniority of the 14-core than it has 

in its 16-core. However, overall the average seniority increases in direct proportion to the 

k-core levels. This is especially clear in the JHotDraw and Apache-Ant projects, where 

the maximal 11-core has a large increase over any other k-core in that system.

K-Core Hibernate-ORM Apache-Ant JHotDraw

0 3.18 2.37 2.99

1 5.62 5.68 5.76

2 4.65 6.23 5.10

3 5.16 6.11 5.54

4 5.75 6.12 5.53

5 5.85 7.06 7.21

6 5.78 4.58 6.91

7 5.78 5.44 6.00

8 5.99 7.49 7.71

9 5.75 7.30 7.62

10 6.33 7.43 8.41

11 6.77 10.08 9.27

12 8.14   

13 9.09   

14 9.38   

15 8.49   

16 9.29   

Table 6: Average Seniority of Classes within K-Core
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In examining why it might be the case that Hibernate-ORM does have as clear of 

a trend as the other two products, it was discovered that a significant number of classes in 

the maximal core were introduced when the Hibernate-Annotations project was merged 

into the Hibernate-ORM baseline in version 3.6. These merged in classes are actually 

more senior than they appear, but development of these classes occurred in a different 

project umbrella. This explains why the average seniority for the 16-core of Hibernate-

ORM is slightly lower. Even so, the trend is clear, as seen in the graph below:

The above plot represents the same information as seen in Table 8. With a few 

outliers, the inner k-core shells have a much higher likelihood of containing the most 

love-lived classes in the software system.

Figure 45: K-Core and Average Seniority
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These results provide some degree of validation that the decomposition algorithm 

extracts a core that contains important classes, and not just by network analysis measures.
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XIII. Conclusions

In this research we set out to discover or create an automated way to extract the 

core classes of a complex software system. After examining the related literature, we first 

reproduced the MacCormack et al methodology against a sample of software systems 

(Hibernate, Ant, JHotDraw). What we found is that the results were not suitable for our 

research goals. We next examined the methodology of Holme, where k-core 

decomposition was the algorithm for extracting a core. 

Having favorable initial results with this method, we examined the relationship 

between social network metrics for centrality and the derived k-core shells. We found that 

the maximal k-core contained classes with a lower-bound centrality score for each metric 

that was greater than any other k-core shell. We also determined that the most central 

classes to the dependency network for each system were in this maximal k-core, partially 

validating that the most inner k-core contained important nodes and connections to the 

system.

Next the relationship between the maximal k-core and alternative community 

detection (Louvain method) was analyzed. We found that the maximal k-core was 

typically composed of a sampling of the most central nodes from each of the high level 

communities. This relationship between the centrality measures and the k-core values 

was remarkably similar across each of the three examined systems.

Our next avenue of exploration was in tracing the evolution of the k-core shells 

between versions of each of the three systems, a completely novel research path. We 

traced both the system level k-core evolution and the component level evolution for each 
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class. Having noticed that certain classes underwent an apparent co-evolution, we derived 

the correlation coefficients between classes in the system. We determined that these 

correlations typically occurred between classes in the same packages, which fulfill 

similar functions to the system.

Finally we used these k-core histories to determine the length of life in the 

software system for each class, termed the seniority. The average seniority for each class 

within the k-core shells of the latest versions of the software systems was compared, and 

we discovered a clear correlation between this seniority metric and the k-core level the 

classes ended up in. Classes that have been in the system longer are typically found in 

higher k-core shells. This provides a validation to the importance of these inner-most 

classes completely independent of network structure.

A software developer can use this k-core decomposition technique to analyze their 

systems for gaining system knowledge. The algorithm is fast and easily automated, and 

when combined with a tool like DependencyFinder, can be run against either the source 

code or binaries. The core of the software system can be presented to the developer for 

analysis. The overall system can be visualized with the Lanet-VI algorithm, and the core 

itself can be shown visually with any number of network display tools (such as JUNG).

This inner core meets the theoretical definition of coreness, and features the most 

central and tightly connected classes of the software system. It is our belief that studying 

this core will efficiently impart system knowledge. A developer using this decomposition 

and visualization method should arrive at greater understanding sooner than without 

employing this research tool.
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XIV.  Future Work

XIV.1  More Software Systems

Any of the observations made in our research would be strengthened by the 

application to more software systems. The process for extracting dependencies, applying 

the k-core decomposition algorithm, and then generating the relevant analysis data was 

done in a repeatable way. This allowed us to apply this process to 40 different software 

versions. A new software system would not be any different. The ability of 

DependencyFinder to extract directly from Java binaries assists the ease of this process 

greatly. 

XIV.2  More Diverse Systems

These three systems were all open source Java systems. This was an intentional 

choice, but the validity of the results would be broadened by examining systems that vary 

by some key characteristics.

• Commercial Systems

◦ Closed source commercial systems are developed by organizations with 

different priorities and methodologies from open source systems. 

• Larger Systems

◦ While the Hibernate framework was our largest system developed, there 

are many systems that are larger by an order of magnitude or two. 

Examples of these large systems would include operating systems. While 
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it may be useful to extract a core of around 150 classes from a system with 

2500 classes, would it be more or less useful to extract a core from a much 

larger system?

• Different Programming Languages

◦ Java is a language where many of the dependencies between classes are 

obscured by instead having your class depend on Interface objects. These 

interfaces are then implemented by the concrete class that calls your code. 

Languages that don't have these interface intermediaries have more tightly 

coupled code. The cores extracted from these systems could look very 

different.

XIV.3  Empirical Studies

The process of extracting a useful core is an interesting challenge, but how does 

one evaluate the usefulness of the generated core? Our research attempts this validation 

based on the importance of the classes in the system. However, what would truly validate 

this research is if a developer was given such a list of core classes, and we were able to 

evaluate how helpful it truly is. Measures of successful cognition could be applied to a 

developer who studied the system based on the identified core components versus a 

control where the developer was left to study the system without such aids. Given the 

scope constraints of our study, we were not able to pursue this sort of empirical testing. 

XIV.4  Validation with Experts

Another way to validate the results would be if we could compare our results of 

identified core classes against an expert generated list of core or critical classes. Attempts 
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to find existing documented class lists on Java products proved fruitless. We contacted 

posted to both the Hibernate and Apache-Ant developer's mailing lists asking for possible 

interest in providing a list of what classes they feel comprise the core of the system. We 

unfortunately received no interest. The manual work required for this task would be 

significant, so it is perhaps not surprising that no one wished to undertake such an 

endeavor. The difficulty in producing this core class list by hand can favorably contrasted 

with a program that performs the k-core decomposition within mere seconds. 

XIV.5  Comparison with other Software Metrics

A possible future research path could involve the further comparison with k-core 

values against other software engineering metrics, such as those which measure 

complexity. There are a wide variety of such metrics, including ones specifically 

designed for object oriented software.

Additionally, one could compare these k-core values against measures of churn 

(how often the class is changed). Intuitively, one could make the case that the core of a 

software system would be made up of classes changed most often, as they are the most 

critical. The counter-argument for this supposition would be that the core is the most 

dangerous to make changes to, and so should not be changed needlessly. It may be 

interesting to discover which of these intuitions, if either, is correct.
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Similarly, comparing these results with defect tracking systems could produce 

interesting results. It could be predicted that changes to core classes produce more defects 

than changes to more peripheral classes. This analysis would require a very good defect 

tracking system that ties each defect to the change which produced it.

XIV.6  Weighted Connections Between Classes

In our research we considered each dependency between two classes as being 

binary. This ignores that a class could reference a single method of a related class once, 

or it could call many different methods many times. One possible approach for modeling 

the software system would be to consider each of these references to be its own 

independent dependency. The k-core degeneracy algorithm would then consider these 

edges as just as valid as between classes, leading to classes that are more tightly 

connected making it further into the core. 

This modification to the algorithm could help capture the complexity of the 

classes, and to truly find a core that is tightly connected. No dependency extraction tool 

we considered has this fine of detail in the number of connections, but the 

DependencyFinder code is open source and could possibly be tweaked for this purpose.  

Similarly, our model of the software system could treat use relations as being 

weighted differently from inheritance relationships. If we have a software system with a 

core identified by system experts, various models could be applied and tested to 

determine which best fits.



90

XV.   References

[Borgotti and Everett, 1999]  S. P. Borgatti and M. G. Everett. Models of core / periphery 
structures.  Social Networks, 21:375–395, 1999

[Carmi et al, 2007]  S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir. A model of 
Internet toplogy using k-shell decomposition.  Proceedings of the National Academy 
of Sciences, vol. 104, no. 27, 11150-11154, 2007.

[Bader and Hogue, 2003]  G. D. Bader, C.W. V. Hogue.  An automated method for 
finding molecular complexes in large protein interaction networks.  BMC 
Bioinformatics, 4(2), 2003

[Gaertler and Patrignani, 2003]  M. Gaertler, M. Patrignani.  Dynamic Analysis of the 
Autonomous System Graph.  International Workshop on Inter-domain 
Performance and Simulation, 13-24, 2004.  

[Holme, 2005]  P. Holme.  Core-periphery organization of complex networks.  Physical 
Review E, 2005.

[Inoue et al, 2005] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, S. Kusumoto. 
Ranking significance of software components based on use relations. IEEE 
Transactions on Software Engineering, 31(3), 213–225, 2005.

[Kusiak et al, 1994] A. Kusiak, N. Larson, J. Wang. Reengineering of design and 
manufacturing processes. Computers and Industrial Engineering, 26(3), 521–536, 
1994.

[Hamelin et al, 2005]   J.I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, A. Vespignani.  K-
Core Decomposition:  A tool for the visualization of large scale networks. 
http://arxiv.org/abs/cs/0504107, 2005

[Hamelin et al, 2008]   J.I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, A. Vespignani. K-
Core decomposition of internet graphs:  hierarchies, self-similariry and measurement 
biases.  Networks and Heterogeneous Media 3, 371, 2008

[Han Yan Tong et al, 2002] A. H. Y. Tong, B. Drees, G. Nardelli, G. D. Bader, B. 
Brannetti, A Combined Experimental and Computaltional Strategy to Define Protein 
Interaction Networks for Peptide Recognition Modules, Science (New York, N.Y.). 
295(5553): 321-4.

http://arxiv.org/abs/cs/0504107


91

[Haohua et al, 2008]  Z. Haohua, Z. Hai, C. Wei, Z. Ming, L. Guilan, Z Haohua. 
Visualization and Cognition of Large-scale Software Structure using the k-core 
Analysis.  International Conference on Intelligent Information Hiding and 
Multimedia Signal Processing, 954-957, 2008

[MacCormack et al, 2010] A. MacCormack, C Baldwin, J. Rusnak.  The architecture of 
complex systems: Do core-periphery structures dominate? Harvard Business School  
Working Paper 10-059, 2010.

[Mayrhauser and Vans, 1995]  A. Mayrhauser, A. M. Vans.  Program Comprehension 
During Software Maintanence and Evolution.  Journal Computer,  vol. 28, issue 8, 
1995

[Myers, 2003] C. R. Myers. Software systems as complex networks: Structure, function 
and evolvability of software collaboration graphs. Phys. Rev. E, vol. 68, 2003.

[Nguyen et al, 2010]  T. H. D. Nguyen, B. Adams, A E. Hassan. Studying the impact of 
depdency network measures on software quality. IEEE International Conference on 
Software Maintenance, 1-10, 2010

[Paymal et al, 2001]  P. Paymal, R. Patil, S. Bhowmick, H. Siy.  Empirical Study of 
Software Evolution Using Community Detection, 2010

[Seidman, 1983] S. B. Seidman.  Network structure and minimum degree, Social 
Networks, 5, 269-287, 1983.

[Synder and Kick, 1979]  D. Snyder, E. Kick.  Structural Position in the World System 
and Economic Growth.  Aamerican Journal of Sociology 84: 1096-1126.  

[Tushman and Murmann, 1998]  J. P. Murmann,  M. L. Tushman.  Dominant Designs, 
Technology Cycles, and Organizational Outcomes.   Staw, B. and Cummings, L.L 
(eds.) Research in Organizational Behavior, JAI Press, Vol 20, 1998.

[Zimmermann and Nagappan, 2008]  T. Zimmermann, N. Nagappan,  Predicting Defects 
using Network Analysis on Dependency Graphs.  ICSE '08 Proceedings of the 30th I
nternational conference on Software Engineering, 531-540, 2008


	University of Nebraska at Omaha
	DigitalCommons@UNO
	6-2012

	IDENTIFYING CORE COMPONENTS IN SOFTWARE SYSTEMS
	Phillip Meyer
	Recommended Citation


	tmp.1561139931.pdf.Ug5dO

