
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

6-2012

IDENTIFYING CORE COMPONENTS IN
SOFTWARE SYSTEMS
Phillip Meyer
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Meyer, Phillip, "IDENTIFYING CORE COMPONENTS IN SOFTWARE SYSTEMS" (2012). Student Work. 2874.
https://digitalcommons.unomaha.edu/studentwork/2874

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2874?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2874&utm_medium=PDF&utm_campaign=PDFCoverPages

IDENTIFYING CORE
COMPONENTS IN SOFTWARE

SYSTEMS

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha

by

Phillip Meyer

June 2012

Supervisory Committee:

Dr. Harvey Siy

Dr. Sanjukta Bhowmick

Dr. William Mahoney

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1516935
Copyright 2012 by ProQuest LLC.

UMI Number: 1516935

Identifying Core Components in Software Systems

Phillip Meyer, MS

University of Nebraska, 2012

Advisors: Dr. Harvey Siy and Dr. Sanjukta Bhowmick

Abstract -- As large software systems are highly complex, they can be difficult for a

developer to understand. If a core subset of a software system could be extracted which

contains the most important classes and connections of the larger system, studying this

core would be useful for efficiently understanding the overall system. In this research we

examine research into core/periphery structures in networks, primarily focusing on the

use of k-core decomposition. The extracted dependencies of three open source Java

software systems provide the inputs, with forty different versions of these systems

analyzed in total. We derive inter-class dependencies from these releases and represent

them as undirected graphs. We extract the k-core values by recursively pruning the least

connected nodes within the networks, leaving an inner core. The resulting coreness

values are analyzed against centrality metrics and high-level communities detected by the

Louvain method. Both system level and component level evolution of coreness values for

these systems are studied. The validity of this approach for identifying software system

cores is discussed and analyzed.

i.

Table of Contents
I. Motivations..1
I.1 Cognition and Visualization......................1
I.2 Maintenance and Reusability......................2

II. Related Research.....................................4
II.1 [1979] Snyder and Kick4
II.2 [1998] Tushman5
II.3 [1999] Borgatti and Everett6
II.4 [2005] Petter Holme7
II.5 [2008] Haohua et al8
II.6 [2008] Zimmermann and Nagappan9
II.7 [2010] MacCormack et al.........................10

III. Methodology...13
III.1 Overview of Research Steps......................13
III.2 Workflow Diagrams...............................16
III.3 Tools Used......................................22

IV. Examined Software Systems...........................23
IV.1 Hibernate-ORM...................................23
IV.2 Apache-Ant......................................24
IV.3 JHotDraw..25

V. Dependency Extraction...............................27
VI. Reproducing MacCormack..............................36
VII. K-Core Decomposition................................41
VII.1 K-Cores in Other Research Contexts..............44

VIII. Visualization of K-Cores............................46
IX. K-Core and Centrality...............................55
IX.1 Degree vs K-Core................................55
IX.2 Closeness Centrality vs K-Core..................58
IX.3 Betweenness Centrality vs K-Core................60
IX.4 Other Centrality Measures.......................63

X. K-Core and Community Detection......................65
XI. K-Core Evolution....................................68
XI.1 System Level Evolution..........................68
XI.2 Component Level Evolution.......................73

XII. K-Cores and Seniority...............................80
XIII. Conclusions...84
XIV. Future Work...86
XV. References..90

ii.

Figure Index
Figure 1: World Trade Matrices, Before and After................5
Figure 2: Workflow for Component Level Analysis................16
Figure 3: Workflow of Aggregate Analysis Steps.................20
Figure 4: Inherited Members....................................28
Figure 5: Visible Outer-Class Members..........................30
Figure 6: Indirect Ancestors...................................31
Figure 7: Hibernate-ORM 4.0.0.CR4..............................36
Figure 8: Apache-Ant 1.8.0.....................................36
Figure 9: JHotDraw 7.6...36
Figure 10: Hibernate-ORM Transitive............................37
Figure 11: Apache-Ant Transitive...............................37
Figure 12: JHotDraw Transitive.................................37
Figure 13: Simple Graph Cores..................................41
Figure 14: Example K-Core Decomposition........................42
Figure 15: Protein Interaction Network K-Cores.................44
Figure 16: Hibernate 0.9.4 Lanet-VI............................47
Figure 17: Hibernate-ORM 0.9.4 Inner 7-Core....................48
Figure 18: Hibernate-ORM 4.1.6 Lanet-VI........................49
Figure 19: Hibernate-ORM 4.1.0 Inner 16-Core...................49
Figure 20: Apache-Ant 1.8.2 Lanet-VI...........................50
Figure 21: Apache-Ant Inner 11-Core............................51
Figure 22: JHotDraw 7.6 Lanet-VI...............................51
Figure 23: JHotDraw Inner 11-Core..............................52
Figure 24: Scientific Collaboration............................53
Figure 25: Internet Routers....................................53
Figure 26: Web Page Links......................................54
Figure 27: Random Graph..54
Figure 28: Degree and K-Core Hibernate-ORM.....................56
Figure 29: Apache-Ant Degree...................................57
Figure 30: JHotDraw Degree.....................................57
Figure 31: Hibernate-ORM Closeness Centrality..................58
Figure 32: Apache-Ant Closeness Centrality.....................59
Figure 33: JHotDraw Closeness Centrality.......................59
Figure 34: Hibernate-ORM Betweenness Centrality................61
Figure 35: Apache-Ant Betweenness Centrality...................62
Figure 36: JHotDraw Betweenness Centrality.....................62
Figure 37: Hibernate-ORM System Level Evolution................68
Figure 38: Apache-Ant System Level Evolution...................70
Figure 39: JHotDraw System Level Evolution.....................71
Figure 40: Plot K-Core and Vertice Count All Systems...........72
Figure 41: K-Core Class History, Selected Hibernate Classes....74
Figure 42: Correlated Hibernate "Type" Evolution..............76
Figure 43: Correlated Hibernate "Parser" Evolution.............76
Figure 44: Hibernate-ORM Correlated Evolution Heat-map.........77
Figure 45: K-Core and Average Seniority........................82

iii.

Table Index
Table 1: Canonical types from MacCormack, 2010.................11
Table 2: MacCormack Results on Examined Systems................39
Table 3: Hibernate-ORM Communities.............................66
Table 4: Apache-Ant and JHotDraw Communities...................67
Table 5: Community/Package Prediction on Correlated Evolution. .79
Table 6: Average Seniority of Classes within K-Core............82

1

I. Motivations

Real world software systems are composed of thousands of interconnected

components. Depending on the programming language, these components could be

classes, functions, aspects, packages or modules. However, not all of these components in

a system are of equal importance. We collectively refer to the most important and vital

components of the software system as the core of the system. If there existed an

automated method of identifying the core of a complex software system, the knowledge

of this core could be useful for several aspects of software engineering. These include the

understandability, maintainability, and re-usability of the systems.

There are currently no industry accepted tools or techniques for discovering this

essential software system core. In this research we examine existing concepts and

techniques from the literature to discover a simple and easily automated approach to this

identification.

I.1 Cognition and Visualization

A software developer can be thought to possess two distinct types of knowledge;

general and software-specific [Mayrhauser and Vans, 1995]. General knowledge is

independent of the system they are attempting to understand, while software-specific

knowledge applies to the individual software application. Part of this software-specific

knowledge encompasses the mental model of a software system that one may hold.

As a new developer on an existing large software system, one can be faced with

“information overload” when confronted with the task of studying the system as a whole.

2

There is just too much complexity to digest without a way to pare it down for

consumption. One can work on a software project for a significant length of time without

developing an accurate mental model of the subsystems and components that make up the

system as a whole.

Adequate documentation of a software system can help alleviate this prohibitive

learning curve, but this documentation often is lacking or non-existent. Many legacy

software applications have little beyond the source code, with no experts remaining on

the project to facilitate knowledge transfer.

It is in these situations where cognitive aids would be most useful for efficiently

acquiring software-specific knowledge. A list of core components that is much smaller

than the total system, yet contains the most important classes and connections of the

system, could be one such cognitive aid. Building an accurate mental model of the more

limited core is much easier, and the non-essential components are filtered out from

consideration. Information overload is reduced or eliminated.

I.2 Maintenance and Reusability

If one has a solid grasp over what classes compose the core of a software system,

this knowledge could also aid in efforts to maintain the system. If they are aware of the

relative importance of a component in relation to the system as a whole, a developer can

quickly assess the potential impact of a potential change. A change to a critical core

component would have a larger impact than updating a component which is only

peripherally related to the system.

3

System reusability can be improved with an accurately identified core subsystem

as well. For instance, if the system needed to be ported to a new programming language,

it may be worthwhile to port the essential core of the system first. This decision would

allow the core functionality of the system to be brought online sooner in the migration

effort. The developers could also take extra caution when porting these core components,

as a mistake here would be more costly than to a non-essential component.

Unit testing of the system would be impacted, as developers may want to focus on

developing automated unit tests around the core components versus applying them in an

arbitrary fashion. Writing test cases can be a time consuming process, and getting the

most beneficial coverage for the least amount of work would be appealing for project

management.

4

II. Related Research

The concept of core/periphery organizational structures did not originate in the

field of software engineering. It is an intuitive concept that has been used for a wide

range of research fields; including product engineering, geography, biology, social

sciences, and studies of corporate organizational structure. There also exist previous

academic attempts to identify the important modules of software systems.

In preparing for this research, we discovered research related to ours in one of two

possible directions; (1) Identifying the “most important”, “critical”, or “key” components

of software applications and (2) Attempts to identify the core of a given network, not

specific to software systems. Our work combines these two subjects, and so was

influenced by papers from both.

These related works are presented here in chronological order. In addition, we

devoted multiple weeks of study towards one particular related research effort which

directly deals with identifying cores of software systems, the MacCormack et al. 2010

paper. We cover that research in further detail in section VI.

II.1 [1979] Snyder and Kick

One of the earliest references to core/periphery structures found in the literature is

in the field of sociology, specifically in geopolitics. In the work done by Snyder and

Kick, the team attempts to examine interactions between the nations of the world in order

to group them into core, periphery, or semi-peripheral classifications. They do this based

on modeling trade flows, military interventions, diplomatic relations and treaty

5

memberships as networks. They then used a blockmodel process on these networks

(represented by matrices) to generate their classifications. Blockmodeling is a method of

re-ordering the rows and columns in a matrix based on their structural equivalence.

Here we see the world trade matrix, with the alphabetical ordering on left, and the

ordering after blockmodeling is applied on the right. Here the core nations would be

towards the lower right quadrant, with the peripheral nations towards the upper left. This

research appears to have been influential in its field, though has also faced significant

criticism [Nolan, 1983].

II.2 [1998] Tushman

There are also several papers referencing the concept of core/periphery structures

in the product engineering field . These were co-authored by Michael Tushman, in his

research into dominant designs. In this context, it is observed that changes to core

subsystems have a greater impact on the overall design of a product than other

components [Tushman, 1998]. In this research, a core subsystem is defined as being one

Figure 1: World Trade Matrices, Before and After

6

that is “tightly coupled to other subsystems”. In contrast, a peripheral subsystem is one

that is only loosely coupled to other subsystems. Examples of core subsystems in this

context would possibly include the engine of a car, or the CPU of a computer. In contrast,

examples of peripheral subsystems would then be less critical systems like the headlights

of a car, or the CD/DVD drive on a computer.

Identification of core subsystems in engineering realms that deal with physical

structures seems to be done entirely by intuition or post-hoc analytical processes.

Examples are given of core subsystems with no formal identification criterion

accompanying them.

II.3 [1999] Borgatti and Everett

In 1999, an influential paper was written by Stephen Borgatti and Martin Everett

that first attempted to define core/periphery structures in a formal way. The authors also

give two different conceptual models of the concept from which to develop core

identification algorithms from.

The graph theoretical approaches presented by this reasearch are very general, and

can be used to identify core/periphery structures in any network. Examples of networks

examined in the paper are diverse, including references between academic journals and

the interactions between monkeys within a colony.

The two models of core/periphery structures presented by this paper are the

discrete and continuous models. In the discrete model, the core is considered to be a sub-

graph that is central to the graph. The goal of an algorithm then is to classify a node as

7

either belonging to the core or periphery sets of nodes. There is no middle ground. In the

continuous model, the coreness of a node is instead a score along a range of possible

values. A node can be “more core” than another.

The research admits a very close relationship between their concept of core and

the more heavily researched graph theory concept of centrality. The key distinction made

between the two is that the nodes found with algorithms that measure centrality do not

necessarily result in a set of nodes that are at all connected. The goal then is to find the

core of the graph as a well connected sub-graph, and not just a loose set of nodes. This

research gives us a foundation of core identification that is distinct from simply finding

the most central components.

II.4 [2005] Petter Holme

The research done by Petter Holme for the University of Michigan was our first

exposure to the usage of k-core decomposition in analyzing the organization of graphs

and networks. The details of this algorithm are explained in depth in a later section, as

this approach ended up being the primary direction of our research.

In this paper the formal definition of core/periphery structures is referenced, and

the K-Core algorithm from graph theory was applied as a simple means of satisfying this

definition. The algorithm produces a core that is both well connected and central to the

examined networks. Interestingly, the values produced by this algorithm can be

considered as fulfilling both the discrete and continuous models of coreness. Each

8

component in the network is given an integer score which can be measured on a

continuous scale, and the maximal k-core can be segregated from the rest of the graph

and considered the discrete core of the system.

Holme extends the basic k-core decomposition algorithm by adding a step where

each derived shell has its average closeness centrality calculated, and the shell with the

highest average centrality considered the core. Our research identified this step as

redundant for our examined software networks, as in each case the highest average

centrality was the most innermost k-core.

In this research, networks from many different contexts are examined. These

include geoFigureal networks (highways, pipelines, streets, airports), acquaintance

networks, electronic networks, academic reference networks, food webs, neural networks,

five different biochemical networks, and even one software dependency network. In the

software dependency network based on the Linux operating system, the package was

chosen as the component granularity.

From this point the focus of Holme's research is comparing these network types

based on metrics computed from the derived coreness values. Here the networks with

clear real world hubs such as airports and internet routing were found to have the highest

core-periphery coefficient and assortative mixing coefficient. The Linux package

dependency network had fairly low values for each, compared to the networks with a

more well defined and obvious core.

II.5 [2008] Haohua et al

9

We discovered during the late stages of our research that we were not the first

team to apply k-core decomposition to software systems for analysis. In 2008, a team

from Shen'Yang China also used the k-cores of software systems for their research for

studying software hierarchies. The research here looked at ten different software systems,

each open source C/C++ systems. The K-Core values were computed, and some

observations made about the output of the algorithm on these systems.

Our research goes deeper in a few different directions, such as the relationship

between centrality and coreness in the examined systems. We also examine the evolution

of k-core values within software systems, and the relationship between K-Core

decomposition and community detection. This alternative direction serves to maintain the

novelty of our research, and lends support the conclusions reached by Haohua et al.

II.6 [2008] Zimmermann and Nagappan
In this research, a diverse array of social network analysis measures were captured

on the Windows Server 2003 software system. The team then used these metrics as a way

to predict defects in the system at the binary file level. This component level is similar in

concept to the Java class used in our research. Their results for each measure were

statistically correlated with the defect tracking system in use by the developers, using

Pearson and Spearman correlation coefficients.

The network analysis measures included both global and ego metrics. Here global

refers to metrics that measured the node's relation to the entire software system, and ego

metrics measure the relationship between a component and its immediate neighbors.

10

What they found was that some network analysis measures did offer some

measure of predictive ability, though the ego network metrics proved more useful than

the global network metrics. These predictive capabilities were more effective than similar

efforts for predicting defects based on popular complexity metrics.

Most interesting to our research is that there exists a developer maintained list of

critical binaries for Windows Server 2003. The team was able to predict these critical

binaries with network analysis measures with a success rate of 60%, which is much better

than the reported 30% reported for traditional complexity metrics.

This research showed that extensive work on conventional centrality measures

had already been done on software dependency networks, which allowed us to focus on

coreness measures instead. Later work by Nguyen et al. in 2010 reproduced this work on

the Eclipse, an open source IDE (Integrated Development Environment) written in Java.

They found that some results reached by Zimmermann were not applicable to their

research context, while others did still provide some benefit for defect prediction.

II.7 [2010] MacCormack et al

In a recent paper, a comprehensive analysis was done by a collaboration between

MIT and Harvard Business School to determine whether software system design is

dominated by core-periphery structures. Their research claimed that for the majority of

software systems analyzed, core subsystems were present and detectable based on their

invented algorithm.

The team used the call-graphs parsed from a large variety of software systems,

11

including commercial and open source projects. Their analysis looked at the components

at the class level, and a Design Structure Matrix (DSM) was used to represent the

dependencies between these classes.

The MacCormick research gives four different possible classifications for a

component, based on the transitive fan-in value (FIV) and fan-out value (FOV) of each

class. The combined variables create a two dimensional spectrum, from which the

components can be classified into four “canonical types”.

Their analysis then classified each component based on the results of matrix

multiplication operations applied to the matrix, designed to determine the FIV and FOV

values.

 They then determine the maximum possible values for the combined FIV/FOV,

and consider a component core if the combined values exceed 50% of the possible value.

The cutoff of 50% seems to be entirely arbitrary, but the team still uses this classification

Core Components:

High FIV, High FOV

Files with high visibility on both measures are “Core” files. They
are “seen by” many files and “see” many files. They are often
linked directly or indirectly to all other core files.

Shared Components:
High FIV, Low FOV

Files with high FIV are “Shared” files. They provide shared
functionality to many different parts of the system. These files are
“seen by” many files, but do not “see” many files.

Peripheral Components:
Low FIV, Low FOV

Files with low visibility on both measures are “Peripheral” files.
They are neither “seen by” many files nor “see” many files. They
typically execute independently of other files.

Control Components:
Low FIV, High FOV

Files with high VFO are “Control” files. They direct the flow of
program control to different parts of the system. These files “see”
many other files, but are not “seen by” many files.

Table 1: Canonical types from MacCormack, 2010

12

to make many observations about the domination of core-periphery structures in software

systems.

This classification into core or not-core buckets is binary in nature, which

resembles the discrete model of Borgatti and Everett. Two classes could be almost

identical, but if one of them has just one single dependency more than the other, it could

be enough tip the classification from one bucket to the other.

This arbitrary cutoff seems to be a limitation of the analysis, but was crucial for

their central question of determining whether core components exists in a particular

system. Their research reports that a significant number of software systems have no core

components at all, which is in contrast with our intuitive understanding.

Our first experimental direction was in reproducing this research on our

representative systems. The results of which are discussed in detail in a later section

13

III. Methodology

In this section, we will give a high level overview of the path our research took.

The details of these steps are given in later sections, along with our experimental results.

Figureal representations of the research work-flows are presented in this section, to aid

with attempts to duplicate this work.

III.1 Overview of Research Steps

1) Select Software Systems

The first step in our research is to select which software systems we want to examine for

the purpose of core identification. We chose three open source software systems that have

had active development for a length of time suited for evolutionary study.

2) Extract the Software Dependencies

Next we use a dependency extraction tool to discover both the use and inheritance

relationships from the examined systems. We compared the outputs and features of

several tools for this purpose, and made detail the critical decisions made when it came to

representing object oriented software dependencies in a data structure.

3) Reproduce the MacCormack Algorithm

As the MacCormack research appeared to closely represent our research goals, we first

examine their approach as a possible core identification method. We analyze the results of

their algorithm, and reject their work as not suitable for our purposes. The rationale for

14

this decision is presented.

4) Decompose Dependency Graphs using K-Core Algorithm

We then look to K-Core decomposition as our core identification method. Finding the

results to be promising for our purposes and having a strong theoretical basis, we then

focus our efforts on this approach. The algorithm finds cores that are manageable size

that are well connected and central to the software systems.

5) Create Visualizations of the Systems for K-Core Structure

There exists a very well done visualization method based on K-Core decomposition for

representing the network structure in two dimensions. We employ this algorithm on our

selected software systems, and make observations from them. In addition the inner core is

extracted to its own visualization Figure with the peripheral components removed, which

is then examined.

6) Compare with Detected Communities

Previous research done by members of our team focus on community detection in

software networks. We investigate the high level communities (detected with the Louvain

method) discovered in our software systems, and then compare them to the classes which

compose our inner cores.

7) Examine System Level Core Evolution

15

Each software system has a 10+ year history of release versions to draw from. We select

around thirteen versions of each system, and then examine the evolution of the inner core

between these release versions.

8) Examine Component Level Coreness Evolution

We also use the history of k-core values for each component in the system to attempt to

discover insights into those classes. We find that many classes have correlated k-core

evolution, and we examine the correlations to determine if they can be used to predict

whether the correlated classes have the same community or package.

9) Validate Cores with Seniority Metric

We then use these same k-core histories to discover a new metric, the “component

seniority”, and we compare these values to the k-core shells. This metric is simply how

long a given class has existed in the software system. This metric is completely

independent of network structure, and so serves to independently validate the importance

of the classes within the innermost core.

10) Discuss Implications of Research

Finally, we discuss the above results and their implications to our initial research goals.

We find that the results appear promising, but that more work to validate the usefulness

of the core in a real world development environment would be beneficial. Possible future

directions this research can take are then detailed.

16

III.2 Workflow Diagrams

In Figure 2, the high level flow of information is displayed. This would be the

same flow for each software system version, with the initial JAR file input differing.

Figure 2: Workflow for Component Level Analysis

17

 1. First, the DependencyFinder tool is used to output a text based representation of

the software dependencies.

 2. This text file is then inputted into my own program, which serves a number of

functions, detailed below.

 3. The first of these is to take these dependencies and represent them in a Graph

object from the JUNG framework.

 a) Each node is labeled from the fully qualified class name of the class.

 b) Each dependency is an edge and is given a numeric identifier.

 4. The software assigns each named class in the system a k-core value based on the

k-core decomposition algorithm. This file is then used for analyzing the k-core

evolution, both system and component level.

 5. Each class is given a numeric label. A file is generated which represents each

dependency as a single line, with the two numeric labels separated by a space.

This file is then gzipped.

 6. This file acts as the input to the Lanet-VI system. A portable network Figures

(PNG) file is generated by the Lanet-VI system, visually representing the k-core

structure of the system. The algorithm can be used through their website, or the

18

C++ source code can be downloaded and executed manually.

 7. JUNG is used to calculate several centrality metrics, including Eigenvector

Centrality, Closeness Centrality, and Degree. Jung provides implementations of

these algorithms within the framework.

 8. The FRLayout within JUNG is used to output the inner core of the system, with

customization for nicer looking diagrams. Attraction and repulsion factors

tweaked, and custom Transformer instances to render the nodes and edges

appropriately for the scale of these software networks.

 9. A text file is generated with a .DAT extension. This file is imported into Matlab,

which is set up with the functions from the Matlab Boost Graph Library included.

 10. These Matlab BGL functions are used to calculate the same centrality metrics

listed under the JUNG steps, for validation of results. The Betweenness Centrality

was also calculated with Matlab BGL, as the implementation of this algorithm is

more efficient in this tool.

 11. The dependencies in the network are written out in a simple text file, suitable for

input into the publicly available C++ implementation of the Louvain method of

community detection. This is just numbered nodes separated with spaces to

19

represent an edge.

 12. The C++ algorithm for Louvain method of community detection is executed

against this text input file. This algorithm was developed by Vincent Blondel,

Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. The algorithm

outputs to a file that displays the hierarchical communities in a tree structure.

20

 13. The results from step 4, the k-core outputs for each class, are inputted again to

my software for the analysis of evolution over time. Each version of the examined

system has its own input file of k-core values.

Figure 3: Workflow of Aggregate Analysis Steps

21

 14. The system level evolution is captured by examining the maximum k-core for

each inputted version and plotting over time.

 15. The k-core value history is generated for each class. These histories are used for

examining the component level evolution within the system.

 16. The k-core histories for each component are used to generate the new “seniority”

metric for each class in the system. Each shell in the final version has an average

seniority score computed, based on the mean value for each class that ended up in

that shell.

 17. The Apache Commons Math library is used to compute the normalized Pearson

correlation coefficients for the k-core histories of each class in the system. The

top correlations are then checked for community or package prediction.

22

III.3 Tools Used

DependencyFinder
http://depfind.sourceforge.net/

JUNG (Java Universal Network and Graph Library)
http://jung.sourceforge.net/

Lanet-VI
http://lanet-vi.soic.indiana.edu/

MATLAB
http://www.mathworks.com/products/matlab/

MATLAB BGL (Boost Graph Library)
http://www.mathworks.com/matlabcentral/fileexchange/10922

Apache Commons Math
http://commons.apache.org/math/

C++ Implementation of Louvain Method
https://sites.google.com/site/findcommunities/

http://depfind.sourceforge.net/
https://sites.google.com/site/findcommunities/
http://commons.apache.org/math/
http://www.mathworks.com/matlabcentral/fileexchange/10922
http://www.mathworks.com/products/matlab/
http://lanet-vi.soic.indiana.edu/
http://jung.sourceforge.net/

23

IV. Examined Software Systems

We decided that we would limit our initial research to three representative

software systems. The number was kept manageably low in order to fully explore the

evolution of these systems. All three systems are open source Java applications. Java is

one of the premier commercial development language, and is within the expertise of our

team. We selected systems that we have a familiarity to, to aid in us the interpretation of

our results. Hibernate-ORM and Apache-Ant are projects used extensively by Phil Meyer,

and JHotDraw had been studied in previous research by Dr. Siy and Dr. Bhowmick

[Paymal, 2010].

IV.1 Hibernate-ORM

The Hibernate framework is the premier object-relational mapping (ORM)

solution in Java development. It was created by Gavin King, was eventually brought into

the JBoss suite of application tools, and is now maintained by RedHat.

Most commercial Java systems have a relational database persistence data store

and a middle tier of object oriented entity classes. In the past the developer would need to

take the classes and manually write the code to generate the appropriate SQL to insert,

update, delete, and queries based on these entities. This was an arduous and error-prone

process.

The entity bean portion of the Enterprise Java Bean (EJB) specification was

meant to facilitate this object/database interaction, but in practice the technology had

many faults. The Hibernate framework was developed as an alternative to EJB

24

persistence, using a more light-weight solution that avoided many of the entity bean

pitfalls. Over time the Hibernate framework was split into a few different independent

projects, and it is the original object-relational mapping system that we study, now

deemed “Hibernate-ORM”.

Of the three systems we examined for this research, this is the software system

that grew the largest. The initial examined version (0.9.4) had a mere 136 named classes,

while the final version (4.0.1.Final) had nearly 2500. We examine 13 different versions of

the framework ranging from 2002 to 2012.

IV.2 Apache-Ant

The Apache Ant library is a tool for developers to build Java projects from the

source code to the executables. Here “Ant” is an acronym for “Another Neat Tool”. The

application was developed by the Apache Software Foundation, a non-profit corporation

made up of a decentralized community of software developers. The foundation maintains

dozens of open source software projects, and Ant is one of its most popular tools.

Apache Ant bases the Java build process around tasks and targets, typically

defined in an XML file. This product was designed as an alternative and improvement

over C++ Make files.

Example tasks would include ones that compile your code (javac) or bundle it up

in a jar file for distribution. A typical build script will clean the existing build artifacts,

compile the Java code, package the binaries into one or more java archive files, and then

copy these out to a deploy directory. Ant is designed in a way that this is easily automated

25

and can be fired off automatically. Individual tasks within the build file can be run

individually, or in sequence. Each task within the ant build file has its dependent tasks

defined, running them in sequence where needed.

While still in heavy use by the Java community, more modern build tools like

Apache-Maven have gained a strong following and are starting to become the preferred

tools for this purpose. We examined 13 versions of the Apache-Ant project released over

ten years, from 2000 to 2010.

IV.3 JHotDraw

The JHotDraw framework is another open source Java framework. This project

intends to provide a well-designed and extensible framework that one can use for creating

structured drawing editors. Appropriate contexts for using JHotDraw would include

building an applicationfor creating Pert diagrams or network layout graphs.

The framework provides a basic GUI editor with support for the most necessary

features of a drawing editor, including undo, save, load and print functions. The users

then extend this functionality for creating an editor specific for their needs.

JHotDraw is interesting from a design perspective in that it was consciously used

for exploring design patterns, and was influential in the development of this object

oriented design discipline. The framework was originally written in Smalltalk (and called

HotDraw) by the University of Illinois in Urbana-Champaign. It has since become an

open source project hosted by SourceForge.

We first examine version 5.2 after it was ported to Java in 2001. The JHotDraw

26

project underwent a major rewrite with the release of JHotDraw 7. In our research we

examine 14 versions in total, with the most recent released in 2011.

27

V. Dependency Extraction

A critical element to this research was the gathering of inter-class dependencies

from the examined software systems. The output of any algorithm is only as good as its

inputs, and core identification algorithms are no different. Despite the importance on

good inputs, other related research on examining the network structure of a software

system appears to take for granted the accuracy of the output of their dependency

extraction tool.

In our research one crucial determination was in defining what constitutes a

“component” in a Java application. The individual classes of the system was a likely

choice, but one could also choose to look for core packages, as was done in other

research [Holme 2005]. We chose to consider named Java classes as the discrete

components to examine.

Several tools were considered for the purpose of dependency extraction for our

research, including Soot, Doxygen, JDepend, DependencyFinder , and SPARS-J. The

outputs and features were compared and analyzed for validity. In general, the extracted

dependencies matched closely across tools. However, some small portion of the extracted

relationships differed, representing the corner cases of Object Oriented design. In the end

we chose the DepdencyFinder tool, in part based on the choices made in these cases.

 Notes on DependencyFinder:

• Developed by Jean Tessier, a former software engineer for Google and

LinkedIn.

• Parses the compiler generated .class files, which it can also read from JAR

28

or ZIP files.

◦ This allows the tool to generate the dependency output from the

released binaries and does not require the full source code.

• Outputs in XML and plain text format.

• Executes from command line, or from an included Swing based GUI for

ease of use.

Here we detail the most common gray areas of dependency identification, and

detail the choices that were made by the DependencyFinder tool:

V.1 Does a class have a direct dependency on the visible members of a superclass?

Here we have one class that extends a parent class, and inherits the members of

that superclass.

In this example, Chair inherits access to the style class instance variable,

which it may or may not use. It is clear that Furniture directly depends on the Style

Figure 4: Inherited Members

29

class, but does Chair?

In DependencyFinder, the determination is made based off whether the subclass

actually uses the visible member of the superclass. In the above example, if anywhere in

the Chair class a method style.getColor() is called, for example, then the

dependency is captured. If the superclass member is ignored completely, the Chair class

is not considered dependent. Some dependency extraction tools examined (SPARS-J)

include this as a dependency whether it uses the inherited members or not.

As inheritance relationships are heavily used in object oriented software systems,

this decision can have wide ranging consequences. After careful consideration this choice

was deemed to be preferred over the possible alternatives. As DependencyFinder works

by parsing the .class files generated from compiling the Java code, its likely that a

dependency on a superclass member only exists in the .class files if it is referenced

somewhere within the .java file.

V.2 Does an inner class depend on the members of the outer class.

30

This question is related to the previous one, but it does not necessarily have the

same answer. Technically, an inner class has access to the class members of the outer

class, even though it does not inherit from the outer class. In this example, does

Furniture$SurfaceType have a dependency on Style?

Again, DependencyFinder looks at whether the inner class actually uses the

member that it has access to. In the above example, the dependency is found only if the

style member is referenced directly within the inner class. We similarly find this decision

to be the preferred resolution.

V.3 Does a class directly depend on each of its ancestors in the class tree?

Figure 5: Visible Outer-Class Members

31

Here the question is whether a class depends directly on the parent of its parent,

and so on. Similarly, does a class depend on the interfaces of its parent class? In the

above example, the question is whether Recliner has a direct dependency on

Furniture.

The DependencyFinder tool does not consider this to be a direct relationship,

though at least one other tool (SPARS-J) does. This holds true for inherited interface

declarations as well.

V.4 Do dependencies on anonymously passed method parameters get captured?

This example involves a class passing a returned object directly into a method of

another class, without this object being referenced anywhere as a variable. This is

scenario may is not easily visualized without code to reference, so a simple constructed

Figure 6: Indirect Ancestors

32

example is provided below. This example contains four classes, named A, B, C and D.

In the above code segment, class A never directly references class D, but it does

depend on it, as it is returned from b.get(), and passed into c.use(). To see the

dependency exists, consider that the code in doTest could be re-factored as below, with

no change in code behavior:

public class A {

public void doTest() {
B b = new B();
C c = new C();
c.use(b.get());

}
}

public class B {
public D get() {

return new D();
}

}

public class C {
public void use(D d) {

System.out.println(d);
}

}

public class D {}

Text 1: Anonymously passed method parameters

33

DependencyFinder does capture this dependency faithfully, though at least one

other examined tool did not (Soot).

V.5 Are inner classes considered their own component or are they part of the outer

class?

Java allows inner classes defined within an outer class, and also lets you define a

class anonymously in your code, so these also needed to be considered.

In the above example, there is an inner class which implements Runnable that is

public class OuterClass {

public void doSomething(){

Runnable runnable = new Runnable(){
public void run() {

System.out.println("Running!");
}

};

runnable.run();
}

}

Text 3: Annonymous Inner Class Example

public void doTest() {

B b = new B();
C c = new C();
D d = b.get();
c.use(d);

}

Text 2: Alternative without anonymity

34

defined within the same method in which the code is executed. The class was constructed

in a way such that it has no name, and so cannot be referred to by another class within the

software system. One could construct an example where this anonymous class could be

passed into a method of an unrelated class to OuterClass and executed. However, to do

so it would have to be a polymorphic reference to the Runnable interface, and the

executing code would not know the name of the class it depends on at compile time.

In contrast, here is a named inner class that represents the same behavior as the

anonymous inner class. However, as the above class is defined formally with a name, any

unrelated class in the software system that has the appropriate permissions could access

this class. Here then the dependency is known at compile time.

DependencyFinder outputs named inner classes like with the outer class, a dollar

sign, then the inner class (OuterClass$InnerClass). Anonymous inner classes are

given a number, corresponding to the order they are defined in the outer class

public class OuterClass {

public void doSomething(){
Runnable runnable = new NamedInnerClass();
runnable.run();

}

class NamedInnerClass implements Runnable{

public void run() {
System.out.println("Running!");

}

}

}

Text 4: Named Inner Class Example

35

(OuterClass$1).

We decided to treat named inner classes as their own individual components from

the outer class. However, the dependencies of an anonymous inner class were rolled into

that of the class which defines them.

The reasons for this were because of (1) the impossibility of having a compile

time dependency, and also because of (2) the nature of how these classes are typically

used. When you use an anonymous inner class, you expect to execute the code of the

class immediately. They are transitory in nature.

36

VI. Reproducing MacCormack

Our first approach for finding the core of a software system was to reproduce the

MacCormack algorithm. We applied this algorithm to selected versions of Hibernate-

ORM and Apache-Ant, and JHotDraw, and then examined the results

Here we extract the dependencies from the source code, representing them in

adjacency matrices. These are not to scale, as the system sizes vary greatly:

Figure 7: Hibernate-ORM 4.0.0.CR4 Figure 8: Apache-Ant 1.8.0

Figure 9: JHotDraw 7.6

37

In the above Figures, the X and Y axis are the classes within the systems, with the

blue squares representing a dependency between classes. Here the diagonals relate to

each class being dependent on itself.

We then apply matrix multiplications to determine the transitive dependencies,

with each successive multiplication representing one step of indirection. Each of these

matrices is then summed together to form a final matrix that represents the transitive

dependencies. The following graphs show the results of this process.

Figure 10: Hibernate-ORM
Transitive

Figure 11: Apache-Ant Transitive

Figure 12: JHotDraw Transitive

38

What we see with these transitive graphs are some stark differences in the final

summed matrices. Hibernate-ORM has primarily horizontal lines, indicating that most

classes transitively “depend on almost everything”. This is explained later on in this

section with the logging implementation in this system. Apache-Ant has a fair number of

classes for whom “almost everyone depends on” transitively, such as the Project and

Task classes, leading to visible vertical lines. Finally JHotDraw is a more sparse,

indicating that many dependencies remain local even when expanded out, and don't end

up leading to dependence on the whole system.

We then grouped each class into the four classification buckets (Core, Peripheral,

Shared, Control) based on the calculate values. The results of this classification are

shown in the tables below:

39

The results were not encouraging for this being a practical and useful method of

identifying a core set of components. Of the three examined systems, only one had a core

at all, and this was too large to be of any practical use.

We further examined the identified core of the Hibernate system to determine

what set these classes apart from the classes put in the shared bucket. What we found cast

further doubt on this method being worthwhile for identifying core components. In this

system exists a logging class called

Hibernate-ORM

Classification Number of Classes Percent of System

Core 1121 62.0%

Peripheral 10 0.6%

Shared 657 37.0%

Control 4 0.20%

Apache-Ant

Classification Number of Classes Percent of System

Core 0 0.0%

Peripheral 893 79.60%

Shared 230 20.4%

Control 0 0.00%

JHotDraw

Classification Number of Classes Percent of System

Core 0 0.0%

Peripheral 203 77.0%

Shared 33 13.0%

Control 28 11.0%

Table 2: MacCormack Results on Examined Systems

40

org.hibernate.internal.CoreMessageLogger. The class has a dependency on

many other classes within the system, as it performs logging specific to the types of

objects passed into the methods.

This logger is used throughout the Hibernate- system, so whichever classes used

this logger also gained all the outbound transitive dependencies of the logger, which is

the majority of the software system. In this way nearly every class is dependent on every

other class transitively. This explains the mostly solid blue transitive dependency Figure.

Whether a class ends up in the core of the Hibernate system is largely dependent on

whether it uses this CoreMessageLogger. This is hardly a useful determiner of whether

a class is important or not.

So this algorithm is also too brittle to small design decisions to be of any practical

value. It appears that the MacCormack team spent too much time drawing conclusions

from their aggregated results and not enough time examining the output of any single

software system for validity.

41

VII. K-Core Decomposition

Based on the influence of the Petter Holme research, the next approach we looked

at for identifying the core of a software system was k-core decomposition [Seidman,

1983]. In this approach, an algorithm breaks a network down into a series of shells based

on the inter-connectivity of the vertices. Applied to our research context, the innermost

shell is then considered the core of the software system.

Formal definitions and implementation details of this algorithm can be found in

[Batagelj and Zaversnik, 2002] and [Hamelin et al, 2006] . The intuitive definition of the

k-core algorithm is fairly simple: Given undirected graph, recursively remove vertices

with degree less than k. The resulting graph has all vertices with degree of at least k. The

maximal k-core is the highest k-core that is not empty. The (k+1)-core would be empty.

Above we see some simple networks, and how they relate to a k-core score. In the

tree example, each node is only connected to one other node, while a ring has each node

connected to to two others. A clique, defined as a sub-graph where each node is

Figure 13: Simple Graph Cores

42

connected to each other node, corresponds to a k-core of N minus 1. Here below a 4-

clique is in fact a 3-core:

The example below shows the decomposition of a simple network, with the

algorithm finding a series of k-cores like the layers of an onion. In the first pass, the 0-

core is determined by removing any node not connected to any others. Then in the next

pass any node connected to only one other node is removed, becoming the 1-core.

Here we see that while there existed nodes in the 1-core with degree of two that

got included in the 1-core. This is because after the algorithm removes a node, it

considers the network again, and if your neighbor was removed it doesn't count toward

Figure 14: Example K-Core Decomposition

43

your degree. In this way a series of nodes that are only connected to low degree nodes

can be removed in series. It isn't enough to be connected to two other nodes, the nodes

you connect to must themselves be connected to two other nodes as well.

This concept is used elsewhere in the graph theory literature as degeneracy or

coloring-numbers. A classic example of the latter is when coloring a map, and choosing a

number of colors such that no two connected countries will get the same color. This can

be determined by calculating the k-cores of a graph that represents the map, and then the

number of colors needed is simply one more than the maximal k value. In the above k-

core example, only five unique colors would be needed for a map with nations

representing the nodes in the graph.

One advantage of this decomposition algorithm over others is that it is very fast,

with O(n) linear execution time. This is much faster than many other network metrics,

such as betweenness-centrality.

There is the potential for the inner core of a network to be in fact two or more

separate and unconnected cores. However, in examining the results of our software

systems, each maximal core was one interconnected sub-graph.

 Advantages of K-Core Decomposition:
• Fast (Linear run-time)
• Intuitive algorithm
• Concrete graph theory foundations
• Meets formal definition of coreness
• Cores are of manageable size in respect to system size
• All systems will have a core
• Proven useful in other research fields

44

Due to favorable initial experimental results, the focus of our research shifted

from finding a suitable algorithm to instead investigating the k-core approach for finding

cores, and its implications for software systems.

VII.1 K-Cores in Other Research Contexts

A s mentioned above, a primary reason for giving the k-core decomposition an

extended look for our purposes is that this network analysis tool has proven useful in

other research contexts.

The most prominent example of this is the usage of the algorithm for the analysis

of protein interaction networks. This research was done initially done by Amy Hin Yan

Tong et al 2002, by the University of Toronto.

In this Figure, the protein interaction network is modeled on the left A. The colors

of the nodes represent the k-core levels (6-core, black; 5-core, cyan; 4-core, blue; 3-core,

red; 2-core, green; 1-core, yellow). The interactions among the maximal 6-core are drawn

in red. This 6-core is then segregated out and represented on the right hand side as B.

Figure 15: Protein Interaction Network K-Cores

45

This research was expanded upon in [Bader and Houge, 2003] and other later

works. The results are clearly favorable for the suitability of k-core decomposition in

identifying cores in this research context.

The other research in which k-core decomposition has received a lot of attention

is in analyzing the connectivity of the internet. Examples of this can be found in [Gaertler

and Patrignani, 2003] as well as [Carmi et al, 2007] and other works. In this context it is

the various routers which handle requests that are modeled, and then examined by using

the k-core algorithm to break the network into a hierarchy of shells.

46

VIII. Visualization of K-Cores

Another advantage of k-core decomposition is that there exists a very nice

visualization algorithm that uses this technique to render a network Figureally. This

visualization algorithm is called Lanet-VI (Large Network-Visualization). It was

developed jointly by the Université of Paris-Sud, Indiana University, and CNRS. The

algorithm represents a few different aspects of network structure within the generated

image:

In addition to using the Lanet-VI tool to represent the system as a whole, we also

drill down and create a visual representation of the core classes alone, with all peripheral

Degree: The size of the nodes in the image correlate to the degree of the node,
based on a logarithmic scale.

K-Core value: The color of the node, as well as the position of that node in the
network, correlate to that node's k-core value. The nodes closer to the center of
the graph are the nodes with the highest k-core value in that graph. The k-core
values are also visually identifiable based on their position on the color
spectrum between blue and red. The more red colored nodes have higher k-
core values.

Clustering: The algorithm attempts to position nodes close together which are
connected to each-other and exist within the same shell.

Connectivity: Some portion of the edges within the network are also rendered.
By default, an optimal percentage of edges is determined, and then which edges
are displayed is randomly determined. This helps visualize the dense
connections of the inner shells, while not overwhelming the viewer with a mess
of thousands of visible edges. This factor can also be set manually, specifying
what percentage of edges to select, between 0% and 100%.
Also, nodes within a shell that have more connections to the nodes of the inner
shells are rendered slightly more inward than nodes only connected to outer
nodes.

47

nodes and edges pruned. The nodes are arranged with the Fruchterman-Reingold force-

directed algorithm for node layout using the JUNG framework.

To start with, we examine one of the smallest software systems we studied, the

initial release of Hibernate-ORM, 0.9.4.Beta. In the Lanet-VI visualization above, we see

that the largest nodes have a degree of about 50. The maximal k-core is the 7-core in this

instance, shown in red at the center of the Figure. With only 136 named classes in total,

this system is fairly simple to study. Unlike later systems with more classes, the orbital

shells are less clearly delineated, and most connections are faithfully rendered.

Then we break out this inner out and represent it with the Fruchterman-Reingold

layout. This algorithm arranges nodes based on an attraction multiplier, a repulsion

multiplier, and the number of iterations with which to run before stopping. In Figure 17

Figure 16: Hibernate 0.9.4 Lanet-VI

48

we see an easy to read graph, with the most central classes (Type,

HibernateException, etc) representing the most connected core classes.

Next we will examine the largest software network we studied, the final version of

the Hibernate-ORM framework, 4.1.6. Here we have nearly 2500 named classes to

represent. The number of nodes represented in the same space gives a Figure with clearly

arranged shell structure. The inner 16-core is the densely packed inner red cluster.

Figure 17: Hibernate-ORM 0.9.4 Inner 7-Core

49

We break out this inner core to examine in Figure 19 below. As this core has 131

nodes, it is densely displayed by the FR-Layout we are using. When showing this sub-

graph on a full page with ability to zoom, the information is more clearly captured.

Figure 19: Hibernate-ORM 4.1.0 Inner 16-Core

Figure 18: Hibernate-ORM 4.1.6 Lanet-VI

50

We see that the most central classes are often also the central classes of the

0.9.4.Beta release. We examine this evolution further in section XI.

In the next visualization diagram, we see that the Apache-Ant system has fewer

classes, and appears to have less dense organizational structure than the later version of

Hibernate-ORM. The maximal core is an 11-core, and the largest nodes have a degree

similar to that of the Hibernate-ORM visualization.

The maximal 11-core shown below is composed of only 64 nodes. This allows us

to clearly see that the most central nodes within the core are the Project and

BuildException classes. Like HibernateException, the BuildException is

used extensively throughout the system and so has a huge number of connections. Seeing

the core segregated out into its own network of classes, we can easily see just how tightly

connected these software cores are.

Figure 20: Apache-Ant 1.8.2 Lanet-VI

51

Finally here is the latest version of JHotDraw. Like the Apache-Ant system, this

system has a maximal k-core of 11. However, the inner core of this system has more

nodes, and the visualization seems to indicate a denser core structure. The largest nodes

have a degree of only 245, as fitting the smaller system.

Figure 21: Apache-Ant Inner 11-Core

Figure 22: JHotDraw 7.6 Lanet-VI

52

When we extract out this inner core in Figure 23, a tightly connected set of classes

is clearly shown. The most central and connected nodes in this case appear to be the

Figure and DrawingView interfaces. These two components were found to be

important to the software system by previous related work [Paymal, 2010].

Figure 23: JHotDraw Inner 11-Core

53

Each software system appears to be similar in general structure by the Lanet-VI

algorithm, as one might expect from their similar object oriented hierarchical structure.

One can view non-software network visualizations on the Lanet-VI website to see just

how different other network types can look.

Figure 24: Scientific Collaboration

Figure 25: Internet Routers

54

Here we see visualizations of scientific collaboration, internet routing, links on

web pages, and a random graph generated with the Erdös-Rényi model. One interesting

thing to note here is that while the World Wide Web network has millions of nodes, it still

has a maximal coreness lower than the 16-core of Hibernate-ORM. We also see that some

networks have multiple cores, while our software networks only have one core. The

similarity between Java software system networks is itself a noteworthy feature.

Figure 27: Random Graph

Figure 26: Web Page Links

55

IX. K-Core and Centrality

In the very early stages of our research, our initial concept of coreness was

indistinguishable from the concept of centrality. The Borgatti and Everett paper first

explained the relationship between the two measures. A coreness metric is a measure of

centrality, but a centrality metric is not necessarily a measure of coreness. The core of a

system cannot merely be composed of central nodes, but nodes which are also themselves

tightly connected to each-other. In this section we explore the relationship between k-core

degeneracy and three different centrality metrics: degree, closeness centrality, and

betweenness centrality.

This analysis was primarily done with data outputted by algorithms contained

within the Java Universal Network/Graph Framework (JUNG), based on the extracted

class dependencies. JUNG is an open source Java framework developed to provide an

easy to use API for graph and network programming. Also used was the Matlab Boost

Graph Library (BoostGL) package, which provides a number of functions for graph and

network algorithms.

IX.1 Degree vs K-Core

Simply put, degree of a node is the number of other nodes that a node connects to.

In the context of our research, this is the total number of classes which depend on the

examined class, or which the class itself depends on. We plotted the degree and k-core

levels for the latest versions of each of the software systems.

56

The above scatter plot demonstrates the relationship between degree and k-core

degeneracy. The y-axis is logarithmic scaled, and you can clearly see that every node

with degree of at least 150 is in the maximal k-core shell. This also shows the obvious

lower-bound such that a 16-core contains classes with a degree of at least 16, as each

class needs to be connected to at least 16 others.

Classes with a relatively high degree and only mid level k-core, like the outliers in

the 9, 11 and 12 cores, would represent classes that have a lot of connections, but that

these connections are to classes which are not themselves well connected. These would

be classes with more local importance than global importance to the software system.

Figure 28: Degree and K-Core Hibernate-ORM

57

The plots for the latest version of Apache-Ant and JHotDraw look very similar,

and are shown below. The trend seems to be that the maximal k-core contains the nodes

with very high degree, while a handful of nodes with only moderately high degree are

outliers.

Figure 29: Apache-Ant Degree

Figure 30: JHotDraw Degree

1

10

100

1000

0 2 4 6 8 10 12

58

IX.2 Closeness Centrality vs K-Core

The next centrality measure that we examined was closeness centrality. Closeness

Centrality is defined as the total distance between a particular node in the system and all

other nodes in that system. This involves, as a first step, calculating the shortest paths in

the system.

In this formal definition, v and t are two vertices in the set of vertices V. Here then

dG(v,t) is the distance between the two nodes, as determined by the shortest path. It is a

simple and intuitive measure of network centrality.

We plot the Closeness Centrality and the k-core shells in the Figure above. This

Figure 31: Hibernate-ORM Closeness Centrality

59

We plot the Closeness Centrality and the k-core shells in the Figure above. This

plot shows a similar relationship as we discovered for the degree. This makes intuitive

sense, as classes with a high degree will tend to be more central than those with a lower

degree. The relationship here again seems to be a clear lower bound on the centrality of

the maximal k-core, along with each class with an exceptionally high centrality score

belonging to the 16-core.

Figure 32: Apache-Ant Closeness Centrality

Figure 33: JHotDraw Closeness Centrality

60

The above plots again show that for the latest versions of the other two software

products, the general pattern matches very closely. Apache-Ant is has fewer obvious

outliers, and JHotDraw appears to have a more obvious concentration of high centrality

in the maximal k-core.

IX.3 Betweenness Centrality vs K-Core

The final centrality measure we examined in relation to k-core degeneracy was

betweenness centrality. Like closeness centrality, the first step in this algorithm is to

determine the shortest paths in the network. Unlike closeness centrality, this measure only

cores about the shortest paths in the network that pass through the measured vertice.

So a vertice can have a high centrality by other measures, having a high degree

and many connections, but still have a low betweenness centrality if there is another

vertice (perhaps a neighbor) that is even better connected to important nodes in the

system. The measure can be thought of as measuring the extent to which a vertice serves

as a bridge in the network. If two parts of a software system are largely segregated, a

class that served as the link between the sub-graphs would have a very high betweenness

centrality.

The formal definition for betweenness centrality is expressed as:

61

Here v is the examined node, while s and t are different nodes from v and from

each-other. Ost is the total number of shortest paths from s to t, and Ost(v) is the number

of shortest paths that pass through v. The sum of this ration for each node in the network

derives the final score.

In figure 34, the betweenness centrality axis is logarithmically scaled. The

relationship presented in this graph is a little more interesting, in that there is a large

range of centralities in the lower k-core shells. As you get closer to the maximal k-core,

very similar observations can be made as with degree and closeness centrality.

Figure 34: Hibernate-ORM Betweenness Centrality

62

The classes with very high betweenness centrality are in the maximal k-core, and

each class in the maximal k-core has a betweenness score of at least 120. As shown

above, the final versions of our other two systems reveal similar plots.

From examining these three centrality metrics, we conclude that there is a clear

relationship between the centrality of a class and its k-core score. This validates that this

maximal k-core is not an arbitrary selection of classes. These are classes that have

importance to the network structure, based on having a large number of connections to

Figure 36: JHotDraw Betweenness Centrality

Figure 35: Apache-Ant Betweenness Centrality

63

other classes, and being central in the dependency network structure. However coreness

is more than just a reflection of centrality, and is worthy of its own independent

examination.

IX.4 Other Centrality Measures

Our research also calculated the eigenvector centrality values for our software

systems using the JUNG framework. The eigenvector centrality relies on reasonably

advanced linear algebra mathematics. At a high level, it gives connections to important

nodes more weight than connections to unimportant nodes. It is similar to Google's

famous Page Rank algorithm.

When examined for our software systems, it was found that the eigenvector

centrality results calculated by JUNG had a near perfect correlation with degree. Based

on this similarity, we felt that the analysis of degree was sufficient for covering this

measure.

The final centrality measure we considered was katz centrality. In this measure,

the centrality is determined by the number of neighbors a node has, as well as the nodes

connected indirectly by those neighbors. At each step away from the measured node,

there is an attenuation factor which does not give as much weight to distant connections.

It proved difficult to find a freely available implementation of this algorithm that

was suitable for our purposes. We considered implementing our own version of the

algorithm, but it did not seem an appropriate use of time, as the concept is not very

different from closeness centrality or eigenvector centrality, and would likely have given

64

quite similar results. If in the future a suitable algorithm is made available, it could be

interesting to analyze this metric as well.

65

X. K-Core and Community Detection

In complex network analysis, one important avenue of study is in community

detection. Here a diverse set of algorithms exist that take a network and identify closely

connected groups of nodes to identify as existing as part of the same community.

We used the Louvain Method of community detection for our research. This is a

widely used algorithm based on a greedy optimization routine. In the first pass of this

method, low level communities are detected. Subsequent passes group these communities

into higher level communities, if such a grouping would increase the overall modularity

of the overall community output. This aggregation leaves a set of high level communities,

which we then compare with the output of our k-core decomposition algorithm.

Hibernate-ORM 4.0.1

Label Total
Classes

Classes
In Core

% of
System

% of
Core

A 320 22 13.2% 16.8%

B 377 22 15.6% 16.8%

C 305 18 12.6% 13.7%

D 209 16 8.6% 12.2%

E 172 9 7.1% 6.9%

F 124 8 5.1% 6.1%

G 222 8 9.2% 6.1%

H 200 7 8.3% 5.3%

I 270 6 11.1% 4.6%

J 80 5 3.3% 3.8%

K 60 5 2.5% 3.8%

L 13 2 0.5% 1.5%

M 24 2 1.0% 1.5%

N 47 1 1.9% 0.80%

Table 3: Hibernate-ORM Communities

66

One might expect the maximal k-core to be such an identified community, as this

set of nodes is closely connected. However, our results indicate that instead, the maximal

k-core is composed of classes from many different communities. While its true that the

inner core is tightly connected, for most nodes in the k-core, there are other nodes in the

network that are more truly “neighbors”, at least by this Louvain method.

In fact, in analyzing the inner k-cores of our examined networks, it was the case

that nearly all of the high level communities detected had representation in the the core.

Communities without representation have very low member counts. One could

hypothesize that in fact the most important members of each community will tend to

make up the inner core. This would be a happy discovery for our purpose of identifying a

Apache-Ant 1.8.2 JHotDraw 7.6.0

Label Total
Classes

Classes
In

Core

% of
System

% of
Core Label Total

Classes

Classes
In

Core

% of
System

% of
Core

A 171 15 17.2% 24.2% A 101 23 16.6% 21.9%

B 100 8 10.1% 12.9% B 126 20 20.7% 19.0%

C 159 7 16.0% 11.3% C 92 19 15.1% 18.1%

D 117 7 11.8% 11.3% D 89 15 14.6% 14.3%

E 80 5 8.1% 8.1% E 74 10 12.2% 9.5%

F 82 5 8.3% 8.1% F 48 4 7.9% 3.8%

G 50 4 5.0% 6.5% G 29 4 4.8% 3.8%

H 18 3 1.8% 4.8% H 17 3 2.8% 2.9%

I 68 3 6.9% 4.8% I 12 2 2.0% 1.9%

J 60 2 6.0% 3.2% J 12 2 2.0% 1.9%

K 22 2 2.2% 3.2% K 1 1 0.2% 1.0%

L 18 1 1.8% 1.6% L 2 1 0.3% 1.0%

M 3 0 0.3% 0.0% M 2 1 0.3% 1.0%

N 25 0 2.5% 0.0% N 2 0 0.3% 0.0%

O 19 0 1.9% 0.0% O 2 0 0.3% 0.00%

Table 4: Apache-Ant and JHotDraw Communities

67

core subset of classes, as one would prefer not to miss out on an entire community of

classes that aren't represented in the core.

The Louvain method found a remarkably similar number of communities for each

of the three systems (13,14 and 14), despite their highly varied number of vertices. We

see in these tables that for the most part, the representation of a community in the core is

proportional with the total size of that community in the system. There are a few

noteworthy outliers such as community I from the Hibernate-ORM system, which has

less representation than expected. This variance can likely be explained by statistical

noise.

68

XI. K-Core Evolution

The reason we examined so many versions of the three selected software systems

is because we were intent on studying the evolution of the k-core values between release

versions of the products. Before tracing evolution at the class level, first we examine the

evolution of the k-core shells at a system level.

XI.1 System Level Evolution

For analyzing system level evolution, we recorded the size and k value of the

maximal k-core for each version and compared this with the total number of vertices

(classes) in the total system.

Hibernate-ORM
Version Release Date Total

Vertices
Vertices In Max K-

Core
Max K-Core

Level

4.0.1.Final 1/11/2012 2429 131 16

4.0.0.CR4 9/30/2011 2403 130 16

3.6.9.Final 12/15/2011 2425 106 16

3.6.1.Final 2/3/2011 2404 106 16

3.5.0.CR2 2/25/2010 2196 98 16

3.2.7.GA 6/3/2009 1265 118 15

3.2.6.GA 2/7/2008 1245 117 15

3.2.2.GA 1/24/2007 1209 115 15

3.1.2 1/28/2006 1048 72 15

2.1.8 1/30/2005 549 61 12

2.1.2 2/4/2004 515 59 12

2.0.beta1 1/29/2003 427 38 11

0.9.4 1/29/2002 136 31 7

Figure 37: Hibernate-ORM System Level Evolution

69

Here we see that Hibernate started as a very modest software system, having only

136 named classes in the first release that we analyzed. The system has enjoyed a very

active development life, growing to nearly 2,500 named classes, by far the largest of the

three systems we examined. As the class count grew, so too did the max k-core level.

However, as the class count grew, the k-core count grew at a much more modest rate. The

maximal k-core value seems to have a pretty clear logarithmic growth rate. This makes

intuitive sense, as we can think of the maximal k-core as being at the top of a pyramid

structure, with lesser cores making up the lower levels. Each new level of the pyramid

would need many more nodes to further elevate the peak.

The number of classes within the maximal k-core grows along with the vertex

count, but this relationship too is not linear. While the first version has a core composing

approximately 23% of the total system, our final version has a core of only about 5% of

the total. It is important that our derived core be of manageable size even with very large

software systems, and so this would appear to be a beneficial property of the k-core

decomposition.

It appears that when the system gains a new k-core level, the number of nodes in

the maximal k-core drops down some. This is reminiscent of the electron shells of an

atom, where the number of electrons in the outermost valence shell drops as the number

of shells increases.

70

The Apache-Ant software system also started out very small, with only 83 named

classes. It too has grown over the years, but has only grown to a about 1000 classes. The

growth of the maximal k-core value has not been as reliably growing as the Hibernate

system, with one noticeable drop from 10 to 9 before climbing back up to 10.

Apache-Ant

Version Release Date Total
Vertices

Vertices In Max K-
Core

Max K-Core
Level

1.8.2 12/27/2010 997 64 11

1.8.1 5/7/2010 792 33 11

1.8.0 2/8/2010 787 33 11

1.7.1 6/27/2008 709 79 10

1.7.0 12/19/2006 698 79 10

1.6.5 6/2/2005 558 61 9

1.6.2 7/14/2004 533 55 9

1.6.0 12/18/2003 507 59 10

1.5 7/10/2002 387 60 9

1.4.1 10/11/2001 248 31 9

1.3 3/3/2001 154 31 8

1.2 10/24/2000 154 31 8

1.1 7/19/2000 83 16 6

Figure 38: Apache-Ant System Level Evolution

71

Finally, the JHotDraw system appears to have a more erratic growth more similar

to the Apache-Ant system than Hibernate-ORM. The total named class count starts off

higher than the initial versions of the other two systems, but the final version ends up to

be the smallest of the three examined systems.

JHotDraw

Version Release Date Total
Vertices

Vertices In Max K-
Core

Max K-Core
Level

7.6 1/9/2011 679 123 11

7.5.1 8/1/2010 677 72 12

7.4.1 1/17/2010 641 59 12

7.3 10/18/2009 631 68 12

7.2 5/23/2009 613 68 12

7.1 3/25/2008 409 42 11

7.0.9 6/23/2007 477 61 11

7.0.8 1/10/2007 308 44 10

7.0.7 11/12/2006 278 58 9

7.0.6 8/27/2006 278 58 9

5.4b1 2/1/2004 343 68 10

6.0b1 2/1/2004 339 59 10

5.3 2/9/2002 238 78 9

5.2 2/19/2001 170 47 9

Figure 39: JHotDraw System Level Evolution

72

This chart demonstrates the relationship between the number of vertices (classes)

in the system and the K value of the maximal k-core. A clear logarithmic growth can be

seen in the Hibernate-ORM project. The Apache-Ant and JHotDraw systems also seem to

follow a similar curve, but don't grow quite as fast or high in system size, so are less

obvious.

Figure 40: Plot K-Core and Vertice Count All Systems

73

XI.2 Component Level Evolution

We gathered the k-core history of each class in each of the three software systems,

and analyzed these histories for insights.

The primary implementation challenge in doing so was in preserving the history

of a class when it was moved from one package to another, a fairly common occurrence.

The simplest example of this renaming is the changing of the packages names, as a

project redefines itself over the years. For instance,

cirrus.hibernate.type.YesNoType was renamed to

net.sf.hibernate.type.YesNoType before finally ending named

org.hibernate.type.YesNoType.

Non-trivial cases to solve included instances where a class is moved to a different

package in the same version where another class is created with the same name in a

different package. Here we needed to determine which class to assign the previously

recorded history to. These gray areas could usually be solved by examining the

connections of the two like named classes. In a few cases manual determination was

made by examining the source code.

74

In making observations about the k-core history, it is first useful to normalize the

values. Each project underwent dramatic growth over the course of their development

history. Consequently, the maximal k-core for the first version could be the 6-core, while

in the latest version it would be the 16-core. We normalize the values by dividing them

by the maximum k-core value for that version. A history of 1.0 throughout each version

would indicate that the class was in the maximal k-core in each version.

The first analysis attempted from these k-core histories was to determine if

dramatic differences in k-core level between versions could be traced to design changes

within the software system. In this first sampling of Hibernate-ORM history, we see that

despite being in an upper k-core shell for most of the history of the product, the

AbstractComponentType class underwent a dramatic decrease in its k-core value

between versions 9 and 10 (3.5.0.CR2 → 3.6.1.Final). When examining the source code

Figure 41: K-Core Class History, Selected Hibernate Classes

75

for these two versions, we see that AbstractComponentType was deprecated in

version 10. All of the functionality from this class was moved to CompositeType.

The near inverse of this change can be seen in the DateType class. For most of

the product's life it was in a mid-level k-core, but then between versions 9 and 10 there

was a sharp increase towards a higher k-core shell. When the code is investigated for this

class, we see that there was an introduction of multiple “Dialect” classes into the

Hibernate system, which the framework uses to tailor generated SQL to the particular

database types. The majority of these new dialects depends on this DateType class,

increasing its relative importance to the system.

When the histories for the k-core evolution were plotted, we discovered that some

classes appeared to have undergone a correlated evolution. Two examples of this

correlated evolution phenomenon are plotted below. The first set of these classes we

found were the “Type” classes in the Hibernate-ORM system. These classes, like the

DateType mentioned above, are used by the system to map object data to the

corresponding database column type. The second case of correlated evolution clearly

visible was in the “Parser” classes. These classes are used by the system for translating

the Hibernate Query Language (HQL) into the corresponding SQL instructions.

76

The plots for these two types of classes are shown on the following page in Figure

42 and 43 respectively.

In observing this apparent co-evolution, we wanted to analyze these relationships,

Figure 42: Correlated Hibernate "Type" Evolution

Figure 43: Correlated Hibernate "Parser" Evolution

77

The figure below is a heat-map generated from these Pearson coefficients. In this

visualization, the lighter colors correspond to high correlations, those closer to 1.0. The

darker colors are lower correlation scores, ones that indicate a low degree of co-

evolution.

As only a very small percentage of classes in the systems have existed

since the very first version of the software, we then weighted these correlations by how

many combined versions they've existed in. Correlations that have only existed for the

last few versions were treated as less interesting as correlations that exist throughout

Figure 44: Hibernate-ORM Correlated Evolution Heat-map

78

many version changes. We then took the highest correlations and examined them to

determine if classes with a similar k-core history might also belong to the same

communities. Various cutoffs were examined, between 75% correlation (coefficient of

0.75 or higher) and 97% (coefficient of 0.97 or higher). The results are shown in the table

below.

What we found was that these correlations did not appear to have any useful

prediction capabilities for whether these classes where in the same Louvain assigned

community. However, it did appear that classes that had correlated k-core evolution were

typically in the same packages. In Java, a package is a grouping of classes, typically

Hibernate-ORM

 75% 85% 90% 95% 97%

Number of Correlations 14929 2109 567 85 43

% In Same Package 6.5% 12.1% 23.8% 62.4% 90.6%

% In Same Community 10.2% 10.5% 11.3% 8.2% 4.7%

Apache-Ant

 75% 85% 90% 95% 97%

Number of Correlations 3073 790 337 92 65

% In Same Package 28.0% 43.4% 41.5% 44.6% 52.3%

% In Same Community 9.7% 9.5% 9.2% 10.9% 10.8%

JHotDraw

 75% 85% 90% 95% 97%

Number of Correlations 346 20 8 5 1

% In Same Package 7.5% 35.0% 25.0% 40.0% 100.0%

% In Same Community 15.3% 15.0% 12.5% 20.0% 0.0%

Table 5: Community and Package Prediction based on Correlated Evolution

79

organized by serving a similar function. There are hundreds of packages in the Hibernate

system, so to have over 60% of correlated k-core histories belong to the same package is

statistically significant.

80

XII. K-Cores and Seniority

From the investigations into the k-Core histories emerged the idea of examining

the seniority of the classes in the software system, and how it might relate to the cores

extracted from decomposition algorithm. Here we are defining seniority as a measure of

how long an individual class has existed in the software system.

Classes introduced in the very first examined release version would receive the

maximum possible score equal to the number of these versions. A class introduced in the

very last version would receive a score of one.

The central conjecture here is that in most organizational structures, the most

important members will tend to be those that have been around the longest. We reason

that the same is true of software systems, with the most critical classes tending to be

those that were developed during the early life of the project, and which have persisted

through design changes and refactoring efforts since then.

The most important thing about this metric is that it is completely independent of

network structure. This means that if a correlation is found, it cannot merely be dismissed

as being a metric that measures a similar quality, which could be argued for the centrality

metrics.

To examine this metric in relation to k-core decomposition, took the latest

versions of the three systems, and calculated the average seniority of each class contained

within the k-core shells of that system. This average seniority is shown in the table and

graphs below:

81

What we found is that there is a clear direct correlation between our seniority

metric and the k-core shells of our software systems. The correlation is not perfect, as the

Hibernate-ORM project has a slightly higher average seniority of the 14-core than it has

in its 16-core. However, overall the average seniority increases in direct proportion to the

k-core levels. This is especially clear in the JHotDraw and Apache-Ant projects, where

the maximal 11-core has a large increase over any other k-core in that system.

K-Core Hibernate-ORM Apache-Ant JHotDraw

0 3.18 2.37 2.99

1 5.62 5.68 5.76

2 4.65 6.23 5.10

3 5.16 6.11 5.54

4 5.75 6.12 5.53

5 5.85 7.06 7.21

6 5.78 4.58 6.91

7 5.78 5.44 6.00

8 5.99 7.49 7.71

9 5.75 7.30 7.62

10 6.33 7.43 8.41

11 6.77 10.08 9.27

12 8.14

13 9.09

14 9.38

15 8.49

16 9.29

Table 6: Average Seniority of Classes within K-Core

82

In examining why it might be the case that Hibernate-ORM does have as clear of

a trend as the other two products, it was discovered that a significant number of classes in

the maximal core were introduced when the Hibernate-Annotations project was merged

into the Hibernate-ORM baseline in version 3.6. These merged in classes are actually

more senior than they appear, but development of these classes occurred in a different

project umbrella. This explains why the average seniority for the 16-core of Hibernate-

ORM is slightly lower. Even so, the trend is clear, as seen in the graph below:

The above plot represents the same information as seen in Table 8. With a few

outliers, the inner k-core shells have a much higher likelihood of containing the most

love-lived classes in the software system.

Figure 45: K-Core and Average Seniority

83

These results provide some degree of validation that the decomposition algorithm

extracts a core that contains important classes, and not just by network analysis measures.

84

XIII. Conclusions

In this research we set out to discover or create an automated way to extract the

core classes of a complex software system. After examining the related literature, we first

reproduced the MacCormack et al methodology against a sample of software systems

(Hibernate, Ant, JHotDraw). What we found is that the results were not suitable for our

research goals. We next examined the methodology of Holme, where k-core

decomposition was the algorithm for extracting a core.

Having favorable initial results with this method, we examined the relationship

between social network metrics for centrality and the derived k-core shells. We found that

the maximal k-core contained classes with a lower-bound centrality score for each metric

that was greater than any other k-core shell. We also determined that the most central

classes to the dependency network for each system were in this maximal k-core, partially

validating that the most inner k-core contained important nodes and connections to the

system.

Next the relationship between the maximal k-core and alternative community

detection (Louvain method) was analyzed. We found that the maximal k-core was

typically composed of a sampling of the most central nodes from each of the high level

communities. This relationship between the centrality measures and the k-core values

was remarkably similar across each of the three examined systems.

Our next avenue of exploration was in tracing the evolution of the k-core shells

between versions of each of the three systems, a completely novel research path. We

traced both the system level k-core evolution and the component level evolution for each

85

class. Having noticed that certain classes underwent an apparent co-evolution, we derived

the correlation coefficients between classes in the system. We determined that these

correlations typically occurred between classes in the same packages, which fulfill

similar functions to the system.

Finally we used these k-core histories to determine the length of life in the

software system for each class, termed the seniority. The average seniority for each class

within the k-core shells of the latest versions of the software systems was compared, and

we discovered a clear correlation between this seniority metric and the k-core level the

classes ended up in. Classes that have been in the system longer are typically found in

higher k-core shells. This provides a validation to the importance of these inner-most

classes completely independent of network structure.

A software developer can use this k-core decomposition technique to analyze their

systems for gaining system knowledge. The algorithm is fast and easily automated, and

when combined with a tool like DependencyFinder, can be run against either the source

code or binaries. The core of the software system can be presented to the developer for

analysis. The overall system can be visualized with the Lanet-VI algorithm, and the core

itself can be shown visually with any number of network display tools (such as JUNG).

This inner core meets the theoretical definition of coreness, and features the most

central and tightly connected classes of the software system. It is our belief that studying

this core will efficiently impart system knowledge. A developer using this decomposition

and visualization method should arrive at greater understanding sooner than without

employing this research tool.

86

XIV. Future Work

XIV.1 More Software Systems

Any of the observations made in our research would be strengthened by the

application to more software systems. The process for extracting dependencies, applying

the k-core decomposition algorithm, and then generating the relevant analysis data was

done in a repeatable way. This allowed us to apply this process to 40 different software

versions. A new software system would not be any different. The ability of

DependencyFinder to extract directly from Java binaries assists the ease of this process

greatly.

XIV.2 More Diverse Systems

These three systems were all open source Java systems. This was an intentional

choice, but the validity of the results would be broadened by examining systems that vary

by some key characteristics.

• Commercial Systems

◦ Closed source commercial systems are developed by organizations with

different priorities and methodologies from open source systems.

• Larger Systems

◦ While the Hibernate framework was our largest system developed, there

are many systems that are larger by an order of magnitude or two.

Examples of these large systems would include operating systems. While

87

it may be useful to extract a core of around 150 classes from a system with

2500 classes, would it be more or less useful to extract a core from a much

larger system?

• Different Programming Languages

◦ Java is a language where many of the dependencies between classes are

obscured by instead having your class depend on Interface objects. These

interfaces are then implemented by the concrete class that calls your code.

Languages that don't have these interface intermediaries have more tightly

coupled code. The cores extracted from these systems could look very

different.

XIV.3 Empirical Studies

The process of extracting a useful core is an interesting challenge, but how does

one evaluate the usefulness of the generated core? Our research attempts this validation

based on the importance of the classes in the system. However, what would truly validate

this research is if a developer was given such a list of core classes, and we were able to

evaluate how helpful it truly is. Measures of successful cognition could be applied to a

developer who studied the system based on the identified core components versus a

control where the developer was left to study the system without such aids. Given the

scope constraints of our study, we were not able to pursue this sort of empirical testing.

XIV.4 Validation with Experts

Another way to validate the results would be if we could compare our results of

identified core classes against an expert generated list of core or critical classes. Attempts

88

to find existing documented class lists on Java products proved fruitless. We contacted

posted to both the Hibernate and Apache-Ant developer's mailing lists asking for possible

interest in providing a list of what classes they feel comprise the core of the system. We

unfortunately received no interest. The manual work required for this task would be

significant, so it is perhaps not surprising that no one wished to undertake such an

endeavor. The difficulty in producing this core class list by hand can favorably contrasted

with a program that performs the k-core decomposition within mere seconds.

XIV.5 Comparison with other Software Metrics

A possible future research path could involve the further comparison with k-core

values against other software engineering metrics, such as those which measure

complexity. There are a wide variety of such metrics, including ones specifically

designed for object oriented software.

Additionally, one could compare these k-core values against measures of churn

(how often the class is changed). Intuitively, one could make the case that the core of a

software system would be made up of classes changed most often, as they are the most

critical. The counter-argument for this supposition would be that the core is the most

dangerous to make changes to, and so should not be changed needlessly. It may be

interesting to discover which of these intuitions, if either, is correct.

89

Similarly, comparing these results with defect tracking systems could produce

interesting results. It could be predicted that changes to core classes produce more defects

than changes to more peripheral classes. This analysis would require a very good defect

tracking system that ties each defect to the change which produced it.

XIV.6 Weighted Connections Between Classes

In our research we considered each dependency between two classes as being

binary. This ignores that a class could reference a single method of a related class once,

or it could call many different methods many times. One possible approach for modeling

the software system would be to consider each of these references to be its own

independent dependency. The k-core degeneracy algorithm would then consider these

edges as just as valid as between classes, leading to classes that are more tightly

connected making it further into the core.

This modification to the algorithm could help capture the complexity of the

classes, and to truly find a core that is tightly connected. No dependency extraction tool

we considered has this fine of detail in the number of connections, but the

DependencyFinder code is open source and could possibly be tweaked for this purpose.

Similarly, our model of the software system could treat use relations as being

weighted differently from inheritance relationships. If we have a software system with a

core identified by system experts, various models could be applied and tested to

determine which best fits.

90

XV. References

[Borgotti and Everett, 1999] S. P. Borgatti and M. G. Everett. Models of core / periphery
structures. Social Networks, 21:375–395, 1999

[Carmi et al, 2007] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir. A model of
Internet toplogy using k-shell decomposition. Proceedings of the National Academy
of Sciences, vol. 104, no. 27, 11150-11154, 2007.

[Bader and Hogue, 2003] G. D. Bader, C.W. V. Hogue. An automated method for
finding molecular complexes in large protein interaction networks. BMC
Bioinformatics, 4(2), 2003

[Gaertler and Patrignani, 2003] M. Gaertler, M. Patrignani. Dynamic Analysis of the
Autonomous System Graph. International Workshop on Inter-domain
Performance and Simulation, 13-24, 2004.

[Holme, 2005] P. Holme. Core-periphery organization of complex networks. Physical
Review E, 2005.

[Inoue et al, 2005] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, S. Kusumoto.
Ranking significance of software components based on use relations. IEEE
Transactions on Software Engineering, 31(3), 213–225, 2005.

[Kusiak et al, 1994] A. Kusiak, N. Larson, J. Wang. Reengineering of design and
manufacturing processes. Computers and Industrial Engineering, 26(3), 521–536,
1994.

[Hamelin et al, 2005] J.I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, A. Vespignani. K-
Core Decomposition: A tool for the visualization of large scale networks.
http://arxiv.org/abs/cs/0504107, 2005

[Hamelin et al, 2008] J.I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, A. Vespignani. K-
Core decomposition of internet graphs: hierarchies, self-similariry and measurement
biases. Networks and Heterogeneous Media 3, 371, 2008

[Han Yan Tong et al, 2002] A. H. Y. Tong, B. Drees, G. Nardelli, G. D. Bader, B.
Brannetti, A Combined Experimental and Computaltional Strategy to Define Protein
Interaction Networks for Peptide Recognition Modules, Science (New York, N.Y.).
295(5553): 321-4.

http://arxiv.org/abs/cs/0504107

91

[Haohua et al, 2008] Z. Haohua, Z. Hai, C. Wei, Z. Ming, L. Guilan, Z Haohua.
Visualization and Cognition of Large-scale Software Structure using the k-core
Analysis. International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 954-957, 2008

[MacCormack et al, 2010] A. MacCormack, C Baldwin, J. Rusnak. The architecture of
complex systems: Do core-periphery structures dominate? Harvard Business School
Working Paper 10-059, 2010.

[Mayrhauser and Vans, 1995] A. Mayrhauser, A. M. Vans. Program Comprehension
During Software Maintanence and Evolution. Journal Computer, vol. 28, issue 8,
1995

[Myers, 2003] C. R. Myers. Software systems as complex networks: Structure, function
and evolvability of software collaboration graphs. Phys. Rev. E, vol. 68, 2003.

[Nguyen et al, 2010] T. H. D. Nguyen, B. Adams, A E. Hassan. Studying the impact of
depdency network measures on software quality. IEEE International Conference on
Software Maintenance, 1-10, 2010

[Paymal et al, 2001] P. Paymal, R. Patil, S. Bhowmick, H. Siy. Empirical Study of
Software Evolution Using Community Detection, 2010

[Seidman, 1983] S. B. Seidman. Network structure and minimum degree, Social
Networks, 5, 269-287, 1983.

[Synder and Kick, 1979] D. Snyder, E. Kick. Structural Position in the World System
and Economic Growth. Aamerican Journal of Sociology 84: 1096-1126.

[Tushman and Murmann, 1998] J. P. Murmann, M. L. Tushman. Dominant Designs,
Technology Cycles, and Organizational Outcomes. Staw, B. and Cummings, L.L
(eds.) Research in Organizational Behavior, JAI Press, Vol 20, 1998.

[Zimmermann and Nagappan, 2008] T. Zimmermann, N. Nagappan, Predicting Defects
using Network Analysis on Dependency Graphs. ICSE '08 Proceedings of the 30th I
nternational conference on Software Engineering, 531-540, 2008

	University of Nebraska at Omaha
	DigitalCommons@UNO
	6-2012

	IDENTIFYING CORE COMPONENTS IN SOFTWARE SYSTEMS
	Phillip Meyer
	Recommended Citation

	tmp.1561139931.pdf.Ug5dO

