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Hotspots of a word/topic are time periods with a burst of activities in a time stamped 

document set. Identifying and analyzing hot spots of topics has been an important area of 

research. Finding hot spots of topics requires processing of contents of documents which 

is often time consuming. In this thesis, we explore MapReduce style algorithms for 

computing hot spots of topics. MapReduce is a distributed parallel programming model 

and an associated implementation for processing and analyzing large datasets. User 

specifies a map function that processes a key/value pair to generate a set of intermediate 

key/value pairs, and a reduce function that merges all intermediate values associated with 

the same intermediate key. Many real world tasks are expressible in this model and this 

thesis explores the feasibility of implementing the hotspot algorithm using MapReduce. 

We design map and reduce functions appropriate for preprocessing of documents, and the 

hot spot computation. We implement the functions in Hadoop (a MapReduce framework 

for Apache Foundation) and conduct several experiments to assess the benefits of 

MapReduce style implementation versus simple sequential implementation. 

 

 

Keywords: Hotspots, MapReduce, Hadoop, Temporal Index 
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1. Introduction 

Analyzing unstructured text documents such as blogs, news articles etc. for temporal 

information is an important data mining activity due to the pervasive nature of these 

data [3]. It is common for blogs and news sources to discuss/publish a few news 

stories intensely for a period of time. The topics covered in news stories may change 

frequently and be replaced with new topics, or they may stay active and the context 

surrounding the topic may change. This kind of coverage results in bursty patterns of 

stories/topics. It has been well-recognized that identifying periods of bursty activity of 

a topic may provide a lot of useful information [3, 5, 16] that could be utilized by 

businesses, policy makers, and researchers. Extracting the hotspot of topics in a time-

stamped document set is one of the ways for identifying and analyzing such bursty 

patterns. The time periods of these bursty patterns for a particular topic/word are 

identified, and the time period of maximum occurrence of the topic/word is known as 

the hotspot for the topic/word. Methods such a term or document frequency can be 

used to compute the presence of a topic in a document set. Each interval in the time 

period of the document set is associated with a numeric value which we call the 

discrepancy score. A high discrepancy score indicates that the documents in the time 

interval are more focused on the topic than those outside of the time interval. A hot 

spot of a given topic is defined as a time interval with a highest discrepancy score.  

 

The naïve implementation for extracting hot spot of a topic is a very expensive 

algorithm with a running time of O(n3) and this is especially problematic for large 
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datasets such as blogs. In this thesis, we explore the MapReduce style programming to 

see if it would make the naïve implementation of hot spot extraction more efficient. 

 

1.1 Problem definition 

A hotspot of a topic in a given data set of time stamped documents is a subinterval of 

the time period which contains significantly more documents that discuss the topic 

than the rest of the time period. Identifying hot spot may provide a lot of useful 

information.  

 

To identify hot spots, we assign a discrepancy score to each of the O(n2) intervals of 

the time period of the document set. A discrepancy score of an interval is a numerical 

value that captures the discrepancy between the presence of the topic in the document 

set of the interval and its presence in the document set outside the interval. We use the 

temporal scan statistic to compute the discrepancy score of an interval [17, 18]. 

 

We define the hot spot extraction problem as following: given a time stamped 

document set and a topic, identifies a time interval with the maximum discrepancy 

score. Note, there may be more than one such intervals; we arbitrarily choose one of 

those intervals as a hot spot. Extracting a hot spot requires calculating the discrepancy 

score of every interval in the time period of the document set. A naive 

implementation runs in time O(n3), where n is the number of the time points of the 

document set. This paper discusses using the MapReduce style programming to 
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improve the efficiency of the naïve implementation and present a MapReduce 

algorithm to compute hot spots. 

 

1.2 MapReduce 

MapReduce is a programming model and an associated implementation for processing 

and generating large data sets. It is a distributed, parallel, fault-tolerant and scalable 

programming model. Today, it is largely being used for expressing distributed 

computations on massive amounts of data and an execution framework for large-scale 

data processing on clusters of commodity servers. . It was originally developed by 

Google and built on well-known principles in parallel and distributed processing 

dating back several decades. MapReduce has since enjoyed widespread adoption via 

an open-source implementation called Hadoop, whose development was led by Yahoo 

(now an Apache project). Today, a vibrant software ecosystem has sprung up around 

Hadoop, with significant activity in both industry and academia [6]. 

 

MapReduce builds on the observation that many information processing tasks have the 

same basic structure: a computation is applied over a large number of records (e.g., 

Web pages) to generate partial results, which are then aggregated in some fashion. 

Naturally, the per-record computation and aggregation function vary according to task, 

but the basic structure remains fixed. Taking inspiration from higher-order functions in 

functional programming, MapReduce provides an abstraction at the point of these two 

operations. Specifically, the programmer defines a “mapper” and a “reducer” with the 

following signatures: 
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map: (k1, v1) → [(k2, v2)] 

reduce: (k2, [v2]) → [(k3, v3)] 

 

Key/value pairs form the basic data structure in MapReduce. The mapper is applied to 

every input 

key/value pair to generate an arbitrary number of intermediate key/value pairs. The 

reducer is applied to all values associated with the same intermediate key to generate 

output key/value pairs. This two-stage processing structure is illustrated in Figure 1 

[9]. 

 
Figure 1.2.1 - Illustrates the MapReduce framework: the “mapper” is applied to all 
input records, which generates results that are aggregated by the “reducer” 
 

Under the framework, a programmer need only provide implementations of the 

mapper and reducer. 
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On top of a distributed file system [4], the runtime transparently handles all other 

aspects of execution, on clusters ranging from a few to a few thousand nodes. The 

runtime is responsible for scheduling map and reduce workers on commodity 

hardware assumed to be unreliable, and thus is tolerant to various faults through a 

number of error recovery mechanisms. The runtime also manages data distribution, 

including splitting the input across multiple map workers and the potentially very large 

sorting problem between the map and reduce phases whereby intermediate key/value 

pairs must be grouped by key [9]. 

 

MapReduce allows for distributed processing of the map and reduction operations. 

Provided each mapping operation is independent of the others, all maps can be 

performed in parallel – though in practice it is limited by the number of independent 

data sources and/or the number of CPUs near each source. Similarly, a set of 'reducers' 

can perform the reduction phase - provided all outputs of the map operation that share 

the same key are presented to the same reducer at the same time, or if the reduction 

function is associative. While this process can often appear inefficient compared to 

algorithms that are more sequential, MapReduce can be applied to significantly larger 

datasets than "commodity" servers can handle – a large server farm can use 

MapReduce to sort a petabyte of data in only a few hours. The parallelism also offers 

some possibility of recovering from partial failure of servers or storage during the 

operation: if one mapper or reducer fails, the work can be rescheduled – assuming the 

input data is still available [1]. 
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Hotspot computation usually deals with huge chunks of text data and the scalability of 

the MapReduce programming model might be the answer to making its extraction 

process faster and more efficient. We devote this thesis to further investigate if 

MapReduce programming model makes sense for the Hotspot extraction problem by 

implementing the naïve implementation (sequential implementation) of the Hotspot 

extraction mentioned in the reference [Wei Chen, Parvathi Chundi] in the MapReduce 

framework provided by Hadoop. 

 

Hadoop 

The Hadoop implementation of MapReduce and is primarily written in Java. However, 

it provides methods of writing the core parts of a job in other languages, as long as 

they support streams, such as C++ and Python. Hadoop has also introduced two higher 

level abstractions from MapReduce, called Pig and Hive. Pig provides a scripting 

language which can describe a MapReduce job. Hive was developed by Facebook and 

it implements an SQL like language on-top of MapReduce. Both of these projects 

provide a simplified method of implementing a job, hiding the details of dealing with 

MapReduce. They are also considered the best way to implement more complicated 

logic such as joins, which users of relational databases take for granted, but in the 

MapReduce world are much harder to code [7]. 

 

HDFS is a distributed, scalable, and portable file system written in Java for the 

Hadoop framework. Each node in a Hadoop instance typically has a single namenode; 

a cluster of datanodes form the HDFS cluster. The situation is typical because each 
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node does not require a datanode to be present. Each datanode serves up blocks of data 

over the network using a block protocol specific to HDFS. The file system uses the 

TCP/IP layer for communication. Clients use RPC(Remote procedure call) to 

communicate between each other. HDFS stores large files (an ideal file size is a 

multiple of 64MB), across multiple machines. It achieves reliability by replicating the 

data across multiple hosts, and hence does not require RAID (Redundant Array of 

Inexpensive Disks) storage on hosts. With the default replication value, 3, data is 

stored on three nodes: two on the same rack, and one on a different rack. Data nodes 

can talk to each other to rebalance data, to move copies around, and to keep the 

replication of data high. HDFS is not fully POSIX compliant, because the 

requirements for a POSIX file system differ from the target goals for a Hadoop 

application. The tradeoff of not having a fully POSIX-compliant file system is 

increased performance for data throughput. HDFS was designed to handle very large 

files [14]. 

 
Figure 1.2.2 - The architecture of HDFS. The namemode (master) is responsible for 
maintaining the file namespace and directing clients to datanode (slaves) that actually 
hold data blocks containing user data. 
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A MapReduce job: Deeper look 

 

A MapReduce job is a unit of work that the client wants to be performed: it consists of 

the input data, the MapReduce program, and configuration information. Hadoop runs 

the job by dividing it into tasks, of which there are two types:map tasks and reduce 

tasks.[2] 

 

There are two types of nodes that control the job execution process: a jobtracker and a 

number of tasktrackers. The jobtracker coordinates all the jobs run on the system by 

scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress 

reports to the jobtracker, which keeps a record of the overall progress of each job. If a 

task fails, the jobtracker can reschedule it on a different tasktracker.[2] 

 

Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, 

or just splits. Hadoop creates one map task for each split, which runs the user defined 

map function for each record in the split. For most jobs, a good split size tends to be 

the size of a HDFS block, 64 MB by default, although this can be changed for the 

cluster (for all newly created files), or specified when each file is created. Hadoop does 

its best to run the map task on a node where the input data resides in HDFS. This is 

called the data locality optimization [2]. 
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Map tasks write their output to local disk, not to HDFS. This is because the Map 

output is intermediate output: it’s processed by reduce tasks to produce the final 

output, and once the job is complete the map output can be thrown away. So storing it 

in HDFS, with replication, would be overkill. If the node running the map task fails 

before the map output has been consumed by the reduce task, then Hadoop will 

automatically rerun the map task on another node to recreate the map output [2]. 

 

Reduce tasks don’t have the advantage of data locality—the input to a single reduce 

task is normally the output from all mappers. In most of the cases, we have a single 

reduce task that is fed by all of the map tasks. Therefore the sorted map outputs have 

to be transferred across the network to the node where the reduce task is running, 

where they are merged and then passed to the user-defined reduce function. The output 

of the reducer is normally stored in HDFS for reliability. For each HDFS block of the 

reduce output, the first replica is stored on the local node, with other replicas being 

stored on off-rack nodes. Thus, writing the reduce output does consume network 

bandwidth, but only as much as a normal HDFS write pipeline consumes [2]. 

 
       Figure 1.2.3 - MapReduce data flow with a single reducer task 
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The whole data flow with a single reduce task is illustrated in figure below. The dotted 

boxes indicate nodes, the light arrows show data transfers on a node, and the heavy 

arrows show data transfers between nodes. [2] 

 

The number of reduce tasks is not governed by the size of the input, but is specified 

independently. When there are multiple reducers, the map tasks partition their output, 

each creating one partition for each reduce task. There can be many keys (and their 

associated values) in each partition, but the records for every key are all in a single 

partition. The partitioning can be controlled by a user-defined partitioning function, 

but normally the default partitioner—which buckets keys using a hash function—

works very well [2]. 

 

 
  Figure 1.2.4 - MapReduce data flow with multiple reduce tasks. 

 

The data flow for the case of multiple reduce tasks is illustrated in figure below. This 

diagram makes it clear why the data flow between map and reduce tasks is 
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colloquially known as “the shuffle,” as each reduce task is fed by many map tasks. The 

shuffle is more complicated than this diagram suggests, and tuning it can have a big 

impact on job execution time.[2]  

 

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you 

don’t need the shuffle since the processing can be carried out entirely in parallel.In this 

case, the only off-node data transfer is when the map tasks write to HDFS.(see figure 

below).[2] 

 

 
  Figure 1.2.5 - MapReduce data flow with no reduce tasks. 
 

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays 

to minimize the data transferred between map and reduce tasks. Hadoop allows the 

user to specify a combiner function to be run on the map output—the combiner 

function’s output forms the input to the reduce function. Since the combiner function 

is an optimization, Hadoop does not provide a guarantee of how many times it will call 
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it for a particular map output record, if at all. In other words, calling the combiner 

function zero, one, or many times should produce the same output from the reducer.[2] 

 

1.3 Results 

The naïve hotspot algorithm was implemented using two methodologies for the 

comparison of efficiency 

1. Sequential Algorithm (Stand-alone Java Application), and 

2. MapReduce Algorithm (Hadoop Framework) 

 

An eight node cluster was used for execution. The dataset consisted of about 20,000 

files of blog data (about 200MB size) from the time period 1st August 2008 to 30th 

September 2008.  

 

Each of the algorithms was run a number of times on these datasets, incrementally 

increasing their time span and data size to make a study on their response times.  

 

It was observed that as the data set increased in size, MapReduce algorithm was 

exponentially faster than the sequential algorithm. For the largest data set size tested 

(200MB), MapReduce algorithm was found to reduce execution time by about 2.64 

times compared to Sequential Algorithm.  It was also noted that Map Reduce algorithm 

was inefficient for smaller datasets owing to the higher overhead related to distributed 

implementation. 
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1.4 Future Work 

We plan to run the algorithm on larger dataset to perform a more detailed study on the 

scalability of the hot spot algorithm using Map Reduce as it was found to perform much 

better with larger datasets.  

 

It was observed that the mapper of the Map Reduce program took significantly more 

time than the reducer. We attribute its behavior to the mapper running doing all of the 

discrepancy score calculation which is a O(n3) algorithm while the reducer just 

calculating the maximum of all the discrepancy scores calculated. We plan to redesign 

this algorithm to balance out the work done by the mapper and reducer to improve 

scalability. 

 

There exists an improved version of the native hotspot algorithm called the Efficient 

Hotspot Extraction [3], and we plan to implement that in the Map Reduce framework 

for an even better scalability. 

 

Finally, we would like to extend the Map Reduce algorithms to compute hotspots for 

streaming data.  
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2. Related work 

Identifying time periods with a burst of activities related to a topic has been an 

important problem in analyzing time stamped documents. Extracting the hot spot of a 

given topic in a time-stamped document set is one of the key interests of text miners 

[3]. The paper talks about hot spot extraction on both basic topics, containing a simple 

list of keywords and complex topics, containing keyword connected with the logical 

operators AND, OR and NOT. A concept of measure based on the Fuzzy Set Theory 

to compute the amount of information related to the topic in a document set. It also 

introduces the notion of a topic DAG to facilitate an efficient computation of measures 

of complex topics. The inspiration for this thesis came from this paper which discusses 

the hotspot extraction problem and its naïve implementation with a run time of O(n3). 

It then constructs a more efficient version (EHE)  which has a run time of O(n2). There 

has been little work done in exploring the usage of data-intensive computing 

frameworks like MapReduce for such problems. As there exists no hot spot 

computation algorithms on MapReduce we have taken the naïve implementation of the 

Hotspot Extraction Algorithm and implemented it in the MapReduce framework to 

analyze its performance. Several experiments were conducted and it was shown that 

the EHE algorithm outperformed the naïve one significantly and the extracted hotspots 

of given topics were meaningful. 

 

“Necessity is the mother of invention”, and such was the case with MapReduce. For 

years, the authors and many others at Google have implemented hundreds of special-

purpose computations that process large amounts of raw data, such as crawled 
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documents, web request logs, etc., to compute various kinds of derived data, such as 

inverted indices, various representations of the graph structure of web documents, 

summaries of the number of pages crawled per host, the set of most frequent queries 

in a given day, etc. Most such computations are conceptually straightforward. 

However, the input data is usually large and the computations have to be distributed 

across hundreds or thousands of machines in order to finish in a reasonable amount of 

time. The issues of how to parallelize the computation, distribute the data, and handle 

failures conspire to obscure the original simple computation with large amounts of 

complex code to deal with these issues [4]. And thus MapReduce was born! 

 

MapReduce allowed the expression of the simple computations involved but hide the 

messy details of parallelization, fault-tolerance, data distribution and load balancing 

in a library. The major contributions of this work are a simple and powerful interface 

that enables automatic parallelization and distribution of large-scale computations, 

combined with an implementation of this interface that achieves high performance on 

large clusters of commodity PCs. MapReduce provides a fault-tolerant 

implementation that scales to thousands of processors while most of the parallel 

processing systems have only been implemented on smaller scales and leave the 

details of handling machine failures to the programmer [4]. 

 

MapReduce has been a huge success at Google due to its ease of use, even for 

programmers without experience with parallel and distributed systems as it hides the 

details of parallelization, fault-tolerance, locality optimization, and load balancing. 
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Additionally a large variety of problems are easily expressible as MapReduce 

computations such as for sorting, data mining, machine learning etc. Lastly, 

MapReduce jobs were found to be highly scalable [4]. We took our inspiration from 

this paper when we decided to implement the Hotspot algorithm, a text mining 

algorithm in this framework. 

 

MapReduce is being explored as a solution to the scalability issue by different 

spheres of computation that deals with huge chunks of data like bioinformatics, web, 

any system that deals with geographic data, social networking graph data etc. 

Attempts have been made to implement a lot of existing algorithms in the 

MapReduce framework in an attempt to increase scalability. These MapReduce 

algorithms are not obviously analogs of standard algorithms and for the most part 

require a complete rethinking of the problem. 

 

As the size of graphs for analysis continues to grow, methods of graph processing that 

scale well have become increasingly important. One way to handle large datasets is to 

disperse them across an array of networked computers, each of which implements 

simple sorting and accumulating, or MapReduce operations. The reference [Jonathan 

Cohen] talks about the possibility of considering cloud computing for graph operation 

if they can be decomposed into logical steps that fit the MapReduce cycle. This in 

addition offers a way to handle a large graph on a single machine that cannot hold the 

entire graph as well as the possibility of enabling streaming graph processing. This 

paper gives a list of graph operation which the author thinks might be feasible to 
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implement in the MapReduce framework. Specifically, the author these are some of 

the graph operation that author thinks are feasible to be implemented in the 

MapReduce framework though no information on the implementation details has 

been provided in the paper :- Augmenting Edges with Degrees, Simplifying the 

Graph, Enumerating Triangles, Enumerating Rectangles, Finding Trusses, 

Barycentric Clustering and Finding Components. Actually, some of them are very 

easy problems if they can traverse graphs. However, as the author mentions, 

traversing graphs with MapReduce is very inefficient since a mapper reads only a 

record randomly for each map operation. Hence, all the operations that the paper 

proposed avoid traversing graphs. Instead, their common pattern in graph algorithms 

proposed has at least two MapReduce programs line up together as follows: 

 A map operation: Read and process all the edges (or vertex) or changing some 

piece of edge (or vertex) information. Then, result in records by vertex as key. 

 A reduce operation: For each record obtained from the previous map operation, 

read and determine the updated state of vertex or edge; emit this information in 

partially (or locally) updated records. Then, results in them. 

 A map operation: Identity mapper – Mapper that just read the input and emits it to 

the reducer without any processing. 

 A reduce operation: For each record from the previous reduce operation, combine 

the updates globally and complete updated information. 

 

As a part of my research, I have developed the algorithm for a couple of these graph 

operations, the details of which have been discussed in Chapter 4. In the end the 
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author concludes that not all algorithms can be implemented in the MapReduce 

framework and not all algorithms make sense to be implemented in this framework 

because sometimes it is implementable but ends up being impractical and 

inappropriate. Our experiment will tell us if the Hotspot Algorithm is a fit for the 

MapReduce framework. 

 

The growth of the internet has pushed researchers from all disciplines to deal with 

volumes of information where the only viable path is to utilize data-intensive 

frameworks. Genetic algorithms are increasingly being used for large scale problems 

like non-linear optimization, clustering and job scheduling. The traditional MPI-based 

parallel GAs requires detailed knowledge about machine architecture. Reference [16] 

demonstrate a transformation of genetic algorithms into the map and reduce 

primitives and implement the MapReduce program and demonstrate its scalability to 

large (105) problem sizes. 

        

 

 

 

 

 

 

 

 



 19 

3. MapReduce Applications  

Transformation of an existing algorithm MapReduce programming, a lot of times 

require complete re-thinking of the problem as the MapReduce algorithms are not 

obvious analogs of standard algorithms. This chapter is devoted to providing 

illustration on how some of the key algorithms that have real world applications can 

be modeled into a MapReduce one.  

 

Let us start with a very simple program for counting the number of words and their 

frequencies in a document which has its applications in Log Analysis and Data 

Querying. 

 

3.1  Word Count 

Input: Document collection 

Output: word and its total frequency across the document collection 

 

Sequential Implementation 

Input: Document Collection 

Output: Hashmap WordCount with Words as keys and their frequency across 

document set as values. 

Class SequentialWordCount 
{ 

main() 
1. Define HashMap<String,Integer> WordCount. 
2. Go through files in the document set. 

a. Tokenize the files 
b. For each word 
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i. If the word does not exist in WordCount 
Insert <word,1> 

ii. Else 
   Update the record in WordCount as <word,freq 
+ 1> 

   } 
 

MapReduce Implementation  
 

Input: Document Collection 

Output: File with the information <word,freq across the document set> 

Class MapReduceWordCount 
{ 

map(input files) 
{ 

1. for each file 
a. Tokenize the file 
b. Emit(word, 1) 

} 
reduce(key,[values]) 
{ 

1. for val: values 
a. sum += val 

2. emit(key,sum) 
   } 
}  

  

The mapper tokenizes the file and emits each word as the key and the integer 1 as 

value. This becomes the input to the reducer. But before entering the reduce the data 

emitted from the mapper goes through a shuffle and sort phase where the data is 

sorted by key and the values for each key is aggregated into a list. Hence the reducer 

gets <word,[1,1,1…]> as the input and all the 1’s get added up into the variable sum 

and then get emitted as the final output. As you can see the MapReduce framework 

take care of the logic behind grouping all the occurrence of a word and all we need to 

do is just add it up while in the sequential version we have to keep track of it. 
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Example Illustration: 

Suppose the document collection is represented as the following:-  

<document id, document text> pairs.  

Input to the Mapper:- 

<0, “facebook makes deal”> 
<1, “how facebook could”> 
<2, “reports of verizon”> 
<3, “apple google mobile”> 
<4, “verizon iphone apple”> 
<5, “twitter ad revenue”> 
 

Output of Mapper and input to the Shuffle and Sort phase:- 

<facebook,1>,<makes,1>,<deal,1>, 
<how,1>,<facebook,1>,<could,1> 
<reports,1>,<of,1>,<Verizon,1> 
<apple,1>,<google,1>,<mobile,1> 
<verizon,1>,<iphone,1>,<apple,1> 
<twitter,1>,<ad,1>,<revenue,1> 
 

Output of Shuffle and Sort and Input to the Reducer: 

    <ad, [1]> 
    <apple, [1,1]> 
    <could, [1]> 
    <deal, [1]> 
    <facebook,[1,1]> 
    <google, [1]> 
    <how, [1]> 
    <iphone, [1]> 
    <makes, [1]>     
    <mobile, [1]> 
    <of, [1]> 
    <reports, [1]>     
    <revenue,[1]> 
    <twitter, [1]>     
    <verizon,[1,1]> 
 
Output of the Reducer: 

     <ad, 1> 
     <apple, 2> 
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    <could, 1> 
    <deal, 1> 
    <facebook,2> 
    <google, 1> 
    <how, 1> 
    <iphone,1> 
    <makes, 1>     
    <mobile, 1> 
    <of, 1> 
    <reports,1>     
    <revenue,1> 
    <twitter, 1>     
    <verizon,2>  

 

        
3.2  Average of Integers 

Input: Large file with a list of integers 

Output: Average of all integers 

 

Sequential Implementation: 

Input: Large file with integers 

Output: Average of all integers 

Class SequentialAverageOfIntegers 
{ 
 main() 
 { 
  for each line in file 
   for each integer i in file 
    sum = sum + i 
    count = count + 1 
  avg = sum/count; 
 } 
} 
 
MapReduce Implementation of Average of Integers 
 
Class MapReduceAverageOfIntegers 
{ 
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 map(input file) 
 { 
  for each line in file 
   for each integer i in file 
    emit(any_key, i) 
 } 
  
 reduce(any_key, list of integers) 
 { 
  for i: list of integers 
  { 
   sum = sum + i; 
   count = length of list of integers; 
  } 
  avg = sum/count; 
  emit(any_key, avg); 
 } 
 
} 
 
In case of the above example, we don’t care about the key the mapper emits as we 

need all the numbers together in the reducer to produce the average since the 

shuffle and sort phase groups the value by the key we emit all the integers with 

the same key. As you can see the remodeling the program to the MapReduce 

framework did not really any extra efficiency as the reducer is doing exactly what 

the sequential version of it does. This example is just an example of a program 

that can be modeled as a MapReduce program but isn’t a good fit to be a 

MapReduce program. 

 
3.3  Natural Join 

Input: 2 files with 2 tables with a common attribute 

Output: Join of 2 tables 

Sequential Implementation  

Class SequentialNaturalJoin 
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{ 
 main() 
 { 

1. Open file1 
2. Open file2 
3. For every line in file 1 

a. For every line in file 2 
i. If they common attribute value matches 

Write all the attributes from both 
the files to the output file 

  } 
 } 

 

MapReduce Implementation 

Input: a directory containing both the files, each containing the table that has to be joined 

Output: a file with the join of 2 files 

Class MapReduceNaturalJoin 
{ 
 map(2 files contains the tables to be joined) 
 { 
  For each file f 

For each line in the file (each record) 
 Emit(join_attr, f + “-“ + 
remaining_attr_of_the_rec) 

  } 
 
  reduce(join_attr, [List of f-
remaining_attr_of_the_rec]) 
  { 
   for r1: 1 to f-remaining_attr_of_the_rec 
   { 
    for r2: 2 to f-remaining_attr_of_the_rec 
    { 
     Extract f from r1 
     if r2 does not contain f 
      record = join_attribute + (r1-f) 
+ (r2-f)  
      Emit(record, - ); 
    } 
   } 

} 
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The output file contains the natural join of the tables in both the input files 
 

Example Illustration: 

File1 contains the attributes Emp ID, Name: 
<111, Jim> 
<222, Joy> 
<333, Ryan> 
 
File2 contains the attributes EmpID, DeptName: 
<111, MIS> 
<111, CS> 
<222, Physics> 
 
Input to Mapper: 
The above will be the input to Mapper. 
 

Output of Mapper: 
(111, file1-Jim), (222, file1-Joy), (333, file1-Ryan), (111, file2-MIS), (111, file2-CS), 
(222, file2-Physics) 

 
This will be the input to shuffle and sort phase 

 
Output of Shuffle and Sort: 
(111,[file1-Jim,file2-MIS,file2-CS]) 
(222,[file1-Joy,file2-Physics]) 
(333,[file1-Ryan]) 
 
This will be the input to the reducer. 
 
Output of Reducer: 
(111,Jim,MIS)  
(111,Jim,CS) 
(222,Joy,Physics) 

 
 
As you can see, the MapReduce version of join algorithm is no better than the sequential 

version as the reducer still has a run time of O(n2). We have very intelligent and powerful 

tools handy in Hadoop like Hive and Pig that can easily join huge data sets with the 

choice of join like inner, outer etc.  

 



 26 

Sections 3.4, 3.5 and 3.6 illustrate examples based on graph operations that have been 

implemented based on the reference [10]. The paper mentions a list of possible graph 

operation that can possibly be implemented in the MapReduce framework. The paper 

gives an example illustration of 3.4 and no algorithm as such and nothing really on the 

3.5 and 3.6. As a part of my research I have developed the algorithms illustrated in 

sections 3.5 and 3.6..  

 

3.4 Augmenting Edges with Degrees in Graphs 

These algorithms contain a series of MapReduce jobs. 

Input:  edges.  

Output:  edges augmented with the degree of each of its vertices. 

Class MapReduceAugEdgesWithDegree1 
{ 
 map1(key,edge e) 

{ 
 for each vertex v in e 
  emit(v,e) 

} 
reduce1(v, [e1 , e2 …… en]) 
{  

  d = sizeOf([e1 , e2 …… en]) 
  for each edge e in [e1 , e2 …… en] 
  emit(e,d(v)) 

} 
 
} 

 
Class MapReduceAugEdgesWithDegree2 
{ 

map2(e,d(v)) 
{ 

  emit(e,d(v)) 
} 
reduce2(e, [d(v), d(v’)]) 
{  
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  emit(e, (d(v), d(v’)))  
} 

 
} 

 
Example Illustration 

Augmenting edges with degrees - Example 
8 
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Map1 Input: 
 
key->(a,b) 
key->(b,d) 
key->(b,c) 
key->(b,g) 
key->(b,f) 
key->(f,e) 
key->(d,e) 
key->(g,f) 

Map1 Output: 
 
a->(a,b) 
b->(a,b) 
b->(b,d) 
d->(b,d) 
b->(b,c) 
c->(b,c) 
b->(b,g) 
g->(b,g) 
b->(b,f) 
f->(b,f) 
f->(f,e) 
e->(f,e) 
d->(d,e) 
e->(d,e) 
g->(g,f) 
f->(g,f) 
  

Figure 3.4.1 – Example illustration of augumenting edges with degree mapper 1 
input and output. 
 

Augmenting edges with degrees - Example 
9 

 
  

  
a->[(a,b)] 
b->[(a,b),(b,d), (b,c), (b,g), (b,f)] 
c->[(b,c)] 
d->[(b,d), (d,e)] 
e->[(f,e), (d,e)] 
f->[(b,f),(f,e),(g,f)] 
g->[(b,g),(g,f)] 
 

 
(a,b) -> d(a)=1 
(a,b) ->d(b) =5 
(b,d) ->d(b) =5 
(b,c) ->d(b) =5 
(b,g) ->d(b) =5 
(b,f) ->d(b) =5 
(b,c) ->d(c) =1 
(b,d) ->d(d) =2 
(d,e) ->d(d) =2 
(b,f) ->d(f) =3 
(f,e) ->d(f) =3 
(g,f)->d(f) =3 
(b,g)->d(g) =2 
(g,f)->d(g) =2 
 

 

 
(a,b) ->[d(a) =1,d(b) =5] 
(b,d) ->[d(b) =5,d(b) =5] 
(b,g) ->[d(b) =5, d(g) =2] 
(b,f) ->[d(b) =5, d(f) =3] 
(b,c) ->[d(c) =1,d(b) =5) 
(d,e) ->[d(e) =2,d(d) =2] 
(f,e) ->[d(f) =3, d(e) =2] 
(g,f)->[d(g) =2,d(f) =3] 

 

 
Figure 3.4.2 – Example illustration of augumenting edges with degree reducer 1, 
mapper 2 and reducer 2 input and output. 
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3.5  Enumerating Triangles in Graphs 

Enumerating triangles is essentially a two-step approach: enumerate open triads (pairs 

of edges of the form {(A, B), (B, C)}) and recognize when an edge closes those triads 

to form triangles. To find triangles, I can choose a vertex ordering, bin all edges under 

their minimum vertex, and test each pair of edges recorded in each bin to see if that 

pair (forming an open triad) is closed by a third edge.  

Input: edge list 

Output:  list of edges forming a triangle 

 

This requires 2 sets of MapReduce jobs executed in sequence.First MapReduce job 

finds the open triads and bins it under its closing edge. Second MapReduce job looks 

in the edge list to see if the closing edge exists and if yes emits the closed triads. 

Class MapreduceEnumeratingTriangles1 
{ 

 
map1(key,edge e) 
{ 
 for each edge e = (v, v’) 
          if(d(v) < d(v’)) 
                    emit(v,e) 
          else  
                    emit(v’,e) 
} 
reduce1(v, [e1 , e2 …… en]) 
{  
     go through the list of edges to find open triads. 
    when every a pair of open  traids are found 
           emit(its closing edge ec ,open triad pair) 
} 

} 
Note:- we create a separate input file for map2 which contains the (closing edge ec 

,open triad )pair appended to the (edge,edge) pair 
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Class MapReduceEnumeratingTriangles2 
{ 

map2(edge e, edge list) 
{ 
 emit(e, edge list) 
} 
reduce2(e, list of edge list) 
{  
         if(sizeOf(flatten(list of edge list)) == 3) 
  emit(e, flatten(list of edge list))  
} 

} 
 

Example Illustration 
 

Enumerating triangles - Example 
13 

    
Mapper1 
Input:- 
(key,edge) 
 
Output:  
a->(a,b) 
c->(c,b) 
g->(b,g) 
f->b,f) 
d->(b,d) 
d->(d,e) 
e->(e,f) 
g->(f,g) 
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Reducer1 
Input:- a-> (a,b) 

 c->(c,b) 
 d->[(b,d),(d,e)] 
 g->[(f,g),(g,b)] 

 
Output:  

(b,e) -> [(b,d),(d,e)] 
(b,f)  ->[(f,g),(g,b)] 

 
Figure 3.5.1 – Example illustration of enumerating triangles, mapper 1 and 
reducer 1input and output. 

Enumerating triangles - Example 
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b 

a 

c 
g 

f 

e d 
Mapper2 
Input:- 1. Output from Reducer 1 
               2.Rekeyed edges 
Output:- 
(a,b)->(a,b) 
(c,b)->(c,b) 
(b,g)->(b,g) 
(b,f)->(b,f) 
(b,e)->[(b,d),(d,e)] 
(b,f)->[(f,g),(g,b)] 

  

Reducer2 
Input:- (b,f) -> [(b,f),(f,g),(g,b)] 
Output:- 
(b,f)->[(b,f),(f,g),(g,b)] 
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Figure 3.5.2 – Example illustration of enumerating triangles, mapper 2 and 
reducer 2 input and output. 

 

3.6  Enumerating Rectangle in Graphs 

The job of enumerating rectangles (4-cycles) is similar to that of enumerating 

triangles. Here, the approach is to find two open triads connecting the same pair of 

vertices; their combination is a rectangle.  

Input:  edge list 

Output:  edge list of a rectangle 

The general logic is to find triads connecting the same pair of vertices. This also 

requires 2 sets of MapReduce jobs executed in sequence. First MapReduce job finds 

all the triads in the graph. Second MapReduce job groups the triads connecting same 

pair of vertices, ie,  with the same closing edge. 

Class MapReduceEnumeratingRectangles1 
{ 

map1(key,edge e) 
{  
 for each edge e = (v, v’) 
          if(d(v) < d(v’)) 
             emit(v,(e,e.low)) 
    emit(v’,(e,e.high)) 
          else                        

emit(v’,e.low) 
   emit(v,e.high) 
} 

 
reduce1(vertex v, edge[e1.order, e2.order…… en .order]) 
{ 
    for each edge ei in the edge list 
          if(ei.order == low)  
           { 
            for each edge ej in the edge list 
                   if(ei != ej)  
                           { 
              if( ei and ej are open triads) 
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               emit(closing edge of ei and ej , (ei,ej 
) 

     } 
   } 
} 

} 
 
 

Class MapReduceEnumeratingRectangles2 
{ 

map2(closing edge,open triad) 
{  
       emit(closing edge, open triad) 
  
} 
 
reduce2(closing edge, list of open triads) 
{ 
    emit(key,triad pair) 
} 

} 
 

 

Figure 3.6.1 – Consider the above graph for the example illustration 
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Example Illustration 
 

Enumerating rectangles - Example 
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� a->(a,b) 
� c->(c,b) 
� g->(b,g) 
� g->(g,f) 
� e->(e,f) 
� d->(d,b) 
� f->(b,f) 
� d->(d,e) 

� b->(a,b) 
� b->(c,b) 
� b->(b,g) 
� g->(g,f) 
� g->(e,f) 
� b->(d,b) 
� b->(b,f) 
� e->(d,e) 

� a->(a,b)  
� b->[(a,b),(b,c),(b,g),(b,d),(b,f) 
� c->[(c,b)] 
� d->[(d,b),(d,e)] 
� e->[(d,e),(e,f)] 
� f->[(b,f),(g,f),(e,f)] 
� g->[(b,g),(g,f)] 

 

Figure 3.6.2 – Example illustration of enumerating rectangles, mapper1 and 
reducer 1 input and output. 

 

Enumerating rectangles - Example 
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� [(d,b),(d,e)] 
� [(e,f),(d,e)] 
� [(b,f),(g,f)] 
� [(b,f),(e,f) 
� [(b,g),(g,f)] 

� (b,e)->[(d,b),(d,e)] 
� (b,d)->[(e,f),(d,e)] 
� (b,g)->[(b,f),(g,f)] 
� (b,e)->[(b,f),(e,f) 
� (b,f)->[(b,g),(g,f)] 

• (b,e)->[(d,b),(d,e),(b,f),(e,f)]
 

 
Figure 3.6.3 – Example illustration of enumerating rectangles, mapper 2 and 
reducer 2 input and output. 
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4. Hot Spot Algorithm  

This section discusses all the algorithms involved in this experiment. This experiment 

involved taking the raw blog data from Spinn3r and pre-processing them first to 

generate the Inverted Index, Time Point Index and then Temporal Index, before 

running the hot spot extraction algorithm on it.  

Below is a block diagram that gives a high level overview of all the different 

processing algorithms, and the flow of processed data through them. This project at a 

high level takes the path to the dataset and a topic(query word) as input and then 

returns the hot spot interval of the topic(query word). 

 
Figure 4.1 - The block diagram of data flow across the implementation for this 
thesis. 
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4.1 Inverted Index 

This program deals with the cleaning up of the garbage in the blog data, building the 

inverted index for the dataset. The input to the program is all the contents of all the 

files in the data set and the output is the inverted index of the form word->filename-

freq. 

 

INPUT: Document Collection  

 
Figure 4.1.1. Example of a document in the document collection 
 
OUTPUT: Inverted Index file of the form word :filename-freq 

 
Figure 4.1.2 - Block diagram of Inverted Index Algorithm. 
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Figure 4.1.3 Snapshot of Inverted Index from our project. 
 

ALGORITHM: 

i. Tokenizing the text in the document collection 

ii. Discarding of the noise/garbage in the documents. 

iii. Extracting  the  file name 

iv. Building a Inverted Index file of the form “word :filename_freq” where freq is the 

frequency of the word in the filename 

 

Class SequentialInvertedIndex 
{ 
 main() 
 { 

1. Initialize HashMap<String,HashMap> 
InvertedIndex. 

2. Initialize HashMap<String,Integer> FileIndex. 
3. Go through each file in the document 

collection 
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4. For each file with filename f 
a. Tokenize the contents of the file into 

words 
b. For every word w 

i. Remove all special characters from 
w 

ii.  if length of w > 0 and length of w 
< 15 

  if w does not exist in 
InvertedIndex 
   Insert <w,<f,1>> to 
InvertedIndex 
  else 

add 1 to the frequency of w 
in file name f. 

 
 } 
 
} 
 

 Class MapReduceInvertedIndex 
 { 
  map(files in dataset) 
  { 
   for every file fname 
    tokenize the contents of fname 
    for each word w in the tokenized file 
     remove all special characters in w 
     if w > 0 and w < 15 
      emit(w->fname-,1) 
  } 
 
  reduce(w->fname-,[freqList]) 
  { 
   for f:freqList 
   { 
    sum = sum + f; 
   } 
   emit(w->fname-,sum) 
  } 
 } 
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4.2  Time Point List 

The filenames in the data set are of the format “ABC-DateMonthYear-123.txt”. We 

extract the list of all time points in the data set using this program. The input to the 

program is the path to the directory containing the dataset and the output is a list of 

unique time points spanning the dataset. This is extracted from the filenames in the 

data set. 

 
Figure 4.2.1 Block diagram of Time Point List Algorithm. 
 

ALGORITHM: 

i. Read all the filenames 

ii. For each filename fname 

a. Extracting  the  date from fname 

iii. Write it to a file 
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Class SequentialTimePointExtraction 
{ 
 main() 
 { 

1. Go through each filename in the data set directory 
2. For each file with filename fname 

a. Date = string in between - and – 
b. Write it to a file. 

 
 
 } 

 
} 
 

 Class MapReduceTimePointExtraction 
 { 
  map(path to the dataset) 
  { 
   for every filename fname 
    Date = string in between - and - 
    emit(Date, 1) 
  } 
 
  reduce(Date, [1,1,1,1…flist]) 
  { 
   no_of_files_for_date = 0; 
   for f:flist 
   { 
    no_of_files_for_date = no_of_files_for_date 
+ f; 
   } 
   emit(Date, no_of_files_for_date*); 
  } 
 } 
  

Note:- *The no_of_files_for_date values are a side effect of the program 

and we don’t use it anywhere else.  
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4.3  TimePoint Index 

This is a sequential java program where the unique sorted dates from the previous 

program are assigned a numerical value as a reference. The input to the program is the 

output list of unique time points from the TimePoint List program and the output list is 

a TimePoint Index for the date of the form date:Index number. 

Eg. 
01Aug2008:1 
02Aug2008: 2 
. 
. 
. 
01Sept2008:32 
02Sept2008:33 
. 
. 
etc 

ALGORITHM: 

1. Open TimePointList.txt 

2. Read each line and sort it in chronological order. 

3. Assign the number 1-52 as indices to all the dates where 1 represents a date that 

precedes the date 2 represents. 

 

4.4  Temporal Index 

This is a key step in this experiment since the output of this step, the temporal index 

will be the input to the Hot spot extraction algorithm. This program used the Inverted 

Index and Time Point Index, to generate the Temporal Index file which we call the 

TemporalIndex.txt and it is of the form word:[ timepointindex-freq_in_the_timepoint] 

-  this way there will be exactly one entry for a word in the Temporal Index File.  
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INPUT: InvertedIndex.txt and TimePointIndex.txt 

Inverted Index.txt 

 
Figure 4.4.1- Example of InvertedIndex.txt – an input to Temporal Index 
Algorithm 
 
 

 
Figure 4.4.2- Example of TemporalIndex.txt – an input to Temporal Index 
Algorithm 
 
OUTPUT: TemporalIndex.txt, of the form word:[ timepointindex-

freq_in_the_timepoint]  
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Figure 4.4.3- Example of TemporalIndex.txt - the output of Temporal Index 
Algorithm. 
 

 
Figure 4.4.4- Block Diagram of Temporal Index Algorithm 

   

ALGORITHM: 

a. Read the TimePoint Index file. 

b. Read the Inverted Index file 

c. For every line ln in the Inverted Index file 
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Replace the Date in the ln with the TimePoint index number corresponding to the 

date. 

Class SequentialTemporalIndex 
{ 
 main() 
 { 

For every line iiln in Inverted Index 
Extract Date from ln 
For every line tiln in TimePoint Index 
 Find the index for Date 
 Replace Date in iiln with index for Date 

 
 } 
 
} 
 

 Class MapReduceTemporalIndex 
 { 
  map(inverted index, timepoint index) 
  { 
   Read timepoint index and store it in a hashmap. 
   for every line l in inverted index 
    word = keyword from l 
    tpointFreq = l – word 
    date = extract date from tpointFreq 
    tpindex = hashmap.get(date) 
    replace date in tpointFreq with tpindex 
    emit(word,tpointFreq)   
  
  } 
 
  reduce(word, [tpointFreq]) 
  { 
   emit(word,[tpointFreq]); 
  } 
 } 
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4.5  Hot Spot Computation 

This is the heart of this experiment and talks about the implementation of the naïve hot 

spot extraction algorithm the sequential way and the MapReduce way. 

INPUT: Word, TemporalIndex.txt 

OUTPUT: Hot spot for the word, i.e. the time point at which the word has maximum 

occurrence. 

 
Figure 4.5.1– Block Diagram of Hotspot Calculator Algorithm 
 

ALGORITHM: 

1. Reading a word from the user whose hotspot is to be found. 

2. Calculating the discrepancy score of the word for every possible interval using the 

formulae and the Temporal Index File  

3. Calculating the m, M, b and B for a word 

4. Plugging it onto the formulae to calculate the discrepancy score 
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5. Remembering and returning the time points with the maximum 

discrepancy score 

6. Returning the hot spot for the word. 

 

Calculation of discrepancy score of an interval: 

A time point is an instance of time with a given base granularity, such as a second, 

minute, day, month, year, etc. A time point can be represented by a single numerical 

value, specifying a given second, minute, day, etc. A time period T is a sequence of n 

time point’s t1…. tn. An interval Tij (1 ≤ i ≤ j ≤ n) of T is a sequence of consecutive time 

points, starting at time point ti and ending at time point tj, in T. Let Tij and Tkl be two 

intervals of T. Tij is contained in Tkl if i ≥ k and j ≤ l [3]. 

Suppose our dataset spans across a time period T. Discrepancy score of topic during a 

time interval Tij of T is calculated by comparing its presence during Tij to its presence in 

the rest of the time period. Let m be the number of times the topic appears in Tij , and b 

be the total number of times all of the topics appear in Tij . In addition, let M denote the 

number of times the topic appears in the entire time period T; and B denote the number of 

time all topics appear during T. We calculate the discrepancy score of p in t using the 

following formula: 

 

where, 

m is the frequency of w in the interval (i,j) 

b is total frequency of all words in interval (i,j) 

M is the total frequency of w  in the document collection N 
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B is the total frequency of all words in the document collection N 

 

Class SequentialHotSpotAlgorithm 
{ 
 main() 

1. If n is the # of time points in document collection 
2. dmax = -∞ 
3. for i = 1 to n 

i. for j = i to n 
I. mij = bij =0 

II. for k = i  to j 
A. mij = mij + mk 
B. bij = bij + bk 

III. Compute dij  for (i,j) 
IV. if(dij ≥ dmax) 

A. dmax = dij 
4. hotspot = (i,j) 

} 
 
Class MapReduceHotSpotExtraction 
{ 
 map(temporal_index file, query_word) 
 { 
  dmax = negative infinity 
  B = Calculate B from temporal_index file 
  M = Calculate M from temporal_index file for the 
query_word 
  for i: 1 to N 
  { 
   for j: i to N 
   { 
    for k: i to j 
    { 
     m = calculate m(i,j) for 
query_word  
     b = calculate b(i,j) for 
query_word 
    } 

d(i,j) = calculate discrepancy score 
for interval(i,j) 

if(d(i,j) > dmax) 
{ 

dmax = d(i,j) 
dinterval = (i,j) 
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     } 
    } 
    emit(any_key,dmax+”-“+dinterval) 
   } 

 
 
 } 
 reduce(any_key,list of dmax-dinterval) 
 { 
  hotspotDS = negative infinity 
  hotspotInt = null; 
  for dScoreInt : list of dmax-dinterval 
  { 
   dScore = 
dScoreInt.substring(0,dScoreInt.indexOf(“-“)) 
   dInt = 
dScoreInt.substring(dScoreInt.indexOf(“(“),dScoreInt.indexOf
(“)); 
   if(dScore > dScoremax) 
   { 
    hotspotDS = dScore 
    hotspotInt = dInt 
   } 
  } 
  emit(hotspotInt, hotspotDS) 
    
 
 } 
  
} 
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5. Experiments 

5.1  Dataset 

Our dataset came from the Spinn3r which provides high volumes of fresh data, taping 

you into worldwide conversation. Spinn3r is a web service for indexing the 

blogosphere. It provide raw access to every blog post being published - in real time. 

Spinn3r handles all the difficult tasks of running a spider/crawler including spam 

prevention, language categorization, ping indexing, and trust ranking [11]. 

 

Spinn3r was founded in late 2005 by web crawler and RSS expert Kevin Burton. Mr. 

Burton is a serial entrepreneur and sold his previous company, Rojo to Six Apart in 

late 2006. Spinn3r was originally built to power Tailrank, a real-time blog analysis and 

topical relevance index which launched in early 2006. The architecture behind Spinn3r 

was influenced by two large projects. One was Rojo, which had a 500GB-1TB search 

index. The other was NewsMonster, one of the first and still the most advanced client 

side aggregator, with a high performance crawler integrated at its core [11]. 

 

Spinn3r was launched in August 2007 as a dedicated product after having numerous 

requests to license its backend infrastructure. Since launching, Spinn3r has been 

consistently adopted by new startups needing access to the blogosphere. Spinner is 

now providing crawl infrastructure for startups as well as dozens of universities and 

hundreds of researchers [11]. 
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Our dataset is a small subset of the Spinn3r blog data released for analysis purposes to 

researchers. It spans from August 2008 – September 2008. The dataset consist of 

around 20,000 files of blog data from and is approximately 200MB in size. Each time 

point we have identified is a single day and we have 52 such time points across the 

entire dataset. 

  

5.2  Machine Configuration 

The run environment consisted of an 8 – node cluster. The specifications of the cluster 

are as follows: 

- 8 x Dell PowerEdge R410 servers. Each of these servers have the following: 

- Hardware:  

    * 4 x 6-core CPUs (Intel Xeon X5660 @ 2.80 GHz) 

    * 128GB of memory  

    * DFS storage: 200GB per node (Total: 1.4 TB for the cluster) 

    * 1 Gigabit NIC 

- Software: 

    * 64-bit Ubuntu Linux 10.04.4 LTS edition 

    * Hadoop version: 0.20.203.0 with a built in Java version 1.6.0_26 

 

5.3  Results 

5.3.1  Summary 

 Map Reduce algorithm can be significantly more efficient than sequential 

algorithm in handling computations on large data sets.  
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 As the research shows, Map Reduce algorithms have significant 

potential in several areas of computing including emerging fields 

such as analysis of hot spots. 

 By and large, computing world has not utilized Map Reduce 

algorithms for hot spots, and the results of the experiments show 

that the algorithm’s efficiency and scalability is well suited to hot 

spot based real world analysis. 

 

5.3.2 Inverted Index and Temporal Index Sizes 

The blog data was partitioned into one-week chunks and the hotspot computation was run 

on partitioned data for 1 week through 8 weeks to study the computation times and other 

patterns. The size of the inverted index went from approximately 10kB to 114kB as we 

included all 52-time points. The table in Figure 5.3.2.1 lists the size of the inverted index 

file and temporal index file for data set.  

Time Frame Inverted Index(kB) Temporal Index(kB) 
1 week 10187 1671 
2 weeks 39094 6500 
3 weeks 67202 11066 
4 week 93529 15208 
5 weeks 102830 16695 
6 weeks 108460 17621 
7 weeks 112977 18355 
8 weeks 114541 18610 

Figure 5.3.2.1 – This tables shows the increase in the size of Inverted 
Index and Temporal Index in kB as the dataset grew from 1 week of 
data to 8 weeks of data. 
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The graph in Figure 5.3.2.2 below shows the increase in the size of the temporal index 

as we increased the dataset by one week at a time. The x-axis shows the increase in 

dataset as we increment by a week at a time.  
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Figure 5.3.2.2 – This graph shows the trend of Temporal Index in kB as the 
dataset grew from 1 week of data to 8 weeks of data. 

 
5.3.3  Keyword Count 

The total number of distinct keywords in the temporal index also went up as we 

increased the dataset a week at a time. The table in Figure 5.3.3.1 shows list the 

number of distinct keyword contained in each of the temporal index. 

Time Frame # of keywords Temporal Index(kB) 
1 week 41503 1671 
2 weeks 106486 6500 
3 weeks 148207 11066 
4 week 179037 15208 
5 weeks 190398 16695 
6 weeks 197299 17621 
7 weeks 202447 18355 
8 weeks 204283 18610 

 
Figure 5.3.3.1 – This tables shows the increase in the # of keywords 
and the size of Temporal Index in kB as the dataset grew from 1 week 
of data to 8 weeks of data. 
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Figure 5.3.3.2 is a graph that shows the increase in the number of distinct keywords 

as the size of the dataset was increased one week at a time. The x-axis depicts the 

incremental increase in dataset while the y-axis gives the total distinct keywords. 
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Figure 5.3.3.2 – This graph shows how the number of distinct keywords in 
the dataset grew across 1 week of data to 8 weeks of data. 
 

5.3.4 Hotspots for some interesting keywords 

The MapReduce version of the hotspot computation was run for a number of 

keywords with the largest dataset, i.e. the dataset consisting of data from 1st August 

2008 to 30th Sept 2008. Each run took an average of 1 hour and 46 minutes of 

execution time.  

 

Table in Figure 5.3.4.1 shows the hotspot interval obtained for all of the interesting 

keywords from the runs. The results of this runs was found to be interesting for two 

reasons:-  

1.  The hotspots of related keywords overlap. Eg. policies and congress both share a 

common interval window of 1st August 2008 to 6th August 2008, mortgage and 

recession has perfectly aligned hotspot interval of a single day, 14th August 2008 
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and so on as can be seen in the table shown in Figure 5.3.4.1. Also the Figure 

5.3.4.2 is a timeline graph depicting the hotspot intervals of these keywords with 

the hotspot interval in the x-axis and the keyword in the y-axis. 

2. The above observation justifies the meaningfulness and usefulness of hotspot 

computation.  

Finding related keywords or temporal synonyms is an important research topic, 

especially the synonyms that change over time. The study of temporal synonyms 

is an altogether different topic and is beyond the scope of this project. However, 

the MapReduce style computation of hotspots can certainly be used in scaling the 

temporal synonym extraction problem.  

Keyword Start 
Interval 

End 
Interval 

policies 1-Aug-08 9-Aug-08 
congress 1-Aug-08 6-Aug-08 

yahoo 4-Aug-08 5-Aug-08 
telemundo 5-Aug-08 10-Aug-08 

nbcolympics 10-Aug-08 10-Aug-08 
mortgage 14-Aug-08 14-Aug-08 
recession 14-Aug-08 14-Aug-08 
economy 23-Aug-08 23-Aug-08 

stocks 23-Aug-08 23-Aug-08 
democrats 27-Aug-08 27-Aug-08 

clinton 27-Aug-08 17-Sep-08 
exports 27-Aug-08 27-Aug-08 
euros 28-Aug-08 21-Sep-08 
hiring 29-Aug-08 29-Aug-08 

republicans 30-Aug-08 21-Sep-08 
summer 30-Aug-08 31-Aug-08 
elections 10-Sep-08 10-Sep-08 

unemployment 18-Sep-08 19-Sep-08 
banking 24-Sep-08 25-Sep-08 

Figure 5.3.4.1 – Shows the Hotspot interval of some 
interesting keywords found in our dataset. 
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Figure 5.3.4.2 – Hotspot Timeline graph showing the hotspot intervals of some 
interesting keyword in our dataset. 

5.3.5 Comparison of execution time and size of temporal index against growing 

dataset 

It has been observed that the MapReduce execution time does not increase as rapidly as 

the increase in the dataset as the dataset grows. Table in Figure 5.3.5.1 is a comparison 

of the rate of change of the Map Reduce execution time with the increase in size of the 

temporal index. The graph in Figure 5.3.5.2 plots this pattern with the x-axis showing 

the increase in dataset and the y-axis on the left showing the MapReduce execution time 

in seconds and y-axis on the right showing the size of temporal index in kB. 
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Time Frame Size of Temporal 
Index 

MapReduce Execution 
Time (secs) 

1 Week 1671 42 
2 Weeks 6500 102 
3 Weeks 11066 332 
4 Weeks 15208 966 
5 Weeks 16695 1975 
6 Weeks 17621 3232 
7 Weeks 18355 5119 
8 Weeks 18610 6208 

Figure 5.3.5.1 – MapReduce execution time as the size of temporal 
index increases. 

 
 

Figure 5.3.5.3 depicts a graph showing the rate of change of MapReduce execution 

time as the size of temporal index increases. The x-axis shows the incremental 

increase in dataset while the left y-axis shows size of temporal index in kB and right 

y-axis shows the % increase in MapReduce execution time. 
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Figure 5.3.5.2 – Increase in the tread of MapReduce execution time and 
the Temporal Index size as the dataset increases. 
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MapReduce Size of Temporal Index vs. 
Execution Time Increase
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Figure 5.3.5.3 – Rate of change of increase in the MapReduce execution time as 
the size of Temporal Index increases. 

 
5.3.6 MapReduce Implementation Vs Sequential Implementation 

Even though the Map Reduce execution time is more than the Sequential execution 

time for the first run, as the size of the dataset grows the MapReduce time is much 

better than the Sequential time. For our largest dataset the Map Reduce time is 2.64 

times better than its corresponding Sequential time and it can be projected that the 

Map Reduce time would continue to improve as the dataset increases further. Table in 

Figure 5.3.6.1 shows the hotspot interval obtained for the keyword yahoo for various 

runs as the dataset incrementally increased by a week at a time. 

 

The graph in Figure 5.2.6.2 plots is a comparison of the MapReduce execution time 

vs the Sequential execution time for finding the hotspot of the keyword yahoo. The x-

axis shows the incremental increase in size of the dataset while the y-axis shows the 

execution time in seconds. 
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Time 
Frame Run # HotSpot 

MapReduce 
Execution 

Time 
(secs) 

Sequential  
Execution 

Time  
(secs) 

1 Week Run1 04Aug2008 to 05Aug2008 42  8 
2 Weeks Run2 04Aug2008 to 05Aug2008 102  136 
3 Weeks Run3 04Aug2008 to 05Aug2008 332  727 
4 Weeks Run4 04Aug2008 to 05Aug2008 966  2220 
5 Weeks Run5 04Aug2008 to 05Aug2008 1975  4665 
6 Weeks Run6 04Aug2008 to 05Aug2008 3232  8119 
7 Weeks Run7 04Aug2008 to 05Aug2008 5119  13281 
8 Weeks Run8 04Aug2008 to 05Aug2008 6208  16427 

Figure 5.3.6.1 – Shows the Hotspot interval, MapReduce execution time 
and Sequential Execution time for the keyword “yahoo”. 
 

 
Figure 5.3.6.2 – Tread of Sequential Execution time and MapReduce 
Execution time for the keyword “yahoo”. MapReduce execution time 
performs 2.64 times better than Sequential execution time for the largest 
dataset. 
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6 Conclusion and Future work 

In this thesis, we mainly address the challenges of using the MapReduce model to scale 

the hot spot extraction algorithm. We described the algorithm design and implementation 

on Hadoop. The scalability and performance of the implementation were investigated. 

Implementations were done in Java.  

 

Implementing the Hotspot Algorithm in the MapReduce involved doing some pre-

processing to clean up the data, creation of inverted index, time point index and temporal 

index, which would ultimately be the input to the Hotspot Algorithm. Re-implementing 

an existing algorithm in Map Reduce framework involves a complete rethinking of the 

problem and this was one of the most challenging parts of the project. 

 

MapReduce abstracts most of the data handling logic for us which can be challenging as 

the requirement to keep track of the data distributions increase. While abstraction in 

MapReduce allows for working understanding of distributed and parallel programming 

sufficient for program development,  debugging, fine tuning, and documentation gets 

proportionally difficult. 

 

As captured in the results, as the data continues to grow, the MapReduce algorithm 

performs exponentially better than sequential algorithms, and this efficiency is expected 

to improve significantly for even larger datasets. One area for future work involves 

running the existing MapReduce algorithm for a much larger dataset to confirm the 

hypothesis. 
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During the experiments, it was also observed that the Mapper had longer execution times 

than the reducer and it was attributed to the O(n2) algorithm the Mapper was running. The 

second area for future work involves implementing an improved version (EHE) of the 

hotspot algorithm referenced in [3] in the MapReduce model. 

 

A third area for future work involves re-engineering the current algorithm to calculate hot 

spot for streaming data which would provide a good test on the scalability and efficiency 

of the algorithm given that streaming data will be dynamic and could grow quickly in a 

short time period. 
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